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Abstract. Multi-Agent Systems (MAS) have been supporting the de-
velopment of distributed systems performing decentralized thinking and
reasoning, automated actions, and regulating component interactions in
unpredictable and uncertain scenarios. Despite the scientific literature is
plenty of innovative contributions about resource and tasks allocation,
the agents still schedule their behaviors and tasks by employing tra-
ditional general-purpose scheduling algorithms. By doing so, MAS are
unable to enforce the compliance with strict timing constraints. Thus, it
is not possible to provide any guarantee about the system behavior in the
worst-case scenario. Thereby, as they are, they cannot operate in safety-
critical environments. This paper analyzes the agents’ local schedulers
provided by the most relevant agent-based frameworks from a cyber-
physical systems point of view. Moreover, it maps a set of agents’ be-
haviors on task models from the real-time literature. Finally, a practical
case-study is provided to highlight how such “MAS reliability” can be
achieved.
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1 Introduction
Cyber models and the physical world are merging into increasingly complex sys-
tems since human beings began to use Cyber-Physical Systems (CPS) to control
and interact with their surrounding environment. Data are collected through dis-
tributed sensors, locally or remotely processed, possibly composing feedback to
be sent to other entities, or triggering actions directly affecting the physical world
(e.g., via actuators). In domains such as e-health [1,2], telerehabilitation [3],
manufacturing [4], retails [5], and automotive [6], regardless of dimensions and
distribution, the safety of the system and its users is the major requirement. As-
suming there is an absence of hardware failures and errors in the design phase [7],
to operate in safety-critical scenarios, a system has to be able to guarantee its
correct execution and the compliance with strict timing constraints even in the
worst-case scenario [7]. The distributed nature of such CPS relies on a multitude



of elements operating simultaneously. Hence, the interaction among entities of
a decentralized system requires an (i)“intelligent/strategic” layer (i.e., a layer
to allow single components and the CPS as a whole to achieve their goals), (ii)
a communication middleware (i.e., to allow the exchange of information and
requests among the components of the CPS), and (iii) local policies (e.g., sched-
ulers and heuristics enabling each component execute its tasks). Thus, to have a
reliable system, its components (both singularly and altogether) have to provide
timing guarantees on delays and response/execution times. Dealing with hard-
coded, automatic or semi-automatic actions imposes different requirements with
respect to scenarios characterized by highly unpredictable and uncertain behav-
iors. Nevertheless, mechanisms such as negotiation, communication, and local
scheduling have to operate in either one.

Considering Multi-Agent Systems (MAS) as one of the most prominent and
promising “approaches” supporting Internet of Things (IoT) technologies and
CPS [8], the capability of MAS to comply with strict timing constraints is
a crucial arising challenge. Adopting an agent-based framework can facilitate
the implementation of robust and reconfigurable systems. In particular, seeking
for distributed thinking, the capabilities of having partial technology indepen-
dence (smooth migrations between diverse technologies) [9,10,11] and “reusing”
components, capabilities, functionalities, and knowledge, are extremely relevant.
However, concerning strict dependability, stringent safety and security policies,
resources efficiency, and real-time guarantees [12], at present no agent-based
framework can yet support the development of an MAS able to guarantee full
compliance [8].

Contribution
Investigating the most used and still active agent frameworks, this paper focuses
on the single agent’s internal scheduler (hereafter referred to as local scheduler)
used to regulate the execution of its tasks and behaviors. Considering the review
conducted in [13,14] as common ground and adopting the safety-critical systems
point of view, this paper:
(i) analyzes local schedulers for handling agent’s tasks/behaviors, (ii) motivates
adoption and adaption of schedulers from the real-time literature, (iii) proposes
to map agent’s behaviors on real-time task models, and finally (iv) proposes a
practical example as a case-study of the proposed approach.
Summarizing, the outcome of this study aims at supporting the development of
real-time multi-agent systems (RT-MAS) that can finally satisfy all the require-
ments of a safety-critical scenario. The paper is organized as follows: Section 2
presents and elaborates the state of the art , Section 3 organizes and describes
the obtained results, Section 4 briefly discusses the obtained results in key CPS.
Finally, Section 5 concludes the paper.

2 Local scheduling in agent-based frameworks

Kravari and Bassiliades [13] proposed a detailed and comprehensive study of
multi-agent frameworks (referred as Agent Platforms). However, the notion of
scheduling appears only to refer to mechanisms that distribute and organize



tasks and resources among the agents within a specific platform. By doing so,
they took for granted the behavior execution and the compliance with the agree-
ments stipulated during the negotiation phase. Such an assumption is naive and
too optimistic, thus resulting in being unacceptable for safety-critical applica-
tions [8]. For example, in the case of a telerehabilitation system, a delayed,
wrong, or miss-aligned (in terms of content - time) feedback may cause severe
injuries to the patient [3]. Nevertheless, almost all the agent-based platforms
present and have implement at least one local scheduler. Table 1 collects them
detailing programming language, platform purpose (where GP is general purpose,
M is Modeling, and S is simulations), status (where A is Active, N is inactive,
and U is unclear), last update (according to the last platform release or push in
the official repository), and finally the agent’s scheduling algorithm. Excluding

Agent Programming Platform Status Last Scheduling
Platform Language Purpose Update Algorithm

JADE Java, GP A Jun 20171 Non-Preemptive
.NET (via add-ons) RR (FCFS)

Cormas SmallTalk M, S A Aug 20172 No default scheduler
(nothing happen)

Swarm Java, Objective-C M, S U Oct 20163 Event-driven
(Priority Scheduling,
FCFS)

GAMA Java M, S A/N Jul 20174 Priority Scheduling
MASON Java GP A - Event-driven

(Priority Scheduling)
Jason AgentSpeak GP A (?) Aug 20175 RR
MaDKit Java GP A Jul 20176 FCFS
NetLogo Logo Dialect M, S A Aug 20177 No default scheduler

(nothing happen)
RePast Java, Python, M, S A Sep 20168 FCFS

.NET, C++,
ReLogo, Groovy

Jadex Java GP A Mar 20179 FCFS

(1) https://goo.gl/TKGqT6 (2) https://goo.gl/9sxKtt (3) https://goo.gl/WYJAK2
(4) https://goo.gl/USVVbe (5) https://goo.gl/Wtbm5T (6) https://goo.gl/ysJZRH
(7) https://goo.gl/kngRWj (8) https://goo.gl/yDsqyH (9) https://goo.gl/ZK7fAf

Table 1: Brief overview of the major agent platforms.

two agent platforms, all other analyzed ones have implemented specific sched-
ulers. Although it provides a default event-driven mechanism to process the
agent behavior, the first exception is NetLogo, which declares that no partic-
ular scheduler is implemented. The second is Cormas, which, differently from
the previous one, if no custom/Ad-Hoc scheduler is provided, the behaviors are
not executed (nothing in the system would happen). Allowing the platforms’
users to directly implement their version of a behavior scheduler ensures a high
flexibility. Hence, not only pure algorithms are admitted, (e.g., heuristics such



as RR, random selection, less workload first, early starting time first) but the
custom mix development of the one mentioned above is also encouraged [15].

MaDKit, RePast, and Swarm implement the classic FCFS, GAMA and MA-
SON [16] implement a type of priority scheduler (e.g., SJF-like), Jason imple-
ments an RR applied to structured behaviors, and finally JADE implements
a non-preemptive RR. The Jason and Jade’s implementations of RR result in
being FCFS of intentions [17] in the first case and of behaviors in the second,
eventually treated like single entities. Aiming at emphasizing the safety-critical
systems point of view, an analysis of those algorithms is presented below and
organized as non-priority and priority schedulers.

2.1 Analysis of non-priority local schedulers in MAS

The FIFO and RR scheduling algorithms are two of the most known algorithms
and inspired a multitude of variants. On the one hand, FIFO (also referred
as FCFS) executes tasks in the exact order of their arrival (according to their
position in the ready queue). The absence of preemption or re-ordering in this
mechanism allows to classify the FCFS “the simplest scheduling policy with
minimal scheduling overhead”. On the other hand, RR is mainly appreciated
for its fairness (which plays an important role in general-purpose applications)
and prevention from tasks-starvation. Its mechanism is based on the concept of
slicing the tasks’ computing time on the processor in equal time-quantum. Thus,
the tasks in the ready queue are cycled to get the processor. If a running task is
completed, the processor directly computes the next one; otherwise, it saves the
task status and puts it back in the ready-queue before computing the next one
(context switch).

Given this conceptually simple mechanism, minor adjustments are enough to
make it suitable for handling a structured queue of “tasks”. A practical example,
showing how Jason revisited the RR scheduler, is presented in Figure 1. Such a
platform is characterized by the adoption of the Beliefs, Desires, and Intentions”
software model (BDI) [17]. Thus, simple actions compose a plan which aims at
satisfying a desire according to the agent’s beliefs and knowledge. Assuming to
have an agent with multiple and concurrent intentions, the way Jason applies
the RR is to execute one action from the plan at the top of the plans stack
composing one intention. At completion, the next action scheduled is the first
on top of the actions-stack of the next intention. Referring to Figure 1 the
scheduling is: P1(A1), P2(A1), P3(A1), P1(A2),P2(A2), and so forth. Note that,
the second action of Plan 1 is scheduled only after the execution of at least one
action per plan. Moreover, the concept of time-quantum has been overridden
by the actual duration of the selected action. So, the time-quantum actually
coincide with the computational time required by the currently running task.
Finally, this mechanism is repeated for all the intentions owned by the agent. In
case a new intention is generated, it is placed on the top of the queue.

This simple mechanism cannot be implemented/applied in real-time oper-
ating systems because of the long waiting time and significant response time,
which has to be recalculated for any new task arrival [18]. The latter, given its
complexity due the dependency from the queue characteristics, is too complex to



A
ct
io
ns

In
te
nt
io
ns

Pl
an
s

B
el
ie
f

A
ge
nt

Schedule: A 1 A 1 A 1 A 2 A 2 A 2 A 3 A 3

Ag 1

B 1

A 1 A 2 A 3 A 1 A 2 A 3 A 1 A 2

I 1 I 2

P 1 P 2 P 3

I 3

Fig. 1: Jason’s implementation of RR scheduling: A graphical representation.

be actually considered feasible at run-time. Therefore, in-light of these factors,
the risk of missing deadlines (not taken into account at all by the algorithm)
might dramatically increment, thus degrading system performance and compro-
mising its reliability and safety. Nevertheless, tuning the parameters as proposed
in [18] leads to minor improvements, which are still not enough the breach into
the world of the real-time systems.
In the Jade platform, the agents’ tasks are referred as “behaviors”, which can
be primitive or composite [8], and might be compared to the roles played by the
actions in Jason. The most relevant for the purpose of our study are:

Primitive behaviors:

SimpleB.: an extendable basic class; CyclicB.: a behaviour performing actions
repeatedly, reactivating itself after its execution is completed. It stays active
as long as its agent is alive; TickerB.: a periodic behavior which unlike the
CyclicBehaviour is re-executed after a set time (customized activation period);
OneShotB.: an instance can only be executed once along with its agent life-
cycle; WakerB.: it allows defining the activation time (delay from the agent
life-cycle start); MsgReceiverB.: it is triggered if a timeout expires or a spe-
cific type of message is received.

Composite behaviors are enabled by complex combination of primitive behaviors:
ParallelB.: it enables the parallel execution of children behaviors allowing the
definition of the termination conditions: it terminates if all, n, or any child is
completed. SequentialB.: it executes its children behaviors consecutively and
terminates when the last child is terminated.

To handle such behaviors, Jade proposes another customization of the RR
algorithm, called non-preemptive RR [19]. However, the reference to the term
”Round Robin” is inappropriate since preemption is not admitted and, con-
sequently, time-quantum varies from task-to-task (i.e. the computational time
of the running behavior). Therefore, the non-preemptive RR turns to operate
like a classic FIFO/FCFS which treats both simple and composite behaviors as
“atomic task”. The only variant is that when the action method of a behavior



can return true (it is removed from the list of active behaviors”) or false (it is
appended back in the ready queue).

Jadex is a JADE-based platform relying on the BDI notion [20] and based on
four JADE elements which operate concurrently on the internal data-structures
of the agent. The message receiver listens for ACL messages from other agents
creating corresponding message events. The timing behavior releases the events
on the timetable, appending them to the list of events to be dispatched. The dis-
patcher adopts goals by placing them on the intention stack and selecting plans
to be handled from the event list. The selected plans are subsequently executed
step-by-step by the scheduler (which also implements the plan supervision).
Implementing the functionalities into separate behaviours allows a flexible be-
havior replacement with custom implementations (e.g., alternative schedulers
and BDI implementations). However, the dispatcher is responsible for selecting
plans to handle events and goals inside the agent, thus facilitating reactive and
proactive behavior. It also manages the interrelation between plan instances and
goals. The dispatcher cyclically removes the next entry from the event list, checks
if a goal is associated with the event, and then creates the applicable plans list
(APL) for the event. When a goal is finished (success or failure), the owner of the
goal will be notified. For a failed goal, the dispatcher may choose another plan
for execution depending on the BDI flags of the goal. The scheduler executes
the ready-to-run plan instances one at a time, and step by step, applying an
FCFS scheme. In each scheduling cycle, the first plan instance is removed from
the ready list, and then a single step is executed. The scheduler waits until the
plan step finishes or an error occurs. Afterwards, it checks if any of the associ-
ated goals are already achieved. At the last step of the plan, the plan instance
is removed from the agent.
The schedulers implemented in JADE (non-preemptive RR) and Jadex (FCFS)
are essentially extensions of FIFO and thus, are not suitable to provide strong
real-time guarantees. For example, (i) it has no means to handle task priorities,
(ii) the schedulability under FIFO can only be guaranteed for systems with a
considerably low utilization factor4 and with uniform period ranges, (iii) re-
sponse time has to be recalculated for any new task arrival (unsustainable), and
(iv) waiting and response time are affected by the tasks set features even then
in the RR case.

Although FIFO guarantees simplicity and fairness (which can apply to general-
purpose but not for the real-time systems), the real-world applications often op-
erate under unfavorable conditions and high task-set utilization. Thus, in the
best hypothesis, FIFO can only be considered a viable option for soft real-time”
systems. However, Altmeyer et al. [21] revisited FIFO scheduling altering its
operating conditions to increase its predictability and improve its real-time per-
formance. They provided a schedulability test for FIFO with and without offsets.
Moreover, studying a case with strictly periodic tasks and offsets, they proved
the competitiveness of such a scheduling policy when predictability and sim-
plicity matter. Finally, two significant advantages can be achieved by enforcing

4 the fraction of processor time spent in the execution of the task set [7]



strictly periodic task releases and adding offsets: (i) performance limitations are
mitigated and the number of schedulable task sets is increased (even in the case
of high utilization rates and task-sets with harmonic or loosely-harmonic peri-
ods, and (ii) defined by the order of job arrivals, a unique execution order is
enforced, thus simplifying validation and testing.

To overcome some of the real-time limitations introduced in MAS by RR,
FCFS, and their customization above-mentioned, the Priority schedulers have
been introduced.

2.2 Analysis of priority local schedulers in MAS

The class of priority schedulers is based on assigning a priority to all the tasks in
the task-set which discriminates their position in the ready queue and so their
turn to get the CPU. Usually, tasks with higher priorities are carried out first,
whereas tasks with equal priorities are treated on the FCFS basis. A general ex-
ample of a priority-scheduling algorithm is the shortest-job-first (SJF) algorithm.
There two main types of priority algorithms:

– The fixed priority, which schedule general-purpose systems by assigning a
“priority-based” value to the tasks offline. Then, the dispatcher sorts them
by relevance and time-by-time it executes the first in the ready queue;

– The dynamic priority, which have similar mechanisms, but they assign the
priority depending on the systems’ behaviors at run-time. Thus such values
can change over the time.

According to the developers, the MASON platform is not yet a distributed
toolkit. It requires a single unified memory space, and has no facilities for dis-
tributing models over multiple processes or multiple computers [22]. Designed to
be efficient on a single process, such a simulation tool could also be run simulta-
neously (e.g., multiple MASON instances on multiple threads). In MASON, the
concept of agent has a particular specific interpretation: “a computational entity
which may be scheduled to perform some action, and which can manipulate the
environment. Thus, considering the single process nature of such a platform,
the agent is a series of behaviors associated with its logic model. The time is
conceived discrete, and the agents’ behaviors are scheduled as discrete events
composed of steps [22]. They are:

– scheduleOnce(Steppable agent): Schedules the given agent at the cur-
rent time + 1.0, with an ordering of 0, and returns true;

– scheduleOnceIn(double delta, Steppable agent): Schedules the given
agent at the current time + delta, with an ordering of 0, and returns true;

– Stoppable scheduleRepeating(Steppable agent): Schedules the given
agent at the current time + 1.0, with an ordering of 0.

Moreover, such methods can be called adding more parameters (e.g., order-
ing, steppable agents, time, and intervals) [22].

Similar per time and scheduler discretization, GAMA refers to the agents
as species and to the tasks/behaviors as actions (activable anytime – like the
OneShot behaviors in Jade) and reflex (periodic behavior – like the cyclic in Jade,



with the only difference that they are activable only in the contex in which they
are defined). Recalling that, these kind of schedulers rely on the concept of fixed
and dynamic priority. In both MASON and GAMA, such priority is implemented
by using the release time of the behaviors. Despite a broad applicability of such
algorithms, there are significant limitations. Considering the fixed priority, the
task set might become not schedulable due to two main reasons: (i) in the case
the other tasks have a higher priority, the task added at run-time might risk
the starvation (it can be overcome by implementing aging mechanisms), and (ii)
although respecting all the deadlines, the priority of the old task set cannot be
updated. With respect to RR and FCFS, this class of scheduling algorithms can
guarantee a higher utilization factor. However, the schedulability analysis has
still to be re-computed at any new task activation.

To finally improve performance and guarantee reliability of the MAS, the
next section addresses the adoption and adaption of the most fitting scheduling
algorithm among the models typical of real-time systems.

3 Improving MAS’ Local Scheduling
This section formalizes the objectives and performance that have been set to
define the most fitting scheduler for MAS discussing pro and cons of the ana-
lyzed algorithms. Moreover, it proposes the mapping of the most relevant agent’s
behaviors with tasks-set model from the real-time theory.

A high utilization factor guarantees a better exploitation of systems with
scarcity of resources. Aiming at employing MAS in IoT systems, this is a cru-
cial feature. Hence, distributed technologies are mainly characterized by limited
dimensions, which involve limited battery life-time and limited computational
capabilities [3].

In a real-time system, the correct resource allocation to guarantee the timing
constraints is based on an analysis that considers the worst-case scenario for the
set of tasks under evaluation. With respect to the classical approaches, intro-
ducing the concept of a schedulability test to be kept into consideration in a
reservation based negotiation protocol [8] is already a remarkable improvement.
Moreover, incrementing the tasks acceptance ratio, with mechanisms tractable
during the negotiation phases is strategic objective which introduces directly
the most important, which are introducing the possibility of handling aperiodic
requests and being able to guarantee isolation among tasks, thus avoiding inter-
ference due to deadline misses, overrun, and crashes.

Given the features described in Section 2.1, we consider the set of behaviors
present in Jade as the most suitable to match the real-time task models. Thus,
to determine the best combination of task models and schedulers enabling the
compliance with strict timing constraints and the maximization of the agents’
resource utilization, we propose the following as possible mapping:

(i) the OneShotBehavior and (ii) the WakerBehavior can be represented
with the aperiodic task model. Moreover, a natural mapping occur for the (iii)
TickerBehavior which fits perfectly the feature of the periodic task model [7].
Finally, assuming the knowledge about external activities and incoming packets
(i.e., minimum inter-arrival) the (iv) MsgReceiverBehaviour can be modeled on
the sporadic task. All the other behaviors and activities not mentioned in the



direct mapping can be expressed as combinations of (i), (ii), and (iii) models. In
particular, the CompositeBehaviors can be modeled according to the scheduling
theory based on the directed cyclic graphs (DAG) representation [23].

According to such a mapping, the objectives, and the several constraints
imposed by the real-time theory, several scheduling algorithms such as Rate
Monotonic (RM) [24], Earliest Deadline First (EDF) [7], Constant Bandwidth
Server (CBS), Sporadic Server (SS), and Total Bandwidth Server (TBS) can be
considered eligible [25].

3.1 RM and EDF Analysis

Considering a scenario solely involving periodic (and sporadic) tasks, the schedul-
ing can be performed using RM or EDF (depending on specific requirements).

Let us consider a generic task-set Γ composed of periodic and sporadic tasks
τi. They have to at least be characterized by release time (ri), computation
time (Ci), and relative deadline (Di). Moreover, the parameter (Ti) indicates
the period for the periodic tasks and the minimum-interarrival time for the
sporadic tasks.

The assumptions characterizing the traditional schedulability analysis are:
(A1) The instances of a periodic task τi are regularly activated at a constant
rate. The interval Ti between two consecutive activations is the period of the
task. (A2) All instances of a periodic task τi have the same worst-case execution
time Ci . (A3) All instances of a periodic task τi have the same relative deadline
Di , which is equal to the period Ti. (A4) All tasks in Γ are independent; that
is, there are no precedence relations and no resource constraints.

For completion, it is worth to also mention the implicit assumption involved
by A1,A2,A3, and A4 : (A5) No task can suspend itself, for example on I/O
operations. (A6) All tasks are released as soon as they arrive. (A7) All overheads
in the kernel are assumed to be negligible.

Recalling that the processor utilization factor U is the fraction of processor
time spent in the execution of the task set [7], it is calculated as show in Equa-
tion 1. If U is U > 1 the schedule is not feasible for any algorithm. If U ≤ 1 the
schedule is feasible for EDF and might be schedulable for the others algorithms
mentioned above.

U =

n∑
i=1

Ci
Ti

(1)

RM follows a simple rule, assigning priorities to tasks according to their re-
quest rates. In particular, tasks with higher request rates (shorter periods) get
higher priorities. Being the periods constant, RM performs offline the assignment
of fixed-priorities Pi which being static cannot change at run-time. The preemp-
tion mechanism is intrinsic in RM. Hence, the running task can be preempted
by a newly arrived task if it has a shorter period.

Although RM optimality has been proved [7], the maximum U it can guaran-
tee is low, and it is dramatically dependent on the task set’ features. The lower
upper bound is shown in Equation 2, and for n→∞, Ulub → ln2.

URMlub = n(21/2 − 1) (2)



Finally, it is not always possible to assign and sort the priorities. Hence, in
MAS scenarios, assigning offline priorities based on the tasks’ period is not viable.
It would mean handling coordinately all the priority in the system. Moreover, it
would not cope with the necessity of updating the task-set at run-time.

Thus, it has been investigated which algorithms can satisfy real-time guar-
antees with dynamic priority. The first algorithm analyzed is EDF.

Such an algorithm handles the priority according to the task’s absolute dead-
line (D). Hence, the ready queue is sorted accordingly, and the task getting the
CPU is always the one with earliest deadline. In the case a task with a deadline
earlier than the deadline of the running task is released, a preemption take place
and so forth. According to Horn [26], given a set of n independent tasks with
arbitrary arrival times, any algorithm that at any instant executes the task with
the earliest absolute deadline among all the ready tasks is optimal with respect
to minimizing the maximum lateness.

The EDF complexity is O(n) per task if the ready queue is implemented as
a list, or O(nlogn) per task if the ready queue is implemented as a heap. In the
case of asynchronous activations it goes to O(n2). According to Dertouzos [27]
EDF is optimal. In particular, if a feasible schedule for a given task-set exists,
EDF is able to find it.

Scheduling with EDF, Equation 1 is still valid for the calculation of the
task-set utilization factor. However, in this case, the maximum U guaranteed is
U = 1.

The acceptability test performed by this algorithm is based on the calculation
of U, which is quite easy to compute, sustainable to be done at run-time, and
incremental. For example, if the U of a given running task-set is 0.7, according
to Equation 1, by adding a task τi with Ci = 2 and T = 20 we have U =
0.8. Checking if a new task can be added in run-time to the task-set has a
considerably low computational impact on the CPU and does not require to
recompute the whole algorithm.

EDF improves considerably the performance offered by RM, however, it is
still not enough to fully satisfy MAS needs. Hence, recalling that agents make a
massive use of negotiating services and resources with each other, it highlights
the unsatisfiable requirements by EDF which are (i) the need of mechanisms to
handle aperiodic requests (major outcome of sporadic and unpredictable nego-
tiations) and (ii) the need of guaranteeing isolation among tasks (in real-case
scenarios, the tasks’ computational time cannot always be considered ideal and
be trusted by default).

To overcome these two limitations characterizing the basic EDF algorithm,
mainly due to tasks’ dynamic activations and arrival times not known a priori,
the CBS has been analyzed. It maintains the same advantages of EDF (imple-
menting the same mechanism). In addition, it can deal with dynamic admission
tests (whenever a new task might to be added to the system) and provides isola-
tion mechanism, proposing and efficiently implementing a bandwidth reservation
strategy.

The CBS mechanism relies on the basic idea of introducing the concept of
server, which is a periodic task whose purpose is to serve aperiodic requests as



soon as possible. Its computational time (budget) is indicated with Qs, its period
is indicated with Ps, and the ratio Us = Qs/Ps denotes its bandwidth.

When a new task enters the system (maintaining the task-set still schedu-
lable), it get assigned a suitable scheduling deadline (to bound its execution in
the reserved bandwidth) and it is inserted (accordingly to its deadline) in the
EDF ready queue. If the job tries to execute more than expected, its deadline
is postponed. Such a task is still eligible for being executed, but its priority is
decreased minimizing its interference on the other tasks.

For those schedulers which make various use of the concept of server, the
system utilization factor is the sum of the processor utilization factor (see Equa-
tion 1) and server utilization factor (see Equation 3). Thus the final value is
given by Equation 4.

Us =

m∑
s=1

Qs
Ps

(3)

Usys = Up + Us ≤ 1 (4)

Finally, if a subset of tasks is handled by a single server, all the tasks in that
subset will share the same budget/bandwidth, so there is no isolation among
them. Nevertheless, all the other tasks in the system are protected against over-
runs occurring in any server.

Summarizing, Table 2 collects the requirements set for a scheduler to be eli-
gible as local scheduler in real-time compliant MAS. The following table sum-

ID Requirements

1 High utilization with bounded response times5

2 Respect of strict timing constraints (no deadline misses)
3 Tractable acceptance test (executed during bid)
4 Isolation among periodic and aperiodic tasks to avoid/minimize interference.

Table 2: Improvements required for Local Scheduler.

marizes the most characterizing features of the analyzed scheduling algorithm
with respect to the requirements formalized in Table 3.

RM EDF CBS Features

§ © © Maximum utilization factor guaranteed U = 1

§ © © Utilization based acceptance test

§ § © Handling aperiodic requests

§ § ©6
Isolation among tasks

§ § © Server support and admission test

Table 3: Improvements required for Local Scheduler.

5 sum of reading data/sensors, elaboration, communications, and possible actuation



4 Case-study evaluation

This section presents the analysis of an agent-based system for telerehabilitation
as a practical case study modeled implementing the CBS mechanism as the local
scheduler. The system is composed of three agents (A, B, and C). Let us assume
that B and C are similar agents deployed on wearable sensors capable of sharing
inertial information. A runs on a tablet and is in charge of integrating and
displaying the values received from B and C. The behaviors/tasks running in the
system are:

τ1 : reading messages,
τ2 : writing messages,
τ3 : computing inertial information,
τ4 : displaying graphically the elaborated inertial information, and
τ5 : generating the need of inertial information.

For simplicity, in this example the communication delays among the agents
are assumed to be constant (i.e., δA,B = δB,A = δA,C = . . . = δcomm). Such a
value is included in the computation time of each communication task (i.e., τ1
and τ2).

The task-set of agent A is composed of τ1, τ2, τ4, τ5. The task-sets of agents
B and C have the same composition which is τ1, τ2, τ3. The tasks’ computation
time and period are specified in Table 4a. The system’s dynamics are represented
in Figure 2a.

Table 4: Agents’ task-sets
(a) tasks parameters

Agent t C T

A,B, C τ1 1 −
A,B, C τ2 1 −
B, C τ3 6 20

A τ4 4 20

A τ5 1 −

(b) Servers’ parameters

Server Q T

s1 2 20

s2 2 20

s5 1 20

As introduced in the previous section, the CBS can provide isolation among
aperiodic and periodic tasks. In this case study, τ1, τ2, and τ5 are aperiodic,
having different characteristics and scopes. Therefore, the common practice is
to assign them to independent servers [7] (e.g., τ1 → s1, τ2 → s2, and τ5 → s5)
characterized as shown in Table 4b where Ps = Ts and Cs = Qs.

When the system starts, at t = 0, A has only scheduled τ1, τ2, τ5. Thus,
according to Equation 4 its utilization factor is U = 0, 25. At the same instant,
according to the same formula, B and C have U = 0, 2, since they only have τ1
and τ2 in the set task.

6 only between the sub-set of the tasks handled by the server and the periodic task-set
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Fig. 2: System representation in: (a) AUML, (b) tasks scheduling.

The execution of task τ5 (at t = 1) generates in A the need for information
produced by the execution of task τ3 from both B and C. If adding such a task
to the analysis Equation 4 is still respected and if the negotiation for on agents
B and C get accomplished, task τ4 is added to the task-set. Considering that
Uτ4 = 0, 2, we have UA = 0, 6 ≤ 1, so the task-set of A is still schedulable. The
contribution in terms of Ui given by τ3 in B and C is U3 = (6/20) = 0, 3. Thus
the admission control executed during the negotiation phase at t = 2 (in B) and
t = 3 (in C) gives a positive response to its activation, being UB,C = 0, 5 ≤ 1.
Therefore, τ4 is activated for the first time at t = 8 (see Figure 2b).

This practical example aims at (i) showing how the CBS scheduling algo-
rithm would operate if employed in MAS, (ii) confirming its crucial support for
a reservation-based negotiation protocol [8], (iii) confirming the capability of
satisfying the requirement presented in Table 2, and finally (iv) ow it is fully
compliant with the MAS standards for agent interactions [28].

5 Conclusions

A plethora of scientific contributions deal with resource/task allocation among
distributed entities. In particular, the agent-based approach revealed to be promi-
nent to foster the development of such systems. In most of the proposed solutions,
the execution of the allocated task is given for granted. Nevertheless, in real
safety-critical applications, this is a naive and unsustainable assumption. This
paper showed that general-purpose scheduling algorithms neither consider the
deadline notion nor can provide any timing guarantee. Therefore, to purse MAS
reliability, the local scheduler is a crucial component that needs to be updated,



in current and/or future platforms. Aiming at providing a better understanding
of the limitations of current local scheduling algorithms of MAS, their mech-
anisms have been presented and analyzed. The proposed solution is to adopt
and adapt real-time scheduling models for multi-agent applications and scenar-
ios. Thus, based on the current approaches, it has been proposed a mapping of
agent’s tasks/behaviors/actions with real-time scheduling models. Finally, the
case study of an agent-based telerehabilitation system it has been proposed to
prove the suitability of the aforementioned discussion while respecting the MAS
standards.

Guaranteeing bounded execution times is a fundamental building block to
support a reservation-based negotiation protocol. Moreover, although formal ver-
ification methodologies checking on time and resource bounds have been pro-
posed [29], integrating real-time scheduling algorithms into agent-oriented plat-
forms requires ad-hoc adaptations based on the actual framework used in the
systems if possible (e.g., due to the unpredictability of the JVM, java-based plat-
form make impossible to provide anyhow strict guarantees). Thus, assembling
an infrastructure for real-time compliant MAS is a priority.
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