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Abstract—This paper elaborates on the importance of having ef-
ficient inter-container communications at the edge of the network
in Software Defined Network – Network Function Virtualization
(SDN-NFV) architectures, when deploying services close to the
end-user, due to the broad range of bandwidth and latency
requirements as coming from novel scenarios in the 5th telecom-
munication generation (5G). This results in a proposed service
deployment framework that is exploited within the Virtualized
Radio Access Network (V-RAN) split architecture, a scenario
where the crucial role of efficient communications becomes
evident. After a short comparison among common technologies
available today for efficient inter-containers communications,
this paper identifies primary areas of improvement for future
research.
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I. INTRODUCTION

Nowadays, the 5th telecommunication generation (5G) is
at its first deliveries, with trials running everywhere in the
world. Telecommunication operators and manufacturers have
a clear understanding of the 5G architecture and its benefits [1].
Indeed, 5G brings significant innovations, with a new archi-
tecture based on a mindset shift from connection-centric to
service-centric [2]. There are different 5G solutions offered
by telecommunication operators or infrastructure providers,
and all of them agree on the vision of 5G enabling a new
era where vertical services can be deployed end-to-end in the
network. In such a view, the role of the edge of the network,
and especially the Radio Access Network (RAN), is strategic.
In the 5G architecture, there is a strong need to deploy a wide
range of vertical services with low-latency requirements, in
order to increase the Quality of Experience (QoE) for the
end-user. This means flexible deployment across the physi-
cal infrastructure, as achievable by embracing the Software
Defined Network – Network Function Virtualization (SDN-
NFV) paradigm, and optimized communications at all levels,
where traditional Virtual Machines (VMs) have decidedly been
superseded by containers thanks to their reduced overheads.

Optimizing end-to-end vertical services in 5G can take
advantage of SDN-NFV, so that having a multitude of nodes,
e.g., data-center, core network or RAN nodes, managed by
a (logically) centralized controller, allows for achieving high
flexibility in the network architecture, enabling an optimum
deployment of services. However, this also introduces a num-
ber of challenges, because the characteristics, requirements and
acceptable latencies can be quite heterogeneous for the various
nodes, where distance from the RAN plays a crucial role [3] [4]

[5]. Novel Virtualized RAN (V-RAN) solutions may also tackle
the important foreseen explosion of power consumption, espe-
cially in urban environments with high population density [6].
The new architecture for 5G in the RAN domain could be not
mature enough to allow seamless deployments. For this reason,
the most important operators worldwide established the O-
RAN alliance [7] to drive the technology evolution, attracting
all the technology providers too.

The rest of this paper is organized as follows: Section II
presents the background about service deployment, while Sec-
tion III proposes an overview on the related 5G issues and
Section IV focuses on PoP transparency. In Section V key
inter-container communication solutions are compared. The
paper is concluded with some final remarks and an overview
of future works in Sections VI and VII, respectively.

II. BACKGROUND ON SERVICE DEPLOYMENT

It the SDN-NFV architecture, as described by European
Telecommunications Standards Institute (ETSI) [8], the two
concepts work together to provide, manage and control the
underlying common end to end infrastructure (topology view)
where to deploy, secure and supervise any type of vertical
service (service view), as shown in Figure 1.

Figure 1. Example of a SDN-NFV architecture views.

The service view shows how the SDN-NFV Management
and Orchestration (MANO) framework deploys different ver-



tical services. These are composed into service-chains, “com-
mon bricks” that let new services be deployed quicker. More-
over, establishing and supervising communication channels
between two or more services is needed to provide security
and protect sensitive data from malicious access. A Virtualized
Network Function (VNF) deployment is the responsibility
of the MANO framework, where any infrastructure resource
is assigned to a service through network slice assignments.
Indeed, network slicing is an End-to-End network character-
ization of a service deployment and is based on resource
allocation and control. Any available resource in any node
shall be manageable via resource slices. Then, slice definition
is actually the assignment of a different network, computing,
storage, and radio resources to a vertical service, from access
to data center node (see Figure 2).

Figure 2. End-to-End slice allocation and control, from [9].

Radio Resources are critical for the RAN, so while bringing
the SDN-NFV paradigm into the RAN, constraining placement
locations through the Point of Presence (PoP) [10] assign-
ment is mandatory for latency control. This paper is not
concerned about how slices are assigned, but it focuses on
the need for a slice definition that includes the function-to-
function communication requirements as a crucial resource to
manage. It is critical to consider appropriately the various
options that are available to accelerate said communications
both in hardware and in software, among services deployed
throughout the various servers within the edge infrastructure.
For example, the computing allocation in edge servers, and
so the definition itself of computing slicing, may be based
on radio access service characteristics like bandwidth, latency,
and deadline [11]. Network slicing in multiple domains is a
foundational building block in the SDN-NFV architecture [12].

Therefore, an effective service framework needs to han-
dle [13] service deployment along with resource allocation
and control, coupled with proper network slice definition and
management (see Figure 3). To this purpose, it is essential
to frame the slice definition in the context of the VNF file
descriptors [10]. This makes a service framework usable in
the context of service deployment and for the RAN.

III. 5G, SDN-NFV AND V-RAN
The RAN evolution needed to meet the 5G expectations

is entirely driven by the new challenging requirements [5]:

Figure 3. The service deployment framework, from [13].

latency constraints, radio bandwidth and available resources
(computing, storage, and connectivity). This is a bare con-
sequence of the primary 5G goal: support a wide range
of services, from Internet of Things (IoT) to Machine-Type
Communication (MTC) or Machine-to-Machine (M2M), that
look promising also in the perspective of expanding operators’
opportunities. In such a scenario, RAN architectures need
to evolve, embracing more and more reconfigurable radio
platforms, flexibility in resource management via a fully
compliant SDN-NFV framework (towards V-RAN), and the
use of commercial off-the-shelf hardware when possible, to
reduce the cost of the infrastructure [14]. In this context,
the RAN internal protocol-layer functional decomposition is
widely accepted today and brings to have a wide range of
deployment options to explore. Possible solutions involve
the RAN functions spread throughout the Radio Unit (RU),
Distributed Unit (DU) or Centralized Unit (CU) in the 5G case,
as exemplified in Figure 4, or throughout the Remote Radio
Head (RRH) and Baseband Unit (BBU) in the 4G case. The

Figure 4. Function view of maximum delays in 5G with respect to 4G.

RAN functional split point can be chosen as a compromise
between higher flexibility and higher complexity, in a range
that moves from the so-called “Distributed RAN” to the so-
called “Centralized RAN” [15]. A specific terminology has
been defined [16] to describe the RAN functional split options:

• LLS: Low layer Split; defines the connection and
interface between Radio and central units. It is based
on CPRI, eCPRI or RoE;

• HLS; High Layer Split; defines the splitting of the
internal protocol stack in a typical base-station be-
tween distributed and centralized units. Depending on
splitting option implemented, interface can be F1, F1-
C and F1-U or E1;



• RU: Radio Unit. Contains all RAN functions placed
below the LLS interface;

• DU: Distributed Unit. Contains all RAN functions
places between LLS and HLS interfaces;

• CU: Centralized Unit. Contains all RAN function
above HLS interface and terminates inter-RAN (X2,
Xn) interfaces.

Figure 5 shows the 5G splitting architecture concept and
the max latency value (based on IEEE 1914.3 [17]), where a
proper configuration can be chosen according to the available
latency budget for the service [18]. It is worth to note that, in

Figure 5. Functional placement scenarios.

the resulting architecture, different functions are not required
to be placed at different physical locations. Indeed, where the
RU, DU, CU-CP (Control Plane) and CU-UP (User Plane) may
be placed depends on:

• the operators’ requirements;
• the transport network topology;
• the physical site constraints;
• the latency and capacity infrastructure limitations.

In other words, theoretically, Radio Service Providers should
design their split architecture to guarantee all suggested de-
ployment options, unless this needs a too costly orchestration
software complexity.

IV. POP TRANSPARENCY

The different placement scenarios can also be seen as a
modular migration path from 4G to 5G or, in other words, a
smooth method for the introduction of 5G. Technical pros and
cons of the RAN functional split are well known and have
already been described in literature [5] [19]. Deployments are
normally based on OS-level virtualization (i.e., containers) in
order to support optimized resource usage [11]: the cost of
virtualization is minimized while at the same time the compute
slice can be managed at a fine-grain resolution level, allowing
a higher degree of flexibility in matching aggressive end-to-end
deadline constraints. However, a service deployment approach
to 5G architecture implementations implies that, for example,
the blue boxes in Figure 5 can be containers managed accord-
ing to the full flexibility of a service deployment framework.
This flexibility in placement throughout the available PoPs
in the physical infrastructure needs to be done transparently
from the applications’ viewpoint, and the mapping between
the logical topology of containers and their interconnections,

on top of the physical infrastructure and PoPs, needs to
happen exploiting the descriptive capabilities of MANO VNF
descriptors (see Figure 6).

Figure 6. Service chain for functional placement scenarios.

With this new service-oriented mindset, containers need to
use communication primitives that:

• are virtualized, so as to be slice definable;
• are always providing the same virtual port to a con-

tainer, independently of where containers are housed
in the infrastructure (see Figure 7);

• are designed in a performance-oriented way, i.e., inter-
container communications exhibit the lowest possible
latency, fully using special hardware acceleration and
software/OS/kernel features to let that be possible.

Figure 7. The Virtual Port concept representation.

It is thus crucial to optimize inter-container communica-
tions. From a general point of view, this is a key enabler for
a RAN solution supporting all possible deployment scenarios.

V. INTER-CONTAINER COMMUNICATION PERFORMANCE

Network connections between containers and external
nodes have traditionally been implemented by using virtual
ethernet pairs and software bridges / virtual switches. When a
virtual ethernet pair is created, the kernel creates two software
Network Interface Controllers (NICs) (there is no physical NIC



attached to them) connected point-to-point (packets sent to
one of the two interfaces are received by the other, and vice-
versa). To allow a containerized application to communicate
with the external world, one of the two interfaces is inserted
in the container namespace, while the other one is attached to
a software bridge or a virtual switch (such as openvswitch or
similar). This means that, in order to exchange data between
applications executing in two containers running on the same
physical machine, the following data-path is used:

• The first application sends a network packet using
send(), sendto(), write() or similar on the virtual
ethernet visible in its namespace.

• The packet is copied from the application address
space to the kernel space.

• The kernel networking code moves the packet to the
software bridge or virtual switch, that forwards it to
the other application.

• The second application receives the packet using
recv(), recvfrom(), read() or similar on the virtual
ethernet visible in its namespace.

• The packet is then copied from kernel space to the
address space of the second application.

As it can be seen, this implies the invocation of at least
two system calls, various switches from user-space to kernel
space, at least two data copies, different scheduling decisions,
and so on. As a result, the networking performance could be
penalized. This can be a substantial limitation in supporting the
desired 5G functional split, that could be reduced exploiting
different communication technologies.

For example, for communications between containers lo-
cated on the same physical node, it would be possible to map
a shared memory region in the address spaces of the two
containerized applications and use it for exchanging data. This
can be done in a transparent way by using the Intel Data Plane
Development Kit (DPDK) framework [20].

DPDK provides a set of libraries originally designed to use
a NIC in user space, without passing through the kernel every
time a packet is sent or received. Moreover, DPDK allows
for sending/receiving packets without relying on hardware
interrupts generated by the NIC. This is done by mapping
in the application memory the NIC buffer ring and control
registers, and directly accessing them at the application level
(polling on the NIC registers instead of waiting for interrupts).
These techniques allow for a dramatic decrease in the over-
heads, increasing the achieved throughput and decreasing the
latency. DPDK also provides support for virtual NICs, that can
be useful for inter-container communications. In particular, it
provides drivers for virtio and vhost-user.

Virtio [21] [22] is a para-virtualization standard, also
defining virtual NICs based on virtual queues of received
and transmitted packets, that can be shared between guest
and host. Virtio network devices are generally implemented
by hypervisors such as qemu/kvm, that can rely on external
services such as vhost [23] to move packets between guest and
host, or between different guests on the same host.

The vhost functionalities can be implemented either in
kernel space or in user-space. In the former case, the vhost-
net kernel module is used, that creates a kernel thread to
move packets. In the latter case, a user-space process is

responsible [24] for implementing the vhost functionalities,
mapping the shared buffers in guest memory. In this approach,
known as vhost-user, the user-space process implementing the
vhost functionalities uses a UNIX domain socket for low-
bandwidth signalling.

DPDK provides a virtio driver that is able to connect to
virtio-net virtual interfaces, and a vhost-user driver that can be
used by user-space processes (for example, virtual switches) to
implement the vhost-user functionalities connecting different
VMs. But the vhost-user driver can also be used to implement
the virtual interfaces a virtio driver can directly connect to.
Hence, a DPDK-based virtual switch running in the host can
create virtio-net interfaces which DPDK-based applications
running in the containers can connect to. Figure 8 shows
the inter-container communication support provided by the
presented approaches.

Figure 8. Inter-container virtual switching: (a) software-only solution; (b)
using SR-IOV support; (c) using DPDK with vhost in user mode.

In order to evaluate the impact of the overhead introduced
by the packet transmission mechanism (and the advantages of
using different software architectures), we performed some ex-
periments on an Intel(R) Xeon(R) CPU E5-2640 at 2.40GHz.

The first experiment is designed to measure the overhead
caused by the system calls needed to send packets through
virtual Ethernet pairs. It is based on two applications sending
and receiving small User Datagram Protocol (UDP) packets,
located on the same physical machine: the first application
(running in an lxc container) sends packets at the maximum
possible rate, and the second application (running in a different
container) measures the received packet rate. Even without
using a software bridge or switch (inserting one of the two
virtual Ethernets in the first container and the other one in
the second container), the maximum achievable packet rate is
about 310000 packets per second (pps). Considering a payload
of 64 bytes, this results in a throughput of less than 160 Mbps.

To evaluate the advantages of using the DPDK virtio and
vhost-user drivers (running in user space), we performed a
second experiment using two lxc-based containers and the
“testpmd” DPDK application:

• an instance of testpmd running in the host provides
two virtio interfaces (one per container) using vhost-
net, and forwards packets between them, acting as a
bridge;

• an instance of testpmd in the first container produces
packets and sends them on the first virtio interface;

• an instance of testpmd in the second container receives
packets from the second virtio interface.



Using this setup, it has been measured that the applications can
transmit about 12800000 pps (considering 64-bytes packets,
this is about 6.5Gbps). Note that the “testpmd” application
connecting the two containers is not a real switch, but a DPDK
application that is used only to test the drivers’ performance.

Vector Packet Processing (VPP) [25] is a technology
used in the virtual switch provided by the Fast Data Project
(FD.io) [26]. In a standard switch, each packet is received,
processed, and forwarded before receiving the next packet
from the NIC queue, and this way of serving packets can
have bad effects on cache locality (and on the forwarding
performance). Hence, VPP receives, processes, and forwards
packets in batches, resulting more cache friendly and achieving
a higher networking performance.

We performed a third experiment using VPP (which can
be used as a real bridge, switch, or router) instead of testpmd
to connect the two containers. This experiment, performed
with the goal of evaluating the performance of a complete
switching solution (and not only the performance of the
userspace drivers) revealed that the packet rate drops to about
6400000pps (3.27Gbps). Such a lower performance is due to
the real switch logic that is present in VPP and not in testpmd.
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Figure 9. Throughput of testpmd and VPP (in kilo packets per second) as a
function of the input packet rate.

To better characterize the performance of the DPDK
polling drivers (evaluated using the “testpmd” application as
a bridge) and of a DPDK-based switch (we used VPP in this
case), we repeated the previous experiments changing the rate
at which the 64-byte packets are generated. Figure 9 shows
the packet rate (in kpps) that “testpmd” and VPP are able to
forward as a function of the input packet rate. While testpmd
manages to handle 13 million packets per second, VPP sustains
only 8 million pps, due to its higher functional complexity.

VI. CONCLUSIONS

SDN-NFV enables unprecedented flexibility and ease of
maintenance for service chains deployments, but the achievable
end-to-end performance is greatly affected by what mech-
anisms are used for the underlying communications among
micro services, regardless of these being hosted as traditional
Virtual Machines or containers. Solutions based on containers
are becoming the de-facto standard for efficient usage of
resources, and inter-container communications can bootstrap
an effective Radio Access Technology (RAT) software ar-
chitecture for 5G. This becomes even more important for

critical latency-sensitive RAT services, that cannot be hosted
anywhere, being constrained to be located not too far from
their needed radio elements. In this context, it is also possible
to leverage the specification of the PoP through VNF file
descriptors, so as to achieve a RAT service chain configuration
corresponding to the needed trade-off between distributed and
centralized RAN solutions. However, as shown elsewhere [27]
and remarked in this paper, the performance of container-to-
container communications has a great potential to affect the
finally achievable End-to-End performance, also depending
on the hardware accelerations and software optimizations
that are available in the underlying infrastructure. Therefore,
inter-container communication is a key element to realize
5G implementations fully exploiting the potential of SDN-
NFV architectures, where the work presented in this paper,
including the general overview of the involved technological
hardware and software solutions, along with the experimental
comparison among a few of them, is just a starting point for a
more structured in-depth study, needed to design effective and
efficient solutions that become enablement factors for future
5G scenarios.

VII. FUTURE WORK

Concerning directions for future work on the topic, ad-
ditional experimentation evaluating the impact of different
software and hardware architectures on the performance of
inter-container communications is needed. For example, the
use of SR-IOV capable NICs has the advantage of off-loading
CPU packet-processing workload to the NIC [28], but in the
case of communications among entities on the same physical
node this might be easier to handle in software, avoiding
unnecessary bus cycles. This has to be evaluated also in light
of the fact that high-performance software-based switching
solutions within hypervisors and operating systems is already
going towards dropping the support of the full set of features
of a switch, in favour of more static (but faster) solutions like
macvlan/macvtap [29] or Virtual Ethernet Bridge (VEB) [30]
[31]. Indeed, static solutions such as macvtap have been
shown [32] to perform better in high-packet rate scenarios than
more dynamic and flexible solutions like full-featured virtual
switching. Further trade-off points between performance and
flexibility might become possible in presence of specific hard-
ware features, like full SR-IOV support. It is also interesting
to perform additional experimental results, and compare them
with benchmarks already appeared in literature [33] [34]. In
this context, the optimality of the solution has to face additional
possible constraints, like the ones behind the Virtual Ether-
net Port Aggregator (VEPA) [31] and its use with switches
supporting the hairpin-mode. This forces packets to reach the
external adjacent switch even in case of local communications,
due to the need for exposing all traffic, including the internal
one, to the networking monitoring and management layer in
a uniform way, however the performance is expected to lower
in this case. Also, in the context of high-performance packet
processing for NFV, approaches that are gaining popularity
are the kernel-bypass ones [35] [36], that do not rely on
traditional TCP/IP networking support by the operating system
or hypervisor, whilst direct access to the hardware NIC is
preferred (either its physical or virtual functions if SR-IOV
is in place), on top of which custom and optimized user-space
networking stacks are built. Having the possibility to control
such features from a high level, such as through VNF MANO



descriptors, is all but straightforward [37], so additional work
is needed along such direction.
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