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Abstract—Limited preemption scheduling has been intro-
duced as a viable alternative to non-preemptive and fully-
preemptive scheduling when reduced blocking times need to
coexist with an acceptable context switch overhead. To achieve
this goal, preemptions are allowed only at selected points of
the code of each task, decreasing the preemption overhead and
simplifying the estimation of worst-case execution parameters.
Unfortunately, the problem of how to place these preemption
points is rather complex and has not been solved.

In this paper, a method is presented for the optimal
placement of preemption points under simplifying conditions,
namely, a fixed preemption overhead at each point. We will
prove that if our method is not able to produce a feasible
schedule, then no other possible preemption point placement
(including non-preemptive and fully preemptive scheduling)
can find a schedulable solution. The presented method is
general enough to be applicable to bothEDF and Fixed Priority
scheduling, with limited modifications.

I. I NTRODUCTION

In safety-critical applications, the use of advanced real-
time scheduling techniques is significantly limited by the
difficulty of finding tight estimations of worst-case execution
parameters. To simplify the problem, most theoretical results
on schedulability analysis have been derived assuming a
preemption cost equal to zero. Under such an ideal case,
preemptive scheduling is often more efficient than non-
preemptive scheduling, because of the additional blocking
time that can be introduced by the non-preemptive execution
of lower priority tasks. In practice, however, preemptions
can introduce a significant runtime overhead and may cause
high fluctuations in task execution times, therefore degrading
system predictability. In particular, the following typesof
costs must be taken into account at each preemption:

1) Scheduler cost. It is due to the time taken by the
scheduling algorithm to suspend the running task,
insert it into the ready queue, switch the context, and
dispatch the new incoming task.

2) Pipeline cost. It is due to the time taken to flush the
processor pipeline when the task is interrupted and
the time taken to refill the pipeline when the task is
resumed.

3) Cache-related cost. It is due to the time taken to
reload the cache lines evicted by the preempting task.
This time depends on the specific point in which

preemption occurs and on the number of preemptions
experienced by the task [18], [12], [1].

4) Bus contention cost. It is due to the Front Side Bus
(FSB) conflicts caused by the extra memory accesses
due to cache misses. In fact, whenever data are not
found in the cache, they have to be fetched from RAM,
using the FSB. Hence, contentions can occur when the
FSB is used by I/O peripheral devices through a DMA
transfer [21], [20].

These effects are not negligible at all, and may con-
tribute to a great share of the overall worst-case execution
time (WCET). To overcome such problems, some authors
investigated limited preemption models that can be used
to reduce the negative effects of context switches, while
limiting the amount of blocking due to non preemptive
regions [29], [26], [8], [2], [32]. From another side, other
authors extended the schedulability analysis of preemptive
scheduling to take context switch overhead into account
[11], [33]. The problem of selecting preemption points in
order to improve the schedulability of the system has been
preliminarily considered in [13] and [17].

Indeed, such a problem is not easy to solve in an optimal
way, since it is characterized by a circular dependency. In
fact, when considering the context switch overhead in the
schedulability analysis, the WCET of a task becomes a
function of the number of preemptions it might be subject
to; but the number of preemptions depends on its turn by
the WCET of the task—the longer a task executes, the more
it will be preempted—complicating the analysis.

In this paper we will show how to deal with such circular
dependency, when a limited preemption model with fixed
preemption points is adopted. The advantage of this model is
that it is in line with the current practice adopted in critical
software development [8], so that the derived results can
be applied to real applications. We will present a method
for automatically selecting the most suitable preemption
points in the code of each task in order to guarantee the
schedulability of the system. The analysis will consider the
increased blocking caused by non-preemptive sections from
one side, and the beneficial reduction of the preemption over-
head from the other side. We will prove that the proposed
algorithm is optimal when each preemption point is assumed
to produce an identical overhead. Even if this assumption
could appear rather restrictive, we introduced it to establish



the mathematical background for more complex models
without violating the strict page limit of this submission.
As preliminarily shown in [31], the presented analysis can
be integrated with data collected by timing analysis tools,
for the handling of more realistic models with a variable
preemption overhead.

The proposed approach is general enough to be applicable
to the most used scheduling algorithm, likeEDF and FP.
We will show how existing results on limited preemption
scheduling can be extended and integrated under a common
notational model, in order to derive the necessary informa-
tion for the optimal placement of preemption points. To
comply with more general requirements, we will analyze
as well the case in which preemption points can be inserted
only at a discrete number of places. This will allow our al-
gorithm to deal with user-defined non-interruptible sections
of code, or to avoid complex protocols for the access to
shared resources. Indeed, when it is possible to encapsulate
each critical section within a non-preemptive region, a task
will never be preempted while holding a lock, solving any
mutual exclusion problem in the access to shared resources.

II. RELATED WORK

A. Non-Preemptive and Limited Preemption scheduling

Non-preemptiveEDF scheduling has been studied by
Jeffay et al. [14], who showed thatEDF is optimal even
among non-preemptive work-conserving schedulers1 for pe-
riodic and sporadic task sets. For these systems, an exact
schedulability test with pseudo-polynomial complexity was
provided. Moreover, it was shown that, for concrete periodic
task systems scheduled by non-preemptive algorithms2, fea-
sibility analysis is NP-hard in the strong sense.

Baruah and Chakraborty [3] analyzed the schedulability
of non-preemptive task sets under the recurring task model,
deriving polynomial time approximation algorithms for both
preemptive and non-preemptive scheduling.

Wang and Saksena [29] proposed a different approach
for limiting preemptions, in systems scheduled withFP.
Each task is assigned a regular priority and a preemption
threshold, and it is allowed to preempt only when its priority
is higher than the threshold of the preempted task. This work
has been later improved by Regehr in [26].

Burns [8] extended the response time analysis to verify the
schedulability of fixed priority tasks with fixed preemption
points. His work has been later improved by Bril et al. [7].

Baruah introduced limited preemption scheduling for
EDF [2], computing the maximum amount of time for which
a task may execute non preemptively without missing any
deadline. Yaoet al. [32] extended Baruah’s work to fixed
priority systems.

1A scheduling algorithm is work-conserving if the processoris never
idled when a task is ready to execute. Note thatEDF is not optimal among
general non-preemptive schedulers (including non work-conserving ones).

2A concrete periodic task is a periodic task that comes with anassigned
initial activation.

B. Preemption overhead

The problem of finding a correct WCET estimation for
real-time task sets has been considered in many different
papers in the timing analysis domain (see [30] for a good
survey). When a preemptive scheduler is adopted, a critical
factor in the estimation of a task’s WCET is represented by
the Cache-Related Preemption Delay (CRPD).

In [9] and [22], two methods have been presented to inte-
grate the classic Response Time Analysis with the penalties
associated with CRPD, adding a fixed context-switch cost.
A complex but more precise analysis considering common
sets of data between preempting and preempted tasks has
been described in [16]. With a similar target, Staschulatet
al. [28] provided safe estimations of the CRPD, analyzing
the intersection between the set ofuseful data—locations
that might be accessed again by a preempted task—andused
data—locations that might be accessed by the preempting
task. The appropriate selection of preemption points for an
easier computation of the CRPD has been addressed in [27].

In [23], a bound was provided on the Data Cache Related
Preemption Delay (D-CRPD), identifying additional data-
cache misses due to context switches. Response Time Anal-
ysis was then used to check the system schedulability, using
the derived bound on the worst-case execution times. This
bound was then refined in [24]. In a recent work [25], the
same authors extended the analysis to tasks having at most
one non-preemptive region with a given position inside the
task code.

While most of the above works were based on systems
scheduled with Fixed Priority, Juet al. [15] considered the
CRPD computation problem for systems scheduled with
preemptiveEDF.

C. Improvements over previous works

In this paper, we consider the problem of scheduling a
set of real-time tasks consisting of a sequence of Non-
Preemptive Regions (NPR) separated by Preemption Points
(PP). The proposed method helps a designer in selecting
the best preemption points, exploiting the available slack
in the system to reduce the number of preemptions of
some selected tasks, without imposing too much blocking
on higher priority tasks. The final objective is to achieve a
feasible schedule when the task set is not feasible in non-
preemptive mode (due to high blocking times), nor in fully
preemptive mode (due to the high overhead).

As shown in [32], [4], limited preemption schedulers can
significantly reduce the total number of preemptions with
respect to fully preemptive algorithms. This happens because
the allowed non-preemptive execution length of a task is
often larger than or comparable to that task’s execution time.
However, existing theoretical results on limited preemption
scheduling [2], [4], [32] have been derived neglecting the
cost of preemptions. Integrating these results with the pre-
emption overhead is not so straightforward, since computing
the maximum lengths of the non-preemptive regions requires
the knowledge of worst-case execution times, which in
turn are significantly influenced by the number of context



switches. In this paper, we show how to deal with such a
circular dependency, proposing an iterative algorithm that
considers both problems at the same time. Earlier attempts
to reduce context switching overhead delaying preemptions
have been presented in [13] and [17].

The rest of the paper is organized as follows. In Sec-
tion III, we will present the adopted system model and
terminology. Section IV describes a schedulability analysis
for task sets scheduled with limited preemptionEDF or FP.
In Section V, we will show an algorithm to achieve the
schedulability of a task set with a proper placement of
preemption points inside each task’s code. In Section VI, we
will present some considerations on the proposed method.
The effectiveness of this method will be evaluated through
a set of simulations, shown in Section VII. Finally, we will
draw our conclusions in Section VIII.

III. SYSTEM MODEL

We consider a setτ of n periodic and sporadic real-time
tasks that are scheduled on a single processor using either
a fixed priority algorithm (FP) or Earliest Deadline First
(EDF) [19]. Each taskτi is defined by a worst-case execution
requirementCi, a period, or minimum interarrival time,Ti,
and a relative deadlineDi ≤ Ti. Each task generates an
infinite sequence of jobs, with the first job arriving at any
time and successive job-arrivals separated by at leastTi

time units. We assume that tasks are ordered by decreasing
priorities in theFP case, and by increasing relative deadlines
in the EDF case, i.e.,∀i | 0 ≤ i < n : Di ≤ Di+1.
Tasks are either supposed to be independent, or their critical
sections are assumed to be entirely contained within a non-
preemptive region3.

Each job ofτi consists of a sequence ofpi non-preemptive
chunks of code. Preemption is allowed only between chunks
by inserting proper preemption points. Thej-th chunk of
taskτi is denoted byδi,j , 1≤ i≤n, 1≤j≤pi, and its worst-
case execution time byqi,j . The maximum chunk length for
τi is qmax

i = max{qi,j}
pi

j=1.
The memory footprint Fi of a taskτi is the cumulative

size of the individual memory locations accessed by a job
of τi during its execution. A task repeatedly accessing the
same set of data will have a smaller footprint than a task
accessing multiple different memory locations.

We assume the processor can take advantage of a dedi-
cated cache, of sizeL, from which recently used data and
instructions can be loaded. We say that a cache is “hot”
if a requested data is present in the cache; otherwise, the
cache is “cold”. The cache miss penalty due to the time
taken to load data from the main memory to the cache is
denoted byγ. To simplify the analysis, we assume this value
be the same for every memory location accessed by each
task in the set. Moreover, we ignore any timing anomaly
in the cache behavior, assuming each miss increases the
observed execution time byγ. Finally, we do not take

3As critical sections are typically very short [6], they are likely to be
accommodated inside a non-preemptive region. When this is not true, some
shared resource protocol need to be adopted.

advantage of the positive cache effects due to the subsequent
execution of concurrent tasks accessing similar sets of data,
nor to the limited number of cache evictions performed by
a preempting job with reduced footprint (smaller than the
cache size). In other words, we assume the cache being
completelycold after any context switch.

These restricting assumptions will be removed in a future
work, where less pessimistic estimations of the CRPD will
be considered4. Before complicating the model, this paper
intends to presents the preliminary results that are needed
for a more thorough analysis.

A. Worst-case execution times

The worst-case execution timeCi of a task τi is the
largest amount of processor time a job ofτi might need
to successfully complete its execution. To perform a pre-
cise schedulability analysis, this parameter must include
all overhead costs identified in the introduction, and can
be expressed as the sum of the net computation timeEi,
(achieved when all accessed data are always in the cache)
plus such penalties.

In particular, the maximum number of cache misses a task
τi may experience in the worst-case scenario is denoted by
µmax

i , and it is equal to the maximum number of memory
accesses a job ofτi may perform. Indeed, this is the only
bound that can be given when no information is available
on the adopted scheduler, nor on the tasks concurrently
scheduled withτi.

When a particular scheduler is assumed, the estimation
of the real number of cache misses may be refined. We call
µi the maximum number of cache misses a taskτi may
experience using a given scheduling algorithm. For instance,
with preemptiveEDF or FP it has been shown [10] that the
number of preemptions on a job of taskτi is bounded by
the number of higher priority jobs that can be released in
[0, Di)

5, decreasing the number of potential cache misses in
the worst-case. Whenτi is executed non-preemptively,µi

has the smallest possible valueµNP
i . Hence, the following

relation holds:
µNP

i ≤ µi ≤ µmax
i .

Note thatµi depends on the numberpi of non-preemptive
regions in whichτi is divided. The smallerpi, the fewer
the cache misses experienced byτi. In fact, each context
switch might evict the cache locations commonly accessed
by two subsequent chunks. To understand that, consider the
example shown in Figure 1, where the memory accesses of
the first two chunks of a taskτi are shown. The first chunk
loads into the cache the memory locations corresponding to
a, b andc. When the second chunk starts executing after
a potential preemption, another task might have overwritten
the cache content, evicting data commonly accessed byδi,1

and δi,2. Therefore,δi,2’s first accesses toa andc should
be accounted as misses. To clarify which misses are due to

4Some insights of this future work can be found in [31]
5See [11], [28], [24], [33] for tighter bounds in the number ofpreemp-

tions.



Chunk Code Hit/Miss
access(a) I
access(b) I

δi,1 access(c) I
access(a) H
access(c) H
access(a) E
access(d) I

δi,2 access(a) H
access(c) E
access(d) H

...

Figure 1. Example of cache accesses: (H) cache Hit, (I) Intrinsic miss,
(E) Extrinsic miss.

Symbol Description
δi,j j-th chunk of taskτi

pi Number of chunks of taskτi

Ci WCET of τi in presence of cache misses
CNP

i WCET of τi when it executes non-preemptively
Ei WCET value with cache always hot
qi,j Worst-case execution time of chunkδi,j

qmax

i Largest non-preemptive execution ofτi

µi Worst-case number of cache misses ofτi

µmax

i Maximum µi among all possible schedulers
µNP

i µi value whenτi executes non-preemptively
L Cache size
Fi Memory footprint of taskτi

γ Cache miss penalty
σ Penalty due to load/store the task state
π Penalty due to pipeline invalidation

η(x) I/O induced delay forx cache misses

Figure 2. Notation used throughout the paper.

a possible preemption and which are not, we distinguish
between intrinsic and extrinsic cache misses. A miss is
intrinsic if it occurs independently of the preemption, i.e.,
when a task accesses a memory location for the first time,
or when the miss is caused by a self-eviction6. An extrinsic
miss is instead due to evictions caused by preempting tasks.

As already mentioned in the introduction, there are also
other kinds of penalties associated to each preemption, like
the scheduler costσ, the pipeline costπ, and the FSB con-
tention costη(µi). Since there arepi non-preemptive chunks,
the total number of times a job ofτi may be preempted is
(pi − 1). Hence, the overall worst-case execution time ofτi

results to be

Ci = Ei + γµi + (π + σ)(pi − 1) + η(µi). (1)

In the next sections, we will present a method to decrease
this value by minimizing the numberpi of preemption points
inside the code of each taskτi, resulting in a smaller number
of cache missesµi.

For convenience, all notations are summarized in Figure 2.

6A self-eviction is an eviction performed by the task itself. This can
happen whenever the task footprint is larger than the cache size.

IV. SCHEDULABILITY ANALYSIS

In this section, we present a unified analysis ofEDF andFP

scheduling under the limited preemption model, extending
and reformulating the results derived in [32] (forFP) and
in [2], [4] (for EDF), under a common notational model.

For the feasibility analysis underFP, we use therequest
bound function RBFi(a) in an intervala, defined as

RBFi(a) =

⌈

a

Ti

⌉

Ci.

Under EDF, the analysis is carried out by thedemand
bound function DBFi(a) in an intervala, defined as

DBFi(a) =

(

1 +

⌊

a−Di

Ti

⌋)

Ci.

Moreover, we conventionally setDn+1 equal to the
minimum between: (i) the least common multiple (lcm) of
T1, T2, . . . , Tn, and (ii) the following expression7:

max

(

Dn,
1

1− U
·

n
∑

i=1

Ui ·max
(

0, Ti −Di

)

)

.

The largest blockingBi that a taskτi might experience is
given, under bothFP and EDF, by the length of the largest
non-preemptive chunk belonging to tasks with index higher
than i:

Bi = max
i<k≤n+1

{qmax
k }, (2)

where qmax
n+1 = 0 by definition. Summarizing the results

presented in [32], [2], [4], the next theorem derives a
schedulability condition under limited preemptions, forFP

and EDF.

Theorem 1. A task set τ is schedulable with limited pre-
emption EDF or FP if, for all i | 1 ≤ i ≤ n,

Bi ≤ βi, (3)

where, under FP, βi is given by

βFP
i

.
= max

a∈A|a≤Di







a−
∑

j≤i

RBFj(a)







(4)

with
A = {kTj, k ∈ N, 1 ≤ j < n},

whereas, under EDF, βi is given by

βEDF
i

.
= min

a∈A|Di≤a<Di+1







a−
∑

τj∈τ

DBFj(a)







, (5)

with
A = {kTj + Dj, k ∈ N, 1 ≤ j ≤ n}.

7The expression may in general be exponential in the parameters of
τ ; however, it is pseudo-polynomial if the system utilization is a priori
bounded from above by a constant less than one.



The following theorem presents a different schedulability
condition, expressed in terms of a boundQk on the longest
non-preemptive regionqmax

k of each taskτk.

Theorem 2. A task set τ is schedulable with limited pre-
emption EDF or FP if, for all k | 1 < k ≤ n + 1,

qmax
k ≤ Qk

.
= min

1≤i<k
{βi}, (6)

where βi is given by Equation (4) in the FP case, and by
Equation (5) in the EDF case.

Proof: A sufficient schedulability condition can be
obtained combining Theorem 1 with Equation (2):

∧

1≤i≤n

(

max
i<k≤n+1

{qmax
k } ≤ βi

)

.

The inner inequality can be rewritten as a system of inequal-
ities, as follows:

∧

1≤i≤n





∧

i<k≤n+1

(qmax
k ≤ βi)



 .

Rewriting the system of inequalities,

∧

1<k≤n+1





∧

1≤i<k

(qmax
k ≤ βi)



 ,

which is equivalent to

∀k | 1 < k ≤ n + 1 : qmax
k ≤ min

1≤i<k
{βi},

proving the theorem.
Note that the definition ofQk can be rewritten in the

following iterative form (starting withQ1 = ∞), for all
1 < k ≤ n + 1:

Qk = min{Qk−1, βk−1}. (7)

We hereafter prove that the sufficient schedulability con-
dition of Theorem 2 is also necessary underEDF. Suppose
the test fails. Consider aqk for which condition (6) evaluates
to false, i.e.,

qmax
k > min

i<k
{βi} = min

a∈A|D1≤a<Dk







a−
∑

τj∈τ

DBFj(a)







.

Consider the pointa∗ ∈ A that minimizes the RHS of the
above inequality. Then,qmax

k > a∗ −
∑

τj∈τ DBFj(a
∗), and

qmax
k +

∑

τj∈τ

DBFj(a
∗) > a∗. (8)

Consider a situation in which:
• all tasks with relative deadline≤ a∗(< Dk) start

synchronously att = 0;
• task τk enters its largest NPR of lengthqmax

k an
arbitrarily small amount of time beforet = 0. Sinceτk

is the only task executing beforet = 0, it will always
be possible to build such a situation.

In the above conditions, the total demand in[0, a∗) is equal
to the LHS of Equation (8). Therefore, the total demand
exceeds the length of the interval, leading to a deadline miss.
Therefore, if the test of Theorem 2 fails, it means that the
task set is not schedulable with limited preemptionEDF.

UnderFP, instead, the test is necessary and sufficient only
when no information is available on the location of each non-
preemptive region, as in the “floating” NPR model adopted
in [32]. When instead the position of the (last) NPR of
each task is known—i.e., under the “fixed” NPR model—
the theorem is only sufficient. An exact test could be derived
significantly complicating the analysis, adopting techniques
described in [7].

V. PROPOSED APPROACH

As explained in Section III, limiting preemptions may
significantly reduce the number of cache misses — so
that µi << µmax

i — as well as the negative effects of
context switches, with a beneficial effect on the worst-case
timing behavior. On the other side, limiting preemptions
increases the blocking delay on higher-priority jobs, possibly
jeopardizing the task set schedulability.

In this section, we present a method for placing preemp-
tion points inside the code of each task. In particular, the
number and the position of preemption points will be derived
as a function of the task parameters and the major sources
of overhead, with the objective of improving the task set
schedulability.

The algorithm starts by analyzing the feasibility of the
task set when preemption is disabled. If the task set is not
schedulable in non-preemptive mode, the algorithm searches
for preemption points that generate a feasible schedule, if
there exists one.

A. Worst-case parameters computation

From Equations (4) and (5) it is clear that the value of
βi depends on the worst-case execution timesCj , which
are significantly influenced by the number of cache misses
of each taskτj . From Equation (1), it is possible to see
that Cj has a fixed component (equal toEj ) and a variable
component that depends on the total number of preemptions
and cache misses. While intrinsic cache misses cannot be
avoided by any scheduling policy, extrinsic cache misses
can be reduced adopting a scheduling policy that decreases
the number of preemptions. However, large non-preemptive
regions increase blocking delays; hence finding the best
preemption points (PPs) analytically is rather difficult, due
to the interdependencies between PPs and worst-case exe-
cution times, as well as between extrinsic cache misses and
data reusing patterns among different sections of code. To
simplify the problem, we assumed each PP in a taskτk to
cause a fixed overheadξk.

Under this assumption, we present a method that opti-
mally exploits the schedulability test of Theorem 2 to select
the PPs inside the code of each task in order to achieve
a schedulable condition. The proposed algorithm can be
summarized as follows:



INSERTPP(τ)

Initialize: {qmax
i ← CNP

i }
n
i=1, qmax

n+1 ← 0,
{pi ← 1}ni=1, andQ1 ←∞.

1 for (i : 1 ≤ i ≤ n)
2 Ci ← CNP

i + (pi − 1)ξi

3 Computeβi using Equation (4) or (5);
4 Qi+1 ← min{Qi, βi}
5 if (qmax

i+1 > Qi+1)
6 if (PPLACE(Qi+1, i + 1) = false)
7 return (Infeasible)

endfor
8 return (Feasible)

PPLACE(Qk, k)

Let ξk be the preemption overhead ofτk, 1≤k≤n
andξn+1 ← 0

1 if (Qk ≤ ξk) return false
2 Place a PP inτk at Qk and after every (Qk − ξk).

3 pi ←
⌈

CNP
i −Qk

Qi−ξi

⌉

+ 1

4 qmax
k ← Qk

5 return (true)

Figure 3. Algorithm for the optimal placement of PPs.

• The algorithm starts with no preemption points for each
task, i.e., settingpi = 1 and qmax

i = CNP
i , ∀i, where

CNP
i is the worst-case execution time ofτi when it

executes non-preemptively. This value can be found
using timing analysis tools [30], without needing to take
into account preemptions.

• Then, βi is computed by Equations (4) or (5) for
increasing indexes, that is, starting fromβ1. Note that
βi depends only on theCj of tasks with indexesj ≤ i
(when computingβi in the EDF case,DBFj(a) = 0 for
all j > i), given byCNP

j + (pj − 1)ξj .
• Then,Qi+1 is computed fromβk≤i using Theorem 2.
• If Qi+1 is smaller than the maximum non-preemptive

region of τi+1, procedure PPLACE(Qi+1, i + 1) is
invoked to place the least number of PPs inτi+1 to
guaranteeqmax

i+1 ≤ Qi+1. This is achieved by placing
a first PP afterQi+1 time-units of (non-preemptive)
execution from the beginning ofτi+1. To account for
the preemption overhead, further PPs are placed after
(Qi+1 − ξi+1) time-units, until the end of the code.

• If PPLACE(Qi+1, i + 1) returns false, the algorithm
stops, declaring the task set infeasible. The failing
condition of PPLACE(Qk, k) is (Qk ≤ ξk). This is
because, ifQk ≤ ξk, then the execution time available
to τk is entirely dedicated to the preemption overhead.

• When allQi values have been successfully checked, the
algorithm returns, having guaranteed the schedulability
of the task set.

The pseudo-code of the algorithm is summarized in

Figure 3. We hereafter prove the correctness of procedure
INSERTPP(τ) in deriving a schedulable condition. Then, we
will show some optimality properties of the adopted method.

Theorem 3. Procedure INSERTPP(τ) is correct.

Proof: If the procedure succeeds, eachQk will be larger
than or equal to the maximum non-preemptive regionqmax

k

of each taskτk, i ≤ k ≤ n, and βn ≥ Qn+1 ≥ 0. Note
that, both in theEDF and in the FP cases, theβi value
computed at line 3 of the algorithm depends only onCj

values withj ≤ i (as well as on deadlines and periods, which
cannot change). Since none of these values may change in
the next iterations (because PPs are inserted only into the
code of tasksτk>i), all βi, and thereforeQi+1, are correctly
computed. By Theorems 1 and 2, the correctness of the
procedure is assured.

Having proved the correctness of INSERTPP(τ), we now
show that the PP placement is optimal underEDF scheduling,
meaning that if the algorithm fails, then any other possible
PP placement leads to an unfeasible schedule.

Theorem 4. Procedure INSERTPP(τ) is optimal under EDF.

Proof: Suppose, by contradiction, there is a feasi-
ble task setτ for which procedure INSERTPP(τ) fails.
Then, there is at least one taskτk for which procedure
PPLACE(Qk, k) fails. Let τk be the task with the smallest
index for which the procedure fails, and letβi be the value
that minimizesQk, i.e., i = argmink−1

j=1{βj}. As previously
mentioned,βi is a function of the worst-case execution
times, deadlines and periods of all tasksτj≤i. While the
latter values (Dj andTj) are fixed, the execution timesCj

may vary for different placements of PPs in the code of each
task τj . Note thatβi is a decreasing function of allCj≤i.
We now prove by induction that procedure INSERTPP(τ)
allows finding the smallest valuesCj≤i, among PP allocation
strategies that are feasible. Therefore, ifτ is feasible, the
largest possibleβi is found with INSERTPP(τ). If such a
value is too small (or even negative), so that no PP placement
can be found for a taskτk>i to satisfy qmax

k ≤ βi, then
this latter condition will be violated by any other possible
strategy, since it cannot lead to a largerβi. Therefore,τ is
not feasible, reaching a contradiction.

Base case: Independently of the number of PPs, task
τ1 is always executed non-preemptively, both underFP and
under EDF. Note that procedure INSERTPP(τ) does not
insert any PP inτ1, leading to the smallest possible value
of C1.

Inductive step: Let j ≤ i. Assume INSERTPP(τ (j−1))
obtained the schedulability of the reduced task setτ (j−1) .

=
{τ1, . . . , τj−1}, minimizing the worst-case execution times
C1, . . . , Cj−1. We will prove that INSERTPP(τ (j)) obtains
as well the schedulability of the setτ (j) = τ (j−1) ∪ {τj},
minimizing Cj . It is easy to see that the PP allocation strat-
egy for tasksτ1, . . . , τj−1 is the same for INSERTPP(τ (j−1))
and INSERTPP(τ (j)), so that there is no change in anyCk

or qmax
k , for 1 ≤ k ≤ j − 1. Sinceτ (j−1) was schedulable,

the schedulability ofτ (j) can be obtained, by Theorem 2,



if qmax
j ≤ Qj = min{βk<j}. By the inductive hypothesis,

the procedure obtains the largest possible values for each
βk<j (sinceC1, . . . , Cj−1 are minimized). Hence, no other
possible PP allocation for tasks∈ τ (j−1) can result in
a larger Qj = min{βk<j}. Since Qj is a tight bound
on the maximum NPR length in theEDF case, procedure
PPLACE(Qj , j) places the least possible number of PPs to
τj . Since we assumed that each PP ofτj causes the same
overheadξj , procedure PPLACE(Qj , j) obtains the smallest
possibleCj , proving the statement.

Note that the optimality of procedure INSERTPP(τ) de-
pends on (i) the tightness of theQk bounds computed
with Equation (6), and (ii) the assumption on the identical
preemption overheads of the PPs of each task. Regarding
the first point, as we explained in Section IV, condition (6)
is necessary and sufficient only in theEDF case. In theFP

case, instead, condition (6) is tight only when the floating
NPR model is adopted. Otherwise, a larger boundQk could
be derived considering the exact location of the last NPR
of τk. However, this would imply a much more complex
analysis, which is beyond the scope of this paper8.

Regarding point (ii), the assumption on the preemption
cost of each PP might be relaxed, using a more complex
timing analysis that considers data reusing patterns inside
the code of each task. Tighter estimations of the preemption
costs might be derived in this way, leading to an improved
placement of PPs [31]. Moreover, the worst-case execution
time of each task could be further reduced analyzing how
many PPs can effectively cause a preemption. If a taskτj

has a smallβj value, all lower priority tasks will have
frequent PPs. However, they cannot be preempted byτj

more than once everyTj time units. Therefore, it may
happen that most PPs won’t lead to a preemption. To account
for this fact, the worst-case execution time of a taskτi at
line 1 of procedure INSERTPP(τ) can be replaced by tighter
expressions, derived adapting techniques from [28], [24],
[25] to the limited preemption scheduling model adopted
in this paper.

Again, we believe these are very interesting problem, that
we intend to address in a future work. In the current paper,
we instead assumed a fixed overhead for all preemption
points of each task. We will show in our simulations that this
assumption is not overly pessimistic, since the number of
inserted PPs is typically very small, even for heavily loaded
systems, resulting in rather long non-preemptive regions.

VI. CONSIDERATIONS

The placement of PPs inside each task’s code is subject
to constraints such as atomic instructions, critical sections
and non-preemptable sections of code in general. Moreover,
requiring a task to be decomposable into a sequence of

8As explained in [7], when the exact length of the last NPR of a task
τk is fixed and known a priori, the worst-case response time ofτk is
not necessarily given by the first instance ofτk after a critical instant. A
necessary and sufficient schedulability condition would then need to check
a large number of possible arrival times forτk, resulting in a much more
complex schedulability condition. See [7] for further details.

non-preemptive chunks of execution can be a too strong
assumption, since task systems are generally better modeled
by a tree structure with loops and branches. An optimal
placement of PPs would then require to go through each
branch in the execution tree of a task, considering the data
and instructions accessed along each path.

To simplify the problem, we will assume a set of Potential
Preemption Points (PPP) be given, each one separating
the execution of two consecutive non-preemptive chunks,
called Basic Blocks (BB), forming a serial chain of BBs for
each taskτk. Each loop, conditional branch, critical section
or non-preemptable section of code can be accommodated
inside a BB. Smaller preemption overheadsξk can be found
inserting each PPP between sections of code that access
few common memory locations. We define theminimum
execution granularity ∆k as the maximum “execution dis-
tance” between any two consecutive PPPs, including the
preemption delayξk.

Procedure DISCPPLACE(Qk, k), whose pseudocode is
shown in Figure 4, can be used instead of PPLACE(Qk, k)
when a set of PPPs is given. The procedure will try
to minimize the number of PPPs that will be used for
the insertion of an actual Preemption Point (PP), without
violating the condition on the blocking (qmax

k ≤ Qk).
To do that, subsequent basic blocks will be progressively
combined, starting from the first one, as long as the worst-
case execution time of the resulting NPR, including the
preemption delayξk, is smaller thanQk. When the addition
of the next basic block would cause the resulting WCET to
exceedQk, a new NPR is initiated with this block, and a PP
is inserted immediately before it. Note that no preemption
delay is accounted for the first NPR, sinceBB1 is decreased
by ξk. The procedure continues until all BBs have been
assigned to a NPR. The failing condition is when the allowed
Qk is smaller than the minimum execution granularity.

The only modification needed to procedure INSERTPP is
at line 6, where procedure PPLACE should be replaced by
DISCPPLACE.

As explained in Section III-A, the preemption delayξk of
each taskτk can be bounded by(π + σ), plus the CRPD,
which is a function of the number of extrinsic cache misses
experienced byτk when resuming its execution. For a fully
associative cache, such number cannot be larger than (i) the
total number of memory locations accessed byτk, equal to
its footprint Fk, and (ii) the total number of cache lines9,
equal toL. Every other memory access is either a hit, or an
intrinsic cache miss, which is not due to preemptions. The
total overhead introduced by each preemption on a taskτk

can be therefore bounded by

ξk
.
= π + σ + γ min{Fk, L}+ η(min{Fk, L}), (9)

whereπ, σ and γ can be found with a timing analysis of
the architecture, andη() can be derived using techniques
described in [21], [20]. Although the above bound is rather
pessimistic, its effect on the final worst-case execution time

9Tighter bounds can be found for set-associative or direct mapped caches.



DISCPPLACE(Qk, k)

Let ξk be the preemption overhead ofτk, 1≤k≤n
andξn+1 ← 0. Let BBi be the length of thei-th BB
whenτi executes non preemptively.
Initialize: j ← 1; C ← BB1 − ξk.

1 if (Qk < ∆k) return false
2 for BBi in {BB2, BB3, . . .}
3 C ← C + BBi

4 if (C + ξk > Qk)
5 Place a PP before thei-th BB
6 j = j + 1
7 C ← BBi

endfor
8 pk ← j
9 qmax

k ← maxpk

i=1{qk,i}
10 return (true)

Figure 4. Algorithm for the insertion of PPs in a taskτk , so thatqmax

k
≤

Qk is satisfied.

is often limited, since the number of preemption points is
typically very small, as shown in our simulations.

The complexity of the proposed approach is pseudopoly-
nomial, both in theEDF and in the FP case. The main
complexity lies in finding good estimations of theCNP

i

values that are needed as inputs for procedure INSERTPP.
Anyway, timing analysis tools are much more efficient
in finding worst-case estimations of these non-preemptive
execution times, rather than when needing to consider a
preemptive situation.

VII. E XPERIMENTAL RESULTS

In this section, experimental results are presented based
on simulations. Randomly generated task sets were used to
evaluate the effectiveness of the proposed limited-preemptive
policy (procedure INSERTPP) in comparison with non-
preemptive and fully preemptive algorithms. We randomly
generated one thousand task sets and measured the effective-
ness of each scheduling policy, analyzing the percentage of
schedulable task sets as a function of the system utilization.

More in detail, each task set was generated as follows.
The UUniFast algorithm, described in [5], was used to
generate each set ofn tasks with a given total utilization
Utot. The non-preemptive WCETCNP

k was generated as
a random integer value uniformly distributed in [50, 150],
computingTk asTk = CNP

k /Uk. The relative deadlineDk

was generated as a random integer value within the range
[CNP

k + 0.8 · (Tk − CNP
k ), Tk].

Due to space reasons, we include here only the results for
fixed priority scheduling. The simulations forEDF are very
similar. We considered four fixed priority scheduling poli-
cies: non-preemptive (NP), the proposed limited-preemptive
policy (LP) using procedure PPLACE, fully preemptive
without preemption cost (FP w/o cost) and fully preemptive
with preemption cost (FP with cost). Task sets schedulability

under FP without cost was calculated by using the classical
response time analysis, settingCk = CNP

k , for all tasks
τk ∈ τ . It represents an (ideally) optimal scenario for fixed-
priority, since it has the minimum possible blocking, with
no overhead. Schedulability under NP was verified using the
test of Theorem 2, withqmax

k = Ck = CNP
k for each task

τk. When considering FP with preemption cost, we used the
equation of classical response time analysis, adding a fixed
cost for each preemption. As shown in [9], the response
time of τk is given by the smallest fixed point of:

Rk =
∑

j≤k

⌈

Rk

Tj

⌉

(

CNP
j + cost

)

.

As in the classical analysis, we iterated the above equation
until either convergence was reached or the response time
exceeded the deadline.

The preemption cost is a crucial parameter when evaluat-
ing the effectiveness of the proposed LP policy. We selected
the range of values for this parameter by analyzing the
impact of the last level of cache on a typical partition size for
an avionic system compliant to ARINC-65310 (scheduling
partitions can be as small as2ms). Considering the widely
used PowerPC processor MPC7410 (with2MB two-way
associative L2 cache), it would take about655µs to reload
the whole L2 cache; hence, in such scenario, execution
time increment due to cache interference could be as big
as 655µs/2ms ≈ 33%. We chose to show here the cases
for a cost value between5% and20% of the average worst-
case execution time ˆCNP

k =
∑n

k=1 CNP
k /n.

The results are shown in Figure 5. The first three his-
tograms show the cases withn = 10 tasks and acost of,
respectively,5% (a), 10% (b) and20% (c). As it is clear
from the plotted graphs, NP and FP-without-cost policies
are not affected by a variation of the preemption cost. The
superiority of LP policy over FP-with-cost is evident under
all three scenarios. Notice that the LP model achieves a
better schedulability ratio even when the preemption cost is
as low as5%. The performance of FP-with-cost deteriorates
very quickly as the preemption cost increases, while LP is
always close to the ideal case of FP w/o cost.

In histogram (d), the preemption cost is set to10%, as
in (c), while the number of tasks is increased ton = 20.
The performance of FP-with-cost slightly deteriorates, while
LP improves in terms of percentage of schedulable task
sets. This is expected, because when the number of tasks
increases, each task has a larger slack, hence it can tolerate
a larger blocking. Therefore, less preemption points are
needed in the task code, resulting in a smaller overhead. A
similar argument can be applied to non-preemptive schedul-
ing: larger slacks and smaller worst-case execution times
imply a larger tolerance to non-preemptive blocking.

VIII. C ONCLUSIONS

We presented an efficient algorithm to obtain the schedu-
lability of a task set in a real-time system scheduled with

10http://www.arinc.com/
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Figure 5. Percentage of schedulable task sets varyingn and the preemption cost.

FP or EDF, using the limited preemption model. A proper
number of preemption points is placed inside the code
of each task, in order to guarantee the feasibility of the
task set, reaching an optimal compromise between small
blocking times and reduced preemption overhead. The pos-
itive outcomes of the proposed method are not limited to
the improved schedulability, but include as well a more
predictable behavior of the system. Indeed, reducing the
number of locations in which each task can be preempted
simplifies the timing analysis, allowing more precise bounds
on the worst-case execution times.

As a future work, we plan to adopt tighter estimations
on the preemption delays experienced under the limited
preemption model, relaxing the assumption on the fixed
preemption overhead. We are working on integrating our
techniques with existing timing analysis tools that are able to
derive tight bounds on the CRPD generated at each potential
preemption point. Moreover, we have strategies to extend

our limited preemption model considering critical tasks, like
interrupt handler, that need to immediately preempt other
tasks for a prompt execution.
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