
Journal of Intelligent & Robotic Systems
https://doi.org/10.1007/s10846-018-0969-3

Integrated Framework for Fast Prototyping and Testing
of Autonomous Systems

Luigi Pannocchi1 · Carmelo Di Franco1 ·Mauro Marinoni1 ·Giorgio Buttazzo1

Received: 9 January 2018 / Accepted: 3 December 2018
© Springer Nature B.V. 2018

Abstract
Validating the behavior of a complex system is a fundamental step in the development process to avoid costly damages
and dangerous circumstances. Such a phase requires a realistic simulation of the system and the reproduction of the full
operative scenario, including the environment with all the possible events and situations in which the system could get into.
Although several tools exist to design, simulate and validate specific functions, checking the overall system behavior in an
operative scenario usually requires the development of custom simulation frameworks. These are often tailored to the specific
system under study, with the consequence that they are either incomplete or not fully reusable for other projects. This paper
presents a modular hardware-in-the-loop development simulation framework that allows realistic simulation, supporting
multi-vehicle scenario and comprehending tools for reproducing realistic testing environments with advanced sensors. A
case of study is presented to show the employment of the proposed framework for testing the behavior of unmanned vehicles,
focusing on the timing properties of the system.
Category (2).

Keywords Simulation · Hardware-in-the-loop · Multi-robot

Mathematics Subject Classification (2010) 68-04

1 Introduction

Nowadays, the presence of autonomous vehicles has become
common in disparate application domains. The spreading
of their employment is due to the clear advantages they
offer in terms of flexibility, safety, and performance.
These results have been obtained thanks to the continuous
improvement of computational platforms, materials, and

� Luigi Pannocchi
l.pannocchi@santannapisa.it

Carmelo Di Franco
c.difranco@santannapisa.it

Mauro Marinoni
m.marinoni@santannapisa.it

Giorgio Buttazzo
g.buttazzo@santannapisa.it

1 Scuola Superiore Sant’Anna, Pisa, Italy

algorithms, paving the way towards ”real autonomous”
vehicles capable of interacting with dynamic environments
in a wide range of circumstances, like fire detection [14],
surveillance, inspection of industrial plants, or monitoring
of the fauna [20] and flora in large areas [3].

Accomplishing a task with autonomous vehicles requires
taking into account different aspects like control, navigation,
guidance, multi-agent coordination, and computer vision.

The complexity is often tackled structuring the project
on different abstraction levels, which can be managed
separately and in parallel, as Lum et al. pointed out in their
work [12]. Figure 1 represents an example of such structure
for the design of software involving autonomous vehicles.
At the lowest level, controlling the dynamics of the vehicle
requires the knowledge of the vehicle detailed model, whilst
at the Strategic Level, the algorithms often abstract the
dynamics of the vehicles and the control laws.

As for many embedded systems, at the end of the devel-
opment phase, all the individual components are going to
be implemented on a physical board, with limited compu-
tational power and memory. Starting from the theoretical
aspects, engineers go through the software implementation

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-018-0969-3&domain=pdf
http://orcid.org/0000-0002-6250-4939
mailto: l.pannocchi@santannapisa.it
mailto: c.difranco@santannapisa.it
mailto: m.marinoni@santannapisa.it
mailto: g.buttazzo@santannapisa.it

J Intell Robot Syst

High

Low

L
ev

el
 o

f
A

b
st

ra
ct

io
n

System Stabilization Signal Tracking

Dynamics and Control Level

Guidance Algorithms Cooperation Schemes

Tactical Level

Team ManagementPath Planning Task Allocation

Strategic Level

Fig. 1 Abstraction levels in the development of applications involving
autonomous vehicles

phase and then they end up with the deployment on the
target hardware, as shown in Fig. 2.

This aspect should be taken into account when coming
up with feasible solutions, employing tools able to validate
the system to avoid unwanted problems during/after the
deployment phase.

This multi-disciplinary approach, together with the
complexity of the design process and the embedded nature
of autonomous vehicles, entails a complex validation step.
This complexity is also determined by the interest in the
topic, both from the academical and industrial point of
view, which is pushing forward the technology and, in turn,
the capabilities of those systems. In order to answer the
nowadays demands it is therefore necessary to continuously
chase new possibilities with the relative mushrooming of
different operating conditions that need to be simulated.

The possibility of validating and testing the full system
behavior on a realistic simulation framework would allow

Fig. 3 Hardware-in-the-loop scheme

significant benefits, as reducing the development time,
avoiding crashing the vehicles due to software failures,
and evaluating the reaction to peculiar situations that
could be too rare or not reproducible in practice. The
possibility of evaluating control software in a simulation
framework is particularly important in a research setting,
where novel approaches, which are not supported by
a background of extensive usage and thus can exhibit
unknown shortcomings, are typically adopted to develop
innovative solutions. For the sake of clarity, since the
concept of simulation itself is very general and exhibits
several facets, talking about simulation framework it would
be useful to distinguish two main aspects: Plant Simulation
and Environment Simulation.

Plant Simulation Reproducing realistic simulation, also
taking into consideration the implementation details men-
tioned above (Fig. 2), is a crucial objective in the devel-
opment process and this can be achieved through the

Fig. 2 Abstraction levels in the
implementation of a control
application on an embedded
system

−

yue+r
C(s) G(s)

CPU Memory

Peripherals

ctr_task(y) {
 ...
 update_controls();
}

Software Implementation

Execution on control hardware

Theoretical Design

High

Low

Abstraction Layers for the Implementation

A
b
st

ra
ct

io
n
 L

ev
el

J Intell Robot Syst

hardware-in-the-loop simulation approach. This method,
schematically illustrated in Fig. 3, consists in running the
control software directly on the embedded control board of
the vehicle, in this case an autopilot board, which interacts
with a simulated physical plant. In this setting, the phys-
ical sensors and actuators of the vehicle are disabled and
replaced with virtual counterparts running in the simula-
tor, while the control hardware carries out the control tasks.
For the sake of clarity, the origin of the term “hardware-in-
the-loop” refers to the fact that the “control hardware”, in
this case the autopilot board, is included in the simulation
loop. This terminology is generally accepted by the research
community [9, 11, 15, 16, 18, 19, 21].

Environment Simulation To test high-level functions (e.g.,
obstacle avoidance, target recognition and tracking, integra-
tion of video information for navigation), it is necessary to
recreate a synthetic environment and model the interactions
between this simulated world and the vehicle. The details of
such interactions should be sufficient to cover a wide set of
scenarios typical of modern applications.

Inline with the aim of identifying the support necessary
for the development of solution involving autonomous
systems, these simulation facilities should be provided as an
outcome of a integrated tool to make them really profitable.
This entails that, in addition to what/how simulate, other
properties come into play. Given the frenetic pace of the
research development, the success of a tool also depends on
its maintainability and interoperability with other software.
It should be possible to use it with a large variety of systems,
and any possible upgrade should be easy to do, providing
a good maintainability. The support tools should be able to
deal with complex scenarios, allowing to validate advanced
functionalities of the developed systems. Moreover, the
development of models and testing scenarios should be
made as simple as possible, to reduce the total effort
in designing the solution of the actual control problem.
Without such properties, the tool is likely to become
obsolete in a short time.

While this consideration seems to be reasonable, it often
happens that research communities, working on this topics,
tend to develop their own custom simulation frameworks.
Such tools are often too specific and tailored to the system
under development, and it is likely to see them used for a
limited number of applications.

Contributions This work presents a hardware-in-the-loop
simulation framework for multi-vehicle autonomous sys-
tems1, with the aim of supporting the complex development

1The project is available online on the ReTiS laboratory website under:
http://retis.sssup.it/?q=content/simulation-framework-autonomous-ve
hicles

of tasks involving them. The main contribution of the work
is the designed structure of the Simulation Framework,
which allows providing the required support, integrating dif-
ferent and possibly heterogeneous components. Indeed, the
proposed solution allows managing in a single framework
the mathematical modeling of the plant and the environ-
ment, the design of the testing scenario, the simulation of
the whole system in a hardware-in-the-loop configuration
to spot hardware problems before the deployment, and the
reproduction of the operating scenario embedding the appli-
cation for vehicle management in the simulation loop. As a
second contribution, the data flow in the Simulation Frame-
work has been managed paying particular attention to tim-
ing issues, which allows achieving higher timing precision
and accuracy in data exchange with respect to the existing
related works. To summarize, the Simulation Framework
has been designed to fit out the following characteristics:

1. Support for multi-agent scenario;
2. Modular design to improve maintainability;
3. Support for integrating generic autopilot boards;
4. Possibility to interoperate with a wide range of user

interfaces for autonomous vehicles;
5. Support for testing high-level functions of the vehicles;
6. Precise time management to increase the realism of the

simulation;
7. Rapid prototyping of complex environment for testing

and validation:

– Easily model environment sensors like distance
sensors, sound sensors, laser sensors, etc.;

– Easily model visual effects like lights, shadows,
clouds and different weather conditions;

– Easily include moving objects, vehicles and other
entities, also with the capability to drive them
directly online by user inputs.

The rest of the paper is organized as follows. Section 2
presents an overview of existent solutions, identifying
interesting approaches and drawbacks, to set up the starting
point of this work. Section 3 gives a general overview of
the proposed approach, while Sections 4 and 5 provide the
implementation details of the Framework Core, including
the Simulation Engine, and the Synthetic Environment,
respectively. Section 6 reports a case of study to show
the utilization of the framework. Section 7 is dedicated
to the evaluation of the performance and limits of the
proposed implementation. Section 8 concludes the paper
and identifies the future research directions.

2 RelatedWorks

The need for realistic simulated environments is something
the research groups working with robotics and automation

http://retis.sssup.it/?q=content/simulation-framework-autonomous-vehicles
http://retis.sssup.it/?q=content/simulation-framework-autonomous-vehicles

J Intell Robot Syst

came across in their activities. Indeed, simulation is not only
limited to the dynamics of the systems, but also includes the
environment reproduction and relative interaction with that
comes when planning complex missions. It is not by chance
that, dealing with tools for robotics, it is possible to talk
about “situated robots”. The adjective “situated” is used to
stress the fact that the agent is embedded in an environment
and can interact with it.

There are a lot of solutions already available, trying to
answer this need of realism for different aspects of the
problem. The panorama is ample and a good evidence of this
is the fact that, in the research community, there are attempts
to compare and classify them like the works of Cook et al.
[6], Castillo et al. [5] and Jouvencel et al. [18]. Given the
large set of possible applications, as explained in Section 1,
making surveys on this topic is not an easy deal: the
examinations cover only a partial list of possible framework
characteristics. In this section some relevant related works
are proposed, looking at the features necessary to cover the
validation needs as much as possible:

– realism of a synthetic environment;
– realism of the simulation; and
– possibility to integrate the user interface software used

in the real operating condition.

Considering the aspect of the environment simulation,
the work of Carpin et al. [4] was focused on developing
a realistic simulation framework (USARSim) for multi-
robot scenario in complex environments. Applications of
such simulator are found in robotics challenges like the
RoboCup Rescue Simulation League and in the IEEE Virtual
Manufacturing Automation Competition. In the examples
reported in their work the task was to reproduce a cluttered
environment for the robots and simulate the interaction
with it. The authors identified the Unreal Engine2 game
design suite as a an useful tool for engineering and research
activities. Given the ability to easily model the environment,
the USARSim simulator has been successfully used by Birk
et al. [2] in their work for the simulation of the Mars
soil in the context of terrain classification with a rover.
Sehgal et al. [22] used the same simulator to model an
underwater scenario. Unreal Engine was used both for
designing the environment and for simulating the dynamics
of the systems.

Ganoni and Mukundan [8] proposed a framework for
multi-robot simulation providing a software-in-the-loop
simulation based on the Ardupilot and PX4 autopilot
software interacting with the Unreal Engine synthetic
environment, similarly to the approach proposed in this
paper. Their approach allows simulating multiple vehicles,
but the main focus is the development of complex vision

2https://www.unrealengine.com/ (Unreal Engine 4)

algorithms, leaving the support for Hardware-in-the-loop
simulation is left as a future work [8]. Furthermore, there is
not yet interaction with the synthetic world (Unreal Engine),
and the vehicle dynamic is not affected by wind gusts or
impacts with objects. Despite the authors claim that their
approach is Realtime (since it runs at 30 Hz), they do not
provide studies on the latency. Also, they are not taking
into account the impact of executing the vision algorithms
directly on the autopilot board. Finally, the Ardupilot and
PX4 firmware must be modified for being used in the
framework.

Another simulator that allows the employment of
multiple heterogeneous robots with a high degree of realism
isMORSE, which was developed by Echeverria et al. [7]. In
their work they made use of a 3D modeling and rendering
application (Blender) to recreate realistic scenario, useful
also for testing image processing. MORSE uses the Bullet
physics library for the simulation of the physics.

Considering the features more related to the control
part, it is worth noticing that both USARSim and MORSE
do not allow a hardware-in-the-loop simulation. While
the first deals only with pure simulations, the latter has
been conceived for supporting software-in-the-loop and to
be independent from specific communication middlewares.
Moreover, the modeling of the system is accomplished using
the libraries included in the tools. This could lead to limits
in the modeling freedom and it does not take advantages
of other classical modeling/simulation/design tools which
are widespread in the academical and industrial field, like
Matlab. In this way, the user is forced to get accustomed to
the adopted modeling method, making the initial approach
more difficult. Another point that deserves consideration is
that even if the presence of such frameworks constitutes an
answer to some of the needs mentioned in the introduction,
they focus on the robot/environment interaction for testing
specific behavior, with a limited interaction with the user.
On the contrary, applications involving autonomous systems
usually comprehend also complex user interfaces and other
software for the management/control of the vehicles/robots.
Since the final aim of the validation is to test the overall
system, reproducing the real operating conditions, proper
simulation should include these user interfaces. This is
particularly important for unmanned aerial vehicles, which
are managed through ground stations.

Looking at solutions that allow hardware-in-the-loop
simulation, it is usual to find approaches that consider only
a single vehicle, like the ones proposed in [9, 11, 15, 19,
21]. Mainly this is due to a trade-off between realism and
system scalability. Such tools were more oriented towards
the realism of the simulation. As an example, the work
of Kamali and Shikha [9] presented a simulation model
developed in Matlab/Simulink and running on an FPGA to
support real-time communication on I/O data buses (I2C

https://www.unrealengine.com/

J Intell Robot Syst

and SPI) with the control board. If on the one hand this
approach allows achieving a good level of realism, on the
other hand it does not provide good scalability. A highly
realistic hardware-in-the-loop simulation tool for multi-
agent systems has been proposed by Kamal and Shumaker
[1], but it is not scalable to many vehicles given the
complexity of the simulation system. Santos et al. [21] made
use of the flight simulator software X Plane for simulating
the vehicle dynamics. With this approach it was not possible
to simulate different kinds of vehicles and the simulation
rate was coupled with the refresh rate of the video. This
coupling turns out to be a problem for simulation purposes.
Indeed the timing of the video output frames is dependent
on the workload necessary to process the images, which is
not constant and it is influenced by several factors, such as
image type, quality, etc. Moreover the maximum achievable
simulation frequency is in the order of hundred of Hz, given
the high computational load required to process images, and
this could be not always sufficient.

Takaya et al. [24] proposed a simulation environment for
mobile robots based on the well known simulation platform
for robotic systems ROS and the associated physical
simulator Gazebo. The interest in ROS consists in the fact
that the simulation results can be directly deployed to the
ROS-enabled robot hardware and allow a straithforward
transition to hardware-in-the-loop simulation as made by
Odelga et al. [16]. In their work they show that ROS/Gazebo
is quite flexible and it makes possible to achieve good
performance in simulation, for example running with a
simulation frequency of 1KHz. The drawbacks in adopting
ROS and Gazebo are that the installation, configuration
and utilization are not straightforward and the presence of
compatibility problems forces to use only the supported
OS platforms. The modeling of the vehicle in Gazebo is
made using xml description files and then the simulation
is automatically carried out. Regarding this modeling
approach, the same consideration about the ease usage made
for the USARSim andMORSE can be made.

As far as the user interface is concerned, some of these
research groups developed their ground station application
and embeeded them in the simulation environment like in
[11, 19, 21]. Others included commercial ground stations
in their frameworks as in the work of Kamali et al. [9] and
Pannocchi et al. [17]. Going back to the considerations made
about the requirements of a useful simulation environment,
most of these hardware-in-the-loop frameworks, with he
exception of Jouvencel [18] and Pannocchi [17], were not
made with the aim of providing realism of the environment
and the interaction with it. This is justified by the fact
that they are mainly developed to support flying vehicles,
which are moving in a 3D free space, with the focus on the
control part. More precisely, Jouvencel et al. [18] proposed
a well-structured simulation framework for underwater

vehicles, able to manage multiple heterogeneous agents.
The simulator models the environment, including obstacles,
water properties and constraints related to communication
in water, but the framework does not include a 3D
visualization. Pannocchi et al. [17] proposed a modular
simulation framework for multi-vehicle scenario, with a
high degree of realism, both in the dynamics modeling and
visualization (Unreal Engine), together with the inclusion
of user interface software. In their work the interaction
with the synthetic environment was still limited to a bare
visual feedback and some basic information about the
identified collisions. A similar work was made by Shah
et al. [23], where they proposed a realistic environment
for testing advanced functionality using the Unreal Engine.
They described the vehicle model, the architecture and the
simulation outputs, however, they did not investigate the
timing properties of their platform and they were focused on
a single vehicle.

Having considered all these related works, in the
following, a novel framework will be proposed, with the
aim of gathering together the conceived positive aspects and
make up for the identified lacks.

3 SystemDescription

The proposed simulation framework consists of four main
intercommunicating components, as illustrated in Fig. 4.

The structure has been designed to allow distribution of
the components on separated machines in order to provide
scalability, modularity, and separate the high computational
burden, which could be required by the framework. For this
purpose, the communication with the ground station and the
synthetic environment has been performed using the UDP
protocol. A brief description of the individual components
is given in the following and then the details are provided in
the subsequent sections.

3.1 Framework Core

The core of the Simulation Framework consists of the
Simulation Engine and the Data Router.

The Simulation Engine component simulates the
dynamic behavior of the vehicles using mathematical mod-
els for their structure and the equipped sensors. Providing
different models, it is possible to simulate multiple het-
erogeneous vehicles. Using the information contained in
each model, the simulation step performs the vehicle state
integration, considering the actuation commands computed
by the Control Software and the simulation of the sensory
data. The actuation commands are provided by the Data
Router, which is listening for data coming from the Con-
trol Software. Differently to common flight simulators, like

J Intell Robot Syst

Fig. 4 Overall structure of the
Simulation Framework

Dyn. Model n

Autopilot Board 1

Autopilot Board n

Autopilot SW 1

Autopilot SW k

Software
Control

Data
Router

Simulation

Engine

Framework Core

Dyn. Model 2

Synthetic

Environment
Ground Station

.

.

.
.
.
.

Dyn. Model 1

...

Serial/Network

Legend

UDP/Serial

UDP

FlightGear or X-Plane, and the Unreal Engine itself, the
simulation frequency can be changed by the user and it is not
bounded by the video refresh rate. The sensory data output
frequency can be decoupled from the simulation frequency.
A straightforward solution to achieve this is by simulation
sub-stepping, that is, by sending the sensory data every N

simulation cycles, where N is the number of sub-steps.
The Data Router constitutes the manager of the

information that flows among the Simulation Engine and
all the other components. Its presence guarantees a correct
interoperability among components and ensures that data
exchange is carried out avoiding unnecessary delays,
also considering different priorities of the communication
participants and the worst-case blocking times on the access
to shared resources.

3.2 Control Software

As introduced in Section 1, the control software implements
the functionality of the autonomous vehicles, starting from
the processing of bare sensory data up to high level
functions, like the mission management. The aim of the
simulation tool is to validate this software, also allowing
its direct testing on the target control board. The software
expects sensory data from the simulator, together with other
possible commands from the ground station, as during real
operating conditions. In turn, computed control signals and
status messages are sent back from the control device to
the simulator and ground station, respectively. As far as
the hardware-in-the-loop configuration is concerned, the
system supports boards that can communicate via serial
port or network interface using the MAVLink protocol. The
rationale behind this choice is that MAVLink has become a

de facto standard communication protocol for open-source
autopilot boards and in this way, the proposed Simulation
Framework natively supports all of them without requiring
ad-hoc modification.

3.3 Synthetic Environment

This component provides the capability of simulating
“situated” vehicles while providing a synthetic realistic
environment with three main functions:

1. 3D visual feedback Visualizing the vehicles in a virtual
environment is a valuable feature that simplifies the
verification of the developed functions.

2. Simulating the output of Cameras The image generated
from the synthetic environment can be used as an
output from a virtual camera located on the vehicles.
This facilitates the testing of advanced functions, as
vision-based maneuvers.

3. Advanced Sensory Data It is possible to retrieve
information about the interaction of a vehicle with the
synthetic environment, such as collisions with virtual
obstacles, distance from the obstacles, intensity of
sound sources, etc.

The synthetic environment has been designed with
Unreal Engine, which is a free suite for game development.
It makes possible to design realistic scenarios without
directly concerning about complex visual effects, which
are managed automatically by the graphical engine of the
application. This is necessary to support the design of
computer vision solutions, where common phenomena like
light reflections, shadows, and mist constitute a problem
that must be taken into account. The suite includes useful

J Intell Robot Syst

Fig. 5 Implementation of the
vehicle models with a Vehicle
Class that wraps different
dynamical model generated by
Matlab/Simulink

vehicle_state

sensors_values

set_actuator()

get_sensors()

init_vehicle()

Vehicle Class

Simulink

Scheme

Vehicle Type 1

model_state

sim_step() sim_step()

model_state

Vehicle Type 2

Vehicle Class
Wrapper

Engine

Simulation

Code Generation

Generated Structures

libraries to create realistic effects, move objects, measure
the distance between points, manage collisions, detects the
presence in a given area, etc.

3.4 Ground station

The ground station is the application that allows interacting
with the autopilot board through a user-friendly interface.
It allows the user to change the values of autopilot
firmware parameters and perform mission planning and
flight control operations. It also provides an interface to
visualize the telemetry data and the status of the connected
vehicles. Instead of proposing an ad-hoc ground station, in
line with the goal of modularity and interoperability, the
proposed framework can operate with any ground station
implementing the MAVLink protocol over UDP. This is the
case with most common ground station applications, which
can be tested, together with the autopilot board, in this
simulation environment.

The ground station used in our implementation is
QGroundControl3, which is a free open-source application
allowing full modification and code analysis. This applica-
tion supports theMAVLink protocol for communicating with
the connected vehicles. It supports different communication
interfaces for connecting to the vehicles, also allowing the
required UDP protocol. Through it the user can visualize the
vehicle on a map (Google Maps, Bing Map), plan a mission
by specifying waypoints directly on the map, plot telemetry
data and simplify several operations on the vehicles, such as
flashing firmware, setting up the controller parameters and
the remote controller.

3http://qgroundcontrol.com/ (QGroundControl - Drone Control)

4 Framework Core

In this section, the Framework Core, which constitutes the
main component of the overall system, is described in detail.
As far as the Simulation Engine is concerned, the modeling
of the vehicles and their sensors is carried out using the C
language. This choice offers the possibility to have a full
control on modeling of the system and does not exclude
the possibility to use Matlab/Simulink, taking advantage of
C code generation. In this way, it is possible to guarantee
scalability and fast execution, which is required in case
of multi-vehicle systems. In order to ease the inclusion
of different vehicle/sensors models, the integration with
the Simulation Engine is made through a vehicle class
that constitutes a wrapper for the structures generated by
Matlab. As represented in Fig. 5, the idea is to have a
single class, which can be associated with different types of
vehicle.

In this way, a trade-off between maintainability, extensi-
bility, and scalability is achieved.

The interaction between the simulated vehicles and the
rest of the framework is carried out through the Data Router,
as introduced in Section 3. The information flowing around
the Simulation Framework is not limited to sensory data
and actuation commands. In Fig. 6 an outline of the data
exchange between the participants is reported, stressing the
complexity and also the presence of different priorities. In
this regards, a correct implementation of the Data Router
is particularly important when supporting hardware-in-the-
loop-simulations, which demand high timing precision and
accuracy.

Indeed the realism of the simulation depends not only on
the correctness of the computed values, but also on the time
at which they are provided.

http://qgroundcontrol.com/

J Intell Robot Syst

Fig. 6 Data routing between
different components of the
framework and relative priorities

Software
Control

Simulated
Vehicle

Router
Data

State/Sensors Act. Command

Enviroment Data

StateAct. Command

Sensors

Telemetry
Missions

User Commands

Legend

High Priority

Low Priority

Synthetic

Environment

Ground Station

Another aspect that should be taken into account when
supporting this kind of simulation is that it consists of two
interacting elements: the software under test, running on
the autopilot board, and the Simulation Engine executing
on a separate machine, respectively. Since the two elements
run on separate platforms, it is crucial to have a correct
synchronization between them. One possible solution to
this issue could be to run the simulation directly on
the control board, together with the control software, as
done by Mueller [15]. Clearly, this has its drawbacks,
since the simulation running on-board constitutes an
additional workload, which risks to invalidate the realism
of the hardware-in-the-loop simulation. Avoiding this latter
approach, there are two possible solutions, depending on

how the autopilot software was designed. The first one,
which can be defined as board driven synchronization, is to
let the autopilot board trigger the simulation step, as done
by Pollini et al. [19]. The second viable solution, adopted
by the PX4 Flight stack,px4, is to make the simulator
responsible for triggering the execution of the control
software. This approach, which can be called simulator
driven synchronization, is based on a publisher/subscriber
middleware and a chained execution pattern optimized to
reduce the control latency. During the normal operation of
the autopilot board, the execution pace of this chain is given
by the publication of new sensory data, achieved by means
of high precision timers. Figure 7 visually illustrates the two
synchronization methods, stressing the fact that one of the

Fig. 7 Synchronization approaches between Simulation Engine and Control Software

J Intell Robot Syst

two platforms gives the pace to the other. Both approaches
are viable and supporting them in a simulation framework
allows being as more general as possible. Limiting the
support capability to just a specific kind of firmware leads
to a tailored solution, as done in some works available in the
state of the art [13, 19].

Depending on the kind of synchronization used, the
simulator should guarantee different properties. In case of
a board driven synchronization, it is important to guarantee
low-latency response to avoid introducing extra delay,
which could reduce the fidelity of the dynamics model.
In case of a simulator driven synchronization, it is still
important to provide low latency, but it is also necessary to
ensure a precise and accurate period of the simulation cycle
to reproduce the triggering of high precision timers.

4.1 Software Implementation

In order to guarantee the previous features, the Framework
Core has been designed with a multi-thread architecture.
Figure 8 shows an example of the implemented structure for
the case of two connected vehicles.

The architecture includes four different kinds of threads:

– Inflow thread This thread reads the data produced by
the autopilot software via the selected communication

channel and then routes each message to the corre-
sponding recipient (e.g., Simulation Engine, Ground
Station). This thread is aperiodic and executes when
new data from the autopilot software is available.

– Simulator thread This thread, which constitutes the
Simulation Engine, simulates the dynamics of the
vehicle and its sensors. It reads the actuation commands
provided by the Inflow thread and the external
reactions of the environment updated by the Synthetic
Environment; then, it computes the new vehicle state
and sensors values, using the vehicle model. The sensor
data is sent directly to the autopilot software, while the
vehicle state will be used by the Synthetic Environment.
Depending on the synchronization method used, the
thread can perform a busy wait for the new data from the
Inflow thread, which triggers the simulation to ensure
low latency, or can freely run and send sensory data to
the autopilot software with high precision and accuracy.

– Ground Station thread This threadmanages themessages
exchange between the Ground Station and the vehicles
connected to it. This thread is activated periodically.

– Synthetic Environment thread This thread manages
the data exchange between the Simulator thread and
the Synthetic Environment. It sends the state of the
vehicle (e.g., position and orientation) to the Synthetic
Environment and reads back the information about the

Synthetic

Environment

UDP
Port

Thread
SE

1

Thread
SE

22

Act.

Comm.

UDP
Port

Ground

Station

Telem.

1
Telem.

2

Inflow
Thread

2

Inflow
Thread

1 1

Act.

Comm.

Autopilot

1

Autopilot

2

Serial
Port

Thread
GS

Thread
Sim.

1
State 1

Thread
Sim.

2

State 2

Read

Write

Write/Read

Legend

UDP
Port

Env.
Information

1

Env.
Information

2

Fig. 8 Scheme of the software implementation of the Framework Core in case of two vehicles

J Intell Robot Syst

interaction with the virtual environment. This thread is
synchronized with the Synthetic Environment: it runs
when new data from the latter is available.

Summarizing, for each connected vehicle three threads
are created: Inflow thread, Simulation thread, and Synthetic
Environment thread. The design choice of separating threads
for different vehicles has been undertaken to improve scalabil-
ity and reduce blocking times due to shared resources.

5 Synthetic Environment

Unreal Engine is a suite of integrated tools for designing and
building games, simulations, and visualizations. It has been
chosen to be included in this framework for the possibility
of reproducing a world with high fidelity using the C++
language and its extensive use in the games community.
It has been used for providing two main functions: a)
visualization of a realistic synthetic environment and b)
interaction with the simulated world. In fact, it is possible
to create worlds composed of all the possible terrains,
containing rivers, lakes, forests, cities, etc. The objects can
be dynamic and follow the laws of physics. For examples,
the wind moves the leaves of a tree, and the weather
may change over time. Such features allow achieving
simulations that are realistic enough to test complex
vision algorithms where, for example, the light of the
environment may occasionally change (e.g., due to different
weather conditions), or moving objects can obstruct the
camera or the target. Applications should include advanced
guidance algorithms such as target following, human/object
recognition.

It is also worth noting that it is possible to use the environ-
ment as an augmented reality tool for real flights. Consider
a drone that is performing a real mission but gets the images
from the synthetic environment instead of receiving them
from the onboard camera. In this way, a real drone can see
imaginary objects interacting with them without any risk.
For instance, specific sensors can be simulated to detect
metallic objects for testing de-mining applications.

These kinds of applications can be implemented in the
proposed framework thanks to the possibility of interacting
with Unreal Engine.

5.1 Interaction with Unreal Engine

At a high level, the Framework Core interacts with the
Synthetic Environment generated by Unreal Engine as
shown in Fig. 9. The vehicle state is sent to Unreal Engine
and used to draw the vehicle at the given position and
orientation. Unreal Engine will send back to the framework
core the information of possible collisions with objects in
the synthetic world.

Information
Environment

Collision

Information

Control

Software

Collision

Model

Vehicle

Dynamics

Model

Sensors

Synthetic

Environment

Collision

Reaction
Act.

Command

Vehicle
State

Camera Output

Sensor Output

Framework Core

Fig. 9 Scheme of the interaction with the Synthetic Environment

If there is the need of simulating virtual sensors
(e.g., ultrasound, camera, laser sensors, etc.), the required
information can be extracted from the virtual environment
and sent back to the framework core. The collision
information consists of the Hit normal and the normal
impulse, computed by Unreal Engine physics and sent back
to the Framework core, where they will be used as input for
a damper spring model. To implement a ultrasound sensor,
the distance from the virtual vehicle and a virtual objects
can be requested to be sent by Unreal Engine. Moreover,
the physical engine has a wide variety of implemented
functions, as sound propagation.

Now, we describe in detail how the binding with the
framework core is realized. Unreal Engine is programmed
in C++ and exploits the Object-oriented programming to
ease the design of the desired application. As an example,
the class Actor represents every object that can be placed
into the world. The Class Pawn, which extends Actor,
represents those actors that can be controlled by players or
AI. The base of the game framework is theGameMode class
that sets the rules for the game and many other fundamental
features. It also handles spawning the players. All the
classes may implement a Tick() function that is executed
periodically (at each frame or at a minimum time interval).
Any periodic action is performed inside this function.

The communication between Unreal Engine and the
simulator is performed using the UDP protocol. In
particular, it is possible to interact with the GameState
class to create and delete new objects/vehicles. Then, a
one-to-one UDP connection between the SE Thread and
the vehicle instance in Unreal Engine is created. In this
way it is possible to set the pose of the vehicle, start/stop
the reception of sensory data, and periodically require the
collision state of the vehicle.

J Intell Robot Syst

Fig. 10 UML implementation of the Unreal Engine classes interacting with the Framework core

Figure 10 provides a UML implementation of the add-
ons to the Unreal Engine framework. The GameState class
is redefined to listen to a UDP port for any new request.
When a new request arrives, the GameState create/delete a
new vehicle in the synthetic world. Each vehicle (extended
from pawn) contains the pose of the vehicle, the UDP
information for communicating with the corresponding SE
thread and sensors implementations. In the following case
of study, an RGB camera has been implemented as a sensor
for the vehicle.

6 Case of Study

This section describes a case of study to show how
the proposed framework can be used to develop an
application involving autonomous visual-based landing.
Autonomously landing is an interesting feature for an
autonomous aerial vehicle, which is much more complex
than simply lowering the altitude of the controlled vehicle.
In fact, obstacles could be on the landing area, the GPS
position could be not precise enough or not available, the

Fig. 11 Case of study setup

Companion

Computer

Framework

Core

Control Device

Ground

Station

Synthetic

Environment

Vehicle Pose

Camera Image Data

Actuators Command

Displacements Commands

Sensors Data

J Intell Robot Syst

Fig. 12 Screenshots of the case
of study: the simulated
environment and the ground
station used for controlling the
vehicle

landing pad could be moving, etc. These cases are just
a few examples of situations in which the vehicle needs
an advanced sensing of the environment and an open-
loop maneuver would not suffice to safely accomplish the
task. Being able to interact with a dynamic and uncertain
environment is a key feature for implementing unmanned
systems. Nowadays, such a capability is achieved through
the use of computer vision, which involves tasks like
feature extraction, filtering, outliers identification, removal
of visual artifacts, pattern matching, etc. Testing vision
algorithms in real environments is time consuming, hence
having the possibility to test the algorithms in a virtual
environment would speed up the verification process. For
this reason, the following case of study has been specifically
selected to show how the proposed framework can be used
to design a complex and realistic scenario for testing such
advanced visual functions.

6.1 Problem Description

The proposed scenario consists of a quadcopter, equipped
with a gimballed camera, that has to accomplish an
autonomous mission and then automatically land in a given
point of the map, where a landing pad is located. The
final landing maneuver is guided by vision to land with a
sufficient accuracy over the prescribed landing platform.

The landing pad has been the same shape as the one
used by Lange et al. in their work on autonomous landing
[10]. The idea was to use a simple pattern, as a series of
concentric black and white rings, which can be recognized
with simple vision algorithms. The system setup used for
the experiment is shown in Fig. 11 and it consists of the
components described below.

6.2 System Components

– Navio+ board The board runs the FlightStack autopilot
firmware and is connected to the Simulation Framework.

– Framework Core The Framework Core simulates the
dynamics of the quadrotor using the received control
commands evaluated by the autopilot board and
providing back sensor data to it.

– Synthetic Environment The Synthetic Environment has
been used to represent a realistic landing scenario,
with a landing pad and other objects to test the vision
algorithm. A screenshot of the simulated scenario is
shown in Fig. 12a. This component also simulates
the video of the gimballed camera mounted on the
quadcopter used for autonomous landing.

– Ground Station The QGroundControl Ground Station
application is used to set up the waypoints, program
the autonomous mission and monitor the state of
the system, as during normal operating conditions.
Figure 12b shows a screen-shot of the Ground Station
interface during the set of the autonomous mission.

– Companion Computer This computer takes the video
stream of the simulated camera and carries out the
image processing, sending the results, in the form of
positioning command, to the autopilot board.

Originally, the Companion Computer was not intended
to be used in the case of study, and all the computation was
supposed to be done on the Navio+ board. Unfortunately,
this solution was not adopted because, during tests, it was
discovered that the autopilot board was not able to process
the image with a sufficient rate. Indeed, being unable to
keep the pace, of 15Hz for 640 × 480 resolution, at which
the images were produced, the adopted control strategy
did not work and the vehicle did not converge over the
landing pad. This problem could be solved by changing
the control software or the image processing algorithm by
a different implementation, updating the hardware with a
more powerful computing platform. In our case of study,
the employment of a Companion Computer turned ou This
fact stresses the importance of having a simulation system
able to run with a hardware-in-the-loop approach. Indeed,
with the proposed Simulation Framework, it was possible to
discover this problem before testing it on the real vehicle.

6.3 Automatic Landing Control Flow

The control architecture to carry out the automatic landing
is illustrated in Fig. 13, whereas the landing problem is
schematically represented in Fig. 14, where Pv is the

J Intell Robot Syst

Fig. 13 Diagram of the control
flow for the automatic landing
maneuver

Mixer
Position

ControlControl

AttitudeFramework

Core

Synthetic

Environment

Companion

Computer

Simulated Camera

Coordinates

Landing Pad

Commands

To

Autopilot

Control Software

Autopilot Board

position of the vehicle with respect to the Navigation Frame,
estimated by the onboard navigation algorithms; Pt is the
position of the target with respect to the Navigation Frame,
and T is the position of the target with respect to the Body
Frame.

The image from the camera simulated by the Synthetic
Environment is processed by the Companion Computer to
identify the landing pad center and calculate its relative
position with respect to the vehicle Body Frame (T). The
computer vision algorithm has been developed with the
Image Processing Toolbox of Matlab/Simulink and then the
C code has been autogenerated to be executed in a custom
application. In this experiment, the Companion Computer
runs the Linux operating system and the application has

Y
b

X
b

Z
b

Body Frame

Pv
Pt

Target

Navigation Frame

East

Down

North
Home

T

Fig. 14 Schematic representation of the automatic landing problem
with the involved reference frames

been written with the support of the POSIX PThread library.
Once the position of the landing pad with respect to the
vehicle Body Frame is known, it is possible to define
the reference point (Pt) in the Navigation Frame with
respect to the Home starting point of the mission, for
the position control loop running on the autopilot board.
The communication between the Companion Computer and
the autopilot board is accomplished with the MAVLINK
protocol, using theMAVLINK positioning commands. Once
the Autopilot receives those commands, the onboard control
loops makes the vehicle to descend on the center of the
landing pad. The control software used in this case of study
is the native one, implemented in the PX4 Flightstack.

6.4 Simulation Results

To test the landing algorithm, the vehicle mission was to
reach a landing point located near the landing pad. Precisely,
the initial displacement of the pad with respect to the
landing point in the mission was [2m, 6m, 12m] along the
North, East, Down axes of the navigation frame. From this
initial position, the algorithm was able to identify the pad
and lands on its center. Figure 15 plots the position error as
a function of time during the descent phase. Note that the
small discrepancy that can be noted in the initial positioning
is due to the drone oscillations while hovering. The landing
maneuver took about 25 s to complete and the final landing
position had an error of about 5 cm and 7 cm along the North
and East axes, respectively.

Summarizing, the aim of this example was both to show
a possible employment of the Simulation Framework for a
case of study involving autonomous vehicles and highlight
the insight it could give over design choices. In this case,
the initial idea to run the image processing directly on the

J Intell Robot Syst

Fig. 15 Position errors as a
function of time during the
automatic landing procedure

0 5 10 15 20 25

time [s]

-1

0

1

2

3

E
r
r
o

r
 [

m
]

X Landing Error

X Final Error 0.050 m

0 5 10 15 20 25

time [s]

-5

0

5

10

E
r
r
o

r
 [

m
]

Y Landing Error

Y Final Error 0.073 m

0 5 10 15 20 25

time [s]

-2

0

2

4

6

8

10

12

14

E
r
r
o

r
 [

m
]

Altitude

autopilot board was not feasible, and the control architecture
was changed during the validation phase.

7 Experimental Results

This section presents the results of the measurements made
during simulations to quantify the achievable realism of
the framework. Two aspects of the simulation have been
considered: the vehicle simulation part, carried out in the
Framework Core, and the integration of the Synthetic
Environment.

In the experiments, two different setups have been
used. In the first one, the Simulation Framework was
connected with multiple instances of the control software
(PX4 Flight Stack firmware), both allocated on the physical
autopilot boards (two Raspberry 2 extended with the
Navio+4 modules and a Pixhawk5) and on a Linux machine
running them as processes. This setup was used to extract
information about the performance of the Framework Core.
In the second setup, consisting in the case of study presented
in Section 6, there was only one physical autopilot board
connected to the system. This setup was used to make
the measurements involving the Synthetic Environment. In
both setups, the measures were performed by connecting a
logic analyzer to the free I/O pins of one autopilot board
(Raspberry Pi 2) and recording their toggling, associated
with specific events. This allowed having a minimally
invasive measure with a sufficient time resolution. The
Framework Core executed on a dedicated Linux PC
equipped with an Intel Core 2 Duo - E8500 @ 3.16Ghz

4https://emlid.com/ (Navio Linux autopilot on Raspberry 2)
5http://px4.io/ (PX4 Pro Open Source Autopilot)

CPU and 3GB of RAM, whereas the Ground Station and
the Synthetic Environment were running on another PC.
This latter was equipped with an Intel Core i7 - 4790K @
4 Ghz CPU, 16GB of RAM, NV IDIA GT X 750 T i GPU
and was connected to the Framework Core via Ethernet on
a dedicated LAN.

7.1 Timing Properties of the Framework Core

The timing performance of the Framework Core has
been assessed by measuring the interaction times in
the simulation loop, varying the number of connected
vehicles. Figure 16 illustrates an example of the execution
pattern of the involved tasks, under the Simulator Driven
Synchronization approach, where τsim is the periodic
simulation thread, with period Tsim, while τctr and τsnd are
the control and the communication tasks running on the
autopilot board, respectively. The measured events are the
reception time tsns of a new sensor data, the actuation time
tc, and the instant tcs at which the control data is sent to the
simulator. With these measures it was possible to calculate
the latency and timing precision properties of the simulation
loop.

The simulation latency has been computed as the
difference between the time at which the actuation message
is sent to the simulator and the time at which the
corresponding sensor data is received back, that is Lsim =
tsns(k+1)−tcs(k). This quantity is important for the realism
of the simulation, since it represents the delay introduced
by the Simulation Engine, that is, the time taken by the
actuation signal to be actuated and make its effects on the
vehicle. The timing precision of the simulator has been
measured by recording the inter-arrival time of the sensory
data (Tsns = tsns(k+1)− tsns(k)) that triggers the execution

https://emlid.com/
http://px4.io/

J Intell Robot Syst

Fig. 16 Example of execution
behavior

Table 1 Latency as a function of the number of connected vehicles

Num. Vehicles 3 10 15

Latency mean value 0.445 ms 0.448 ms 0.450 ms

Latency Std 0.089 ms 0.091 ms 0.101 ms

Fig. 17 Simulator latency
measured when using the
original px4 firmware

Time [ms]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

O
cc

u
rr

en
ce

s

0

1000

2000

3000
Histogram of the simulator latency

mean = 1.781ms | std = 0.723ms

Fig. 18 Simulator latency
measured when using the
customized px4 firmware

1 2 3 4 5 6 7 8 9

Time [ms]

0

1

2

3

O
c
c
u

r
e

n
c
ie

s

10
4 Histogram of the simulator latency

Mean = 3.80 ms | Std = 0.08 ms

 Max = 8.53 ms | Min = 1.23 ms

J Intell Robot Syst

of control tasks in the PX4 Flight Stack. The actuation time
(tc(k)) has also been recorded to check the behavior of the
autopilot board while interacting with the simulator.

7.1.1 Timing Properties of the Framework Core: Results

The simulation latency, measured during 30 minutes of
simulation, with 3, 10, and 15 vehicles, exhibited a linear
trend with respect to the number of vehicles. The results
are summarized in Table 1. However, the differences
in performance between the three cases resulted to be
negligible, with a simulation latency variation in the order
of 5 μs, confirming a good scalability of the Simulation
Framework. Note that, having a latency under 0.5 ms allows
running periodic controls with a frequency up to 1 KHz.

The Framework Core resulted capable of triggering the
autopilot board with sufficient precision. Measuring the the
sensor data inter-arrival times, when requiring a period of
4ms, it was 4.001ms with a standard deviation of 0.022ms.
Note that such results were obtained on a machine running a
standard Linux kernel; hence they can be improved by using
real-time extensions or executing the autopilot software on
a real-time operating system.

It is worth noting that the characterization of the latency
has been carried out with the board driven synchronization
approach.With this method, the simulator waits for the
trigger of the autopilot board, and the measured time is
the actual response time of the Framework Core. The
latency measured when running the simulation driven
synchronization approach is less representative because
it is influenced by the implementation of the autopilot
software. The original PX4 firmware, using the simulation
driven synchronization approach, is characterized by poor
results concerning latency. This is due to the not optimized
implementation of the communication routine. Precisely,
the measured results were characterized by a high variance
(about 1 ms), as can be seen in Fig. 17, which shows the
latency measured with the original firmware.

A modification of the autopilot firmware was intro-
duced6 to improve the precision of the data exchange,
obtained isolating the communication with the simulator in
a dedicated task. Note that, this approach has been selected
by the developers of the mainline PX4 firmware, but its
implementation is still is progress. The latency obtained
with the modified firmware is shown in Fig. 18 and is
characterized by a smaller standard deviation. These results
should be interpreted considering the software behavior,
which is shown in Fig. 16. Indeed, the fact that the mean
value of the latency with the original firmware was smaller

6The modified version of the PX4 firmware is available online on
GitHub: https://github.com/rt-2pm2/Firmware

is a sign that the communication of the control value was
delayed with respect to its computation.

7.2 Timing Properties of the Synthetic Environment

Another set of experiments have been done to assess the
timing properties of the communication with the Synthetic
Environment. The interaction with this module involves
signaling of events generated by sensors, collisions with
surfaces, and video streaming from virtual cameras. The
time taken to provide such data to the Simulation Engine,
the control board or a companion computer directly affects
the realism of the simulation. For this reason, some tests
have been done to measure the time taken to receive a
collision event feedback or an image from the simulated
camera. Figure 19 illustrates an example of schedule of
the events involved in the interaction with the Synthetic
Environment.

Referring to the software implementation represented
in Fig. 8 of Section 4, the Sim Thread the Sim Thread
periodically updates the state of the simulated vehicle,
while the SE Thread waits for the data from the Synthetic
Environment (Impact Msg). The execution period of the
Synthetic Environment is computed as Tse(k + 1) = ti (k +
1) − ti (k), setting the achievable update rate. The figure
also shows the reception of a new image from the Synthetic
Environment. Note that the latency introduced in processing
the information about the impact (Impact Latency) is given
byLimpact = ts(k+1)−ts(k). Indeed, the impact is signaled
by the Synthetic Environment with the message at ti (k),
when the state of the impacting vehicle was computed by the
Sim Thread at the time instant ts(k); the impact information
is received at tsnd(k + 1) and the reaction is considered
only at the next execution of the Sim Thread, ts(k + 1).
This reasoning is also valid for other kind of interactions,
different from the impact. As an example, when retrieving
distance measures to simulate a laser range sensor, that time
value would represent the latency of the simulated sensor. It
follows that, the results relative to the Impact Latency shown
in the following should be interpreted as a general timing
behavior for any kind of sensors/interaction.

As far as the Image Latency is considered, its value can
be calculated as Limage = tp(k) − ts(k), where tp(k) is
the time at which the image message, evaluated considering
the state computed at time ts(k), is received. Measuring
this quantity it is important to quantify the achievable
timing precision and accuracy for the simulated sensors. The
maximum latency that can be experienced during impacts
and image acquisitions can be estimates as

Lmax
impact = max (Tse) + 2Tsim, and (1)

Lmax
image = max (Tse) + Tsim + max (Lse), (2)

https://github.com/rt-2pm2/Firmware

J Intell Robot Syst

Fig. 19 Example of execution
behavior of the interaction with
Synthetic Environment

st (k)

sndt (k)

pt (k)

it (k−1)

L impact

L image

st (k+1)

sndt (k+1)

it (k)
(k+1)Tse

pt (k−1)

(k+1)Lse

Tsim

Image Msg

Sim Thread

SE Thread

Impact Msg

In the experiment, the Impact Latency and Image Latency
have been evaluated also considering their dependency on
some case specific parameters. In particular, the following
relations have been considered:

1. Image Latency as a function of Image Dimension
(Limage)

2. Frame rate as a function of Image Dimension (1
Tse

)
3. Impact Latency as a function of Image Dimension

(Limpact)

The simulation lasted 15 minutes, which is in the timing
range of a typical autonomous mission with a quadrotor
holding a camera gimbal. The resolution of the images has
been chosen among the ones commonly used in applications

involving autonomous vehicles, that is, 320x240, 400x300
and 640x480 pixels, with a dimension of about 2.5 KB,
3.2 KB and 6.5 KB, respectively.

7.2.1 Timing Properties of the Synthetic Environment:
Results

Figure 20 shows the Image Latency distribution obtained for
different image resolutions.

As it can be expected, the image latency increases with
respect to the image resolution, reaching a mean value of
126.7681ms for the case of 640x480 pixels. This values
are coherent with the images inter-sample times, which are
reported in Fig. 21.

Fig. 20 Time latency (Limage) between the generation of image frames and the reception of the frame on the target board

J Intell Robot Syst

Fig. 21 Inter sample time (Tse)
for different image dimensions

Fig. 22 Time latency (Limpact)
between the generation impact
over a surface and the reception
of the event on the target board
when streaming images

Fig. 23 Time latency (Limpact)
between the generation impact
over a surface and the reception
of the event on the target board
when not streaming images

J Intell Robot Syst

Fig. 24 Trend of the Tse, Timage

and Timpact as a function of the
image dimension

320x240 400x300 640x480

26

52

78

[m
s
]

Inter Sample Time

320x240 400x300 640x480

66

99

132

[m
s
]

Camera Latency

320x240 400x300 640x480

26

52

78

[m
s
]

Impact Latency

The values of these times correspond to an update rate
of approximately 36Hz, 30Hz and 15Hz for the case with
320x240, 400x300 and 640x480 pixels, respectively. The
values of the impact latency, shown in Fig. 22, match with
the inter-sample time of the images.

This is rational, since the Unreal Engine timing is ruled
by the rendering time of the frames. It is thus expected to
get something in the order of the inter-sample time of the
images. The variations from this latter time are due to the
effective execution pattern of the threads and, as noticed
when estimating the worst-case latency, are in the order of
twice the simulation period.

Since the presence of the simulated camera heavily
influenced the impact latency, this latter quantity was
measured also in the case without camera simulation. The
results in Fig. 23 show that it is possible to get better
performance when the camera is not needed.

The recorded latency was consistent with the maxUnreal
Engine framerate, which was set to 100Hz. The mean value
recorded is about 17 ms. This results can be considered
not sufficient to simulate fast response sensors. As an
example, it means that, simulating the vehicle dynamics at
250Hz, after an impact, it will take five simulation cycles
before getting a feedback from the Synthetic Environment.
Given the limitations of the Unreal Engine update rate, this
results can be improved using some mechanism to predict
possible impacts and anticipate the reaction. An overall
representation of the obtained results is reported in Fig. 24,
where the increasing trend of the latency and sample times
with respect to the resolution of the image is noticeable.

8 Conclusion

This work presented a Simulation Framework for testing
and validating multi-vehicle complex control algorithms.
The Framework supports software and hardware-in-the-
loop simulations with multiple vehicles and allows model-
ing complex testing scenario, considering also the graphical
realism. In particular, it is possible to test and validate
high-level control algorithms that require the interaction
with a synthetic world. For this reason the physical world

is simulated using Unreal Engine, a tool used for design
computer games that provides high-realism in terms of visual
output and the possibility of interacting, both with the static
environment andwith dynamic objects such as people and cars.

The structure of the Simulation Framework has been
designed to be modular, assuring maintainability, scalabil-
ity, and interoperability with different user interfaces and
control hardware. Leveraging on the capabilities of Mat-
lab/Simulink to define models and generate the related
C/C++ code, it was possible to achieve full control on the
physical modeling, both in terms of integration techniques
and sampling time of the simulation. The communication
among different components has been implemented pay-
ing particular attention to timing properties and avoiding
unnecessary blocking times in the data exchange.

A case of study was used to show the effectiveness of
the proposed framework in tackling design purposes, which
included high-level functions of the vehicles. An interesting
result obtained with such a case of study was to understand
that the designed algorithm, expected to be run directly on
the control board, was computationally too costly for the
embedded hardware. Thanks to the proposed framework, it
was possible to recognize this issue before performing real
flights, re-designing the system architecture to comply with
the appropriate timing requirements.

Several experiments have been run to assess the capa-
bility of the Simulation Framework to support multi-agent
scenarios while guaranteeing precise timing properties to
achieve a more realistic behavior. The obtained results
showed that increasing the number of vehicles does not
impact on the simulator performance, making it a useful tool
for managing large fleets of robots. The experiments were
also intended to provide a characterization of the timing per-
formance of the Simulation Framework, both in terms of the
Simulation Core and the Synthetic Environment.

As a future work, the results of the simulation will
be compared with the ones obtained via real experiments,
to validate the realism of the Simulation Framework.
To accomplish this task, an identification procedure is
necessary to ensure that the parameters used in the model
match the ones of the real vehicle, together with the
hardware setting used for the experiments.

J Intell Robot Syst

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Ali, K.S., Shumaker, J.L.: Hardware in the loop simulator for
multi agent unmanned aerial vehicles environment. Amer. J. Eng.
Appl. Sci. 6, 172–177 (2013)

2. Birk, A., Poppinga, J., Stoyanov, T., Nevatia, Y.: Planetary
Exploration in USARsim: A Case Study Including Real World
Data from Mars, pp. 463–472. Springer, Berlin (2009)

3. Bryson, M., Reid, A., Ramos, F., Sukkarieh, S.: Airborne vision-
based mapping and classification of large farmland environments.
J. Field Robot. 27(5), 632–655 (2010)

4. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.:
Usarsim: a robot simulator for research and education. In:
Proceedings 2007 IEEE International Conference on Robotics and
Automation, pp. 1400–1405 (2007)

5. Castillo-Pizarro, P., Arredondo, T.V., Torres-Torriti, M.:
Introductory Survey to Open-Source Mobile Robot Sim-
ulation Software. In: 2010 Latin American Robotics
Symposium and Intelligent Robotics Meeting, pp. 150–155.
https://doi.org/10.1109/LARS.2010.19 (2010)

6. Cook, D., Vardy, A., Lewis, R.: A Survey of Auv and
Robot Simulators for Multi-Vehicle Operations. In: 2014
IEEE/OES Autonomous Underwater Vehicles (AUV), pp. 1–8.
https://doi.org/10.1109/AUV.2014.7054411 (2014)

7. Echeverria, G., Lassabe, N., Degroote, A., Lemaignan, S.:
Modular Open Robots Simulation Engine: Morse. In: 2011 IEEE
International Conference on Robotics and Automation, pp. 46–51.
https://doi.org/10.1109/ICRA.2011.5980252 (2011)

8. Ganoni, O., Mukundan, R.: A framework for visually real-
istic multi-robot simulation in natural environment. CoRR
arXiv:1708.01938 (2017)

9. Kamali, C., Jain, S.: Hardware in the Loop Simulation for a
Mini Uav. In: 4Th IFAC Conference on Advances in Control and
Optimization of Dynamical Systems ACODS 2016, Vol 49, pp.
700–705. Tiruchirappalli, India (2016)

10. Lange, S., Sunderhauf, N., Protzel, P.: A Vision Based Onboard
Approach for Landing and Position Control of an Autonomous
Multirotor Uav in Gps-Denied Environments. In: 2009 Interna-
tional Conference on Advanced Robotics, pp. 1–6 (2009)

11. Lugo-Cardenas, I., Salazar, S., Lozano, R.: The Mav3dsim
Hardware in the Loop Simulation Platform for Research and
Validation of Uav Controllers. In: 2016 International Conference
on Unmanned Aircraft Systems (ICUAS), pp. 1335–1341 (2016)

12. Lum, C., Rowland, M., Rysdyk, R.: chap. Human-in-the-
Loop Distributed Simulation and Validation of Strategic
Autonomous Algorithms. Fluid Dynamics and Co-located Con-
ferences. American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2008-4366.0 (2008)

13. Meier, L., Honegger, D., Pollefeys, M.: Px4: a node-based
multithreaded open source robotics framework for deeply
embedded platforms. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pp. 6235–6240
(2015)

14. Merino, L., Caballero, F., Martinez-de Dios, J., Maza, I., Ollero,
A.: An unmanned aircraft system for automatic forest fire
monitoring and measurement. J. Intell. Robot. Syst. 65, 533–548
(2012)

15. Mueller, E.R.: Hardware-in-the-loop simulation design for evalu-
ation of unmanned aerial vehicle control systems. In: Proceedings

of the AIAA Modeling and Simulation Technologies Conference
and Exhibit (2007)

16. Odelga, M., Stegagno, P., Bülthoff, H.H., Ahmad, A.: A
Setup for Multi-Uav Hardware-In-The-Loop Simulations. In:
2015 Workshop on Research, Education and Development
of Unmanned Aerial Systems (RED-UAS), pp. 204–210.
https://doi.org/10.1109/RED-UAS.2015.7441008 (2015)

17. Pannocchi, L., Marinoni, M., Buttazzo, G.: Hardware-In-The-
Loop Development Framework for Multi-Vehicle Autonomous
Systems. In: 2017 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), pp. 17–22.
https://doi.org/10.1109/ICARSC.2017.7964046 (2017)

18. Parodi, O., Lapierre, L., Jouvencel, B.: Hardware-in-the-loop
simulators for multi-vehicles scenarios: survey on existing
solutions and proposal of a new architecture. In: Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 225–230 (2009)

19. Pollini, L., Parnenzini, V., Innocenti, M.: Distributed Real-Time
Hardware- and Man-In-The-Loop Simulation for the Icaro Ii
Unmanned Systems Autopilot. In: Latest Trends in Information
Technology/Recent Advances in Computer Engineering Series 7,
pp. 420–427 (2012)

20. Posch, A., Sukkarieh, S.: Uav Based Search for a Radio Tagged
Animal Using Particle Filters. In: Australasian Conference on
Robotics and Automation (ACRA). Sydney, Australia (2009)

21. Barros dos Santos, S.R., Givigi, S., Nascimento, C.L.J., Oliveira,
N.: Modeling of a hardware-in-the-loop simulator for uav autopilot
controllers. In: Proceedings of the 21th Brazilian Congress of
Mechanical Engineering (COBEM 2011), Natal, Brazil (2011)

22. Sehgal, A., Cernea, D.: A Multi-Auv Missions Simulation
Framework for the Usarsim Robotics Simulator. In: 2010 18Th
Mediterranean Conference On Control Automation (MED), pp.
1188–1193. https://doi.org/10.1109/MED.2010.5547632 (2010)

23. Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-fidelity
visual and physical simulation for autonomous vehicles. In: Field
and Service Robotics. arXiv:1705.05065 (2017)

24. Takaya, K., Asai, T., Kroumov, V., Smarandache, F.: Sim-
ulation Environment for Mobile Robots Testing Using Ros
and Gazebo. In: 2016 20Th International Conference on Sys-
tem Theory, Control and Computing (ICSTCC), pp. 96–101.
https://doi.org/10.1109/ICSTCC.2016.7790647 (2016)

Luigi Pannocchi is a Ph.D. Student of the ReTiS Lab at the Scuola
Superiore Sant’Anna, Pisa. He received his MSc cum Laude in
Robotics and Automation Engineering at the University of Pisa
in 2015. Since then, he joined the Ph.D. in Emerging Digital
Technologies, curriculum Embedded System at the ReTiS Lab of the
Scuola Superiore Sant’Anna, Pisa, under the supervision of Professor
Giorgio Buttazzo. From January 2018 he was a visiting Ph.D. student
for 6 months at the Cyber-Physical Systems Laboratory (CyPhyLab)
of University of California Los Angeles under the supervision of Paulo
Tabuada. His research topics are Cyber Physical Systems, in particular
Autonomous Aerial Vehicles, and Simulation Environments.

Carmelo Di Franco is a Post Doctoral Researcher of the ReTiS
Lab at the Scuola Superiore Sant’Anna, Pisa. In March 2017, he
concluded cum Laude is Ph.D. in Emerging Digital Technologies,
curriculum Embedded System at the ReTiS Lab of the Scuola
Superiore Sant’Anna, Pisa, under the supervision of Professor Giorgio
Buttazzo. From September 2015 he was a visiting Ph.D. student for
6 months at the G.R.A.S.P. Laboratory of University of Pennsylvania
under the supervision of George J. Pappas. His research topics are
Indoor Localization and energy-aware path planning of mobile robots.

https://doi.org/10.1109/LARS.2010.19
https://doi.org/10.1109/AUV.2014.7054411
https://doi.org/10.1109/ICRA.2011.5980252
http://arXiv.org/abs/1708.01938
https://doi.org/10.2514/6.2008-4366.0
https://doi.org/10.1109/RED-UAS.2015.7441008
https://doi.org/10.1109/ICARSC.2017.7964046
https://doi.org/10.1109/MED.2010.5547632
https://arxiv.org/abs/1705.05065
https://doi.org/10.1109/ICSTCC.2016.7790647

J Intell Robot Syst

Mauro Marinoni is Assistant Professor at the Scuola Superiore
Sant’Anna in Pisa. He received his MSc in Computer Engineering
at the University of Pavia (Italy) in 2003 where he also obtained his
Ph.D. in Computer Engineering in 2007. He has been working since
2007 at the Institute of Communication, Information and Perception
Technologies, where he is now area leader of Resource Management
at the Real-Time Systems Laboratory (ReTiS). His leading research
topics cover Scheduling Theory, Operating Systems and Energy
management for Real-Time systems, focusing on the integration of
Real-Time enhancements in different application fields, from e-Health
devices to autonomous systems and distributed systems. He has been
local coordinator of the FP7 JUNIPER project as well as several
industrial projects exploiting the ReTiS Lab research outcomes.

Giorgio Buttazzo is full professor of computer engineering at the
Scuola Superiore Sant’Anna of Pisa. He graduated in electronic
engineering at the University of Pisa in 1985, received a M.S. degree
in computer science at the University of Pennsylvania in 1987, and
a Ph.D. in computer engineering at the Scuola Superiore Sant’Anna
of Pisa in 1991. From 1987 to 1988, he worked on active perception
and real-time control at the G.R.A.S.P. Laboratory of the University of
Pennsylvania, Philadelphia. He has been Program Chair and General
Chair of the major international conferences on real-time systems and
Chair of the IEEE Technical Committee on Real-Time Systems. He is
Editor-in-Chief of Real-Time Systems, Associate Editor of the ACM
Transactions on Cyber-Physical Systems, and IEEE Fellow since 2012.
He has authored 7 books on real-time systems and over 200 papers in
the field of real-time systems, robotics, and neural networks.

	Integrated Framework for Fast Prototyping and Testing of Autonomous Systems
	Abstract
	Introduction
	Plant Simulation
	Environment Simulation
	Contributions

	Related Works
	System Description
	Framework Core
	Control Software
	Synthetic Environment
	Ground station

	Framework Core
	Software Implementation

	Synthetic Environment
	Interaction with Unreal Engine

	Case of Study
	Problem Description
	System Components
	Automatic Landing Control Flow
	Simulation Results

	Experimental Results
	Timing Properties of the Framework Core
	Timing Properties of the Framework Core: Results

	Timing Properties of the Synthetic Environment
	Timing Properties of the Synthetic Environment: Results

	Conclusion
	Publisher's Note
	References

