Preemption points placement for sporadic task sets

Marko Bertogna, Giorgio Buttazzo, Mauro Marinoni, Marco Caccamo
Gang Yao, Francesco Esposito University of Illinois at Urbana Champaign
Scuola Superiore Sant’ Anna Urbana, IL
Pisa, Italy Email: mcaccamo@illinois.edu

Email: {name.surname}@sssup.it

Abstract—Limited preemption scheduling has been intro- preemption occurs and on the number of preemptions
duced as a viable alternative to non-preemptive and fully- experienced by the task [18], [12], [1].
preemptive scheduling when reduced blocking times need to 4) Bus contention cost. It is due to the Front Side Bus
coexist with an acceptable context switch overhead. To adhie (FSB) conflicts caused by the extra memory accesses
this goal, preemptions are allowed only at selected pointsfo due to cache misses. In fact. whenever data are not

the code of each task, decreasing the preemption overhead é&n .
simplifying the estimation of worst-case execution paranters. found in the cache, they have to be fetched from RAM,

Unfortunately, the problem of how to place these preemption using the FSB. Hence, contentions can occur when the
points is rather complex and has not been solved. FSB is used by I/0 peripheral devices through a DMA
In this paper, a method is presented for the optimal transfer [21], [20].

placement of preemption points under simplifying conditians, .)
namely, a fixed preemption overhead at each point. We will These effects are not negligible at all, and may con

prove that if our method is not able to produce a feasible tribute to a great share of the overall worst-case execution
schedule, then no other possible preemption point placemen time (WCET). To overcome such problems, some authors
(including non-preemptive and fully preemptive schedulig) investigated limited preemption models that can be used
can find a schedulable solution. The presented method is to reduce the negative effects of context switches, while

general enough to be applicable to botfEDF and Fixed Priority |imiting the amount of blocking due to non preemptive
scheduling, with limited modifications. regions [29], [26], [8], [2], [32]. From another side, other
authors extended the schedulability analysis of preemptiv
l. INTRODUCTION scheduling to take context switch overhead into account

[11], [33]. The problem of selecting preemption points in
In safety-critical applications, the use of advanced realorder to improve the schedulability of the system has been
time scheduling techniques is significantly limited by the preliminarily considered in [13] and [17].
dlﬁlCUlty of flndlng tlght estimations of worst-case exdout |ndeed’ such a prob|em is not easy to solve in an Opt|ma|
parameters. To simplify the problem, most theoreticalltesu way, since it is characterized by a circular dependency. In
on schedulability analysis have been derived assuming fct, when considering the context switch overhead in the
preemption cost equal to zero. Under such an ideal casgchedulability analysis, the WCET of a task becomes a
preemptive scheduling is often more efficient than non+function of the number of preemptions it might be subject
preemptive Scheduling, because of the additional b|OCkingo; but the number of preemptions depends on its turn by
time that can be introduced by the non-preemptive executioghe WCET of the task—the longer a task executes, the more
of lower priority tasks. In practice, however, preemptionsit will be preempted—complicating the analysis.
can introduce a significant runtime overhead and may cause |, this paper we will show how to deal with such circular
highfluctuatipns ilj_task exeCL_Jtion times, theref_ore deiggad dependency, when a limited preemption model with fixed
system predictability. In particular, the following type$,reemption points is adopted. The advantage of this model is
costs must be taken into account at each preemption: that it is in line with the current practice adopted in catic
1) Scheduler cost. It is due to the time taken by the software development [8], so that the derived results can
scheduling algorithm to suspend the running taskbe applied to real applications. We will present a method
insert it into the ready queue, switch the context, andfor automatically selecting the most suitable preemption
dispatch the new incoming task. points in the code of each task in order to guarantee the
2) Pipeline cogt. It is due to the time taken to flush the schedulability of the system. The analysis will consides th
processor pipeline when the task is interrupted andncreased blocking caused by non-preemptive sections from
the time taken to refill the pipeline when the task is one side, and the beneficial reduction of the preemption-over
resumed. head from the other side. We will prove that the proposed
3) Cacherelated cost. It is due to the time taken to algorithm is optimal when each preemption point is assumed
reload the cache lines evicted by the preempting taskto produce an identical overhead. Even if this assumption
This time depends on the specific point in which could appear rather restrictive, we introduced it to eshbl

the mathematical background for more complex model$B. Preemption overhead

without violating the strict page limit of this submission. The problem of finding a correct WCET estimation for
As preliminarily shown in [31], the presented analysis canga|.time task sets has been considered in many different

be integrated_ with data coIIec_te(_:i by timing analysis _tools,papers in the timing analysis domain (see [30] for a good
for the handling of more realistic models with a variable survey). When a preemptive scheduler is adopted, a critical

preemption overhead. _ ~factor in the estimation of a task’s WCET is represented by
The proposed approach is general enough to be applicabjge Cache-Related Preemption Delay (CRPD).
to the most used scheduling algorithm, lik@F and Fp. In [9] and [22], two methods have been presented to inte-

We will show how existing results on limited preemption grate the classic Response Time Analysis with the penalties
scheduling can be extended and integrated under a commeRsociated with CRPD, adding a fixed context-switch cost.
notational model, in order to derive the necessary informap, complex but more precise analysis considering common
tion for the optimal placement of preemption points. Togets of data between preempting and preempted tasks has
comply with more general requirements, we will analyzepeen described in [16]. With a similar target, Staschetat
as well the case in which preemption points can be inserteg) [28] provided safe estimations of the CRPD, analyzing
only at a discrete number of places. This will allow our al- the intersection between the set udeful data—locations
gorithm to deal with user-defined non-interruptible setsio that might be accessed again by a preempted task-ssead
of code, or to avoid complex protocols for the access tqyata—locations that might be accessed by the preempting
shared resources. Indeed, when it is possible to encapsulagsk. The appropriate selection of preemption points for an
each critical section within a non-preemptive region, & tas easier computation of the CRPD has been addressed in [27].
will never be preempted while holding a lock, solving any | [23], a bound was provided on the Data Cache Related
mutual exclusion problem in the access to shared resourcesreemption Delay (D-CRPD), identifying additional data-
cache misses due to context switches. Response Time Anal-

Il. RELATED WORK ysis was then used to check the system schedulability, using
] o .] the derived bound on the worst-case execution times. This
A. Non-Preemptive and Limited Preemption scheduling bound was then refined in [24]. In a recent work [25], the

Non-preemptiveEDF scheduling has been studied by S&me authors expended _the a_nalysis_ to task.f,_hav_ing_ at most
Jeffay et al. [14], who showed th&pF is optimal even =~ ON€ non-preemptive region with a given position inside the
among non-preemptive work-conserving scheddlésspe- @Sk code.
riodic and sporadic task sets. For these systems, an exactWhile most of the above works were based on systems
schedulability test with pseudo-polynomial complexityswa Scheduled with Fixed Priority, Jet al. [15] considered the
provided. Moreover, it was shown that, for concrete pedodi CRPD computation problem for systems scheduled with
task systems scheduled by non-preemptive algor#hfea- ~ PréemptiveEDF.
sibility analysis is NP-hard in the strong sense. __C. Improvements over previous works
Baruah and Chakraborty [3] analyzed the schedulability , . .
of non-preemptive task sets under the recurring task model, In this paper, we consider the problem of scheduling a
deriving polynomial time approximation algorithms for hot S€t Of real-time tasks consisting of a sequence of Non-
preemptive and non-preemptive scheduling. Preemptive Regions (NPR) separated by Preemption Points

Wang and Saksena [29] proposed a different approac P). The propos_ed mgthod help; a designer_in selecting
for limiting preemptions, in systems scheduled with. e best preemption points, exploiting the available slack

Each task is assigned a regular priority and a preemptioH1 the S{Sten& to lzeduqeh the_ numper of preeT]pglc)ni_ of
threshold, and it is allowed to preempt only when its priorit some selected tasks, without imposing too much blocking

is higher than the threshold of the preempted task. This Wor?n h_iglher r;]ri(zjritly taiks. ;I'hhetfinill ot?[jgctivet i]? to_glchi_eve a
has been later improved by Regehr in [26]. easible schedule when the task set is not feasible in non-

Burns [8] extended the response time analysis to verify thgreemptlve mode (due to high blocking times), nor in fully

schedulability of fixed priority tasks with fixed preemption PreeMmPptive mode (due to the high overhead).
points. His vx)lork has bgen Ia¥[er improved by BEiI et af [7]. As shown in [32], [4], limited preemption schedulers can

Baruah introduced limited preemption scheduling forsignificantly reduce the total number of preemptions with
EDF [2], computing the maximum amount of time for which respect to fully preemptive algorithms. This happens bseau

a task may execute non preemptively without missing any;[he allowed non-preemptive execution length of a task is
deadline. Yacet al. [32] extended Baruah's work to fixed often larger than or comparable to that task’s executioe.tim

S However, existing theoretical results on limited preeiopti
priority systems. scheduling [2], [4], [32] have been derived neglecting the
cost of preemptions. Integrating these results with the pre
o v ot ey & vt N Bt s ot opomet among EMPtion overhead is not so straightforward, since computin
general non-preemptive sychedulers (ihcluding non Wonezu/ing ones)g. the maximum Iengths of the non-preem_ptlve_reglons rgqulr_es

2 concrete periodic task is a periodic task that comes witassigned ~ th€ knowledge of worst-case execution times, which in

initial activation. turn are significantly influenced by the number of context

switches. In this paper, we show how to deal with such aadvantage of the positive cache effects due to the subsequen
circular dependency, proposing an iterative algorithnt thaexecution of concurrent tasks accessing similar sets @f, dat
considers both problems at the same time. Earlier attemptsor to the limited number of cache evictions performed by
to reduce context switching overhead delaying preemptiona preempting job with reduced footprint (smaller than the

have been presented in [13] and [17]. cache size). In other words, we assume the cache being
The rest of the paper is organized as follows. In Seccompletelycold after any context switch.
tion Ill, we will present the adopted system model and These restricting assumptions will be removed in a future

terminology. Section IV describes a schedulability analys work, where less pessimistic estimations of the CRPD will
for task sets scheduled with limited preempt®nr or FP. be considered Before complicating the model, this paper
In Section V, we will show an algorithm to achieve the intends to presents the preliminary results that are needed
schedulability of a task set with a proper placement offor a more thorough analysis.
preemption points inside each task’s code. In Section VI, we
will present some considerations on the proposed method\. Worst-case execution times
The effectiveness of this method will be evaluated through The worst-case execution timé; of a taskr; is the
a set of simulations, shown in Section VII. Finally, we will |argest amount of processor time a job ©f might need
draw our conclusions in Section VIII. to successfully complete its execution. To perform a pre-
cise schedulability analysis, this parameter must include
Il. SysTEM MODEL all overhead costs identified in the introduction, and can
We consider a set of n periodic and sporadic real-time pe expressed as the sum of the net computation fitne
tasks that are scheduled on a single processor using eithgichieved when all accessed data are always in the cache)
a fixed priority algorithm gP) or Earliest Deadline First plus such penalties.
(EDF) [19]. Each task is defined by a worst-case execution |n particular, the maximum number of cache misses a task
requirement;, a period, or minimum interarrival imd;, 7, may experience in the worst-case scenario is denoted by
and a relative deadlind®; < T;. Each task generates an ;max and it is equal to the maximum number of memory
infinite sequence of jobs, with the first job arriving at any accesses a job af may perform. Indeed, this is the only
time and successive job-arrivals separated by at I#ast bound that can be given when no information is available
time units. We assume that tasks are ordered by decreasigg the adopted scheduler, nor on the tasks concurrently
priorities in therp case, and by increasing relative deadlinesscheduled withr;.
in the EDF case, i.e.,Vi | 0 < i < n: D; < Di. When a particular scheduler is assumed, the estimation
Tasks are either supposed to be independent, or theiradritic of the real number of cache misses may be refined. We call
sections are assumed to be entirely contained within a non;; the maximum number of cache misses a taskmay
preemptive regich experience using a given scheduling algorithm. For inganc
Each job ofr; consists of a sequence@fnon-preemptive with preemptiveEDF or Fp it has been shown [10] that the
chunks of code. Preemption is allowed only between chunkaumber of preemptions on a job of taskis bounded by
by inserting proper preemption points. Theh chunk of the number of higher priority jobs that can be released in
task; is denoted by; ;,1<i<n,1<j<p;, and its worst- [0, D,)®, decreasing the number of potential cache misses in
case execution time b!)é The maximum chunk length for the worst-case. When; is executed non-preemptively;

7i IS " = max{g; ; }}_,. has the smallest possible valu#®. Hence, the following
The memory footprmt F; of a taskr; is the cumulative relation holds:
size of the individual memory locations accessed by a job NP < gy < e,

of 7; during its execution. A task repeatedly accessing the
same set of data will have a smaller footprint than a task Note thaty; depends on the numbgy of non-preemptive
accessing multiple different memory locations. regions in whichr; is divided. The smallep;, the fewer

We assume the processor can take advantage of a dedipe cache misses experienced 4y In fact, each context
cated cache, of siz&, from which recently used data and Switch might evict the cache locations commonly accessed
instructions can be loaded. We say that a cache is “hotby two subsequent chunks. To understand that, consider the
if a requested data is present in the cache; otherwise, trexample shown in Figure 1, where the memory accesses of
cache is “cold”. The cache miss penalty due to the timethe first two chunks of a task; are shown. The first chunk
taken to load data from the main memory to the cache i$oads into the cache the memory locations corresponding to
denoted byy. To simplify the analysis, we assume this valuea, b andc. When the second chunk starts executing after
be the same for every memory location accessed by each potential preemption, another task might have overwritte
task in the set. Moreover, we ignore any timing anomalythe cache content, evicting data commonly accessed] py
in the cache behavior, assuming each miss increases tl@@dd; ». Therefore; »'s first accesses ta andc should
observed execution time by. Finally, we do not take be accounted as misses. To clarify which misses are due to

3As critical sections are typically very short [6], they aikely to be 4Some insights of this future work can be found in [31]
accommodated inside a non-preemptive region. When thistigrue, some 5See [11], [28], [24], [33] for tighter bounds in the numberpkemp-
shared resource protocol need to be adopted. tions.

Chunk | Code

access(a)
access(h)
01 access(c)
access(a)
access(c)
access(a)
access(d)
0i,2 access(a)
access(c)
access(d)

| Hit/Miss

IMmMI—MmMII———

Figure 1.
(E) Extrinsic miss.

Symbol | Description

0i; j-th chunk of taskr;

i Number of chunks of task;

C} WCET of 7; in presence of cache misses
CNP | WCET of 7; when it executes non-preemptively
E; WCET value with cache always hot

i,j Worst-case execution time of chuidk ;
g Largest non-preemptive execution of

i Worst-case number of cache missesrpf
[T Maximum p; among all possible schedulers
T w; value whenr; executes non-preemptively

L Cache size

F; Memory footprint of taskr;

~ Cache miss penalty

o Penalty due to load/store the task state

T Penalty due to pipeline invalidation
n(x) 1/0 induced delay forr cache misses

Figure 2. Notation used throughout the paper.

Example of cache accesses: (H) cache Hit, (I)nsitrimiss,

IV. SCHEDULABILITY ANALYSIS

In this section, we present a unified analysi€bf andrFp
scheduling under the limited preemption model, extending
and reformulating the results derived in [32] (fep) and
in [2], [4] (for EDF), under a common notational model.

For the feasibility analysis unde&r, we use theequest
bound function RBF;(a) in an intervala, defined as

RBF;(a) = {iw C;.
Under EDF, the analysis is carried out by thdemand
bound function DBF;(a) in an intervala, defined as

DBF;(a) = (1 + V _TlDlJ) C;.

Moreover, we conventionally seD,,; equal to the
minimum between: (i) the least common multiplent) of
Ty, Ts,...,T,, and (ii) the following expressidn

max (Dn,%-iUi-max (O,Ti —Di)> .

The largest blocking3; that a taskr; might experience is
given, under botlrp and EDF, by the length of the largest
non-preemptive chunk belonging to tasks with index higher
thani:

B; = max {q¢'**}, (2)

i<k<n+1
where ¢;'#f = 0 by definition. Summarizing the results
presented in [32], [2], [4], the next theorem derives a
schedulability condition under limited preemptions, fw
and EDF.

a possible preemption and which are not, we distinguish , .

betweenintrinsic and extrinsic cache misses. A miss is 1heorem 1. A task set 7 is schedulablethh limited pre-

intrinsic if it occurs independently of the preemption,.i.e €MpPtion EDFor Frif, for all i | 1 <i <mn,

when a task accesses a memory location for the first time, B; < 6 3)

or when the miss is caused by a self-evicfioAn extrinsic L=

miss is instead due to evictions caused by preempting taskghere, under Fp, 3; is given by
As already mentioned in the introduction, there are also

other kinds of penalties associated to each preemptiam, lik P .

the scheduler cost, the pipeline costr, and the FSB con- A S > RBF;(a) (4)
tention cost)(u;). Since there arg; non-preemptive chunks, - J<i

the total number of times a job af may be preempted is with

(pi — 1). Hence, the overall worst-case execution timer,0f _ _ < i

results to be A={kIj, k€N, 1<j<n},

whereas, under EDF, ; is given by
Ci=Ei+ypui+ (m+o)(pi—1)+nu). (1)
BEDF —

In the next sections, we will present a method to decrease min a— Y DBFj(a) s, (5)
this value by minimizing the numbet of preemption points a€4|Diga<Di TiET

inside the code of each task resulting in a smaller number ith

of cache misseg,;. w

. . . - A={kT; + D;, k 1<j5<n}.

For convenience, all notations are summarized in Figure 2. {kTj + Dj, k€N, 1<j <n}

"The expression may in general be exponential in the parasnefe
6A sdlf-eviction is an eviction performed by the task itself. This can 7; however, it is pseudo-polynomial if the system utilizatits a priori

happen whenever the task footprint is larger than the caidee s bounded from above by a constant less than one.

The following theorem presents a different schedulabilityln the above conditions, the total demand(na*) is equal

condition, expressed in terms of a boufd on the longest
non-preemptive region;*®* of each taskr,.

Theorem 2. A task set 7 is schedulable with limited pre-
emption EDF or FPif, forall k|1 <k <n+1,

g™ < Qr = min {8}, (6)

1<i<k
where [3; is given by Equation (4) in the FpP case, and by
Equation (5) in the EDF case.

Proof: A sufficient schedulability condition can be
obtained combining Theorem 1 with Equation (2):

A <i<g1<a§+1{q?"‘x} < @-) .

1<i<n

to the LHS of Equation (8). Therefore, the total demand
exceeds the length of the interval, leading to a deadlins.mis
Therefore, if the test of Theorem 2 fails, it means that the
task set is not schedulable with limited preemptiEmF.

UnderFp, instead, the test is necessary and sufficient only
when no information is available on the location of each non-
preemptive region, as in the “floating” NPR model adopted
in [32]. When instead the position of the (last) NPR of
each task is known—i.e., under the “fixed” NPR model—
the theorem is only sufficient. An exact test could be derived
significantly complicating the analysis, adopting teclueis|
described in [7].

V. PROPOSED APPROACH
As explained in Section Ill, limiting preemptions may

The inner inequality can be rewritten as a system of inequalsignificantly reduce the number of cache misses — so

ities, as follows:

A\ N (@ <B)

1<i<n \i<k<n+1

Rewriting the system of inequalities,

A N (@ <B) |,

1<k<n+1 \1<i<k
which is equivalent to

kl1<k< 1: max < mi ;

v | < <n-+ qx — 1212k{6 }7

proving the theorem.]
Note that the definition of); can be rewritten in the

following iterative form (starting with@Q; = o0), for all

1<k<n+1:

Qr = min{Qr—1, Sp—1} (7)

We hereafter prove that the sufficient schedulability con
dition of Theorem 2 is also necessary un@er. Suppose
the test fails. Consider @, for which condition (6) evaluates
to false, i.e.,

o >min{8;} = i - DBF;
Qk Iln<llIcl{ﬁ } aEA‘gllléla<Dk “ ZE J(a)
TjCT
Consider the point* € A that minimizes the RHS of the
above inequality. Theng*** > a* — > . DBF;(a"), and
g™+) DBF;(a*) > a*. (8)

T;ET
Consider a situation in which:

« all tasks with relative deadline< o*(< D) start
synchronously at = 0;

 task 7, enters its largest NPR of length®* an
arbitrarily small amount of time before= 0. Sincer;
is the only task executing before= 0, it will always
be possible to build such a situation.

that p, << p"®* — as well as the negative effects of
context switches, with a beneficial effect on the worst-case
timing behavior. On the other side, limiting preemptions
increases the blocking delay on higher-priority jobs, fags
jeopardizing the task set schedulability.

In this section, we present a method for placing preemp-
tion points inside the code of each task. In particular, the
number and the position of preemption points will be derived
as a function of the task parameters and the major sources
of overhead, with the objective of improving the task set
schedulability.

The algorithm starts by analyzing the feasibility of the
task set when preemption is disabled. If the task set is not
schedulable in non-preemptive mode, the algorithm searche
for preemption points that generate a feasible schedule, if
there exists one.

A. Worst-case parameters computation

From Equations (4) and (5) it is clear that the value of
B; depends on the worst-case execution tinigs which
are significantly influenced by the number of cache misses
of each taskr;. From Equation (1), it is possible to see
thatC; has a fixed component (equal f) and a variable
component that depends on the total number of preemptions
and cache misses. While intrinsic cache misses cannot be
avoided by any scheduling policy, extrinsic cache misses
can be reduced adopting a scheduling policy that decreases
the number of preemptions. However, large non-preemptive
regions increase blocking delays; hence finding the best
preemption points (PPs) analytically is rather difficultied
to the interdependencies between PPs and worst-case exe-
cution times, as well as between extrinsic cache misses and
data reusing patterns among different sections of code. To
simplify the problem, we assumed each PP in a tasko
cause a fixed overhedg.

Under this assumption, we present a method that opti-
mally exploits the schedulability test of Theorem 2 to sklec
the PPs inside the code of each task in order to achieve
a schedulable condition. The proposed algorithm can be
summarized as follows:

INSERTPF(T)

1
2
3
4
5
6
7

8

for (i :

Initialize: {g® «— CNP},, ¢max
{p;i — 1}, andQ; < oo.

1<i<mn)

Ci — O + (pi —1)&;

Computegs; using Equation (4) or (5);

Qi1 — min{Qy, 5}

it (g7 > Qiy1)
if (PRLACE(Q;+1,7+ 1) =fal se)
return (I nf easi bl e)

— 0,

endfor
return (Feasi bl e)

PR.ACE(Qp, k)

abh W NP

Pi<—[

Let & be the preemption overhead of, 1<k<n
and§, 41«0

if (Qr < &) return fal se

Place a PP ir=rk at Q, and after every@; — &x).

&) 41

Qi 67.
QO™ — Qu
return (true)

Figure 3. Algorithm for the optimal placement of PPs.

Figure 3. We hereafter prove the correctness of procedure
INSERTPP(7) in deriving a schedulable condition. Then, we
will show some optimality properties of the adopted method.

Theorem 3. Procedure INSERTPR(7) is correct.

Proof: If the procedure succeeds, eagh will be larger

than or equal to the maximum non-preemptive regjp*
of each taskry,i < k < n, and, > Q,+1 > 0. Note
that, both in theeDF and in theFp cases, thes; value
computed at line 3 of the algorithm depends only @n
values withj < i (as well as on deadlines and periods, which
cannot change). Since none of these values may change in
the next iterations (because PPs are inserted only into the
code of tasksy;), all 8;, and therefore&),, 1, are correctly
computed. By Theorems 1 and 2, the correctness of the
procedure is assured. []

Having proved the correctness ?iderRTPP(7), we now
show that the PP placement is optimal unger scheduling,
meaning that if the algorithm fails, then any other possible
PP placement leads to an unfeasible schedule.

Theorem 4. Procedure INSERTPP(7) is optimal under EDF.

Proof: Suppose, by contradiction, there is a feasi-
ble task setr for which procedure NSERTPPF(7) fails.
Then, there is at least one task for which procedure
PPR.ACE(Qy, k) fails. Let 7, be the task with the smallest
index for which the procedure falls and I8t be the value
that minimizesQy, i.e.,i = argmm —1{B;}. As previously

The algorithm starts with no preemption points for eachmentioned,3; is a functlon of the worst-case execution

task, i.e., setting; = 1 and ¢™** = CN?, Vi, where
C’NP is the worst-case execution tlme of when it

times, deadlines and periods of all tasks;;. While the
latter values D, andTj;) are fixed, the execution times;

executes non-preemptively. This value can be foundnay vary for different placements of PPs in the code of each
using timing analysis tools [30], without needing to take task 7;. Note thats; is a decreasing function of afl’;<;.

into account preemptions.

Then, g; is computed by Equations (4) or (5) for
increasing indexes, that is, starting fros. Note that
B; depends only on th€’; of tasks with indexeg < i
(when computing3; in the EDF case,DBF;(a) = 0 for
all j > 1), given by CT" + (p; — 1)¢;.

Then,Q;+1 is computed fromd,<; using Theorem 2.

We now prove by induction that procedursSERTPR(T)
allows finding the smallest valu€s;<;, among PP allocation
strategies that are feasible. Thereforerifs feasible, the
largest possibles; is found with INSERTPP(7). If such a
value is too small (or even negative), so that no PP placement
can be found for a tasky., to satisfy ¢g;*** < §;, then

this latter condition will be violated by any other possible

If Q;y1 is smaller than the maximum non-preemptive strategy, since it cannot lead to a larggr Therefore,r is

region of 7,1, procedure PPACE(Q;t1,7 + 1) is
invoked to place the least number of PPs7in; to
guaranteez;;* < Q;y1. This is achieved by placing
a first PP afterQHl time-units of (non-preemptive)
execution from the beginning af, ;. To account for

not feasible, reaching a contradiction.

Base case: Independently of the number of PPs, task
71 IS always executed non-preemptively, both uneleand
under EDF. Note that procedureNISERTPP(7) does not
insert any PP inr, leading to the smallest possible value

the preemption overhead, further PPs are placed aftesf C;.

(Qi1+1 — &41) time-units, until the end of the code.
If PPLACE(Q;+1,7 + 1) returns false, the algorithm

stops, declaring the task set infeasible. The failing{r,...,

condition of PRACE(Qy, k) is (Qr < &). This is

Inductive step: Let j < i. Assume NSERTPP(70U~ 1>)
obtained the schedulability of the reduced taskr$ét!) =
T,—1}, minimizing the worst-case execution times

C1,...,Cj—1. We will prove that NSERTPP(7()) obtains

because, i < &, then the execution time available as well the schedulability of the set’) = 7=V u {r;1,

to 7, is entirely dedicated to the preemption overheadminimizing C;
When allQ; values have been successfully checked, thexgy for tasks, . . .

. It is easy to see that the PP allocation strat-
,Tj—1 is the same forNSERTPP(7(/—1))

algorithm returns, having guaranteed the schedulabilityyngd |NSERTpp(T(j)), so that there is no change in af,

of the task set.

or g, for 1 < k < j — 1. Sincer~Y was schedulable,

The pseudo-code of the algorithm is summarized inthe schedulability ofr) can be obtained, by Theorem 2,

if ¢i"* < @Q; = min{fB<;}. By the inductive hypothesis, non-preemptive chunks of execution can be a too strong
the procedure obtains the largest possible values for eadssumption, since task systems are generally better ntbdele

Br<j (sinceCt,...,C;—1 are minimized). Hence, no other by a tree structure with loops and branches. An optimal
possible PP allocation for tasks 7~ can result in placement of PPs would then require to go through each
a larger@Q; = min{fi<;}. Since Q; is a tight bound branch in the execution tree of a task, considering the data

on the maximum NPR length in thebr case, procedure and instructions accessed along each path.
PRLACE(Q;, j) places the least possible number of PPs to To simplify the problem, we will assume a set of Potential
7;. Since we assumed that each PPrpfcauses the same Preemption Points (PPP) be given, each one separating
overhead;;, procedure PEACE(Q);, j) obtains the smallest the execution of two consecutive non-preemptive chunks,
possibleC;, proving the statement. B called Basic Blocks (BB), forming a serial chain of BBs for
Note that the optimality of procedurei$ERTPP(7) de- each task,. Each loop, conditional branch, critical section
pends on (i) the tightness of th@, bounds computed or non-preemptable section of code can be accommodated
with Equation (6), and (ii) the assumption on the identicalinside a BB. Smaller preemption overhedgscan be found
preemption overheads of the PPs of each task. Regardirigserting each PPP between sections of code that access
the first point, as we explained in Section IV, condition (6) few common memory locations. We define th&nimum
is necessary and sufficient only in tE®F case. In therP execution granularity A, as the maximum “execution dis-
case, instead, condition (6) is tight only when the floatingtance” between any two consecutive PPPs, including the
NPR model is adopted. Otherwise, a larger boghdcould preemption delayy.
be derived considering the exact location of the last NPR Procedure DsCPPRLACE(Qy, k), whose pseudocode is
of 7. However, this would imply a much more complex shown in Figure 4, can be used instead ofLREE(Q, k)
analysis, which is beyond the scope of this p&per when a set of PPPs is given. The procedure will try
Regarding point (ii), the assumption on the preemptiorto minimize the number of PPPs that will be used for
cost of each PP might be relaxed, using a more complethe insertion of an actual Preemption Point (PP), without
timing analysis that considers data reusing patterns eénsidviolating the condition on the blockinggf®* < Q).
the code of each task. Tighter estimations of the preemptioiio do that, subsequent basic blocks will be progressively
costs might be derived in this way, leading to an improvedcombined, starting from the first one, as long as the worst-
placement of PPs [31]. Moreover, the worst-case executiopase execution time of the resulting NPR, including the
time of each task could be further reduced analyzing howreemption delay;, is smaller tharQ),,. When the addition
many PPs can effectively cause a preemption. If a tgsk of the next basic block would cause the resulting WCET to
has a smallg; value, all lower priority tasks will have exceed), a new NPR is initiated with this block, and a PP
frequent PPs. However, they cannot be preemptedr,by is inserted immediately before it. Note that no preemption
more than once ever{; time units. Therefore, it may delay is accounted for the first NPR, sinBé3, is decreased
happen that most PPs won't lead to a preemption. To accouy ;. The procedure continues until all BBs have been
for this fact, the worst-case execution time of a taskat assigned to a NPR. The failing condition is when the allowed
line 1 of procedureNseRTPR(r) can be replaced by tighter @y, is smaller than the minimum execution granularity.
expressions, derived adapting techniques from [28], [24], The only modification needed to proceduresERTPP is
[25] to the limited preemption scheduling model adoptedat line 6, where procedure RRCE should be replaced by
in this paper. DiscPPLACE.
Again, we believe these are very interesting problem, that As explained in Section IlI-A, the preemption delgy of
we intend to address in a future work. In the current papereach taskr, can be bounded byr + o), plus the CRPD,
we instead assumed a fixed overhead for all preemptiowhich is a function of the number of extrinsic cache misses
points of each task. We will show in our simulations that thisexperienced by, when resuming its execution. For a fully
assumption is not overly pessimistic, since the number o&ssociative cache, such number cannot be larger than (i) the
inserted PPs is typically very small, even for heavily ladde total number of memory locations accessedrhyequal to
systems, resulting in rather long non-preemptive regions. its footprint F},, and (ii) the total number of cache liffes
equal toL. Every other memory access is either a hit, or an
V1. CONSIDERATIONS intrinsic cache miss, which is not due to preemptions. The

The placement of PPs inside each task’s code is subjefpt@! overhead introduced by each preemption on a task
to constraints such as atomic instructions, critical sesti " be therefore bounded by
and non-preemptable sections of code in general. Moreover, - : :
requiring a task to be decomposable in?o a sequence of S =m+o+ymin{Fl, L} 4 n(min{ £, L}), - (9)
wheren, ¢ and~ can be found with a timing analysis of
8As explained in [7], when the exact length of the last NPR oaskt the architecture, ang() can be derived using techniques
71 is fixed and known a priori, the worst-case response timerofis described in [21], [20]_ Although the above bound is rather

not necessarily given by the first instanceqf after a critical instant. A P - . .
necessary and sufficient schedulability condition woukhtheed to check pessimistic, its effect on the final worst-case executioreti

a large number of possible arrival times far, resulting in a much more
complex schedulability condition. See [7] for further dista 9Tighter bounds can be found for set-associative or diregirad caches.

DISCPRLACE(Qy, k)

Let & be the preemption overhead of, 1<k<n
and¢, .1 < 0. Let BB; be the length of the-th BB
whenr; executes non preemptively.

Initialize: j <« 1; C « BB — &.

under FP without cost was calculated by using the classical
response time analysis, settitg, = CR", for all tasks

71 € 7. It represents an (ideally) optimal scenario for fixed-
priority, since it has the minimum possible blocking, with
no overhead. Schedulability under NP was verified using the
test of Theorem 2, withy*®>* = C, = CKP for each task

1 if (Qr < Ag) return fal se - When considering FP with preemption cost, we used the
2 for BB; in {BBy,BBs,...} equation of classical response time analysis, adding a fixed
3 C — C+ BB; cost for each preemption. As shown in [9], the response
4 if (C+ &> Q) time of 7, is given by the smallest fixed point of:
5 Place a PP before theth BB R,
6 j=J7+1 Rk—Z{T—‘ (CJNP—Fcost).
7 C «— BB; J<k ' I

endfor As in the classical analysis, we iterated the above equation
8 prJ until either convergence was reached or the response time

exceeded the deadline.

The preemption cost is a crucial parameter when evaluat-
ing the effectiveness of the proposed LP policy. We selected
the range of values for this parameter by analyzing the
impact of the last level of cache on a typical partition size f
an avionic system compliant to ARINC-6%3(scheduling
partitions can be as small &sns). Considering the widely
is often limited, since the number of preemption points isused PowerPC processor MPC7410 (wih/ B two-way
typically very small, as shown in our simulations. associative L2 cache), it would take ab@bbus to reload

The complexity of the proposed approach is pseudopolythe whole L2 cache; hence, in such scenario, execution
nomial, both in theEDF and in theFp case. The main time increment due to cache interference could be as big
complexity lies in finding good estimations of theN? as 655us/2ms ~ 33%. We chose to show here the cases
values that are needed as inputs for procedwseRTPP. for acost value between% and20% of the average worst-
Anyway, timing analysis tools are much more efficient case execution timéj};\TP =3, ONP/n.
in finding worst-case estimations of these non-preemptive The results are shown in Figure 5. The first three his-
execution times, rather than when needing to consider ggrams show the cases with= 10 tasks and aost of,
preemptive situation. respectively,5% (a), 10% (b) and20% (c). As it is clear
VIl. EXPERIMENTAL RESULTS from the plotted graphs,_N_P and FP-without—_cost policies

, . . are not affected by a variation of the preemption cost. The

In this section, experimental results are presented bas%periority of LP policy over FP-with-cost is evident under
on simulations. Randomly generated task sets were used i three scenarios. Notice that the LP model achieves a
evaluate the effectiveness of the proposed limited-pré®ep petter schedulability ratio even when the preemption cost |
policy (procedure NSERTPP) in comparison with non- a5 jow as5%. The performance of FP-with-cost deteriorates
preemptive and fully preemptive algorithms. We randomlyyery quickly as the preemption cost increases, while LP is
generated one thousand task sets and measured the eﬁectigﬁ,vays close to the ideal case of FP w/o cost.

ness of each scheduling policy, analyzing the percentage of In histogram (d), the preemption cost is setl@%, as
schedulable task sets as a function of the system utilizatio ;, (c), while the number of tasks is increasedrto= 20.

More in detail, each task set was generated as followsrhe performance of FP-with-cost slightly deterioratesilevh
The UUni Fast algorithm, described in [5], was used t0 | p improves in terms of percentage of schedulable task
generate each set of tasks with a given total utilization gets. This is expected, because when the number of tasks
Utor- The non-preemptive WCET',"" was generated as jncreases, each task has a larger slack, hence it can élerat
a random integer vaIueNllimforme distributed iR0[150], 4 |arger blocking. Therefore, less preemption points are
computingT}, asT = C;*'/Uy. The relative deadlind),. peeded in the task code, resulting in a smaller overhead. A
was generated as a random integer value within the rang§miiar argument can be applied to non-preemptive schedul-

NP NP . . .
[Ck™ +08- (Th — CY7), Tkl ing: larger slacks and smaller worst-case execution times

_ Due to space reasons, we include here only the results fGgply 4 larger tolerance to non-preemptive blocking.
fixed priority scheduling. The simulations f@pr are very

similar. We considered four fixed priority scheduling poli-
cies: non-preemptive (NP), the proposed limited-preerapti
policy (LP) using procedure RRCE, fully preemptive
without preemption cost (FP w/o cost) and fully preemptive
with preemption cost (FP with cost). Task sets schedutgbili

9 q;cnax «— maxfil{qk,i}
10 return (true)

Figure 4. Algorithm for the insertion of PPs in a task, so thatg;*** <
Q. is satisfied.

VIII. CONCLUSIONS

We presented an efficient algorithm to obtain the schedu-
lability of a task set in a real-time system scheduled with

LOhttp://www.arinc.com/

Total Utilization
(c) n = 10, cost =20%

Figure 5.

1t = = = = & 1 E E E
-~ 6 _ — -9 _
0.9+ T - e 0.9+ O - e
—&— FP wlo. Cost ey —&— FP w/o. Cost
08F _ « _1p S 08F _ 4 _|p
—0—-NP Q —0—-NP
o 0.7F) N o 0.7F)
2 —+— FP with Cost N 2 —+— FP with Cost
% o6f T g6l
& &
2 osr 2 os5r
© ©
=} =}
2 04r 2 04r
S S
@ o3t @ o3t
0.2 0.2
\ \
0.1f N W 01l
\
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ [N 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ cH
05 055 06 065 07 075 08 08 09 095 05 055 06 065 07 075 08 08 09 095
Total Utilization Total Utilization
(a) n = 10, cost =5% (b) n = 10, cost20%
jt 5 5 5 S % 1g——B——B—— 8 —
T e - —+&— FP w/o. Cost
0.9 O - _ 0.9H — * —LP
—o— NP
ogl| —EFP wio. Cost 0.8 —+— FP with Cost
— % —LP
o 07} —o—NP o 07F
= —+— FP with Cost -]
% o6f T o6l
& &
% 0.5f % 05F
s s
2 04r S 04t
S S
@ o3t o3t
0.2 0.2t
0.1f 0.1f
0 ‘ - 0 ‘
05 055 06 065 07 075 08 08 09 095 05 055 06 065 07 075 08 08 09 095

Total Utilization

(d) n = 20, cost40%

Percentage of schedulable task sets vanyiagd the preemption cost.

FP or EDF, using the limited preemption model. A proper our limited preemption model considering critical taskiee |
number of preemption points is placed inside the codenterrupt handler, that need to immediately preempt other
of each task, in order to guarantee the feasibility of thetasks for a prompt execution.

task set, reaching an optimal compromise between small
blocking times and reduced preemption overhead. The pos-
itive outcomes of the proposed method are not limited 10 [1] 5. Altmeyer and G. Gebhard. Wcet analysis for preemptive
the improved schedulability, but include as well a more scheduling. Inintl. Workshop on WCET Analysis, Dagstuhl,
predictable behavior of the system. Indeed, reducing the Germany, 2008.

number of locations in which each task can be preempted

simplifies the timing analysis, allowing more precise baund [2] S. Baruah. The limited-preemption uniprocessor schegu
on the worst-case execution times. of sporadic task systems. IECRTS Palma de Mallorca,

Spain, July 2005. IEEE Computer Society Press.

REFERENCES

As a future work, we plan to adopt tighter estimations
on the preemption delays experienced under the limited (3
preemption model, relaxing the assumption on the fixed
preemption overhead. We are working on integrating our
techniques with existing timing analysis tools that aredbl
derive tight bounds on the CRPD generated at each potentiaj4] M. Bertogna and S. Baruah. Uniprocessor scheduling of sp
preemption point. Moreover, we have strategies to extend radic task systems under preemption constraints. Mamiscri

S. Baruah and S. Chakraborty. Schedulability analysis o
non-preemptive recurring real-time tasks. linternational
Workshop on Parallel and Distributed Real-Time Systems
(IPDPS), Rhodes, Greece, April 2006.

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

under review. Downloadable off of the first author's web page [18] C. Li, C. Ding, and K. Shen. Quantifying the cost of cotite

2009.

E. Bini and G. Buttazzo. Biasing effects in schedulapili
measures. IEECRTS Catania, Italy, July 2004.

B. Brandenburg, J. Calandrino, A. Block, H. Leontyevdan
J. Anderson. Real-time synchronization on multiprocessor
To block or not to block, to suspend or spin? RMAS, pages
342-353, Washington, DC, USA, 2008. IEEE Computer
Society.

R. Bril, J. Lukkien, and W. Verhaegh. Worst-case resgons
time analysis of real-time tasks under fixed-priority salied
ing with deferred preemption revisited. IBCRTS ’'07:
Proceedings of the 19th Euromicro Conference on Real-Time
Systems, pages 269-279, 2007.

A. Burns. Preemptive priority based scheduling: An appr
priate engineering approachn S Son, editor, Advances in
Real-Time Systems, pages 225248, 1994.

J. Busquets-Mataix, D. Gil, P. Gil, and A. Wellings. Tech
nigues to increase the schedulable utilization of cacleda
preemptive real-time systemd. Syst. Archit., 46(4):357-378,
2000.

G. Buttazzo. Hard Real-Time Computing Systems. Pre-
dictable Scheduling Algorithms and Applications. Kluwer
Academic Publishers, 101 Philip Drive, Assinippi Park Nor-
well, MA 02061, USA, 1997.

J. Echague, I. Ripoll, and A. Crespo. Hard real-time-pre [26]

emptively scheduling with high context switch cost. th
Euromicro Workshop on Real-Time Systems (EUROMICRO-
RTS 95), 1995.

(27]

G. Gebhard and S. Altmeyer. Optimal task placement to
improve cache performance. BEMSOFT, pages 166-171,
Salzburg, Austria, 2007.

(28]

R. Gopalakrishnan and G.M. Parulkar. Bringing renidi
scheduling theory and practice closer for multimedia com-
puting. InProceedings of the ACM Sgmetrics Conference on
Measurement & Modeling of Computer Systems, pages 1-12,
May 1996.

K. Jeffay, D. Stanat, and C. Martel. On non-preemptive

scheduling of periodic and sporadic tasks.Pimoceedings of (30

the 12th Real-Time Systems Symposium, San Antonio, Texas,
December 1991. IEEE Computer Society Press.

L. Ju, S. Chakraborty, and A. Roychoudhury. Accountiog
cache-related preemption delay in dynamic priority schedu
lability analysis. InDATE, 2007.

Chang-Gun Lee et al. Bounding cache-related preemptio
delay for real-time systemdEEE Transactions on Software
Engineering, 27(9):805-826, 2001.

S. Lee, C.-G. Lee, M. Lee, S. L. Min, and C.-S. Kim.
Limited preemptible scheduling to embrace cache memory

in real-time systems. IiProceedings of the ACM SIGPLAN (33

Workshop on Languages, Compilers, and Tools for Embedded
Systems (LCTES), pages 51-64, May 1998.

(20]

[21

(22]

(23]

(24]

(25]

(29]

(31]

(32]

switch. InProceedings of the 2007 Workshop on Experimental
Computer Science, San Diego, California, 2007.

] C. L. Liu and J. Layland. Scheduling algorithms for niult

programming in a hard real-time environmedurnal of the
ACM, 20(1):46-61, 1973.

R. Pellizzoni, B. Bui, M. Caccamo, and L. Sha. Coschidul
of cpu and i/o transactions in cots-based embedded systems.
In RTSS pages 221-231, Barcelona, Spain, 2008.

R. Pellizzoni and M. Caccamo. Toward the predictable
integration of real-time cots based systems.RIFSS, pages
73-82, Tucson, Arizona (USA), 2007.

S. M. Petters and G. Farber. Scheduling analysis veiipect
to hardware related preemption delay.Workshop on Real-
Time Embedded Systems, London, UK, 2001.

H. Ramaprasad and F. Mueller. Bounding preemptionydela
within data cache reference patterns for real-time taRkal-
Time and Embedded Technology and Applications Sympo-
sium, 2006. RTAS 06, April 2006.

H. Ramaprasad and F. Mueller. Tightening the bounds on
feasible preemption pointsReal-Time Systems Symposium,
2006. RTSS '06, December 2006.

H. Ramaprasad and F. Mueller. Bounding worst-caseoresp
time for tasks with non-preemptive regionReal-Time and
Embedded Technology and Applications Symposium, 2008.
RTAS '08. |EEE, pages 58-67, April 2008.

J. Regehr. Scheduling tasks with mixed preemptiontimeia
for robustness to timing faults. IRTSS pages 315-326,
Cancun (Mexico), December 2002. IEEE Computer Society.

J. Simonson and J.H. Patel. Use of preferred preemption
points in cache-based real-time systems.ADS, pages 316—
325, April 1995.

J. Staschulat, S. Schliecker, and R. Ernst. Schedaliadysis
of real-time systems with precise modeling of cache related
preemption delay. IiECRTS 2005.

Y. Wang and M. Saksena. Scheduling fixed-priority taskh
preemption threshold. IfProceedings of the International
Conference on Real-time Computing Systems and Applica-
tions. IEEE Computer Society, 1999.

R. Wilhelm et al. The worst-case execution time problem
overview of methods and survey of tool&CM Transactions
on Embedded Computing Systems, 7(3):1-53, 2008.

Orges Xhani. Effects of real-time scheduling on cache
performance and worst case execution times. Master'ssthesi
Scuola Superiore Sant’Anna, Pisa, Italy, December 2009.
Downloadable off of the first author’'s web page.

G. Yao, G. Buttazzo, and M. Bertogna. Bounding the max-
imum length of non-preemptive regions under fixed priority
scheduling. IFRTCSA, Beijing, China, May—June 2009. IEEE
Computer Society Press.

P. Meumeu Yomsi and Y. Sorel. Extending rate monotonic
analysis with exact cost of preemptions for hard real-time
systems. IrECRTS 2007.

