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Abstract—Providing innovative resource-efficient solutions
able to mitigate temporal interference among cloud services,
concurrently sharing the same underlying platform, is crucial
to deploy highly time-sensitive applications at the edge of the
network where resources are strongly restrained, and timing
constraints are stringent. A notable example is provided by the
allocation of virtualized network functions in the radio access
network of modern mobile networks, such as 5G.

This paper describes a kernel mechanism that can be applied
to the design of an architecture providing fine-grain control of
the temporal interferences among concurrent real-time services
while avoiding overheads related to machine virtualization. On
top of them, a model is proposed to meet the required end-
to-end application performance through tuning of parameters
in the underlying novel architecture. We show that theoreti-
cal latency/load curves match closely with experimental data
gathered from a real implementation carried out using both a
networking microbenchmark and a real IMS application.

Keywords-cloud computing, edge computing, real-time
scheduling, temporal isolation, performance modeling, network
function virtualization

I. INTRODUCTION

Information and communication technologies have under-

gone a steady evolution in recent years, with a massive shift

toward distributed computing. Cloud computing, coupled

with the widespread diffusion of broadband Internet con-

nections, induced a paradigm transformation towards more

and more services provisioned through Cloud Computing

infrastructures, in an on-demand and elastic fashion, to meet

consumers’ needs rapidly evolving towards high reliability,

high availability, and high performance.

Cloud infrastructure providers have a growing concern

regarding the efficient management of hosted services, which

led to a broad and variegated amount of innovations in the

last few years. These comprise hardware features imple-

mented by manufacturers as hardware-assisted virtualization

mechanisms to reduce overheads due to machine virtualiza-

tion, software solutions focused on tuning hosted operating

systems internals and software stacks, stirring them towards

para-virtualization, and other mixed solutions based on li-

brary operating systems or unikernels [1], [2]. Among all

these heterogeneous innovations, a notable trend interests

distributed software architectures based on containers [3],

micro-services [4] or even server-less deployments [5].

The exploitation of such improvements concerning isola-

tion and predictability in distributed (private) cloud infras-

tructures is attracting the attention of players that found

the limitations of current cloud computing solutions too

taxing for their application constraints. A significant use

case is provided by network operators who are interested

in creating infrastructures allowing dynamic and distributed

provisioning of network functions following the Network

Function Virtualization (NFV) paradigm, which aims to

deploy network functions as software components instead

of employing traditional physical devices. In these scenarios,

the locality of placement plays a crucial role, since stringent

latency constraints characterize the deployed Virtualized

Network Functions (VNFs), thus demanding efficient under-

lying software solutions. Promising solutions to meet these

goals rely on operating system (OS)-level [6] virtualization

techniques to improve performance. These solutions can

be realized for example using LXC1, LXD2 or Docker3,

able to present almost no overhead with respect to bare-

metal solutions, while maintaining the key features of virtual

machines, like isolation.

A. Problem presentation

The allocation of containers or Virtual Machines (VMs)

in infrastructures like those previously illustrated must deal

with the issue of temporal interference when their number

surpasses the amount of available physical CPUs (pCPUs)

in the host, i.e., multiple virtual CPUs (vCPUs) must share

the same physical CPU, or in the presence of bottlenecks

affecting other resources (e.g., disks or networks) due to

data-intensive workloads.

The current approach for isolating computations is based

on avoiding oversubscription, applying a 1-to-1 assignment

from vCPUs to pCPUs. However, this forces the allocation

granularity to be equal to the single pCPU, leading to

potential waste of computational resources, particularly in

the presence of small or highly variable workloads assigned

to the single container or VM.

Hence, the infrastructure provider is bound to decide its

allocation approach between: a) performing 1-to-1 pinning

of vCPUs to pCPUs, and undergo the consequent resources

waste; b) implementing pCPU sharing among vCPUs (over-

subscription), with substantial performance instability due to

the arising interferences. Both ways are not practicable in the

nodes at the edge of the network, where resources are highly

constrained, energy efficiency can be a crucial issue, and

respecting severe timing constraints is essential for applica-

tions. For example, in the illustrated NFV scenario, over-

subscription impacts on the quality of service (QoS) during

1More information at: https://linuxcontainers.org/lxc/introduction/.
2More information at: https://linuxcontainers.org/lxd/introduction/.
3More information at: https://docs.docker.com/.

124

2019 IEEE International Conference on Edge Computing (EDGE)

978-1-7281-2708-8/19/$31.00 ©2019 IEEE
DOI 10.1109/EDGE.2019.00036



traffic peak hours, while 1-to-1 allocation unacceptably

raises energy consumption, that represents a predominant

portion of the energy budget of access networks.

B. Paper contributions and structure

This paper presents key features needed to reach the

level of fine-grain allocation and the corresponding modeling

that are mandatory to fruitfully apply cloud computing

infrastructures to time and resource constrained applications

at the edge of the network. In particular, new hierarchical

scheduling features of the SCHED_DEADLINE real-time

scheduler are exploited at the OS kernel level, in order to

apply the resource reservation paradigm to isolate whole

containers. These kernel extensions let the OS guarantee the

assignment of precise pCPU fragments to each application

with an exact per-container time granularity, making the

performance of the hosted services more stable and pre-

dictable. This is fundamental for building a performance

model of the distributed service/application. As an example,

a performance model based on queuing theory is built,

considering both networking and processing reservations, for

a synthetic distributed application with packet inter-arrival

times, packet sizes and per-packet processing times all being

i.i.d. with exponential distributions. The obtained model

allows for providing an accurate estimate of the application

performance, as shown via extensive experimentation on

synthetic and IMS application scenarios running on Linux.

The paper is structured as follows. Section II depicts an

overview of related works in the current research literature.

Section III introduces the proposed approach, accompanied

by the proposed modeling effort for a synthetic client-

server application detailed in Section III-B. Section IV

validates the proposed approach and the described applica-

tion model through extensive experimentations performed

with a patched Linux kernel that extends the mainline

SCHED_DEADLINE CPU scheduler [7] with hierarchical

scheduling. The solution is also applied to a node hosting a

simple NFV function to show its applicability in a simple

but real scenario. Finally, Section V draws conclusions and

outlines possible future work on the topic.

II. RELATED WORK

The cloud approach has been able to widen its appli-

cation range due to its positive features making it fit to

bring advantages to a heterogeneous collection of scenarios.

However, constraints like latency and power consumption

are more critical at the edge of the network than in a typical

cloud scenario, and must wisely be considered. Hence, novel

mechanisms able to enforce a more fine-grained control of

resource usage at OS and hypervisor levels are critical. Also,

they must be coupled with an equally detailed model of the

platform and resource availability, so that precise application

timing constraints can be met.

Various works exist on controlling performance of dis-

tributed cloud services via elasticity and auto-scaling mech-

anisms [8], [9], intelligent placement strategies [10], [11],

possibly including network-awareness [12] and SDN-based

approaches [13]. To reduce interferences of co-located ser-

vices, solutions based on real-time scheduling applied to

hypervisors have been proposed, e.g., for the KVM [14] and

Xen [15] hypervisors.

Some authors suggested to accelerate cloud infrastructures

exploiting heterogeneous hardware platforms, including GP-

GPUs [16] and FPGAs [17]. However, this is orthogonal

to the problem of limiting temporal interferences among

co-located services, discussed in this paper. A wide range

of performance-related features is available in operating

systems and hypervisors nowadays, needing to be extended

and exposed in order to make them usable by higher layers

actors, such as cloud orchestration [18].

In the world of telecommunications, network operators are

extensively using cloud principles for developing NFV solu-

tions, and are interested in extending the paradigm up to the

edge of the network [19]. For example, the Virtualized Radio

Access Network (VRAN) seeks to move computational

functionalities of the networking stack from the radio head(s)

to dedicated servers at the edge of the infrastructure [20],

[21], despite the stringent timing constraints sometimes in

place, like the one of 4ms imposed on the acknowledgment

of packets by the Hybrid ARQ (HARQ) [22] protocol. This

solution is in line with the constant demand for reducing

energy consumption in the deployment of VRAN, adopting

a wise allocation of processing elements.

In [15], authors propose to enhance the Xen hypervisor

with new features to support real-time processing, including

the application of hierarchical real-time scheduling the-

ory [23] and allocation of precise time slices of the physical

CPU to each VM running on the platform. The same authors

also realized an extension [24] to OpenStack exploiting the

experimental features introduced at the hypervisor level.

These Xen extensions have also been employed for creating

a real-time NFV solution [25]. However, these solutions

introduce genuine virtualization with all the associated over-

heads that are missing in a container-based solution. Real-

time hierarchical scheduling strategies have been introduced

for the Linux kernel, e.g., in [14], [26] that can be employed

with containers if extended to manage cgroups [27].

These enabling mechanisms can provide an adequate

guarantee to the time constraints of hosted services, but

they become much more effective when coupled with proper

modeling and analysis methods, as proposed in this paper.

III. PROPOSED APPROACH

This paper considers the kind of systems discussed in [28],

and also shown in Figure 1, composed of multiple clients

submitting requests to a group of servers. Requests can be

served by one single server selected by a load balancer,
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might need to traverse a chain of servers, or might be subject

to more involved distributed processing topologies.

Figure 1. Reference service topologies.

Traditional cloud computing systems try to control the

QoS experienced in these topologies through elastic scaling

(horizontal, or, less frequently, vertical) and/or load balanc-

ing techniques implemented in the cloud orchestration layer.

Unfortunately, this approach can be used only with services

spanning across multiple instances and is not effective when

multiple services are co-located on the same physical nodes

and share some resources (for example, the CPU). In this

case, in fact, the execution of each service can be preempted

in a non-controllable way by other services running on the

same CPU, resulting in unpredictable performance.

Hence, it is of critical importance to engineer predictable

and theoretically sound low-level resource scheduling mech-

anisms that can provide stable and guaranteed performance

to the various servers, even when they are executed on shared

CPUs/cores. This result can be achieved by using real-time

scheduling in the OS kernel or hypervisor, allowing for the

temporal isolation among co-located services [28].

This resource scheduling mechanism can easily be inte-

grated with standard QoS control policies for cloud services:

thanks to the improved performance stability, performing

the control actions becomes easier, making it possible to

apply well-known control theory techniques to design the

controller. As a result, in the proposed approach it is possi-

ble to dynamically change the scheduling parameters [29],

introducing an additional knob that can be used by an

orchestrator to fine-tune the CPU allocation to individual

containers (vertical scalability) and achieve its control goals.

Therefore, the following of this paper focuses on isolating

the performance of individual co-located services (isolated

through containers) within a cloud platform, with particular

reference to CPU scheduling, thus CPU-intensive services4,

as illustrated in Figure 2. The meaning of the per-container

scheduling parameters (Qi, Pi) will be clarified just below.

4For data-intensive services, the technique can be enriched by integrating
additional QoS control mechanisms at the networking, disk or I/O layers.

Figure 2. Node architecture for the proposed approach: n service
containers are deployed over a host with m physical CPUs (with m < n).
Each container is configured with custom scheduling parameters (Qi, Pi).

Within the presented scenario, the proposed approach is

tailored on the NFV use-case, where a set of VNFs is

deployed as containers hosting packet processing servers

across many possibly heterogeneous computing nodes. Each

node is characterized by various timing requirements, due to

different classes of traffic.

In the following, the proposed modifications to the Linux

real-time scheduler are described and shown with a detailed

modeling example. This allows for leveraging the gained

predictability of the computing performance of single con-

tainers, as a function of the adopted scheduling parameters,

to build a probabilistic performance model of a simple

synthetic packet processing service. This way, statistics of

the response-time distribution can easily be tied to the

configuration of the server. Hence, it is possible to choose

the server configuration parameters as a function of the

desired QoS, allowing a resources controller to decide on the

feasibility of a requested throughput based on the underlying

resources and the already allocated services.

A. CPU scheduler for containers

Linux containers, that can be created by using a variety

of user-space tools such as Docker, lxc, or similar, are

associated with control groups (cgroup) and namespaces.

In particular, a control group allows one to specify limits
on the amount of resources (memory, CPU time, etc...)

that the container can use. An important feature in this

regard is the possibility to control the amount of time

real-time tasks (SCHED_FIFO and SCHED_RR) running in

the container can be scheduled for. Our modifications to

the Linux scheduler allow for building theoretically-sound

scheduling hierarchies through cgroups5.

The Linux kernel provides the SCHED_DEADLINE CPU

scheduling class [7], [30], implementing the Constant Band-

5The Linux kernel already provides hierarchical scheduling for real-time
tasks, but its design aims only at acting as a limitation, not as a guarantee.
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width Server (CBS) [31] algorithm, that allows to reserve

a well defined amount of CPU time to a task (process or

thread). In particular, the task is reserved an amount of time

Q (runtime) every period P . The “Hierarchical CBS”

(HCBS) extension implements hierarchical scheduling [23],

[32] based on SCHED_DEADLINE. In particular, a CPU

real-time reservation (Q,P ) can be assigned to a control

group as a whole (instead of a single task), to control the

amount of CPU time reserved to real-time tasks running

in the group. As a result, the SCHED_DEADLINE policy

is used to select a control group to be scheduled on each

CPU, and the SCHED_FIFO or SCHED_RR policy is used to

select the tasks in the scheduled control group. The obtained

mechanism, conceptually similar to [33] and [26], supports

partitioned scheduling in the host (each SCHED_DEADLINE
entity used to schedule a control group is bound to a

CPU/core) and generic affinities in the guest (fixed priority

tasks in the control group can have generic affinities; hence

supporting both partitioned and global scheduling).

B. Probabilistic model

Consider a physical host with m identical pCPUs employ-

ing partitioned scheduling, where each pCPU hosts up to n
containerized servers. Each server i ∈ {1, . . . , n} receives a

pattern of requests modeled as a Poisson stochastic process.

Namely, requests are sent by the client with exponential and

i.i.d. inter-request times with average rate λi, with requests

of size si, and exponential and i.i.d. packet processing times

with average rate μi. The latter is the processing time

when the server is running on a whole CPU at maximum

speed6, but as explained earlier each server is assumed to

be hosted in a container under reservation-based scheduling

as explained above, using parameters Qi and Pi.

The overall end-to-end round-trip time (RTT) for requests

is thus a stochastic variable Re
i = tSi + tPi + tRi , where:

1) tSi is the time to send the request from the client to

server, including possible queuing time if there are

pending earlier requests;

2) tPi is the time to process the request within the server,

including queuing time if there are earlier requests;

3) tRi is the time to send the response back to the client,

including queuing time if there are other requests

waiting to be transmitted back.

The transmission and response times can be detailed as

t
S
i = q

S
i + δi +

zS
i

σi

, t
R
i = q

R
i + δi +

zR
i

σi

(1)

where qSi (qRi ) is the queuing time during which a request

is waiting to be transmitted (sent back), plus the client-

server transmission latency δi (measurable as, e.g., half the

6For the purposes of this paper, all the CPUs are assumed to be locked at
their maximum speed. Power management and CPU frequency switching
via DVFS are left out for the sake of simplicity, but they will be tackled
in future works.

ping time between the client and the server), plus the time

needed to transmit a request (reply) of size zSi (zRi ) on a

medium with speed σi, assumed to be equal to a fraction

of the available NIC speed (e.g., 1 Gbps or 10 Gbps), as

specified in symmetric traffic/QoS control rules for incoming

and outgoing packets for container i.

The SCHED_DEADLINE scheduler provides the guaran-

tee [34] that, given a processing activity having a duration

of C when running in isolation on a CPU, under a reser-

vation (Q,P ) the computation is finished within a time:

tP = �CQ� ·P, with �·� denoting the ceiling function. Given

a Q/P ratio, if the reservation period P is sufficiently small,

the activity finishing time is reasonably approximated as:

t
P ∼= C

Q/P
, (2)

namely the activity behaves as if deployed on a virtual CPU

that is slower of a factor of Q/P w.r.t. the pCPU it is

deployed onto (Eq. (2) is valid with no queuing of activities).

When a single reservation is used to serve a second level

scheduler (as in our proposed HCBS scheduler), the analysis

is more complex [23], [35] but a “fluid approximation”

similar to Eq. (2) can still be used. Considering a task set

Γ scheduled by a reservation (Q,P ), if a task τ ∈ Γ has

response time R when running on a physical CPU together

with the other tasks from Γ and P is sufficiently small, then

the response time of τ can be approximated as

t
P ∼= R

Q/P
. (3)

In practice, the period P can be set to as little values as a

few tens of ms, but amounts smaller than 1ms would cause

excessive scheduling overheads (and context switches).

Let us focus on the simplistic assumption of uncongested
network first, where the client-server transmission latency

δi has very little variability (a commonplace situation if the

client resides within the same or a closeby data center, e.g.,

easily verified in NFV scenarios), requests are sufficiently

inter-spaced so that the queuing times when sending requests

and replies are negligible qSi
∼= qSi

∼= 0, and both requests

and responses have a bounded size zSi ≤ Zi and zRi ≤ Zi.

Then, from Eq. (1) we have tSi
∼= δi +

Zi

σi
, tRi

∼= δi, and we

can substantially ignore the transmission and response times

in the model, adding back the constant 2δi+
Zi

σi
in the final

expression of the RTT. In what follows, for a networking

symbol t, the following notation is used: t̃ � t− δ.

Under Poissonian arrivals with average rate λi and ser-

vice times approximated as exponentially distributed with

average rate μi
Qi

Pi
(due to Eq. (2)), we have an approxi-

mate M/M/1 model. So, under the stability assumption of
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ρi � λi

μi
Qi
Pi

< 1, the following well-known results apply for

tP and its Cumulative Distribution Function (CDF) FtP (·):

E[t
P
] =

1

μi
Qi
Pi
− λi

, FtP (t) = 1− e
−(μi

Qi
Pi
−λi)t. (4)

For example, given an input rate λi, the condition on the

scheduling parameters (Qi, Pi) for keeping a φth
i percentile

of the response-time distribution Re
i below a threshold Di,

to be intersected with the stability condition, is:

Pr(R
e
i ≤ Di) = 1− e

−(μi
Qi
Pi
−λi)(Di−2δi) ≥ φi

Qi

Pi

≥ 1

μi

(
λi −

ln(1− φi)

Di − 2δi

)
. (5)

Similarly, we can compute the maximum sustainable input

rate λi with the specified probabilistic QoS constraint given

an underlying pCPU with processing capability μi, or the

minimum achievable deadline Di with given λi, μi, and φi,
as a function of (Qi, Pi):

λi ≤ μi
Qi

Pi

+
ln(1− φi)

Di − 2δi
, Di ≥ 2δi −

ln(1− φi)

μi
Qi
Pi
− λi

. (6)

Assume now an exponential distribution of the request

sizes sSi thus of the transmission times tSi with an average

transmission rate νi =
E[si]
σi

, and response-time approxi-

mated as tRi
∼= δi, as due to, e.g., sending back to the client

just a success/error code (symmetrically, we can think of a

tSi
∼= δi and exponentially distributed sRi and tRi , as due to

e.g., replying with data to a very short request packet). With

exponentially distributed service times and under scheduling

parameters (Qi, Pi) Eq. (2) implies an average service rate

of μi
Qi

Pi
.

Then, the system can be approximated as a sequence of

two M/M/1 queues, which, under the stability condition of:

λi < νi ∧ λi < μi
Qi

Pi

, (7)

has the steady-state behavior of two independent M/M/1

queues, with the process of arrivals at the server input queue

being Poissonian with the same parameter λi. Therefore,

denoting with t̃Si the time needed for networking where the

constant term δi has been removed, we have:

R
e
i = 2δi + t̃

S
i + t

P
i , E[t̃

S
i ] =

1

νi − λi

, (8)

E[R
e
i ] = 2δi +

1

νi − λi

+
1

μi
Qi
Pi
− λi

, E[t
P
i ] =

1

μi
Qi
Pi
− λi

. (9)

Imposing the probabilistic QoS constraint on Re
i , as due

to the sum of two exponential distributions with different

parameters, we can easily get to a closed-form bound of Re
i

splitting it proportionally to the expected values of the two

components. Formally, using the easy-to-prove lower-bound

Pr [X + Y ≤ z] ≥ Pr

[
X ≤ z

E[X]

E[X] + E[Y ]
∧ Y ≤ z

E[Y ]

E[X] + E[Y ]

]
,

we have:

Pr[R
e
i ≤ Di] = Pr[t̃

S
i + t

P
i ≤ Di − 2δi] ≥

(
1− e

−αi(Di−2δi)
)2

(10)

where αi � ( 1
νi−λi

+ 1

μi
Qi
Pi
−λi

)−1, and t̃Si and tP have been

assumed to be i.i.d. and independent from one another.

Therefore, we can compute, e.g., the minimum deadline Di

guaranteeing Pr[Re
i ≤ Di] ≥ φi :

Pr[R
e
i ≤ Di] ≥

(
1− e

−αi(Di−2δi)
)2 ≥ φi

Di ≥ 2δi −
ln

(
1−√φi

)
αi

. (11)

Note that νi → ∞ leads to an expression similar to

Eq. (6), just with
√
φi rather than φi, providing an insight

into the implications of the approximated bound of Eq. (10)

above. The minimum αi satisfying the probabilistic con-

straint is: αi ≥ − ln(1−√φi)
Di−2δi

, leading to the maximum input

rate λi sustainable with the given configuration (computed

as a solution of a 2nd order inequality):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λi ≤
μi

Qi
Pi

+νi

2 + βi

⎡
⎢⎣
√√√√1 +

(
μ

Qi
Pi
−νi

2βi

)2

− 1

⎤
⎥⎦

βi = − ln(1−
√

φi)
Di−2δi

.

(12)

IV. EXPERIMENTAL RESULTS

This section presents results validating the approach pre-

sented in Section III, by means of experimental validation,

carried out using a Linux kernel v4.16.0-rc1, modified with

our HCBS patch described in Section III-A, and Linux

containers through lxc, where we have set per-container

HCBS parameters (Q,P ) as needed for each experiment.

Moreover, the proposed reservation approach has been tested

using a simple yet realistic NFV application.

A. Validation of the model

In the first set of experiments, the stochastic model

presented in Section III-B has been validated using an open-

source distributed application we wrote, distwalk7, able

to impose a configurable client-server networking traffic and

processing workload on the server. When imposing a specific

average CPU workload LD, under an average request arrival

rate of λ, we have configured the server to keep an average

per-request processing time equal to 1/μ = LD/λ.

7More information is available at: https://github.com/tomcucinotta/
distwalk.
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In what follows, every measurement has been obtained

from 10K samples over each run, with the affected machines

running with CPU frequency switching and hyper-threading

disabled. The machine used for the server was an Intel(R)

Core(TM) i7-4790K CPU @ 4.00GHz with 16GB of RAM.

Clients have been run on a laptop equipped with an Intel(R)

Core(TM) i7-7700HQ CPU @ 2.80GHz and 16GB of RAM.

Machines had a 1Gbps NIC connected to an L2 switch. The

client-server latency has been measured using ping and

gathering 10K samples, obtaining δ = 252/2 = 126μs.
Negligible sending time model: Figure 3 shows results

from a set of experiments that have been run, with various

values of the computational workload (from 0.5 to 0.8, one

for each plot), the average request inter-arrival time (from

800μs to 5ms, on the X-axis), and a small packet size of

S = 128 bytes making networking time negligible w.r.t.

processing at σ = 1Gbps (S/σ ∼= 1μs). Note that, as in each

plot the computational workload is kept constant (denoted

with LD on top), increasing the average inter-arrival times

(X-axis) implies a corresponding increase of the average

processing times on the server, thus of the response times,

as evident from the plots.

Figure 3. Experimental response times (in ms) for various configura-
tions, compared with the theoretical expectations (negligible sending time
case). Segments connect average to the 99th percentile of response-time
distributions.

The average and 99th percentile of the experimental

response-times are reported in the plots, along with the

theoretical expectations as from Eq. (4) and Eq. (6), for the

average and 99th percentile, respectively. As visible, theory

matches quite closely with theoretical expectations.
Impact of scheduling parameters (Q,P ):

Figures 4 (a)..(d) show how the values of the scheduling

parameters (Q,P ) allow for controlling the expected

response-time statistics. The set of tried configurations

have negligible networking time, with S ranging from

64B to 1024B (with 1/λ = 2ms in (c) this is an

average throughput of 4 Mbps over a 1Gbps network).
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Figure 4. Experimental response-time statistics (on the Y-axes, in ms),
where vertical segments connect the average and 99th percentile for each
configuration: with fixed reservation period but varying reserved CPU
bandwidth (on the X-axis) and workload ratio (different curves) in plots
(a) and (c) on the left; with fixed CPU load but varying reserved CPU
bandwidth (X-axis) and reservation period (different curves) in plots (b)
and (d) on the right.

In Figures 4 (a) and (c), obtained with an arrival period

of 1/λ = 2ms and reservation period fixed at P = 2ms,
we used a Q/P reserved bandwidth going from 0.5 to

0.9 (on the X axis), serving a computational workload

filling up the reservation from a load ratio (LDR) from

0.5 to 0.95 (multiple curves in correspondence of each

Q/P value, slightly inter-spaced horizontally to enhance

readability). Note that the load ratio LDR is related to

the computational workload LD and reservation bandwidth

(Q,P ) by: LDR = LD/(Q/P ), and that LDR = 1
would be the meta-stability region. The curves show that

the response-time grows as the load ratio increases, while

it stays basically flat at constant load ratio. Figures 4 (b)

and (d) show results with an average inter-arrival time

of 1/λ = 5ms, and an average computational workload

of LD = 20%, at varying values of the reserved CPU

bandwidth Q/P , which needs to be greater than 0.2,
for the system to be stable. Differently from Figures (a)

and (c) where curves are obtained at constant load ratio (so

changing Q/P implies changing μ as well), in (b) and (d)

μ is kept constant, thus increasing Q/P the experimental

response-times decrease, as expected. The figures also

report, for each Q/P value, results with different P values

(multiple closeby segments in correspondence of each Q/P
value, slightly spaced horizontally to enhance readability).

Better results are obtained for higher P values. Decreasing

P does not make a visible difference at a CPU reservation

sufficiently higher than the minimum needed for stability,

while it remarkably worsens the response times with

the smaller reservations of Q/P = 40% and 30%. This
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happens because of the additional scheduling overheads

(being 10 times bigger for P = 10ms than they are with

P = 100ms), that become non-negligible at low reserved

utilizations (and runtimes, as P = 10ms and U = 0.3
imply a runtime of Q = 300μs and 100 context switches

per second). Overall, these experiments confirm computing

predictability under given reservation parameters.
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Figure 5. Experimental response-time statistics (on the Y-axes, in ms)
versus theoretical expectations, where vertical segments connect the average
and 99th percentile for each configuration, with different plots representing
results for different packet sizes, at varying reserved CPU bandwidth (X-
axis) and for various computational workload ratio (LDR) (different curves).

Non-negligible sending time model: Figures 5 (a)..(d)

show results compared with the theoretical average and 99th

percentile estimates obtained through the models of Eq. (9)

and Eq. (11), in the cases of very small packets (S = 64B
in (a) and S = 256B in (b)), larger packets still fitting in

an Ethernet frame (S = 1024 in (c)), or significantly larger

packets (S = 8192 in (d)). As evident from the plots, the

predicted average value is quite tight, while the predicted

99th percentile is somewhat over-estimated in this case, as

due to the bounded computations in Eq. (11). However, the

estimate is conservative, and the actual experimental values

are safely below the prediction, which gives some robustness

w.r.t. possible unmodeled effects.

IMS test case: A possible NFV application that benefits

from the usage of the described reservation approach is a SIP

connections manager, widely used for VoIP applications. The

following example compares the experimental cumulative

distribution functions (ECDF) of the RTTs obtained by using

Kamailio8 to manage SIP traffic generated by the SIPp9 tool.

To prevent interference with other running tasks, the client

runs SIPp as a high priority, SCHED_FIFO task, and the

server runs in a 1-vCPU container hosting the Kamailio

8More information at: http://kamailio.org/.
9More information at: http://sipp.sourceforge.net/.

and Mysql processes. SIPp is configured to perform 257
registrations every 100ms, reporting the individual measured

RTT times. For each registration request, the used scenario

involves two packet round-trips and the interaction with the

Mysql database.

Fig. 6 shows the results achieved in the different cases: the

CFS plot corresponds to the use of the default Linux CFS

scheduler, which, splitting the CPU time equally among the

active tasks, allows Kamailio and Mysql to take the whole

time of the underlying pCPU. The CFS noise plot shows the

results achieved when in the system coexist four periodic rt-

app10 tasks running for 6ms every 100ms. Since a portion

of the CPU time is assigned to them, the performance is

strongly affected, resulting in less than 70% of SIP RTTs

measured before 2ms.

The HCBS plot shows the RTTs when Kamailio and

Mysql are run as SCHED_RT tasks within a HCBS container,

tuned with a runtime of 1.4ms and period of 2ms, which

satisfies the average load (about 60%) with some safety mar-

gin. For the HCBS noise case, the same rt-app disturbance

has been used as for the CFS noise case, this time running

as SCHED_RR, within another HCBS server, with runtime

24ms and period 100ms. Since SCHED_DEADLINE is the

highest priority scheduling class, HCBS average perfor-

mance is slightly better than CFS, but, due to the throttling

when the group budget is exhausted, the 99th percentile

of HCBS is at 1287μs, while for the CFS is at 980μs.

Due to the reservation mechanism, the rt-app tasks only

have a marginal influence on the ECDF, apart from the

overhead introduced by the context switches. In the presence

of interfering tasks HCBS noise has a 99th percentile at

1268μs (higher than HCBS because of measurement noise),

outperforming CFS that reaches that percentile one order of
magnitude later, at 10614μs.
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Figure 6. ECDF plots of SIPp authentication RTT using the CFS algorithm
and HCBS, with and without interfering tasks.

V. CONCLUSIONS

This paper introduced a new solution for implementing

distributed Cloud services characterized by stringent timing

10More information at: https://github.com/scheduler-tools/rt-app/.
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and resource constraints like those deployed at the edge

of the network (e.g., NFV placement in VRAN). As an

example, an implementation based on Linux containers has

been presented, but other implementations are also possible.

The proposed solution leverages existing real-time theory to

achieve predictable QoS, useful in time-critical applications

(e.g., 5G network function split), making it possible to

provide a simple analysis based on queueing theory.
As future work, a feedback mechanism will be added

to adapt the resource allocation to dynamic workloads and

to cope with overload conditions. Moreover, the theoretical

analysis will be extended to consider more complex scenar-

ios. Inter-container communications are planned to be opti-

mized and applicability to RAN software components such

as OpenAirInterface is among the planned investigations.
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