
Energy Management for Tiny Real-Time Kernels
Mario Bambagini, Francesco Prosperi, Mauro Marinoni, Giorgio Buttazzo

{m.bambagini, f.prosperi, m.marinoni, g.buttazzo}@sssup.it
Scuola Superiore Sant’Anna Pisa, Italy

Abstract—In battery operated embedded systems, an efficient
energy management is a key feature for increasing the system
lifetime, as well as for controlling the application performance. In
this paper, we present a power management module designed for
tiny embedded operating systems and implemented in the Erika
Enterprise, an OSEK-compliant kernel. The obtained results
show both the effectiveness of the presented component and the
impact of operating mode changes on global performance.

I. I NTRODUCTION

Nowadays, thanks to the progress of information and elec-
tronic technologies it is possible to produce very small devices
characterized by considerable performance and a low cost
per unit. Hi-tech products are widespread and, in the future,
this trend will increase. In this scenario, the issue of energy
saving becomes central, especially for portable devices and
autonomous mobile robots, for which the minimization of
energy consumption not only prolongs their lifetime, but
allows money saving and has also a long term impact for
reducing environmental pollution.

In general purpose computing systems, power management
is implemented through the Advanced Configuration and
Power Interface (ACPI) [1], whose specification defines a
standard for devices configuration and monitoring. In partic-
ular, ACPI offers the operating system an easy and flexible
interface to discover and configure the compliant devices. For
instance, unused devices, including the entire system, canbe
switched to a low-power state, according to the current state
and user preferences. The ACPI approach is suitable to all
classes of computers, including personal computers, laptops,
workstations, and servers, but is considerably expensive in
terms of computation and memory requirements to work on
tiny systems.

In the embedded systems domain, Brock and Rajamani [2]
proposed a valid solution in which the system includes a set of
policies and tasks are divided into groups according to their
energy request or importance. The current policy is chosen
by the policy manager, a component provided by the system
designer. The system behavior is encoded as a grid, where
each cell represents the configuration to adopt when a task of
a specific group runs and a policy is set as active.

In CMOS technology, which is leading today’s hardware
circuits, the power consumption of a gate can be expressed as
a function of the supply voltageV and the clock frequencyf
through Equation (1) [3]:

Pgate = CLV
2psf + V Ishort + V Ileak (1)

whereCL is the total capacitance driven by the gate,ps is
the gate activity factor (i.e., the probability of gate switching),
Ishort is the current flowing between the supply voltage and

ground during gates switching, andIleak is the leakage current.
In particular, the three terms describe the dynamic, the short
circuit, and the static power component dissipated in a gate,
respectively.

Aiming at reducing the dynamic component, Dynamic
Voltage and Frequency Scaling (DVFS) techniques consist of
varying the voltageV and the frequencyf in Equation (1), in
order to slow down the processor while keeping the task set
feasible, according to the actual system workload. An adverse
effect of such an approach is represented by the fact that
V alters the circuit delay, thus limiting the maximum usable
frequency. This phenomenon is reported in Equation (2), where
VT is the Threshold Voltage, that is, the minimum voltage
between gain and source able to create a channel from drain
to source in a MOSFET transistor.

circuit delay =
V

(V − VT )2
. (2)

Given such a limitation, not all the pairs (V ,f ) are usable.

Another well-known approach is the Dynamic Power Man-
agement (DPM). Such technique is used to switch the proces-
sor off during long idle intervals, thus postponing tasks exe-
cution as long as possible, still preserving the schedulability
of the task set.

It is worth observing that both voltage/frequency changes
performed by DVFS methods and operating mode switches
(e.g., run to sleep) actuated in DPM approaches introduce an
overhead in terms of both switching time and energy loss. In
real implementations on real-time kernels, such contributions
cannot be ignored.

Contribution of the paper: This paper presents a module
for managing power consumption in tiny kernels for real-time
embedded systems with limited resources, such as memory,
CPU and power. The proposed module achieves considerable
energy savings, satisfying the application’s timing constraints.
This paper improves the original work proposed by Marinoni
et al. [4] by generalizing the device manager with a modular
approach that allows the user to select a policy customized for
a specific device providing a uniform interface. The proposed
solution has been implemented in the Erika Enterprise kernel
[5] to manage CPUs, timers, and servomotors.

Organization of the paper: Section II presents the architec-
ture of the kernel module, its working flow and its interaction
with the operating system. Section III describes the policies
implemented in the module. Section IV reports the experimen-
tal results performed on the hardware, while Section V ends
the paper with the concluding remarks, pointing out ideas for
future improvements.



2

A. Related work

One of the first paper about power management was pro-
posed by Yao et al. [6] in 1995. The authors studied three
algorithms that, given a task set, compute the minimum energy
schedule. The proposed analysis compared the algorithms
efficiency with respect to different power models but without
taking into account switching overheads.

Swaminathan et al. [7], [8] presented two algorithms, LEDF
and E-LEDF, which set the lowest CPU speed that allows the
earliest deadline task to finish within its deadline. The dif-
ference between the two algorithms is that E-LEDF considers
the switching overheads, while LEDF does not. Such methods,
however, do not provide hard guarantee for all the tasks, hence
they can only be used for soft real-time systems.

In 2004 and 2007, Seong et al. proposed two algorithms.
The first algorithm (OLDVS) [9] accumulates the time gener-
ated by early terminations and exploits it to decrease the CPU
speed so that the current task is completed at the same time at
which it would have completed in the worst case. The second
algorithm (OLDVS∗) [10] divides each task in two parts: the
first one is executed at a slower speed, while the second one
is executed at a higher speed. This approach is based on the
assumption that the probability of ending the task instancein
the first part is significantly higher than finishing on the second
part.

Aydin et al. [11] proposed three algorithms with growing
complexity. The first one computes the lowest CPU speed
such that the task set is kept schedulable under the assumption
that all tasks execute for their Worst-Case Execution Time
(WCET). The second algorithm (DRA) keeps track of the
times at which a task is going to be dispatched (computed
off-line and stored in a dispatch queue). At runtime, if a task
is dispatched earlier, the CPU is slowed down to prolong the
execution until its original finishing time. The third algorithm
(AGR) estimates the tasks completion times based on past
instances and computes the lowest CPU speed to keep the
task set feasible assuming that tasks execute for such estimates.
However, since the estimations can be optimistic, the algorithm
may speed the CPU up to recover from a task overrun.

Zhu et al. [12] proposed an algorithm similar to AGR by
using a feedback controller to estimate the task execution time.

The problem of obtaining an optimal frequency from a
discrete frequency range was discussed by Bini et al. [13]. The
authors provided a method for computing the optimal speed
off-line (that could be unavailable in the specific architecture)
and introduced a speed modulation technique to achieve the
required speed using two discrete values. The analysis selects
the pair of frequencies that minimizes energy consumption
also considering switching overheads into account. Despite of
its innovative contribution, such an off-line approach does not
take advantage of tasks early terminations to further reduce
consumption.

The raising impact of the leakage power in modern archi-
tectures is driving the research on power management toward
DPM techniques. Huang et al. [14], [15] proposed an off-
line analysis that combines DPM and Real-Time Calculus to
estimate tasks arrivals and compute the CPU idle intervals.
Jejurikar et al. [16] proposed an approach based on task
procrastination to maximize the time spent in sleep mode.

II. A RCHITECTURE

The energy saving module proposed in this work (also
referred to as thePower Manager) is part of the kernel and
interacts with the scheduler, the hardware devices, and the
application, as illustrated in Figure 1. While the scheduler
selects the next task to execute, the Power Manager chooses
an appropriate running configuration (i.e., speed and voltage).

Hardware

Applications

Manager

Power
Scheduler

RTOS

Fig. 1. Interaction of the Power Manager with the other system components.

A block diagram of the Power Manager is reported in Fig-
ure 2. It consists of three hierarchically organized modules: the
Application Programming Interface (API), the CPU Manager
and the Devices Manager. Such a modular implementation
allows the programmer to easily remove sub-components when
not needed by the application, so helping to reduce the
footprint.

API

CPU policy

CPU driver

driver 1
power

device
driver 1

power
driver N

driver N
device

Device interface

Device policy

.....

Device Manager CPU Manager

Fig. 2. Block diagram of the Power Manager.

The API module implements the interface defined for the
interaction with the kernel and the applications. The CPU
Manager is responsible for the power management of the
CPU. Using a set of special callback functions calledhooks,
the kernel informs the module about four scheduling events:
task activation, task termination, task preemption, and task
dispatch.

The CPU policy submodule implements the energy sav-
ing policies, which typically select the best speed to meet
the applications constraints, while satisfying a given setof
performance requirements. TheCPU driver is in charge of
setting the CPU parameters, such as frequency and energy
saving state. It is located at the lowest abstraction level as its
code is hardware-dependent.

The Devices Manager handles internal and external periph-
erals. Inside it, theDevice policysubmodule contains all the



3

device policies, developed according to theDevice Interface,
which offers a single access point to the devices. For each
of them, two stacked components,Power driver and Device
driver, abstract the device behavior using a discrete set of
states, as shown in Figure 3. Each state is characterized by a
specific power consumption and quality of service level.

S1

S2

Sm

Hardware Abstraction Layer

Platform Dependent Code

Hardware

Power Driver

Device Driver

Fig. 3. Device stack.

The link between the CPU and the Device module is
necessary to adjust the configurations of devices, whenever
a speed scaling or mode switching event occurs. For instance,
when a new speed is set, the system timers need to be
automatically reconfigured to offer the same tick period.

When an internal error occurs, a user-defined callback func-
tion is invoked, demanding the user to manage the exception.
A typical scenario could occur on speed scaling: if a device
detects that the modified configuration is not able to guarantee
the same performance of the previous state, the callback is
invoked to solve the situation. For instance, if an UART
transceiver with a modified system speed is not able to sustain
the communication baud rate, the user has to specify how to
fix this issue.

A. Sample scenarios

This section describes two examples to better explain how
the modules interact with each other. The first scenario, shown
in Figure 4, supposes that a new task instance becomes
running. The kernel, after having managed the event, informs
the CPU Manager by invoking the corresponding hook (1).
Once the event is notified, the active policy selects the best
frequency to execute the actual workload within the specified
timing constraints. The new speed is communicated to the
CPU driver, which makes it effective (2).

Once the new frequency is fully operational, the CPU
manager notifies the new configuration to the Device Manager
(3), which in turn informs the devices under its control (4) (5).
Finally, each device sets its hardware registers to obtain the
same performance with the new configuration (6). If this is
not possible, the module invokes the error callback to solve
the situation.

Figure 5 presents another situation in which a running task
has to control a servomotor to properly hold a given load with
the minimum energy, using a torque sensor. The controller
reads the torque sensor, computes the load value and notifies
it, through the API, to the Device Manager (1).

The active policy chooses the appropriate state able to hold
the actual load with the minimum energy consumption and no-
tifies it, through the Device interface (2), to the corresponding

API

driver 1
power

device
driver 1

power
driver N

driver N
device

Device interface

Device policy CPU policy
Device Manager CPU Manager

.....

CPU driver

(1)

(2)

(3)

(4)

(5)

(6)

Fig. 4. First example of modules interaction.

Device interface

Device policy

API

servo power
driver

servo
driver

Device Manager

(1)

(2)

(3)

(4)

Fig. 5. Second example of modules interaction.

Power driver (3), which translates the communicated state in
an appropriate set of commands for the specific servo driver,
modifying the actuator performance (4).

III. I MPLEMENTED POLICIES

This section presents the policies implemented inside the
CPU Manager and the Device Manager. Such policies are
configured off-line and are automatically invoked at runtime
without any user interaction.

A. CPU policies

The policies implemented in the CPU Manager work for
a single CPU and adopt a discrete frequency set. In the
following, the termspeedrefers to a frequency normalized
with respect to the highest one (s = f/fmax) ands∗ denotes
the lowest speed ensuring the task set feasibility.

The following three policies are implemented:

• OnLine Dynamic Voltage Scaling(OLDVS) is a policy
proposed by Lee and Shin [9] that selects the minimum
available speed to prolong a task execution time up to its
WCET;

• Bonus Sharing DVFS(BSDVFS) is a variant of OLDVS
proposed in this work to take switching overheads into
account;

• BSDVFS∗ is a variant of OLDVS∗, originally introduced
by Gong et al. [10], extended in this work to take
switching overheads into account.



4

All the analyzed policies compute the most suitable frequency
to exploit tasks early terminations. Note that the tasks dead-
lines are not considered to slow the CPU down: all policies
exploit the unused computation time, if any, from the previous
jobs, prolonging the execution of the current job (at a lower
speed) until its worst-case finishing timeei (that is, the time
at which the task would finish in the worst case at speeds∗).

To better illustrate the implemented approaches, the three
policies are instantiated on a CPU with a setS of three speeds
S = {0.5, 0.75, 1} and are applied to a task set consisting
of two tasks with WCETs equal toC1 = 40 and C2 = 30
(note that all WCETs values refer to the tasks executing at the
highest speeds = 1). For the sake of simplicity, we assume
that task set parameters are such thats∗ = 1.

Figure 6 shows a schedule in which each task executes for
its WCET on the CPU running at speeds∗. Having no early
terminations, the speed is not changed and no energy can be
saved in this case.

If τ1 andτ2 arrive ata1 = 0 anda2 = 5, their worst-case
finishing times will be ate1 = 40 ande2 = 70, respectively.

1
0.75
0.5 τ1 τ2

e1 e2a1 a2

C1/s
∗

C2/s
∗

s

t

Fig. 6. Tasks executing for their WCETs.

To apply any of the policies listed above, the system has to
keep track of the actual execution time used by a taskτi. Such
a monitoring can be efficiently implemented by starting a timer
each time a task becomes running and stopping it when the
task is preempted or completed. Ifε denotes such an interval
executed at a speeds, the remaining WCET of the task can
be computed as

ci = Ci − ε s. (3)

Moreover, abonus time, denoted asB, is introduced to account
for the unused time accumulated by previous tasks’ executions:
whenτi finishes, the saved timeci is added toB, which can
be exploited as an extra time available for the next scheduled
task.

Figure 7 shows the schedule produced by OLDVS whenτ1
finishes at timet = 8. At the beginning,τ1 runs at the highest
speed since no computation time is saved at timet = 0 (thus
B = 0). At time t = 8, τ1 completes, savingc1 = 32 units of
time. Thus,B is incremented byc1 and τ2 can exploitB to
execute at a slower speed such thatC2/s = (C2 +B)/s∗. In
general, having a bonus timeB, a taskτi with residual WCET
ci can still meet its deadline by running at the speed

sOLDVS = min
sj∈S

{

sj ≥
ci

ci +B
s∗
}

. (4)

In the example shown in Figure 7, sinceB = 32 andC2 = 30,
the lowest feasible speed issOLDVS = 0.5. With such a speed,
τ2 would finish in the worst-case att = 68.

Figure 8 illustrates the schedule produced by BSDVFS,
when taking switching overheads into account. Letδ(sx, sy)
be the switching overhead from speedsx to sy. Then, the

1
0.75
0.5 τ1

τ2

e1 e2a1 a2

s

t

Fig. 7. Schedule produced by OLDVS.

minimum speed under which a taskτi with residual WCET
ci and bonus timeB can still meet its deadline is computed
as follows:

sBSDVFS= min
sy∈S

{

sy ≥
ci

(ci +B)/s∗ −∆BSDVFS(sx, sy)

}

(5)

where
∆BSDVFS(sx, sy) , δ(sx, sy) + δ(sy, s

∗).

The term δ(sy, s
∗) accounts for the overhead needed for

restoring the speed ats∗ in the case the next running task
is not able to slow the CPU down further. In the considered
example, the switching overheads are considered symmetric
(δ(sx, sy) = δ(sy, sx)) and proportional to the speed gap. In
particular:δ(0.5, 0.75) = 2, δ(0.5, 1) = 5, andδ(0.75, 1) = 2.

For the given task set, the feasibility test is satisfied only
for s = 0.75 and s = 1, since fors = 0.5 τ2 completes at
t = 78 (i.e., beyond timee2 = 70). Therefore, the running
speed is set to 0.75, causingτ2 to finish in the worst case at
t = 50.

1
0.75
0.5 τ1 τ2

e1 e2a1 a2

s

t

δ(1, 0.75) δ(0.75, s∗)

Fig. 8. Schedule produced by BSDVFS.

The idea behind BSDVFS∗ consists of splitting a taskτi
in two parts,τ L

i andτ H
i , with WCETsc L

i and cH
i , executed at

different speeds,sL and sH, set as the lower and the higher
adjacent speed ofsBSDVFS. The switching instant, and therefore
the two values (c L

i ,c
H
i ) are computed to prolongτi’s execution

until its worst-case finishing timeei. Hence, they are computed
as follows:







c L
i + cH

i = ci
c L
i

sL

+
cH
i

sH

+∆BSDVFS∗(sx, sL, sH) ≤
ci +B

s∗
(6)

where

∆BSDVFS∗(sx, sL, sH) , δ(sx, sL) + δ(sL, sH) + δ(sH, s
∗).

1
0.75
0.5 τ1

τ L
2

τ H
2

e1 e2a1 a2

s

t

δ(1, 0.5) δ(0.5, 1)

Fig. 9. Schedule produced by BSDVFS∗.

It is worth observing that BSDVFS∗ is the only method
able to fully exploit the time bonus to make the current task



5

to complete at its worst-case finishing timeei. Note that if a
task instance finishes earlier, most of the execution is spent at
the lower speedsL, so achieving higher energy reduction.

Figure 9 shows the schedule produced by BSDVFS∗, using
sL = 0.5 andsH = 1, which are the adjacent speeds ofsBSDVFS=
0.75. In this example,δ(sH , s

∗) = 0 sincesH = s∗ = 1.
According to Equation (6), the execution times ofτ L

2
and

τ H
2

result to bec L
2
= 22 andcH

2
= 8, respectively. Note thatτ2

finishes exactly at timee2 = 70.

B. Device policies

The policies implemented in the Device Manager support
timers and servomotors.

Servomotors are devices driven by Pulse-Width Modulation
(PWM) signals, whose absorption peak is concentrated at the
beginning of the signal period with a constant intensity anda
duration proportional to the detected angle error.

The Power driver offersm states, each one identified by
a specific PWM period. The policy inside the Device Man-
ager associates a specific power state to the required torque
according to a pre-specified internal look-up table.

To be implemented, the servo driver (or a PWM peripheral)
uses a timer to generate the control signals and the Device
Manager interacts with such peripherals to vary the PWM
period.

Despite of the negligible energy consumption, timers are
managed by the module to maintain the consistency of the
system time independently of the running speed. The Device
Manager does not provide any policy for them and the Power
driver offers only two states,ON andOFF , corresponding
to the timer active and timer inactive modes, respectively.

IV. EXPERIMENTAL RESULTS

The Power Manager has been developed as module of the
Erika Enterprise kernel [5] and tested on the Evidence FLEX
boards [17] equipped with a Microchip dsPIC33FJ256MC710
microcontroller [18].

A. CPU

A set of experiments has been carried out to evaluate the
impact of the three policies on the energy consumption. The
experimental measurements refer to the whole board. The CPU
driver supports eight different frequencies: 40, 35, 30, 20, 16,
10, 8 and 2 MIPS (Million of Instructions Per Second).

The switching overhead depends on the specific frequency
levels, because the lowest frequency is obtained directly from
the external clock signal, while the other frequencies are
derived by a PLL. Switching the PLL on takes about 1ms,
while turning it off or adjusting it to any other frequency takes
between 4µs and 40µs.

Figure 10 shows the current consumption of the CPU as
a function of the frequency. The upper curve in the figure
refers to actual measurements on the entire board, whereas
the others two are derived from the datasheet and refer to the
CPU only. Note that, for the considered architecture, halving
the frequency doubles the execution time, but does not reach
a current consumption of 50%. For instance, reducing the
frequency from 40 to 20 MIPS, the current consumption goes

 20

 30

 40

 50

 60

 70

 80

 90

 0  5  10  15  20  25  30  35  40

C
on

su
m

pt
io

n 
(m

A
)

Milion of Instructions Per Second (MIPS)

maximum consumptions (CPU datasheet)

typical consumptions (CPU datasheet)

actual board consumptions (from measurement)

Fig. 10. CPU power consumptions.

from 86.12 mA to 59.12 mA. Such a result indicates that
DVFS approaches are not effective on this architecture, where
higher saving would be achieved by algorithms that run the
application at higher speeds.

In the next experiment the three policies have been tested
on ten periodic tasks with a total worst-case utilizationUwc =
0.98. The lowest frequency which guarantees the task set
feasibility in the worst case is 40 MIPS (corresponding to
a speeds∗ = 1).

Figure 11 shows the energy consumption (normalized with
respect to the case of no online policy) as a function of
the ratio of the actual utilization (Ureal) and the worst-case
one (Uwc). As observed above, in the considered architecture,
policies using higher speed achieve a lower energy consump-
tion. Therefore, although BSDVFS∗ is able to exploit slower
frequencies than BSDVFS, its average consumption is similar
to BSDVFS, because it is compensated by longer execution
times. Note that at high utilization ratios (Ureal/Uwc > 0.5)
OLDVS is characterized by higher energy consumptions be-
cause, by neglecting switching overheads, it is able to select
lower speeds. On the other hand, at low utilization ratios
(Ureal/Uwc ≤ 0.5), both BSDVFS and BSDVFS∗ achieve
higher consumptions because, at the end of each job, they
restore the speed tos∗ to ensure task set feasibility. Such
an effect is enhanced for very low utilization ratios due to
the higher overhead (1 ms) introduced when switching to the
minimum frequency.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

OLDVS
BSDVFS

BSDVFS*

Ureal/Uwc

Fig. 11. Normalized energy consumptions of the policies.

B. Devices

Another set of experiments has been performed on a ser-
vomotor to derive a policy for driving the device with the



6

minimum average energy consumption. The servomotor used
in this test is a Hitec HS-645MG, characterized by a minimum
absorption of 12.56 mA, and a peak current of 1 A. The peak
occurs at the beginning of the PWM period and has a duration
proportional to the detected angular error.

The experimental tests compare the measured mean power
consumption as a function of the applied torque, using three
different PWM periods: 10, 20 and 40 ms. As shown in
Figure 12, the effectiveness of each period depends on the
energy needed to correct the accumulated error between two
consecutive updates.

Note that for very small torques (< 0.5 kg × cm) the
consumption is not affected by the PWM period, because the
angular error on the axis is below the threshold used by the
internal position controller. Low torques (∈ [0.5, 1) kg × cm)
typically generate similar errors for any PWM period, leading
to similar energy costs per update; therefore, longer periods
produce less updates per time unit and consume less energy.
For torques higher than 1.0 kg×cm, a period of 40 ms copes
with higher errors, accumulated between two consecutive
updates, resulting in a higher consumption. Moreover, this
period cannot guarantee an angular error less than5◦ with
torques greater than 1.5 kg×cm; hence, the measures for such
a period are not considered for higher torques. For medium
torques (∈ [1, 1.6) kg × cm), the errors produced by 10ms and
20 ms PWM periods are similar, hence the longer period (20
ms) leads to a better performance. The shorter period (10ms)
is more suited for heavier loads, because it frequently corrects
smaller errors, so leading to lower consumptions.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.3  0.45  0.6  0.75  0.9  1.05  1.2  1.35  1.5  1.65  1.8  1.95  2.1  2.25  2.4

A
ve

ra
ge

 c
on

su
m

pt
io

n 
(A

)

Constant period of 10ms
Constant period of 20ms
Constant period of 40ms

Torque (kg×cm)

Fig. 12. Servo consumptions with different updating periods.

As a result, the implemented policy binds torque ranges
with the period that minimizes the energy consumption, ac-
cording to the results reported in Figure 12. To optimize the
implementation, the results are stored in a look-up table that
associates the period leading to the minimum consumption to
the corresponding torque range, which also defines a power
state. Table I shows the specific state values derived from
Figure 12.

Torque range (kg ∗ cm) Power state Period (ms)
[0.0, 1.0) STATE2 40
[1.0, 1.6) STATE1 20
[1.6, 2.5] STATE0 10

TABLE I
LOOK-UP TABLE USED BY THE SERVOMOTOR POLICY.

V. CONCLUSIONS

This paper presented a power management module for real-
time embedded systems. The proposed component, designed to
be highly modular, implements a set of policies for the CPU
and devices using a uniform interface. The power layer has
been implemented on an OSEK compliant kernel and tested
on an embedded platform based on a dsPic microcontroller.
Experimental results show the effectiveness of the approach
showing how the module can be used to select the most appro-
priate policy for a specific application on a given architecture.
An example of device policy has been also shown for driving
a servomotor with minimum energy consumption.

As a future work, the module will be ported on different
systems, for instance on ARM platforms, and expanded to
support other policies for the CPU (such as DMP algorithms)
and for other devices (such as communication transceivers).

REFERENCES

[1] “Acpi web site,” http://www.acpi.info/.
[2] Dynamic power management for embedded systems

[SOC design], November 2003. [Online]. Available:
http://dx.doi.org/10.1109/SOC.2003.1241556

[3] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low power cmos
digital design,”IEEE Journal of Solid State Circuits, vol. 27, pp. 473–
484, 1995.

[4] M. Marinoni, G. Buttazzo, T. Facchinetti, and G. Franchino, “Kernel
support for energy management in wireless mobile ad-hoc networks .”

[5] “Erika enterprise rtos,” http://erika.tuxfamily.org/.
[6] F. Yao, A. Demers, and S. Shenker, “A scheduling model forreduced cpu

energy,” inProc. of the 36th Annual Symp. on Foundations of Computer
Science, ser. FOCS ’95. Washington, DC, USA: IEEE Computer
Society, 1995, pp. 374–.

[7] V. Swaminathan, “Real-time task scheduling for energy-aware embedded
systems,” 2000.

[8] V. Swaminathan and K. Chakrabarty, “Investigating the effect of voltage-
switching on low-energy task scheduling in hard real-time systems,” in
Proc. of the 2001 Asia and South Pacific Design Automation Conf., ser.
ASP-DAC ’01. New York, NY, USA: ACM, 2001, pp. 251–.

[9] C.-H. Lee and K. G. Shin, “On-line dynamic voltage scaling for hard
real-time systems using the edf algorithm,” inProc. of the 25th IEEE
International Real-Time Systems Symp.Washington, DC, USA: IEEE
Computer Society, 2004, pp. 319–327.

[10] M.-S. Gong, Y. R. Seong, and C.-H. Lee, “On-line dynamicvoltage
scaling on processor with discrete frequency and voltage levels,” in
Proc. of the 2007 International Conference on Convergence Information
Technology, ser. ICCIT ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 1824–1831.

[11] H. Aydi, P. Mej́ıa-Alvarez, D. Mossé, and R. Melhem, “Dynamic and
aggressive scheduling techniques for power-aware real-time systems,”
in Proc. of the 22nd IEEE Real-Time Systems Symp., ser. RTSS ’01.
Washington, DC, USA: IEEE Computer Society, 2001, pp. 95–.

[12] Y. Zhu and F. Mueller, “Feedback edf scheduling of real-time tasks
exploiting dynamic voltage scaling,”Real-Time Syst., vol. 31, pp. 33–
63, December 2005.

[13] E. Bini, G. Buttazzo, and G. Lipari, “Speed modulation in energy-aware
real-time systems,” inProc. of the 17th Euromicro Conference on Real-
Time Systems. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 3–10.

[14] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. C.Buttazzo,
“Periodic power management schemes for real-time event streams.” in
the 48th IEEE Conf. on Decision and Control (CDC). Shanghai, China:
IEEE, 2009, pp. 6224–6231.

[15] ——, “Adaptive dynamic power management for hard real-time sys-
tems,” in the 30th IEEE Real-Time Systems Symp. (RTSS). Washington
D.C. U.S.: IEEE, 2009, pp. 23–32.

[16] R. Jejurikar, C. Pereira, and R. K. Gupta, “Leakage aware dynamic
voltage scaling for real time embedded systems,” inIn Proc. of the
Design Automation Conference, 2004, pp. 275–280.

[17] “Evidence srl,” http://www.evidence.eu.com/.
[18] “Microchip web site,” http://www.microchip.com/.


