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Abstract—In this article, the problem of temporal isolation among containerized software components running in shared cloud

infrastructures is tackled, proposing an approach based on hierarchical real-timeCPU scheduling. This allows for reserving a precise

share of the available computing power for each container deployed in amulti-core server, so to provide it with a stable performance,

independently from the load of other co-located containers. The proposed technique enables the use of reliablemodeling techniques for

end-to-end service chains that are effective in controlling the application-level performance. An implementation of the technique within the

well-knownOpenStack cloud orchestration software is presented, focusing on a use-case framed in the context of network function

virtualization. ThemodifiedOpenStack is capable of leveraging the special real-time scheduling featuresmade available in the underlying

Linux operating system through a patch to the in-kernel process scheduler. The effectiveness of the technique is validated by gathering

performance data from two applications running in a real test-bed with thementionedmodifications toOpenStack and the Linux kernel.

A performancemodel is developed that tightly models the application behavior under a variety of conditions. Extensive experimentation

shows that the proposedmechanism is successful in guaranteeing isolation of individual containerized activities on the platform.

Index Terms—Cloud computing, containers, network function virtualization, temporal isolation

Ç

1 INTRODUCTION

CLOUD Computing technologies have undergone a
steady growth in the last decade, proving to be effec-

tive in the management of the complexity of nowadays
distributed applications and services [1]. Cloud infrastruc-
tures evolved to complex systems offering a plethora of
services that can be rapidly provisioned on-demand without
human intervention, including [2], [3]: virtualmachines, con-
tainers or even dedicated hosts; access to hardware-acceler-
ated instances with GPUs or FPGAs; relational and NoSQL
database services; in-memory caching solutions; perfor-
mance monitoring, control and automation services; security
services; specialized networking configurations; solutions
for big-data processing including massive server-less
deployments of custom processing topologies, as well as
fully-managed platforms for the development, training and
deployment of machine learning and artificial intelligence
models; etc.

Public cloud computing has become increasingly adopted
in many areas and businesses with computing require-
ments, with the only exception being those contexts where
strong data confidentiality or tight latency requirements [1],
[4] make it impossible to hand-over computations and data
storage to a third-party remote infrastructure.

However, the core Cloud Computing principle that a
general-purpose computing infrastructure can be sliced into
shares that are rapidly provisioned on-demand with mini-
mal management effort [5] and can be elastically resized has
become pervasive. It is being applied in several medium-to-
big organizations in the form of the so-called private cloud
computing: different departments or functions can rapidly
instantiate computing services within a shared private
infrastructure that can be quickly, adaptively, and automati-
cally re-arranged to dedicate more processing, storage or
networking power to the core activities that are exhibiting
higher workloads at any time.

An important area where private cloud computing infra-
structures are becoming increasingly used is the one of net-
work operators and telecommunication systems [4], [6]. In
this context, the technological evolution of communication
and processing equipment is leading to the transition from a
number of custom communication media and protocols, and
dedicated appliances, to a converged networking infrastruc-
ture heavily based on TCP/IP and general-purpose comput-
ing servers. This enables the wide deployment of private
cloud computing solutions in the context of what is known as
Network Function Virtualization (NFV) [7]. The NFV para-
digm allows replacing expensive physical appliances that
have to be sized for peak-hour operations with elastically pro-
visioned computing services (virtual machines or containers)
that can be provisioned on-demand and dynamically adapted
to the instantaneous load continuously changing over time.

A specific area where NFV is being heavily applied is the
fifth-generation wireless systems (5G), where an unprece-
dented degree of flexibility is needed to handle the complex-
ity of modern and future communication infrastructures
supporting vertical markets such as automotive, Internet-of-
Things (IoT), ultra-low latency applications [8], [9] and
enhanced mobile broadband [10]. Future mobile scenarios
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will need infrastructures able to guarantee higher through-
put, connection density and traffic capacity, better spectrum
efficiency, higher network efficiency, and lower and more
predictable latencies.

These constitute essential requirements for next-genera-
tion communication systems, where the 5G architecture
combines cloud principles in order to achieve efficient and
cost-effective deployment and control of a vast plethora of
services over an end-to-end network.

1.1 Problem Presentation

In the context of the 5G architecture and NFV, a wide range
of services exists with stable and predictable performance
needs [8]. This is a requirement that is often in conflict with
the idea of sharing physical resources due to the unavoidable
temporal interferences among co-located services (a.k.a., the
noisy neighbor problem). Therefore, the concepts of network
slice and slice isolation are mandatory to provide resource sli-
ces with sufficiently stable performance to deploy entirely
independent services with guaranteed service levels that do
not suffer from undesirable and unpredictable interferences
leading to performance drops or latency peaks.

In NFV, vertical services are built over a chain of virtual-
ized network functions (VNFs), such as switching and
routing,mobilitymanagement, signaling, tunneling and gate-
waying, load balancing, traffic analysis and policing, and
security services, all handled according to the ETSINFVMan-
agement and Orchestration (MANO) guidelines [11] (see
Fig. 1). In this context, slice allocation and isolation is the capa-
bility to allocate and isolate to a VNF the needed network,
storage, and computing resources. Another essential charac-
terization of the 5G architecture is that data center, core and
access networks shall support quite different and customiz-
able requirements. For example, 5G requests a widely distrib-
uted computing capability at the edge of the network to
support Smart City and Machine Type Communications
(MTC). Efficient resource usage and limited power consump-
tion require fine-grained allocation and scheduling of slices
over resources, so to achieve a proper degree of temporal iso-
lation. Moving from the edge to data centers, the granularity
of resource usage can be defined on a different scale.

It is remarkable that, in this area, the presence of high
throughput and low-latency requirements, coupled with the
possibility to use dedicated infrastructures with full control
on the deployment environment, led to a progressive depar-
ture from traditional cloud architectures heavily based on

virtual machines, in favor of lightweight virtualization solu-
tions at the operating system (OS) level based on contain-
ers [12], [13], [14], [15], [16]. These do not suffer from the
performance drawbacks of machine virtualization, at the
cost of decreased flexibility, which is acceptable in the con-
text. Also, the predictability requirements on the end-to-end
performance recently led to the investigation of real-time
scheduling techniques [17] to support a stable performance
of co-located components [14], [18], [19]. The industrial inter-
est in OS containers in the context of NFV is witnessed by the
recent ETSI NFV MANO specification including an object
model for OS container management and orchestration [20],
complementing the plethora of existing approaches to
container orchestration in the general cloud-computing
domain [16], [21].

Issues of temporal interference among co-located contain-
ers or Virtual Machines (VMs) typically arise in shared infra-
structures. Their weight increases when CPUs over-
subscription is allowed or other resource bottlenecks are
present, like disks or networks in data-intensive workloads.
Concerning processing performance, interferences among
co-located containers are typically managed via a 1-to-1 vir-
tual CPU (vCPU) to physical CPU (pCPU) allocation (i.e., for-
bidding CPU over-subscription). Nevertheless, a minimum
granularity equal to a single CPU is implied, resulting in a
likely large infrastructure under-utilization. Consequently,
infrastructure providers must select between: a) deploy-
ments with an amount of over-subscription that could lead
to volatile single-service performance, due to the variable
workload of the co-located ones on the same pCPU(s); b)
deployments without over-subscription, presenting stable
performance but also high infrastructure under-utilization.
Both alternatives are affected by additional shortcomings in
a wide range of application scenarios, including the nodes at
the edge of the NFV network, where the QoS during traffic
peak hours is affected by over-subscriptions and 1-to-1 allo-
cations enormously raise power consumption, which domi-
nates the energy budget for access networks.

1.2 Contributions

This paper presents a novel approach to the problem men-
tioned above, extending and complementing prior research
by the same authors [14], [22], [23]. The proposed approach
uses a fine-grained allocation of pCPU(s) achieved by using
a real-time CPU scheduler built into the OS, which we real-
ized modifying the SCHED_DEADLINE [24] real-time CPU
scheduler in the mainline Linux kernel, so to provide hierar-
chical scheduling capabilities. This way, the OS kernel can
guarantee the allocation of fine-grained shares of pCPU
time to individual containers, providing the hosted services
with a stable and predictable performance.

The low-level real-time CPU scheduling capability is lev-
eraged in the cloud/NFV orchestration domain through
modifications to the well-known OpenStack cloud manage-
ment software and exposed to the MANO descriptor layer
for NFV deployments through the Tacker service, resulting
in proper support for isolating the performance of individ-
ual containerized VNFs.

The fundamental kernel-level mechanism for strong tem-
poral isolation among containers enables the development
of accurate performance models for distributed services and

Fig. 1. End-to-end service deployment based on slice allocation.
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applications, based on an approximated model of our pro-
posed real-time CPU scheduler, resulting in an effective
decision-making instrument to higher-level cloud/NFV
orchestration layers for managing the underlying resources.

The approach is validated applying the methodology to a
real test-bed where we performed extensive experimenta-
tion deploying, in the form of containers, both a synthetic
distributed application with Poissonian traffic characteris-
tics and a real IMS signaling application, using our modified
OpenStack orchestrator leveraging our modified kernel-
level scheduler. Experimental results show performance fig-
ures matching quite closely with our theoretical model
expectations, in terms of average value and high percentiles
of the response-time service distribution, confirming that
the proposed approach allows for deploying time-sensitive
cloud/NFV services with predictable performance levels.

Compared to the previously published material on the
topic [14], [22], [23], besides reviewing the most important
concepts and previously obtained results, this work presents
for the first time: the modifications we applied to OpenStack
and specifically to the Nova service in order to support real-
time scheduling of containers through our hierarchical exten-
sion of the SCHED_DEADLINE policy within the Linux
kernel (Section 5); the extensions needed at the MANO
descriptors level to support the new features from the Tacker
NFV management framework (Section 5.1); the support for
real-time parallelizable software components within multi-
core containers (Section 5.2); and results about the perfor-
mance achieved when deploying a multitude of concurrent
activities using the proposed architecture (Section 6).

1.3 Paper Structure

This paper is structured as follows. After a survey of the
related research literature in Section 2, some background
concepts useful for a better understanding of the paper are
recalled in Section 3. Section 4 introduces the main bricks of
the proposed approach to design distributed components
with predictable performance levels. For instance, we elabo-
rate on mechanisms for performance isolation based on an
underlying EDF-based real-time scheduler for containers
extending the Linux kernel and a performance model that is
built for a specific class of distributed applications of inter-
est. Section 5 provides implementation details showing how
the OpenStack architecture has been modified to take
advantage of the novel scheduling features, including the
changes required to its Nova component, to the command-
line interface, and the additional modifications that allowed
for the integration within the NFV orchestration manager
Tacker. Section 6 provides experimental results regarding
the performance of a synthetic application workload under
different conditions. These constitute an extensive valida-
tion of the correctness of the performance model built
thanks to the proposed methodology and software architec-
ture, highlighting also some limitations of the theoretical
model. Finally, Section 7 provides our concluding remarks,
outlining possible areas of further research in the future.

2 RELATED WORK

Network operators are broadly developing NFV solutions
leveraging on the cloud paradigm and are working on

bringing it up to the edge of the network [8]. For example,
the goal of Virtualized Radio Access Network (VRAN) is
moving computational functionalities of the networking
stack from the radio heads to dedicated servers stationed at
the edge of the infrastructure [25], [26], [27], [28]. This solu-
tion has to deal with the compelling timing constraints
involved, like the one of 4ms imposed in packets acknowl-
edgment by the Hybrid ARQ (HARQ) [29] protocol. Timing
constraints like these can be handled by analysis and profil-
ing within the single network functions and performing an
ad-hoc parallelization, as done by some authors for Cloud-
RAN [28], or proper mechanisms can be used to enforce
predictability in the underlying infrastructure at the bot-
tommost software layers [30], if possible.

In the area of cloud computing and distributed service-
oriented systems, the presence of particularly stringent tim-
ing constraints is traditionally tackled by: 1) dedicating phys-
ical resources to individual components or network
functions (e.g., virtual machines deployed with their virtual
cores pinned to dedicated physical cores that are not shared
with others), or less commonly using dedicated physical
hosts; 2) adopting high-performance computing paradigms
and middleware components, including tuning of the oper-
ating system [31] especially in the presence of platformswith
a non-uniform memory architecture (NUMA), adopting
high-performance networking primitives heavily based on
continuous polling and batching of I/O operations, and
bypassing the OS kernel in favor of reduced functionality in
user-space for faster I/O operations. For example, popular
kernel-bypass techniques [32], [33] include the well-known
Data-Plane Development Kit (DPDK) [34] originally by Intel,
and the Netmap research project [35]. An interesting survey
on fast packet I/O technologies for NFV can be found in [36].
It is useful to remind that, in the context of NFV, besides
seeking for themaximumpossible performance, dependabil-
ity constitutes also a stringent requirement [37].

However, the just mentioned techniques come usually at
non-negligible costs in terms of CPU workload, as the
adopted software switching logic, heavily based on non-
blocking (continuously polling) primitives, forces entire
CPUs to stay busy at 100% utilization, even in conditions of
moderate traffic. Therefore, there is still a strong interest in
the industry in exploring the advantages of co-locating net-
work functions that are unable to saturate entire physical
CPUs individually, trying to control the possible temporal
interference among them through proper mechanisms at
the OS or hypervisor level.

For example, applying real-time scheduling techniques
within the hypervisor allows for providing tuning mecha-
nisms in resource allocation and then controlling the inter-
ferences of co-located services [38], [39]. Indeed, some
authors proposed [39] to support real-time processing in the
Xen bare-metal (Type-1) hypervisor with novel features,
such as the application of hierarchical real-time scheduling
techniques allocating to individual VMs accurate slices of
the physical CPU execution time. The mechanism has also
been integrated within OpenStack [18] replacing the hyper-
visor and the VM allocation mechanisms with RT-based
ones, able to enforce timing isolation among colocated VMs.
This way, it has been proposed [40] to exploit the capabili-
ties of this RT-aware version of OpenStack as an enabling
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technology to optimize the placement of network functions
composing a service chain and obtain a higher resources uti-
lization while respecting the timing constraints defined in
the SLA.

Similar concepts appeared earlier in the context of the
IRMOS European project [41], where real-time scheduling
of virtual machines deployed with the KVM hosted (Type-
2) hypervisor was integrated within a comprehensive
cloud management solution for guaranteed resource pro-
visioning to service-oriented real-time and multimedia
applications. A fundamental brick of the IRMOS architec-
ture was the so called Intelligent Service-Oriented Infra-
stracture (ISONI) [42], an abstraction layer able to deploy
an arbitrary topology of VMs with precise individual as
well as end-to-end QoS requirements, called a Virtual Ser-
vice Network (VSN), within a computing and networking
infrastructure capable of providing precise computational
and networking guarantees. This was possible thanks to
the combination of real-time scheduling of VMs with QoS-
aware networking protocols. Carefully designed VM
placement strategies [43], [44] allowed for deploying VSNs
so as to satisfy either deterministic or probabilistic end-to-
end QoS (and particularly latency) requirements for the
deployed applications. However, the IRMOS framework
used an ad-hoc architecture developed from scratch, pro-
viding no support for integration with current most com-
mon cloud infrastructures used in the SDN-NFV context,
such as OpenStack or Kubernetes.

The just discussed solutions heavily rely on machine vir-
tualization to gain flexibility in resource management, and
take advantage of real-time scheduling techniques at the
hypervisor level to employee temporal isolation and reduce
unpredictabilities among co-located virtualized compo-
nents. However, solutions exploiting classic machine virtu-
alization are well-known [13], [14], [20], [45], [46] to cause
significant processing and memory occupation overheads,
resulting in a bulky software stack with duplicated
resource management and scheduling functionality at the
hypervisor and guest OSes level. Therefore, especially in
the domain of NFV, where a network operator has its own
private cloud infrastructure that is fully managed for
deploying specialized VNF software, containerization is
quickly superseding machine virtualization thanks to its
lighter architecture and reduced overheads, paving the
way towards higher efficiency and reduced end-to-end
latencies greatly benefitting low-latency applications and
services.

Additional works that are worth to mention are those
adopting: reinforcement-learning techniques to tackle effi-
cient placement of NFV service chains [47]; machine-learn-
ing algorithms for the elastic scaling of resources assigned
to individual containers [48]; neural networks to grasp the
complex relationships among the available deployment
options and the expectable VM/service performance, so to
facilitate VM placement and configuration decisions [49].
These kinds of activities exploit virtualization and can be
extended to take advantage of virtualization solutions to
increase isolation and reduce unpredictabilities.

However, the mentioned solutions propose genuine virtu-
alizationwith all the related overheads,which can be avoided
with a container-based approach. Interestingly, real-time

scheduling of VMs in IRMOS was done through a patch
enriching the Linux kernel with real-time hierarchical sched-
uling capabilities [38] based on control groups (cgroups), so it
could also be applied to containers.

However, these enabling mechanisms are not enough to
guarantee that the timing constraints of hosted services
are respected. To reach this goal, they must be coupled
with appropriate modeling and analysis techniques. The
importance of the latter ones for designing predictable
end-to-end cloud services in the context of network ser-
vice-chains has been highlighted for example in [50],
where resources are dynamically allocated by solving an
optimization problem designed around an end-to-end per-
formance model.

A number of authors also focused on the problem of opti-
mizing VM placement in a cloud infrastructure to better
host real-time workloads and mitigate interferences of co-
located instances. For example, in [51] authors propose to
tackle an energy-aware VM placement optimization prob-
lem via simulated annealing. In [52], authors propose to
place VMs by recurring to machine learning models that
have been trained on historical data about resource usage
and availability within the infrastructure. In [53], authors
propose an optimum VNF allocation solution specialized in
elastic IMS functions leveraging the WebRTC protocol, with
the ability to ensure precise QoS levels to users.

In [54], a model-based analytics approach is proposed
to profile VNFs based on a network queueing model that
is able to capture the burstiness of the workload, as well
as effects due to interrupt coalescing and power manage-
ment actions on the physical servers, to estimate network
KPIs related to power consumption and communication
latencies.

With respect to the state of the art, the proposed approach
addresses the problem at different levels in an integrated
way. It starts exploiting novel kernelmechanisms to improve
isolation among containers and increase response times
predictability. On top of it, an analysis has been provided to
express the dependency between the reservations configura-
tion parameters and performances (e.g., response time,
latency), allowing more fine-grained decisions during the
placement phase. Finally, these improvements have been
integrated into standard cloud solutions to make them avail-
able for use within well-known infrastructures applied for
SDN-NFVdeployments.

3 BACKGROUND CONCEPTS

This section outlines some basic concepts on real-time
scheduling mechanisms for the Linux kernel, virtualization
techniques, and NFV deployment solutions based on Open-
Stack, which constitute a useful background for a better
understanding of the sections that follow.

3.1 Real-Time Scheduling in the Linux Kernel

The Linux kernel provides a POSIX-compliant CPU sched-
uler [55], which implements different scheduling policies to
select the tasks to be dispatched on the various CPU cores.
The POSIX standard requires to implement 3 scheduling poli-
cies: SCHED_FIFO, SCHED_RR and SCHED_OTHER. SCHED_-
FIFO and SCHED_RR use a fixed priority scheduler, where a
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numerical priority is associated to each task1 and the tasks
with the highest priorities are scheduled first, while SCHED_-
OTHER uses a system-dependent scheduling algorithm. On
Linux, SCHED_OTHER is realized as a fair-share scheduler
coupled with various heuristics to handle properly and boost
the scheduling opportunities of interactive workloads com-
pared to long-running batch activities.

Since SCHED_FIFO and SCHED_RR can be used to imple-
ment real-time applications (associating priorities to tasks
according to Rate Monotonic [56], for example), they are
scheduled in foreground respect to SCHED_OTHER (first, the
scheduler checks if there are SCHED_FIFO or SCHED_RR tasks
ready for execution, then, it select a SCHED_OTHER task only if
no SCHED_FIFO nor SCHED_RR tasks are ready to run) and
are generally known as “real-time scheduling policies”.

The POSIX real-time scheduling policies are a good
choice to schedule real-time tasks when their execution
times and activation patterns are known in advance (and
the real-time workload is almost static). However, they risk
starving non-real-time (SCHED_OTHER) tasks when the real-
time tasks consume more execution time than expected.
Moreover, they require to re-arrange the tasks’ priorities
when new real-time tasks are created. The Linux kernel
implements some non-standard mechanisms such as real-
time throttling [57] and real-time control group schedul-
ing [58] to address some of these issues, but such mecha-
nisms reduce the predictability of the scheduling algorithm
and make it much more difficult (if not impossible) to pro-
vide exact performance guarantees.

For this reason, the Linux kernel implements an addi-
tional real-time scheduling policy2 named SCHED_DEAD-

LINE, which is scheduled in foreground respect to all the
other policies. The basic idea of this scheduling policy is to
implement reservation-based scheduling, allowing each task to
execute for at most a reserved runtime Q every period P
and at the same time guaranteeing that each task is allowed
to execute for its whole reserved time. As a result, each
SCHED_DEADLINE can consume at most a fraction Q=P of
the CPU time (where Q and P are the task’s runtime and
period) and is guaranteed to be able to use such a fraction of
CPU time. This result is achieved by using a multi-processor
variant [24] of the Constant Bandwidth Server (CBS) [59]
algorithm to assign scheduling deadlines to tasks, and then
schedule them through EDF [60].

In more detail, the scheduler tracks the amount of time
used by each task (by using a current runtime which is ini-
tialized to Q and decreased when the task executes). Then,
when a SCHED_DEADLINE task wakes up (becomes ready
for execution), the scheduler checks if the task can use its
current runtime and scheduling deadline without consum-
ing more than Q=P of the CPU time; if not, a new schedul-
ing deadline equal to tþ P (where t is the current time) is
generated and the current runtime is reset to Q. When the
current runtime of a task reaches 0, the task is “depleted”,

or “throttled”, and cannot be scheduled until the time
reaches its scheduling deadline. At this point, the schedul-
ing deadline is postponed by P , and the current runtime is
recharged to Q. SCHED_DEADLINE can be configured as a
global scheduler, a partitioned scheduler, or even as a clus-
tered one (with tasks partitioned across subsets of cores,
then globally scheduled within each cluster of cores).

3.2 Virtualization and Containers

One of the foundational pillars of cloud computing is
machine virtualization, by which a software layer takes con-
trol of the (hardware or software) resources available on a
physical machine (processors, cores, RAM, storage, network
interfaces) and distributes them among a set of isolated exe-
cution environments — the virtual machines (VMs). Each
VM can potentially host a different guest OS, which has
access to a subset of the resources available underneath.
Sometimes the resources can also be temporally scheduled
so that multiple VMs can use them in different time slices,
as needed at run-time. In Type-1 virtualization, the hypervi-
sor runs on bare metal, while in Type-2 virtualization, it is a
software deployed on a host OS.

In full hardware virtualization, a software component
named hypervisor emulates (or virtualizes) the presence of
specific hardware devices and peripherals within the VMs;
thus, guest OSes use their original, unmodified device driv-
ers within the kernel, to handle said resources. If the CPU
ISA is properly designed [61], virtualized software can man-
age to exploit the underlying capabilities of the physical
CPU at full speed, as long as only user-space computational
activities are carried on. However, when I/O is needed (disk
or network access), or OS services are invoked (creation of
new processes, needing modifications to the virtual memory
pages), the hypervisor needs to continuously interrupt the
guest execution (by means of traps causing VM exits) as a
result of guest kernels trying to access I/O or special CPU
registers, to emulate the corresponding effects in the context
of each VM environment. This results in the advantage of
deploying unmodified OS images, but on the other hand, it
often results in unacceptable virtualization overheads.

Traditional means of mitigation consist in the use of
hardware-assisted virtualization, which leverages on spe-
cial capabilities of various hardware components to virtual-
ize themselves. These are configured by the hypervisor so
that each VM is offered a distinct set of virtual registers that
can be programmed by the guest OS, using its in-kernel
device driver, without any intervention by the hypervisor
while using the virtualized peripheral. This happens with
network interface cards (NICs) with SR-IOV capabilities, or
with nested memory pages, for example.

On the other hand, virtualization overheads can also be
mitigated by software means, recurring to para-virtualiza-
tion [62], a widely used technique in modern OSes, that
exploits a special API exposed by the hypervisor to guest OS
kernels: special device drivers in the guest OS kernel now can
directly and explicitly invoke a hypervisor service via a hyper-
call (similarly to how user-space software invokes a system-
call in an OS), achieving an I/O performance that is normally
very close to the one of non-virtualized environments.

However, para-virtualized set-ups still suffer from a
number of non-optimal conditions due to the replication of

1. The term “task” is used in this paper to indicate a schedulable
entity that can be either a single-threaded process or a thread of a
multi-threaded process.

2. This is not a violation of the POSIX standard, which mandates the
presence of SCHED_FIFO, SCHED_RR and SCHED_OTHER, but allows
to implement additional scheduling policies.
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several functions across the whole software stack. Indeed,
often we can find functionality related to process schedul-
ing, memory allocation, networking stacks and security,
device drivers, and machine management services repli-
cated both in the hypervisor (if Type-1) or the host OS (if
Type-2), and in every hosted guest OS, on the same
machine. Additionally, several guests may run instances of
the same identical services independently from one another
(as it often happens when guests are based on the same OS
type and version). This creates a software stack that is often
needlessly bulky (requiring more RAM and causing more
cache misses than strictly needed).

Therefore, an increasing interest arose in lightweight OS-
level virtualization solutions like containers [63], where a
single host OS kernel is shared among multiple runtime
environments. This can be done with a wide range of possi-
ble configurations, from a fully feature-rich container that
runs a full user-space part of the OS (that has to be compati-
ble with the host OS kernel) to the possibility of a very light-
weight containerized application that runs exploiting the
OS services, libraries and middleware available in the host
OS. With containers, hosted applications not only process at
the underlying hardware full speed, but they can also per-
form operations related to I/O, memory and process/
thread management at the maximum speed allowed by the
host OS, with the advantage of a much more lightweight
set-up, compared to traditional virtualization.

It is quite understandable that, especially in the context
of a private cloud infrastructure where high-performance
VNFs are deployed to perform packet-processing in custom
ways, possibly even bypassing the in-kernel stack to
squeeze any single bit of performance out of the hardware,
a containerized software stack can easily become more
interesting than a virtualized one.

3.3 OpenStack Deployments for NFV

OpenStack is an open-source software for cloud computing
infrastructure management. Due to its high modularity, its
use as a VIM (Virtual infrastructure Manager) for NFV deploy-
ments is popular among telecommunication service pro-
viders and enterprises [64], [65], [66], [67], [68], [69]. In its
simplest deployment, it requires one ormore compute nodes,
whichwill host the virtual machines or containers, and a con-
troller node, which will take care of the management of the
VMs and of the network.3 Some of the drawbacks of the
OpenStack architecture have been addressed in the literature,
like the controller node acting as a single point of failure. For
example, some authors proposed [70] to replace the central
SQL backend supporting many of the orchestrator features
with an entirely distributed peer-to-peer key/value store.

The most important OpenStack components for a NFV
deployment are (see Fig. 2):

� Nova (compute service): manages the VM life-cycle
from user request to the Nova API to the actual VM
creation, e.g., with KVM using libvirt;

� Neutron (network service): manages the virtual net-
works with software switches like Linux bridge or

Open vSwitch, and possible SDN enhancements,
e.g., via OpenDayLight;

� Tacker (VNF manager and orchestrator): deploys
VNFs on top of the VMs created by Nova.

Other components are also required for a working Open-
Stack deployment, e.g.: Keystone (identity), Glance (VM
images management), Horizon (web-based dashboard), Cin-
der (block storage), Ceph (scalable software-defined storage),
Ceilometer orMonasca (telemetry services).

4 PROPOSED APPROACH

This work aims at providing isolation among the perfor-
mance of individual co-located containers (hosting CPU-
intensive packet processing services) within an NFV plat-
form. The containers’ workloads lead to potential high con-
tention of the CPU4 and present a wide range of timing
requirements determined by the specific due classes of traffic
handled. Our approach revolves around a real-time CPU
scheduler for containers co-located on the same physical
node, reserving a well-defined (and controlled) amount of
CPU time to each container as explained in Section 4.1. This
is combinedwith reservations at the networking level, allow-
ing to build a multi-resource performance model for distrib-
uted applications. A detailedmodeling example is presented
in Section 4.2, showing how the predictability obtained for
the single containers can be exploited, and a probabilistic
performance model of a simple synthetic packet processing
service be built. Consequently, statistics of the response-time
distributions are easily tied to the configurations of servers.
Note that the theoretical model has been validated through
extensive experimentation, as shown in Section 6, using syn-
thetic workload, as well as a real IMS use-case scenario.

4.1 CPU Scheduling of Containers

Linux containers, as created via userspace tools like lxc

and lxd
5 or docker,6 are based on namespaces [71],

Fig. 2. Example of OpenStack for a NFV architecture.

3. Network management can also be deployed as a separate node.

4. An extended version, including additional QoS control mecha-
nisms at the networking, disk, or I/O layers, can be applied in data-
intensive scenarios.

5. More information is available at: https://linuxcontainers.org/.
6. More information is available at: https://www.docker.com/.

768 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on February 05,2025 at 17:29:51 UTC from IEEE Xplore.  Restrictions apply. 

https://linuxcontainers.org/
https://www.docker.com/


controlling the resources’ visibility, and control groups7

(cgroups) allowing to control the amount of used resources
and to schedule resources such as memory, physical CPUs,
and similar. In particular, each container is associated with
a “real-time cgroup” that allows controlling the amount of
time used by real-time tasks (SCHED_FIFO and SCHED_RR)
within the container. This is done by “throttling” real-time
tasks once the specified fraction of time has been used.

The mechanism used in this paper, named “container-
based real-time scheduling”, extends the Linux scheduler to
build theoretically-sound scheduling hierarchies through
real-time cgroups (instead of merely throttling real-time
tasks). In more details, the “Hierarchical CBS” (HCBS)
scheduler [17]8 extends to task groups the SCHED_DEAD-

LINE CPU scheduling class [24] that the Linux kernel
already provides to support single-threaded real-time appli-
cations. As discussed in Section 3, in the original SCHED_-
DEADLINE implementation each task is attached with a
CPU reservation, described by a reservation runtime Q
guaranteed on the CPU every reservation period P . Our
HCBS scheduler allows to attach such a SCHED_DEADLINE

reservation to a group of tasks (a control group) instead of a
single task.

Hence, the HCBS scheduler adds hierarchical scheduling
capabilities [38], [39] to SCHED_DEADLINE, allowing this
scheduling policy to schedule not only single tasks, but also
groups of tasks (control groups). The HCBS implementation
is based on the fact that the Linux kernel stores the schedul-
ing context of a process or thread in a scheduling entity struc-
ture. Each task has a scheduling entity for each possible
scheduling policy (including an rt entity, a dl entity, and so
on). With HCBS, dl entities are associated not only to
SCHED_DEADLINE threads and processes, but also to real-
time control groups, and the scheduler works as follows:

� When a real-time task (process or thread scheduled
by SCHED_FIFO or SCHED_RR) wakes up, the sched-
uler inserts it (or, better, its rt scheduling entity) in
the ready real-time tasks queue (rt runqueue in
Linux). If the task is not in any real-time control
group, this rt runqueue is directly handled by the
scheduler, but if the task is in a real-time control
group this runqueue is associated with a dl schedul-
ing entity. Hence, if this is the first task in the rt run-
queue then the associated dl entity is inserted in the
dl runqueue.

� When a real-time task blocks, it is removed from its
rt runqueue. If such a runqueue becomes empty and
the task is in a real-time control group, then the asso-
ciated dl entity is removed from its dl runqueue

� When the scheduler has to select a task to schedule, it
first checks if there are ready dl entities in the dl run-
queue. If a dl entity is selected, then the scheduler
checks if this scheduling entity is associated to a task
(a SCHED_DEADLINE thread or process) or to a real-
time control group. In the second case, the scheduler

selects the highest priority real-time task from the rt
runqueue associated to the dl entity.

� When a task served by a dl scheduling entity executes,
for a time dt, the scheduler decreases the entity’s run-
time by dt. In a vanilla kernel, the only tasks served by
dl entities are SCHED_DEADLINE tasks; when the
HCBS scheduler is used, all the SCHED_FIFO and
SCHED_RR tasks in a real-time control group are
served by the group’s dl entities.

� When the runtime of a dl scheduling entity arrives to
0, the entity is throttled and removed from the run-
queue (the ready queue) until the end of the reserva-
tion period. If the entity is associated to a real-time
control group, the scheduler tries to migrate real-
time tasks of the group to a different core, where the
group is served by an entity with runtime > 0 .

Interested readers can refer to the original CBS [59] and
SCHED_DEADLINE [24] papers to see all the deatails about
how the scheduler handles the dl entities.

4.2 Probabilistic Model

The performance of the container-based real-time schedul-
ing approach described above can be analyzed by both
using a deterministic approach based on the Compositional
Scheduling framework (CSF) [39], [72] (which is able to pro-
vide hard real-time guarantees) or a relaxed probabilistic
approach [14], which is more suitable in the cloud context.

The probabilistic analysis approach can be used, for exam-
ple, to provide soft real-time guarantees to a set of container-
ized server applications (servers) running on a physical host
with m identical CPU cores (referred to as “pCPUs”). This
analysis, based on the definitions provided in Table 1, is per-
formed assuming that each server i is hosted in a container
scheduled using HCBS (with parameters Qi and Pi), and a
number n of different containerized servers are hosted on a
single pCPU, on the machine. Moreover, each containerized
server i receives a pattern of (aggregated) requests having
exponential and i.i.d. inter-request times with average rate �i

and exponential and i.i.d. request processing times with aver-
age rate mi. The latter corresponds to processing times of

TABLE 1
List of Symbols Used for the Probabilistic Analysis

Symbol Definition

m Number of pCPUs (physical CPUs)
n Number of real-time servers hosted on the same pCPU
Qi Runtime for the real-time control group hosting server i
Pi Period for the real-time control group hosting server i
�i Average inter-request time for requests towards server i
mi Average processing time of requests towards server i
zi Size of requests for server i
Re

i Stochastic variable representing the RTT for a request to
server i

tSi Stochastic variable representing the time needed by a
request to travel to server i from one of its clients

tPi Stochastic variable representing the processing time for a
request on server i

tRi Stochastic variable representing the time needed by
responses of server i to reach their requesting client

s Network bandwidth
d Network delay

Note that the i index may be dropped to make the notation easier to read.

7. More information is available at: https://www.kernel.org/doc/
Documentation/cgroup-v1/cgroups.txt.

8. Source available at https://github.com/lucabe72/LinuxPatches/
tree/Hierarchical_CBS-patches.
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individual requests when an entire CPU is dedicated to the
server while its speed has been locked to its maximum value,
with hyperthreading disabled, if present. Therefore, the per-
formance model we build does not depend on Dynamic Volt-
age and Frequency Switching (DVFS) mechanisms. Proper
modeling of the effects of DVFS on performance might be the
subject of futureworks. Furthermore,mi does not include pos-
sible queueing times if requests queue up before being
processed.

The complete analysis is reported in our prior work [14],
however here we report a summary of the most important
results, based on the fact that the end-to-end round-trip time
(RTT) for a request can bemodeled as a stochastic variable

Re
i ¼ tSi þ tPi þ tRi ;

where: tSi is the time to send the request from the client to the
server i; tPi is the time to process the request within server i,
including possible queuing time (server response time); tRi
is the time a response of server i needs to reach the client.

Our probabilistic analysis allows to approximate the aver-
age RTT E½Re

i � and its fth percentile Pf½Re
i �. This approxima-

tion is based on well-known results from real-time theory
and queuing theory, as detailed below.

4.2.1 Processing Times Under HCBS Real-Time

Scheduling

The first observation we make is that, if a server with a per-
request processing time of Ci time units (if executing on a
dedicated physical core) is deployed on a real-time container
scheduled by a reservation ðQi; PiÞ with Pi small enough
compared to Ci, and the scheduling parameters for HCBS
servers co-located on the same pCPU satisfy the condition

X
i

Qi

Pi
� 1; (1)

then the server response time tPi can be approximated as

tPi ffi Ci

Qi=Pi
; (2)

under a simple no queueing assumption.

Proof. It is well-known [24] that, if n real-time tasks are
scheduled on a single CPU under a reservation-based
scheduler like the HCBS, with scheduling parameters satis-
fying the condition in Eq. (1), then each task is guaranteed
to be scheduled on the CPU for Qi time units in each time
window of duration Pi. This means that, if the computation
requires a processing time Ci when running on the CPU in
isolation and without any reservation, then its completion
time tPi under a (Qi; PiÞ reservation is bounded by:

Ci

Qi

� �
Pi � tPi � Ci

Qi

� �
Pi;

with d�e and b�c denoting the ceiling and floor functions,
respectively. For reservation periods Qi sufficiently small
with respect to Ci, this results in tPi being approximated
reasonably well by Eq. (2). tu
This means that server i, under a ðQi; PiÞ reservation,

behaves as if deployed on a virtual CPU that is slower by a

factor of Qi=Pi w.r.t. the CPU it is deployed onto. In prac-
tice, the period P can be set to as little values as a few tens
ofms, but amounts smaller than 1mswould cause excessive
scheduling overheads (and context switches).

Note that, if multiple tasks are being scheduled within
each reservation using a second-level scheduler based on
fixed-priority, as allowed by our HCBS scheduler, then the
analysis is more complex [72] but a “fluid approximation”
similar to the above Eq. (2) can still be used.

The second point of our theoretical analysis relates to the
characterization of the processing performance of servers
hit by Poissonian traffic: consider a server i under a ðQi; PiÞ
HCBS reservation, with sufficiently small reservation period
Pi and all reservations co-located on the same pCPU
respecting condition in Eq. (1). If the server is hit by traffic
with i.i.d. and exponentially distributed inter-arrival times
with average rate �i, and characterized by i.i.d. and expo-
nentially distributed processing times with average process-
ing rate mi (when executing on a dedicated CPU without
reservation), under the stability assumption �i < miQi=Pi,
is characterized by the following average value and fth per-
centile of its response-time tPi distribution

E½tPi � ¼
1

mi
Qi
Pi
� �i

; Pf½tPi � ¼ � lnð1� fÞ
mi

Qi
Pi
� �i

: (3)

Proof. It is well-known in the field of queueing theory [73]
that, for a M/M/1 system with average arrival rate �i

and average serving rate mi, the average and fth percen-
tile of the response-time Ri distribution turns out to be

E½Ri� ¼ 1

mi � �i
; Pf½Ri� ¼ � lnð1� fÞ

mi � �i
: (4)

Now, considering that the M/M/1 queueing system is
actually running within a ðQi; PiÞ HCBS reservation with
the condition in Eq. (1) being satisfied, from the result in
Eq. (2) above it is clear that the system can only process
requests at the reduced average rate miQi=Pi, not the full
rate mi. Therefore, the result in Eq. (3) easily follows. tu

4.2.2 Transmission Times

The approximated times needed by requests and responses
to reach their destinations (tSi and tRi ) are computed by split-
ting them in queuing times (times during which network
packets are queued waiting to be transmitted), transmission
latencies (times needed by a packet to travel between client
and server or vice-versa) and transmission times (times
needed to transmit a packet of size zi on a medium with
speed s). We can distinguish two cases depending on
whether we can neglect network enqueueing times or not.

If the network is not congested, the transmission latencies
are almost constant (and can be assumed to be equal to a con-
stant d), and the queuing and transmission times are negligi-
ble. Moreover, it is possible to employ end-to-end QoS/
reservation techniques at the networking level, such as the
well-known IntServ standard [74], or, considering the lim-
ited geographic and organizational extension of typical NFV
infrastructures, time-triggered Ethernet [75], [76]. This way,
applications may be granted precise guarantees on the
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experienced latency and available throughput on an end-to-
end path. Therefore, it is still possible to use well-approxi-
mating constants d and s for the end-to-end latency and
throughput experienced by a given application or VNF).
Hence, the RTT can be approximated as Re

i ¼ tPi þ 2d, and,
considering the results in Eq. (3) above, its average and fth
percentile can be approximated as

E½Re
i � ¼ 2dþ 1

mi
Qi
Pi
� �i

;

Pf½Re
i � ¼ 2d� lnð1� fÞ

mi
Qi
Pi
� �i

:

(5)

In the situation in which queuing times and transmission
times are not negligible, instead, if we assume a per-server
exponential distribution of the request sizes zi, and their
independence from the processing times, we can obtain the
following approximations:

E½Re
i � ¼ 2dþ 1

ni � �i
þ 1

mi
Qi
Pi
� �i

;

Pf½Re
i � � 2d� ln 1� ffiffiffi

f
pð Þ

ai
;

(6)

where ni ¼ s
E½zi� is the average transmission rate for the pack-

ets of server i and ai , ð 1
ni��i

þ 1

mi
Qi
Pi
��i

Þ�1, under the stability

assumptions of ni > �i and mi
Qi
Pi

> �i.

Proof. Assume an exponential distribution of the request
sizes zSi , implying a similar distribution of the transmis-
sion times tSi with an average transmission rate ni ¼ si

E½zS
i
� ;

and response-time approximated as tRi ffi di, as due to, e.g.,

sending back to the client just a success/error code (sym-

metrically, we can think of a tSi ffi di and exponentially dis-

tributed zRi and tRi , as due to e.g., replying with data to a
very short request packet). With exponentially distributed

service times and under scheduling parameters ðQi; PiÞ;
and as condition in Eq. (1) is respected, Eq. (2) implies an

average service rate ofmi
Qi
Pi
:

Then, as depicted in Fig. 3, the system can be approxi-
mated as a sequence of two M/M/1 queues, which,
under the stability condition of

�i < ni ^ �i < mi

Qi

Pi
; (7)

has the steady-state behavior of two independent M/M/
1 queues, with the process of arrivals at the server input
queue being Poissonian with the same parameter �i:
Therefore, denoting with ~tSi the time needed for network-
ing where the constant term di has been removed, again,
from well-known results on M/M/1 systems, we have

Re
i ¼ 2di þ ~tSi þ tPi ; E½~tSi � ¼

1

ni � �i
; E½tPi � ¼

1

mi
Qi
Pi
� �i

) E½Re
i � ¼ 2di þ 1

ni � �i
þ 1

mi
Qi
Pi
� �i

:

(8)
The computation of (a bound for) the percentile Pf½Re

i � is
more involved: we start from the definition Pf½Re

i � ¼
D ,Pr½Re

i � D� ¼ f. AsRe
i is the sum of two exponential

distributions with different parameters, we can easily get
to a closed-form lower bound for the Re

i cumulative dis-
tribution by splitting it proportionally to the expected
values of the two components. Formally, using the easy-
to-prove lower-bound

Pr X þ Y � z½ � � Pr X � z
E½X�

E½X� þ E½Y � ^ Y � z
E½Y �

E½X� þ E½Y �
� �

;

we have

Pr½Re
i � D� ¼ Pr½~tSi þ tPi � D� 2di� � 1� e�ai D�2dið Þ

	 
2
;

(9)

where ai , ð 1
ni��i

þ 1

mi
Qi
Pi
��i

Þ�1; and ~tSi and tP have been

assumed to be i.i.d. and independent from one another.

Now we can compute the minimum deadline D guaran-

teeing Pr½Re
i � D� � fi :

Pr½Re
i � D� � 1� e�ai D�2dið Þ

	 
2
� fi

D � 2di � ln 1� ffiffiffiffiffi
fi

pð Þ
ai

:

(10)

Therefore, Eq. (6) easily follows. tu
Note that the theoretical hypothesis of infinite transmis-

sion speed ni ! 1 leads to an expression of Pf½Re� similar
to Eq. (5) where

ffiffiffiffiffi
fi

p
replaces fi; providing an insight into

the implications of the approximated bound of Eq. (9).
Additional details on the above results can be found in [14].

5 SOFTWARE ARCHITECTURE

This section summarizes changes that have been
designed and realized for the Tacker NFV management
layer and the OpenStack framework to build a prototype
for the model conceptualized in Section 4. The discussion
refers to a simplified deployment of OpenStack that has
been used, consisting of simply three physical nodes: a
controller node, a compute node configured for instanti-
ating VMs via KVM, and a compute node configured for
instantiating containers through lxc. The setup has been
deployed using Kolla, an automatic deployment frame-
work built upon Ansible that deploys OpenStack services
in separated Docker containers.

The reference development and deployment platform
has been Linux Ubuntu 16.04 LTS, with OpenStack Rocky
including Nova (management of physical compute nodes
and VMs), Neutron (network management), Keystone
(authentication), Glance (image provisioning), Ceilometer
(monitoring and alarming), Heat (orchestration), Horizon
(web-based dashboard), Tacker (NFV management), with

Fig. 3. Queueing model representing networking and processing.
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OpenStack configured as Virtualized Infrastructure Man-
agement (VIM). Version 18.1.0 of Nova has been modified
and deployed. All components run on the controller node,
except for Nova, which also has additional parts running on
the compute nodes. OpenStack has been configured to use
MariaDB as the reference DataBase system (running on the
controller node as well).

Fig. 4 highlights the major sub-components of the Open-
Stack/Nova architecture that are relevant for our work:
nova-conductor handles interactions among Nova sub-
components; nova-scheduler allocates VMs to compute
nodes through the use of allocation filters; DB is the Data-
Base (MariaDB, in our deployment scenario) used by Open-
Stack to manage persistent information; oslo is a set of
libraries (used throughout OpenStack components) includ-
ing logging, JSON processing, configuration management,
and messaging services; nova-compute runs on each com-
pute node to instantiate and manage VMs through lib-

virt, which is a component external to OpenStack used to
handle various virtualization technologies (including Xen,
KVM, lxc and lxd containers); nova-api runs on the con-
troller node to accept requests from either the command-
line client openstack cli, or the web-based dashboard
Horizon.

Our modifications allowed us to deploy lxc containers,
with attached a per-container (runtime, period) specifi-
cation, over physical compute nodes with the HCBS hyper-
visor scheduler as described in Section 4.1. The components
introduced above have been modified as follows:

� Each physical compute node has been provided with
additional information on the available and used
real-time computational bandwidth, adding the
rt_share and rt_share_usedcolumns in the
compute_nodes table in the Nova DB schema;

� Each deployed instance has been provided with
additional real-time scheduling parameters through
rt_runtime_us and rt_period_usnew columns
in the instance_extra table of the DB schema;

� The scheduling parameters have been added as
additional attributes of an OpenStack instance
type (flavor), by using two new extra_specs

attributes: hw:cpu.rt_runtime_us and hw:

cpu.rt_period_us;
� The cpu.rt_runtime_us and cpu.rt_perio-

d_usper-instance attributes have been added to the
scheduler hints that can be specified on instance
creation;

� A new scheduler.filters.RTShareFilter,
subclassing BaseHostFilter, has been added to
the set of Nova host filters, that passes a compute
node only if supports the HCBS hypervisor sched-
uler functionality and its residual free_rt_share
= rt_share - rt_share_usedis greater than or
equal to the required vcpus * rt_runtime_us /

rt_period_us;
� The scheduler.HostState Python class, repre-

senting a compute node resources availability within
the Nova scheduler, has been extended with the
rt_share and rt_share_usedfields, as well as
with the capability to update these fields based on
the deployed instances;

� The virt.libvirt.LibVirtDriver Python class
has been modified to apply the instance rt_runti-
me_us and rt_period_us parameters to the CPU
cgroup just created for the instance;

� A new boolean option, hcbs_scheduler_avail-
able, has been added to the Nova configuration file.
When set to false, the node will advertise a total
rt_share of 0 in its HostStateso that it will not
be chosen by the RTShareFilter.

As a result, a new flavor with a scheduling runtime of,
say, 100ms every period of 200ms, 1 vcpu and 512 Mb of
RAM can be created with:

Then, a new instance can either inherit the scheduling
parameters specified in the flavor definition, or override
them. For example, the following command overrides
the default 100ms scheduling runtime of the flavor with
120ms:

Going up in the software stack, with the presented set of
changes, it is possible to specify real-time scheduling
parameters within a Heat Orchestration Template file by
either 1) using for the new instance a flavor with attached
real-time scheduling parameters, or 2) specifying new real-
time scheduling parameters as scheduler hints, which
would anyway override the flavor parameters, if present.

5.1 Real-Time Reservations in MANO Descriptors

Standard MANO descriptors defined in the TOSCA spec-
ification allow for specifying the processing requirements
of a VDU under deployment, as a flavor property of the
VDU and/or via properties within the nfv_compute

descriptor.
When using a flavor to specify the VDU requirements, it is

easy to make the H-CBS real-time scheduling features accessi-
ble to the higher-layer NFV framework and MANO descrip-
tors: once one has defined one ormore flavors, with associated
the desired scheduling parameters cpu.rt_runtime_us

and cpu.rt_period_us, as described above, the flavor can
be directlymentioned in aVDU specification, e.g.,:

Fig. 4. Overview of modifications to OpenStack components.
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On the other hand, one can specify a VDU requirements also
using directly the nfv_compute descriptor, whose type is
tosca.datatypes.compute_properties. Using such a
solution permits the specification of such requirements as:
num_cpus, mem_size, disk_size and cpu_allocation,
among others. The latter is a map of type tosca...CPUAl-
location, including such attributes as:

� socket_count, core_count, thread_count:
supplementary details on the desired topology con-
necting the required computational elements;

� cpu_affinity: distinguishes between virtual cores
pinned down onto dedicated physical cores or
allowed to migrate among shared physical cores;

� thread_allocation: defines the mapping of vir-
tual cores onto hyper-threads available in the under-
lying physical host.

In this case, we support our new H-CBS scheduling fea-
tures simply by extending the CPUAllocation map type
by adding the ability to specify the cpu.rt_runtime_us

and cpu.rt_period_us scheduler hints when setting up
the underlying Heat Orchestration Template implementing
the NFV specification.

For example, the following sample VDU template syntax
can be used to request a container with 4 cores, scheduled
under a real-time reservation of 60ms every 100ms:

5.2 Multi-Core Containers

When deploying complex software components able to
leverage on the parallelism available on multi-core architec-
tures, it is essential to support multi-core virtualized runtime
environments properly. In cloud andNFV environments, we
often need to deploy containers with possibly a limited
intrinsic parallelism degree over considerably large multi-
core physical systemswith plenty of CPUs.

Therefore, in order to support fine-grained allocation and
real-time scheduling of the available physical cores across
many containers, we extended our real-time EDF-based
scheduler for the Linux kernel: it is possible to specify a per-
CPU runtime that is granted by the kernel to the container
processes. It is also possible to specify a runtime of zero for
one or more CPUs; this way, it is possible to restrict the
CPUs each container is actually deployed onto.

Our modifications to the OpenStack Nova and Nova-
LXC include the possibility to use the information on the
number of virtual cores a container is created with, along
with the specified real-time scheduling runtime and period:
then, the container is configured with associated a CPU res-
ervation spanning across only a subset of the available
physical CPUs, where the per-CPU runtime is set to the
desired value, whilst on the other CPUs it is set to zero.

In order to support this feature, we had to realize an alloca-
tion policy within Nova that keeps track of how much real-
time bandwidth has been allocated on each physical CPU of
each host so that we can choose what CPUs each new con-
tainer can be deployed onto, in order not to overcommit the
real-time bandwidth available on each physical CPU (whose
maximum is set to a default value of 95% that can be changed
through a configuration parameter if desired). For the sake of
simplicity, the adopted policy is “worst-fit”, in which the
CPUswith the highest available bandwidth are chosen.

For example, consider the case depicted in Fig. 5 in which
there are 4 available CPU cores that initially have no HCBS
containers, and three containers having the following compu-
tational requirements: 1) 50% bandwidth on 2 CPU cores; 2)
30% bandwidth on 1 CPU core; 3) 40% bandwidth on 3 CPU
cores. The first container is allocated to the first two available
CPUs (0,1), the second one to the first fully available CPU (2),
the third one on the three CPUs with the highest available
bandwidth (i.e., 3,2,0). The drawback of this simple allocation
is that, for example, if a new single-core container with 75%
bandwidth needs to be allocated, there would be no CPUs
with enough available bandwidth. However, it could be pos-
sible to “make room” for the new real-time container by
“defragmenting” the available real-time bandwidth moving
existing containers around (in the example, it would be suffi-
cient to move the reserved bandwidth of container 3 from
CPU 3 to CPU 1). Our underlying HCBS supports dynamic
changes of the assigned per-core runtime. However, for appli-
cations with tight timing requirements, migration of real-time
reservations among cores should be done using an appropri-
ate mode-change protocol [77], [78], in order not to disrupt their
run-time behavior (essentially due to the additional L1 cache
misses the migrated threads would incur on the new CPU). A
typical way of doing this would be by leveraging on the
moment a real-time task suspends waiting for I/O or for a
timer to fire. Integrating this kind of logic in the framework,
possibly leveraging on dynamic partitioning heuristics
directly integrated within the scheduler [79], [80], is left as
possible futurework on the topic.

Fig. 5. Example allocation of multi-core containers in a 4-CPU scenario.
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6 EXPERIMENTAL RESULTS

In this section, the accuracy of the model presented in Sec-
tion 4.2 in presence of the mechanism detailed in Section 4.1
will be evaluated, using our implementation as presented in
Section 5. This is a different kind of performance evaluation
with respect to the one performed by the most relevant pre-
vious works such as RT-OpenStack [18], that focused on
sets of independent periodic real-time tasks.9

This section is organized as follows: Section 6.1 gives
additional details about the experimental setup; Section 6.2
presents the results in the case of negligible networking
time; Section 6.3 shows results in the case of constrained
network bandwidth and exponential packet size; finally,
Section 6.4 presents the results of a possible NFV applica-
tion (i.e., a SIP connection manager).

6.1 Experimental Setup

In order to test the proposed configuration, an OpenStack
deployment consisting of a compute node and a controller
node is used (which is required by OpenStack, but does not
influence the results of the experiments). The tested contain-
ers are deployed on the compute node, and they host the
application server. The client is hosted by a third node out-
side the OpenStack deployment. In the experiments of Sec-
tions 6.2 and 6.3, we used DistWalk,10 an open-source
distributed application able to impose a configurable client-
server networking traffic and processing workload [23]. In
Section 6.4, the open-source Kamailio SIP server and SIPp

SIP client were used.
Different machines have been used throughout the

experiments shown in the subsections that follow, with the
hardware characteristics detailed in Table 2.

Moreover, the compute node ran a modified version of
Linux with the HCBS patches in all experiments. The server
reservation period is always set to P ¼ 2ms, a small enough
value that enables the approximation of Eq. (2). Also, for
simplicity, the server has been constrained to use only one
CPU. Compute and client nodes have been connected
through an L2 switch with 1Gbps Ethernet. A token bucket
traffic shaper (from the tc tool) was used to limit network

bandwidths below 1Gbps. The token bucket was set with
the smallest possible buffer size11 and its latency12 has been
set to 100ms to prevent excessive packet drops.

Furthermore, in both machines, hyper-threading and
CPU frequency switching have been disabled to increase
accuracy. At the same time, high-resolution timers and
HRTICK13 have been enabled, and HZ14 has been set to
1ms, for the same reason. In what follows, all measurements
have been obtained with 10000 samples per run.

6.2 Negligible Networking Time

In this first set of experiments, sending and receiving times
are negligible (Eq. (5)). Two configurations of computational
workload and reservation have been tested, varying the
average inter-arrival time of requests from 100ms to 5ms. In
order to assume negligible sending and receiving times
with regards to processing time, the packet size was set to
zS ¼ 128. In this experiment, the average client-server
latency was d ¼ 363=2 ¼ 181:5ms, as measured by gathering

TABLE 2
Main Characteristics of the Hardware Platforms

Used for the Experiments

Section Component CPU RAM

6.2
DistWalk Server

i5-4590S @ 3.00GHz 8GB
DistWalk Client

6.3
DistWalk Server

i5-4590S @ 3.00GHz 8GB
DistWalk Client

6.4
Kamailio Server i7-4790K @ 4.00GHz

16GB
SIPp Client i7-7700HQ @ 2.80GHz

All CPUs are Intel(R) Core(TM) with the detailed model.

Fig. 6. Experimental response-time statistics (markers) obtained varying
the inter-arrival period, at a CPU load of LD ¼ 0:5 (top plot) and LD ¼
0:8 (bottom plot). Lines represent the theoretical expectations of Eq. (5).

9. This paper, instead, focuses on applications composed of real-
time tasks interacting through a client-server paradigm. We already
verified the correct scheduling of independent periodic real-time tasks
in previous papers [17].

10. Available onGitHub: https://github.com/tomcucinotta/distwalk.

11. buffer ¼ minðmtu; rateHZÞ, since the timer resolution is 1/HZ.
12. i.e., the maximum amount of time a packet is allowed to stay in

the token bucket before being dropped.
13. High-resolution timers allow for precise preemption points.
14. HZ is the rate of the kernel timer used, e.g., by the scheduler tick.
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10K samples with ping. Both compute and client nodes ran
on an identical machine as detailed in Table 2.

Fig. 6 shows the experiment results, where markers rep-
resent the obtained average and the 99th percentiles of the
response-times, while the continuous lines represent the
respective theoretical values. In these plots, an increment of
the average inter-arrival times (X-axis) indicates a corre-
sponding raise of the response times since the average proc-
essing times on the server are also increased due to the
constant computational workload (LD).

The figure shows that the response-time distribution sta-
tistics match quite closely with the expectation coming from
the theoretical model. This can also be seen from the table in
Table 3 where RMSE and MAPE are reported for different
configurations. We can notice how the best accuracy is
achieved at lower load ratios (LDR ¼ ðLDÞ=ðQ=P Þ), e.g., in
the top plot where LDR ¼ 0:5=0:8 ¼ 0:625. Increasing LDR,
the accuracy decreases, e.g., in the bottom plot where
LDR ¼ 0:8=0:9u0:889. This behavior can be explained as
we are approaching the instability region (LDR > 1).

6.3 Non-Negligible Networking Time With
Exponentially Distributed Packet Sizes

The next set of experiments, taken from [23], shows the
results under a constrained network bandwidth with expo-
nentially distributed packet sizes. The average latency and
experimental setup are the same as in the previous section.

Fig. 7 compares the obtained average and 99th percentile
of the response times with different network bandwidths.
Notice that a decrement in the average inter-arrival times
(shown on the X axis) does not always cause a decrease in
response time as in the previous case. Instead, starting from
a particular value of the inter-arrival period, the response
times increase because packets get queued, causing an
increase in the network delays that are higher than the bene-
fit from reducing the processing times.

Experimental points for the average fall slightly below
the expected value. This can be explained by the fact that
we are simulating a lower bandwidth using a token bucket,
which lets packets through at link speed if there are enough
tokens, e.g., when the load is low as in the right part of the
plot. In fact, the experimental points follow the line of
1Gbps before rising up when the load increases.

Also in the 99th percentile plot values are below the theo-
retical line, but this time it was expected, since it is a

conservative approximation. Furthermore, the figure
reveals that the approximation is less accurate near the
“bending point” of the curve, where the distance between
the theoretical line and the points increases. However, just
after this “bending point”, approaching the instability
region BWR > 1, it can be seen that a number of experi-
mental response times statistics exceed the predicted values,
confirming that the model has some weaknesses at high
loads.

6.4 IMS Test Case

The experiment in this section, taken from [14], is used to
evaluate the performance of a SIP connection manager,
broadly adopted for VoIP applications, which is a possible
NFV application that may benefit from the proposed
approach. We picked Kamailio15 to handle SIP traffic pro-
duced by the SIPp16 tool, and compared the experimental
cumulative distribution functions (ECDF) of the RTTs.

In this experiment, the average client-server latency was
d ¼ 252=2 ¼ 126ms, as measured gathering 10K samples

TABLE 3
Model Accuracy with Regards to Experiments for Both Average
and 99th Percentile, Expressed as Root Mean Squared Error
(RMSE) and Mean Absolute Percentage Error (MAPE), for
Multiple Configurations of Packet Size (zS), CPU Load (LD)

and Computational Bandwidth (Q=P )

zS LD Q=P
Average 99th Percentile

ðBÞ RMSE MAPE RMSE MAPE

128 0.5 0.8 171.53 5.41% 2195 8.79%
128 0.7 0.9 515.24 5.02% 3477.3 9.57%
128 0.8 0.9 2995.3 10.37% 18875 15.71%
2048 0.5 0.8 198.6 8.01% 1363.7 6.75%
2048 0.7 0.9 657.88 5.57% 6938.3 15.93%
2048 0.8 0.9 2251.2 13.01% 14528 21.26%

Fig. 7. Response-time statistics (top: average, bottom: 99th percentile)
at varying average inter-arrival periods (on the X axis) and network
bandwidths (different curves). Lines represent the theoretical expecta-
tions (note that the theoretical 99th percentile is a conservative approxi-
mation), while markers show experimental results.

15. More details available at: http://kamailio.org/.
16. More details available at: http://sipp.sourceforge.net/.
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using ping. The application server and client were deployed
on machines with the hardware characteristics detailed in
Table 2. The client executes SIPp as a high-priority SCHED_-

FIFO task to prevent interference with other running tasks,
while the server hosts the Kamailio and Mysql in a 1-vCPU
container. The SIPp configuration fixes the number of regis-
trations every 100ms to 257, and requests the reporting to an
output file of the measured round-trip time for each request,
which involves the interaction with the Mysql database and
two packet round-trips.

Fig. 8 presents the results for the following cases: CFS, the
default Linux scheduler, andHCBS, our proposed approach,
both in the case of no interfering process (no noise) or with
noise. In CFS, the CPU time is uniformly split among the
active tasks, allowing Mysql and Kamailio to exploit all the
time of the underlying pCPU. In HCBS, Mysql and Kamailio
are run within a HCBS container as SCHED_RT tasks. The
HCBS container is configured with a runtime of 1:4ms and a
period of 2ms, which is enough to satisfy the average load
(around 60%) with some safety margin. In both cases, the
noise plots correspond to the scenario in which other four
periodic rt-app17 tasks are running in the system for 6ms
every 100ms. In the case of HCBS noise, these are executed
within another HCBS server as SCHED_RR tasks, with run-
time of 24ms and a period of 100ms . These tasks have a
strong effect on the resulting performance of the system since
they collectively claim 24% of the pCPU time. As a result, less
than 70% of SIP RTTs are below 2ms.

The average performance of HCBS is slightly better than
CFS, since SCHED_DEADLINE is the highest priority sched-
uling class, but the 99th percentile obtained with HCBS is
higher than the one obtained with CFS (1287ms versus
980ms). This result can be explained by the throttling that
the SCHED_DEADLINE entity receives when its budget is
exhausted. In the case of HCBS noise, the ECDF is only mar-
ginally influenced by the rt-app, excluding a little overhead
introduced by an increased number of context switches,
thanks to the reservation mechanism. Its 99th percentile is
equal to 1268ms (higher than HCBS due to measurement
noise), outperforming CFS noise that is able to reach that per-
centile one order of magnitude later, at 10614ms.

Summarizing, the shown experimental results highlight
that an IMS signalling application may exhibit very unstable

and degraded response times in presence of co-located
“noisy” containers when under a standard scheduling pol-
icy. On the other hand, the use of our proposedHCBS sched-
uler keeps the performance more stable and predictable,
allowing for the design and deployment of NFV services
with a reliable performance and timing behavior.

7 CONCLUSIONS AND FUTURE WORK

This paper introduced a novel approach for resource alloca-
tion to NFV services based on real-time scheduling of co-
located containers, and its prototype implementation
based on OpenStack with Tacker, leveraging a patch to the
Linux kernel. The proposed architecture provides stable
and predictable QoS. This has been showcased building a
model based on queueing networks of a synthetic applica-
tion, where experimental results matched with theoretical
expectations at low-to-moderate overall system utiliza-
tions, while also highlighting some limitations of the
modeling framework mostly visible at high loads. The pro-
posed solution has been demonstrated to be effective with
a real IMS use-case based on the Kamailio server and the
SIPp client.

As future work, we plan a better integration with NFV
MANO standards, experimentation on common software
components for access networks, such as OpenAirInter-
face,18 extensions to our theoretical analysis removing parts
of the assumptions, and supporting differentiated QoS
mechanisms in accessing cloud storage services such as [81],
often involved in end-to-endNFV scenarios.
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