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Abstract—The real-time research community is often con- in a low-power inactive state for the longest possible time,
cerned with finding suitable assumptions to simplify the scadu-  thus postponing the tasks execution as long as possible stil
lability analysis of current real-time systems. This includes sim- guaranteeing the task real-time constraints.

plified power models, negligible scheduling overhead, negible With th . . ¢ f i
preemption cost, bounded cache misses and bus contentioric.e ' € growing Importance ol energy managemeni, an

However, the actual behavior of a real application might be increasing number of energy-aware scheduling algorithms
significantly different than that expected from a simplifiedsystem have been proposed in the last years. Most of them consider

under the adopted set of assumptions. _ ~ either a fully preemptive or a non-preemptive model. In &ful
This paper investigates the impact that preemption cost milgt preemptive system, if a newly activated task has a priority

have on the energy consumption under a given energy-aware higher than th . fi ¢ th
scheduling algorithm. A set of simulation experiments illstrate Igher than the running one, a preempton occurs 1o move the

the influence of context switch and scheduling overhead on ¢h running task in the ready queue and assign the processor to
actual energy consumed in a given system. Results show thatthe new one. This implies a context switch overhead, which

in certain conditions, the penalty due to the runtime overhad generally includes the time for suspending the running task
might be as large as the amount of energy saved using aggressi g dispatching the new one, the time taken to flush the
DPM and DVFS scheduling techniques. In this context, limite .o .
preemptive scheduling is proposed as a possible solution rfo processor plpell_ne, and the Cache-relate_d p_reemphory dela_
limiting the main sources of overhead to fully exploit the baefits due to cache misses. Such an overhead is either neglected in
of power saving features of current computer architectures the schedulability analysis (leading to an actual consionpt
higher than the predicted one) or overestimated by making
pessimistic assumptions (so deteriorating the overallegys
Energy management is becoming more and more a crugi@rformance). On the other side, non-preemptive scheglulin
issue in modern embedded systems. Increasing lifetime, oan save a lot of runtime overhead and make the execution
ducing energy bill, and decreasing the risk of temperaturéme more predictable, but it may introduce large blocking
related faults are only few of the motivations behind th&mes in high priority tasks, degrading the schedulabitfy
growing interest in this topic. However, the reduction ofygo the system.
consumption leads to a decrease of performance, which couldo mitigate the drawback of both approaches, limited pre-
be critical for real-time applications where a set of timemptive scheduling has recently been proposed as a hybrid
constraints need to be guaranteed. technique to decrease the number of preemptions without
Nowadays, the CMOS technology is the market leader aaffecting the schedulability of the system. In this modekte
its power consumption could be roughly divided in dynamitask is view as a sequence of non-preemptive chunks and can
and static components. The first one is due to the systém preempted only between chunks. Buttazzo, Bertogna, and
activity and depends on the clock frequency, while the seécoMao [1] have shown that limited preemptive scheduling in-
one is a consequence of the static dissipation and could dreases the schedulability of fixed priority systems wipest
reduced only switching off the gates. Over the years, harelwdo both fully preemptive and non-preemptive schedulingnev
mechanisms have been developed to manage these two cawses preemption cost is neglected. The improvement is even
of consumption and a lot of techniques based on these meniere significant when considering preemption cost, duedo th
anisms have been proposed to save energy. Two of the m&siller number of context switches and the more predictable
widely used groups of techniques abgnamic \Voltage and location of preemption points. Moreover, limited preemeti
Freguency Scaling (DVFS) andDynamic Power Management  scheduling allows an implicit mutual exclusion management
(DPM). The DVFS approach trades energy with performan¢e@hen critical sections are encapsulated inside non-ppéeen
by decreasing the voltage and/or frequency of the processegions) and permits reducing stack memory requirements.
to reduce the overall energy consumption. Since a frequencyThe objective of this paper is to investigate the impact of
reduction increases the execution times of the computationuntime overhead in energy-aware scheduling algorithms. |
activities, the objective of this technique is to find thewsdst particular, simulation experiments show that the penadgoa
processor speed that still guarantees real-time conttrddm ciated with context switch overhead can significantly deter
the other hand, DPM techniques aim at switching the processate the performance of energy-aware algorithms, intriduc
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an additional energy consumption comparable to the amduntloat all tasks execute for their WCET. The second algorithm
energy saved by aggressive DPM algorithms. ConsideratidiiRA) keeps track of the times at which a task is going to be
will be also made on the scheduling overhead related to DRlspatched (computed off-line and stored in a dispatch gueu
techniques that require a significant number of operatidns/t runtime, if a task is dispatched earlier, the CPU is slowed
each idle interval. Finally, the impact of the overhead sesr down to prolong the execution until the original finishingné.

will be measured under different power models. The third algorithm (AGR) estimates the tasks completion

Preliminary results will be shown on the effectiveness dimes based on past instances and computes the lowest CPU
limited preemptive scheduling in reducing the minimum DVFSpeed to keep the task set feasible assuming that taskstexecu
speed that can guarantee feasibility. Finally, some cenaid for such estimates. However, since the estimations can be
tions will be presented on the integration of limited pred¢img optimistic, the algorithm may speed the CPU up to recover
models with DPM techniques. from a task overrun. Neither this paper considers the owaethe

The remainder of the paper is organized as follows; Sedue to speed scaling, algorithm complexity or preemptions.
tion Il presents the state of art on energy saving algorithms The problem of obtaining an optimal frequency from a
Section Il introduces the system model in terms of taskdiscrete frequency range was discussed by Bini et al. [88. Th
energy consumption, and overhead sources; Section |Viepa@uthors provided a method for computing the optimal speed
a set of simulation experiments aimed at showing the impauff-line (that could be unavailable in a specific architeeju
of runtime overhead on an energy-saving algorithm; Sedfionand introduced a speed modulation technique to achieve the
presents some ideas to decrease energy consumption byreguired speed using two discrete values. The analysistsele
ploiting limited preemptive models; and Section VI con@sd the pair of frequencies that minimizes energy consumption
the paper. also considering switching overheads. Since the algorithm
works mostly off-line (as only the speed moluation is exe-
cuted online) the algorithm overhead does not increaseativer

This section presents the state of the art regarding energiization. Despite its innovative contribution, suchafitline
management, first discussing DVFS algorithms, then DP&pproach does not take advantage of tasks early termisation
approaches. to further reduce consumption.

One of the first papers about power management exploitingSome authors [9], [10] reported that online DVFS tech-
frequency scaling was due to Yao et al. [2]. The authorsques that frequently scale the execution speed may lead to
proposed an off-line algorithm that, given a task set, camgpu transient faults. This problem was also addressed by Zhao et
the minimum energy schedule under the Earliest Deadliak [11], who proposed a recovery allowance and an additiona
First scheduling (EDF) algorithm [3] with a complexityrecovery task to run in case of fault.

O(n -log®(n)). Then, they introduced two online methods to Another side effect of DVFS techniques was emphasized by
scale the speed according to the actual workload requirikgm et al. [12], who noticed that such algorithms increase th
O(n) at every scheduling event ar@(n - log?(n)) at every number of preemptions, leading to a higher system utitizati
task arrival, respectively. The analysis compares theieffay and, therefore, a higher energy consumption. This is becaus
of the algorithms with respect to different power modelscaling the speed increases the computation times, exposin
but without taking switching and algorithms overhead inteach task to a larger number of preemptions. To mitigate such
account. a problem, they proposed two preemption control techniques

Seong et al. proposed two algorithms. The first onategrated with a DVFS algorithm.

(OLDVS) [4] accumulates the time generated by early ter- The raising impact of leakage power in modern architec-
minations and exploits it to decrease the CPU speed so thaks, highlighted by Kim et al. [13], is driving the resdarc
the current task is completed at the same time at whichaih power management toward DPM techniques.

would have completed in the worst case. The second algorithni_ee et al. [14] proposed two leakage control algorithms for
(OLDVS*) [5] divides each task in two parts: the first one iprocrastinating tasks execution as long as possible, baikru
executed at a slower speed, while the second one is execudbegld (LC-EDF) and dynamic (LC-DP) priority scheduling.

at a higher speed. The approach is based on the assumptismg a dual priority scheme [15], LC-DP computes the
that the probability of ending the task instance in the firébngest delay gromotion time) each task can suffer still
part is significantly higher than finishing on the second .pagatisfying its deadline. The drawbacks are that the clitica
Both algorithms do not take switching overheads into actouspeed is not taken into account (i.e., the system runs at the
Bambagini et al. [6] extended the previous approaches aximum speed) and the overhead introduced at runtime due
considering switching overheads. Moreover, they impleiegn to the higher complexity of the online analysis is high((?)).

the algorithms on a real embedded platform and showed thaflejurikar et al. [16] proposed an approach (CS-DVS-P)
the more aggressive algorithm does not improve the enetggsed on critical speed analysis and task procrastinatok-w
consumption as expected, due to the actual power functioring for periodic tasks under EDF. First, an off-line DPM

Aydin et al. [7] proposed three algorithms with growinglgorithm computes the maximum amount of time each task
complexity. The first one computes the lowest CPU speedn spend in the sleep state within its period. Then, atirae;t
such that the task set is schedulable under the assumpst@ep management is delegated to an external controller tha
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switches the system off for the corresponding pre-computdee jobs activated within the hyperperiod. Even though the

time. Jejurikar and Gupta [17] extended the previous methpdoposed solution obtains good results, it introduces aiden

to consider early terminations and fixed priority schedulinerable computation overhead that makes it unsuitable tmhct

[18]. More precisely, the approach proposed in [18] diffen®al-time systems.

from the first one for the computation of the maximum sleep Huang et al. [26], [27] proposed an off-line analysis that

time for each task. These values are obtained exploiting thémbines DPM and Real-Time Calculus to estimate tasks

dual priority of [14]. Since most of the computation is don@rrivals, compute the CPU idle intervals and then, at roefi

offline, the online complexity reduces ©(1). However, a modulate between active (at maximum speed) and sleep.states

dedicated external hardware is required to run the algutithThe main idea is similar to [8], but applied to DPM-based

increasing the power consumed, and no preemption overheachitectures. This approach leads to sleep intervalsatet

is considered. generally smaller and more frequent than those obtained by
Chen and Kuo [19] showed that the DPM part of therocrastination algorithms.

algorithm in [18] may lead to deadline misses, and proposedrowe et al. [28] presented a technique that harmonizes task

some solutions to avoid such a problem. The first methogriods to cluster task execution such that processoriidkest

(OSS) simulates the execution of periodic tasks to comigte fre Jumped together. More precisely, the algorithm intasdu

idle time available until the next deadline. Then, such atimpe harmonizing period, so that the scheduler notifies task

is used to postpone the task activations and switch theraystgrrivals at integer multiples of such a period. If there is

into the sleep state. An improved version of the algorithiiy task to execute, the system can put itself in sleep state

(VOSS,) further increases the sleep intervals making uskeof yntj| the next period. Although the algorithm allows enteyi

virtual blocking, which is the maximum blocking that tasksy sleep state every time there is an idle period, it is less

can suffer. Neither the algorithm complexit9(n - log(n)) effective than postponing computation times, and it has a
at every idle time) nor preemption overhead were taken inéghajler schedulability bound.

account into such analysis. _ g Wang and Mishra [29] investigated DVS and dynamic cache
Marinoni et al. [20] proposed a different approach: instegd qnfiguration in hard real-time systems for minimizing th

of computing a single speed off-line and postponing tagferal energy consumption considering every single compo
execution on line, they compute the sleep interval and the: such as processor, cache and bus.

speed at every idle time, to guarantee the feasibility withie
next busy period. In addition, they also considered bantitwio\1
allocation constraints that force the processor to be acti
during the assigned communication intervals. Altough sugf
proposal aims at finding the optimal configuration at every)
idle time, the introduced complexity is pseudo-polynomial
approaches.
Awan and Petters [21] proposed to accumulate task execu-
tion slack to switch the processor off during such intervals

To the best of our knowledge, only Maxim et al. [30]
ave addressed the problem of exploiting a limited preempti
odel to further reduce energy consumption and the number
preemptions. However, their preliminary work does not
nsider the critical speed, switching overhead and DPM

under EDF, considering tasks with different criticality dan I1l. SYSTEM MODEL
processors with several low-power states and differerdksre . . o
even times. However, tasks are always executed at the maxiWe consider a sdf of n fixed priority tasks;, 72, ..., 7,

mum speed. The slack accounts both dynamic and static spg¥ecuting upon a single processor platform with preemption
capacity. The static slack is due to an utilization lowenttize  Support. We assume that tasks are indexed in decreasing
maximum obtainable and the dynamic slack is ascribable poiority order (i.e., if0 < i < j < n, thenr; has higher
task early terminations. The same authors [22] observed thaority than7;). The processor can vary the clock frequency
task procrastination algorithms significantly reduce theber f by selecting one of the available frequencies in a discrette s
of preemptions, leading to a lower system utilization and 1, - - -, fm}, ordered by ascending values. In the following,
larger slack for sleep states. Procrastinating tasks pesia the normalized speed defined as = f/f.,, will be used as
synchronous activation of some tasks, which are then ezdcu@ more convenient parameter.
following the priority order without preemptions amongithe  Each sporadic task; is characterized by a worst-case
Irani et al. [23] addressed the problem concerning thexecution time (WCET)C;(s), which is a function of the
estimation of the distance between the resulting schedglgeed, a relative deadlin®; and a periodl;. The WCET
and the optimal one. More precisely, they proposedoan of 7; depends on the actual speed of the processor and is
approximation leakage-aware algorithm which produces camputed as’;(s) = CN? /s, whereCN' denotes the time
schedulea times worse than the optimal from the energiyo executer; in a non-preemptive mode at the maximum speed
consumption point of view considering a continuous set ¢6N" = C;(s,,)). Relative deadlines can be smaller than,
speeds. equal to, or greater than periods. All parameters are agsimme
Niu and Quan [24], [25] proposed an algorithm that, workN*. Each task generates an infinite sequence of jobs, with the
ing with periodic tasks, computes at run-time the latestisg first job arriving at any time and subsequent arrivals sepdra
time for each task to guarantee the feasibility considerifuy 7; units of time.
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A. Power model 2

The power model derived by Martin et al. in [31] represents , 18
a general expression of the power consumption of an active § ¢
processor as a function of the speed: o1

I
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The K3 term is the coefficient related to the consumption of & %[,
those components that vary both voltage and frequency. The' °°f" ™., -
second order termA(,) describes the non linearity of DC- 2'4 Fr——_"
DC regulators in the range of the output voltage. Thie %1 0z 03 04 05 06 07 08 09 1
coefficient is related to the hardware components that cin on s
vary the clock frequency, whereds, represents the power
consumed by the components that are not affected by the Fig. 2. E(7*)(s) and E{F™ (s) functions.
processor speed.

Note that the energy needed to execute a job is the product
of the power and the execution time at the selected speedAn additional feature provided by almost all the current
moreover, a higher speed reduces the execution time, pu@cessors is the possibility to switch to low-power states
increases the power consumption. Hence, the quantity thawhile the code execution is suspended. Different device sub
is important to minimize is the energy consumption of eactystems could be switched off defining different low-power
clock cycleE, . (s) = P(s)/s. Considering the shape éf(s) states. Each state, is characterized by the power consumed
as a function of, as reported in Equation (1), a critical speeéh it, denoted as’,,, and by the times required to enter and
s* that minimizedE,(s) can be found [19]. exit it, denoted a9;_,,, andd,, s, respectively. The sum

As an example, two generic processors are considered withsuch switching times, referred to &seak-even time, 4.,
ten speeds uniformly distributed from 0.1 to 1.0 and poweletermines the shortest idle interval that must be availabl
functions P(?7%) (s) = 0.9s® 4+ 0.1 and P\%™)(s) = 0.9s + in the schedule to exploit the sleep state. Such an overhead
0.1. The first one models a DVFS-sensitive architecture, & assumed to be independent of the actual running speed.
scaling down the speed (untit = 0.4) is energy-convenient. The energy consumed during a transition from activerfo
The second one represents a DPM-sensitive architectureand viceversa is denoted ks, . Different power states are
running at a speed slower than the maximum osfe={ 1.0) characterized by different parameters, as illustratedgurie 3,
is not suitable from an energy point of view. In these caseghich shows three different state transitions. The firstecas
the curves representing the power functions and the energfers to a sleep state with a short break-even time, but a
per clock functions are reported in Figure 1 and Figure Rower consumption only slightly smaller than that of thevact

/’

respectively. state. On the other hand, the third case refers to a state with
o) i) t_he lowest power consumption, but with t_he longest .tracpmtl
) s)— () times from active to sleep states and viceversa. Finding the
0.9 most suitable low-power state depends on the available idle
08 4/ time and on the real-time constraints of the application.
_ 07 /// Measurements carried out on Flex Boards equipped with
2 os // > a Microchip dsPIC33FJ256MC710 microcontroller [35] show
g os ,/ that the power consumption at the slowest speetbis2mA,
04 ,/ while the deepest sleep state consuréslOmA, requiring
03 // 19.30ms for handling a complete transition. On the other hand,
0.2 BT the second low-power state is characterized by a consumptio
O a5 06 07 08 05 1 of 56.38mA and a much shorter break-even time, equa$ to
s instruction cycles.

B. Overhead

When evaluating the performance of a energy-aware

Stating which model better describes the current architect scheduling algorithm, different overhead sources needeto b

trend is not easy. In fact, although DPM-like models seetaken into account, including the preemption cost, the time

to be dominant in real processors (but less studied in tteken to switch to a low-power state, and the complexity of

literature) [6], [21], a different trend has been reported kthe online algorithm. As mentioned in Section Il, most of the
Kandhalu et al. in [32], considering the power consumed Ilgxisting works underestimate the importance of these ffacto
a full board: a Motorola Xoom platform [33] equipped with aneglecting them in the schedulability analysis. This rssul
NVidia Tegra 2 [34]. In order to derive general results, irsthin overly optimistic performance characterizations thah c
paper we consider both power models. significantly differ from the real performance of the system

Fig. 1. P(dvfs)(s) and P(@P™) (s) functions.



,557"2 /ﬂ/ decreased system performance, compensating the longer tim
L ‘ spent in sleep modes with the additional energy required to
run the algorithm.

p |
IV. EXPERIMENTAL RESULTS
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PU(I) ,,,,,,,, }& } } Lo This section presents a set of simulation experiments to
‘ ‘ show the impact of the runtime overhead on the overall energy

consumption of the system.

Synthetic task sets consist of 10 periodic tasks randomly
generated using the UUniFast algorithm [36], where thel tota
utilization U is varied in a given range, and each computation
time C; is uniformly distributed in the intervdll 00, 500]. Pe-
riods are derived once computation times and task utibnati
have been generated and relative deadlines are set equal to
periods. Tasks are scheduled under fixed priorities asgigne
with the Rate Monotonic algorithm and each simulation run
is performed until the hyperperiod. In each graph, output
results for each parameter configuration are averaged &ger 1
different runs.

Simulations have been carried out assuming a processor
with 19 discrete speeds varying in the range[®f, 1] with
step 0.05. Results are reported for both the power models
introduced in Section IlI-A. For the sake of simplicity, agie
sleep state is considered, witty = 0.0025, and Es = 0.1 -9,
where the break-even timeis varied in a given range.

All simulations have been performed on the VOSS algo-
rithm, by Chen and Kuo [19], because it has been shown
to outperform other algorithms under fixed priority systems

In this paper, we explicitly consider the preemption costyithout requiring an additional hardware controller. Hoeg
denoted ast, which includes several penalties, such as ttieis worth noticing that VOSS is an on-line algorithm with a
context switch overhead, the pipeline invalidation dekyl complexity ofO(n-log(n)), which has to be paid at each idle
the cache-related preemption delay. Since only the contéxterval. The slowest feasible speed used by VOSS has been
switch time depends on the actual speed, the preemption casmputed using the more precise Response Time Analysis
¢ is assumed to be constant and speed independent. [37] (including preemption costs) instead of Liu and Laylan

The switching overhead between two frequencies affedisund [3].
both time and energy. Performing the operations needed torhe first experiment considers the DVFS-sensitive power
modify voltage and frequency requires time to change amabdel,P(%*/%)(s), comparing the improvement obtained using
stabilize these parameters. More precisely, the switchugg- aggressive DPM techniques with the penalty due to preemptio
head increases with the difference between the two frequeverhead. Figure 4 reports the improvement of VOSS for
cies, as more operations need to be performed. For exampliferent preemption costs¢ (€ {0,5,10}) and negligible
the speed tuning is delegated to a PLL module which is a cldseeak-even time = 0, with respect to a plain DVFS solution
feedback loop, such that the wider the frequency differenagith no preemption overhead. In other words, the figure shows
the longer the required time to stabilize the loop. On thhe net improvement of VOSS (including the preemption cost)
dsPIC33FJ256MC710 microcontroller [35], it takes almostver a non-DPM scheduler that runs always at the speed
10us to scale fromd0 to 8 MIPS, and barely3us to scale obtained by the Response Time Analysis with null preemption
from 40 to 35 MIPS. Moreover, when passing frolMIPS cost.
to 40, the PLL must be turned on, since when operating at For utilizations smaller thaf.35, the energy improvement
MIPS the clock is taken directly from the external crystal. lis high. At these utilizations, the task sets are schedelabl
this case, the tuning time is more thams. speeds smaller than the critical osie Since these speeds are

Finally, we also take into account the overhead relatedd¢o thon convenient form an energy point of view, the task sets
online execution of the energy-aware algorithm. Dependimg are scheduled at speed, leading to a significant slack time
the complexity and frequency of invocation of the algorithnmexploitable by the DPM algorithm.
additional operations need to be performed, decreasing théor larger utilizations, task sets are instead executed at
available idle time and increasing the overall energy coresli the minimum speed that guarantees all deadlines to be met,
by the system. As a consequence, aggressive DPM algoritHeeding to smaller idle times. Nevertheless, when the pre-
that require too many on-line operations can result in emption overhead is neglected & 0), VOSS is able to

\
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Fig. 3. Overhead due to switching from active to sleep statewdceversa.



decrease the power consumed by around 10-13%. The relatived, 10 3
improvement decreases for larger utilizations. This isabose
larger utilizations imply higher speeds and, thereforghbr
energy requirements, so that the relative improvement ef th
DPM algorithm represents a smaller percentage of the dveral
power consumed.

When considering a more realistic scenario with a non
negligible preemption cost, the relative performance oS8
significantly decreases. For example, settinig= 10, the
energy improvement df = 0.7 drops from almost0% down 3 035 04 045 05 055 06 065 07 075 08
to less thanl%. This is due the large number of preemptions in Utilization
the considered systems. As noted by Kim et al. [12], exegutin
at the lowest possible speed leads to an increase in the mumbeig. 5. Percentage of saved energy witk= 500 and¢ € {0, 5, 10}.
of preemptions. The reason is that there is less idle time, so
that higher priority arrivals are more likely to happen when
another task is executing, leading to a preemption. Thiseau
an additional workload that must be executed by the system,
increasing the energy consumption.

Increasing the utilization, the performance loss due to
preemptions is larger. Comparing the curves wth- 0 and
& = 10, the energy loss due to the preemption overhead goes
from 1 — 2% at utilization 0.4, to 6 — 7% at utilization 0.8.

Note that the number of preemptions is almost constant at
different utilizations, due to speed scaling. The perfarosa 103 035 04 045 05 055 06 065 07 075 08
loss at higher utilizations is instead due to the larger ichph Utilization

the preemption overhead when executing at higher speeds. Th

additional overhead is executed at energy-expensive speedky . percentage of saved energy with- 1000 andé € {0, 5, 10}.
increasing the overall consumption.

Saved Energy Percenta

6

......................

8f

Saved Energy Percentage

[
w

g - decreasing the number of preemptions. Moreover, as noticed
% i by Awan and Petters [22], the number of preemptions is furthe
3] 1 reduced when applying DPM algorithms, because jobs agivin
g, — during the sleep phase are executed in priority order when th
3 s processor wakes up, without any preemption.
E 7 As already introduced in Section IlI-B, the overhead due
;“j 6f F=0— to the DPM algorithm itself is another key parameter. Since
9 5 &=5um VOSS has a complexit@)(n - log(n)), its overhead has been
& 4 E=1Qmm R considered equal t@ - nlog(n) units of time, at each idle
%3 035 04 045 05 055 06 065 07 075 08 interval. Forn = 8, this corresponds to less than a half of the
Utilization smallest task execution time that can be generated. Thecimpa
of the algorithm overhead on the overall energy consumption
Fig. 4. Percentage of saved energy with= 0 and¢ € {0, 5, 10}. is reported in Figure 7 and Figure 8 fd?(dv'fs)(s) and

Plrm) (), respectively. The experiments assume a negligible

When the break-even time is considered non-negligible, theeemption cosg, a global utilization 0f.7, and a break-even
situation is even worse, as reported in Figure) 5=(500) and time ¢ varying in {0, 500, 1000}.
Figure 6 § = 1000). In such examples, the break-even time is With null break-even time, the impact of the algorithm
considered once and twice the maximum task execution tineeerhead is around — 2%, increasing with the number
respectively. In many cases, there is a negative improvemenf tasks. Considering non-negligible break-even tim&s=(
meaning that the impact of the preemption overhead is $600,1000}), the impact is much higher, up &% and 17%
high that the DPM algorithm is not able to compensate suétr the P(?/*)(s) and P(??™)(s) power model, respectively.
overhead. The overhead has a greater impact on DPM-oriented architec-

When the DPM-sentitive modeP(%”™) () is considered, tures, since the algorithm is invoked more often due to the
the impact of the preemption overhead is significantly senall larger number of idle intervals in the system.
due to several reasons. First of all, tasks are always ex@etit ~ \When increasing the number of tasks, the relative impact of
the highest speed, so that there is significant idle time én tthe overhead decreases. This is because the ideal conifigurat
system, improving the performance of DPM algorithms andgith null algorithm overhead, which is used as a comparing



term, has a drastically lower performance. In fact, a larger To better understand this aspect, let us consider a pracesso

number of tasks implies a higher fragmentation of the idlith two speeds,s; = 0.5 and s; = 1, executing two

intervals, which are often smaller than the break-even tim@asks, and >, with the following parametersC; = 30,

so that the DPM algorithm cannot be efficiently invoked. T; = Dy = 80, Co = 25 andT> = D, = 200 (computation
times are referred to speeg). Tasks are scheduled using

3=0=—  3=500w  3=1000 Rate Monotonic and, for the sake of simplicity, preemption
0 costs are considered negligible. The processor utilindtiotor
-1 at speeds, is U = 0.5 and the task set results feasible
-2 under fully-preemptive, non-preemptive, and limited pnee

tive scheduling. Switching te;, however, computation times
becomeC; = 60 and C; = 50, causing a global utilization

Saved Energy Percentage
&

U = 1, which makes the task set unfeasible under both
N U L E fully-preemptive and non-preemptive modes. Neverthelass
B feasible schedule can be found under the limited preemptive
7 model by splitting taskr in three chunks of length (under
4 6 8 10 12 14 16 18 20 . . .
Number of Tasks speeds;) equal to10, 20, and20 units of time, respectively.
The schedules produced by the Rate Monotonic under the three
Fig. 7. Impact of algorithm overhead fa?(dv/) (s). different preemption modes at are shown in Figure 9.

A more extensive analysis has been carried out to inves-
tigate such feature. More precisely, data reported in Fig-
3=0=—=  3=500wwn  §=100Qwmmm ure 10 represents the average lowest speed that guarameees t
0 task set feasibility considering non-preemptive, fullg@mp-
2 tive and limited preemptive models, obtained by considgrin
. Pdvf5)(s) and 700 task sets for each utilization stef) @R5.
-6
8

Although the non-preemptive model is not affected by the

preemption cost, it requires always the highest averagedspe

without guaranteeing the task set feasibility for at leaaf h

of the generated task sets at utilizations higher thanEven

1 - i without considering preemption costs, the limited preevept

e task model allows reducing the execution speed%fand1%

4 6 8 NlL(jmbeizof Ta?ks v’ 20 with respect to non-preemptive and fully preemptive modes,
respectively. If preemption cost is accounted in the anmglys

the fully preemptive performance drops significantly, ef@n

& = 10, whereas the limited preemption behavior is only

slightly degraded.

Saved Energy Percentage

Fig. 8. Impact of algorithm overhead witR(4r™) ().

V. POSSIBLE SOLUTIONS

The results reported in the experimental section indidade t 2
preemption cost degrades the performance of energy- -awabeo.98
algorithms. As a consequence, we believe that limited ppeem% 0.96 e
tive scheduling can be effectively exploited to furtherueel o
energy consumption while guaranteeing real-time congBai q;) 0.94

The two main benefits coming from the limited preemptive g g, ;
approach are a reduced number of preemptions (which redudgs el

the relative overhead) and an increased number of schédula& 0.9¢”

Non-Preemptive
Fully-Preemptiveg=10-=-
Fully-Preemptive§=0 1

task sets with respect to both fully preemptive and nos 088...»5"“"’ Limited Preemptive§=10-=- |
preemptive fixed priority schedulers. < os Limited Preemptive§=0 -~

In particular, the possible improvements concerning DVFS ©7 0725 075 0.775 08 0825 0.85 0875 0.9 0925 0.5
and DPM approaches are discussed in Section V-A and Sec- Utilization

tion V-B, respectively.

A. DVFS approach

Using the limited preemptive algorithm to guarantee the Hence, an interesting research challenge is to find an off-
feasibility of a higher number of task sets can be equivaleliie algorithm that can define a set of preemption points such
to using a lower speed to schedule the task sets than unifet the feasible speed at which a real-time task set can be
fully preemptive and non-preemptive algorithms, hencérgpv executed is minimized. A promising possibility is to extend
more energy. the algorithm proposed by Bertogna et al. [38] to return not

Fig. 10. Average lowest speed for different schedulers aadmption costs.
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Fig. 9. Schedules produced by Rate Monotonic at sgeed).5 under Non-Preemptive (NP), Fully-Preemptive (FP), anditechPreemptive (LP) scheduling.

only the set of preemption points, but also the optimal speqateemption overhead has been showed to significantly con-
Since the chunks’ lengths depend on the actual speed andrilsute to the overall power consumed, especially for DVFS-
the system feasibility, which in turns relies on the chunksriented architectures. These systems tend to executesat th
lengths, such an analysis is not trivial, as there is a cyckmallest speed that guarantees all deadlines to be meindead
dependency among the variables. to a typically large number of preemptions. DPM techniques
Moreover, another interesting aspect concerns the ptigsibiapplied to these systems can be efficiently adopted to exploi
of scaling the running speed at run-time while guaranteeitige available idle time switching the processor into sleafes
a low algorithm complexity. The main problem is related tblowever, the power consumed due to preemptions might be
the fact that scaling down the running speed would make the large, if not bigger, than the performance gain obtained
execution of the actual non-preemptive chunk longer, thudth these techniques, depending on system parameters like
increasing the blocking time introduced in higher prioritpreemption cost, break-even time and task set utilization.

tasks. DPM-oriented architectures are less influenced by the pre-
emption overhead, because they execute at larger speeatds tha
B. DPM approach the smallest feasible one. This results in larger idle tinagth

From a DPM point of view, there is significant room forfewer preemptions and bigger energy gains for DPM tech-

improvement, thanks to the larger blocking tolerances thag1es: However, these algorithms are subject to a significa

can be obtained using the limited preemptive model. Th‘i)sn'IIne overhead when aggressive techniques are adopted to

. . . ollect the available slack. Using complex on-line rousihas
property is mainly due to the smaller response times of tas Sb . o .
a big impact on the overall power consumed. This impact is

having a non-preemptive region at the end of their executm&gger for DPM-oriented architectures, which tend to execu

In fact, 6}" hlghgr p_rlorlty requests arriving while such am aat g larger speed. The reason is twofold. Firstly, the abucela
preemptive region is executed are postponed after the en P : . .
of idle time causes a more frequent invocation of the DPM

the considered task, decreasing the overall interference a_ . .
. . routines, increasing the overhead. Secondly, such an eadrh
reducing the number of preemptions.

Unfortunately, applying DPM techniques, like those addptqlzrfnasldoﬁz:?er?ge; speeds and, therefore, with a higher cost in

in VOSS, to limited preemptive models is not trivial. While The adoni ¢ limited tive techni f
the idle times of a fully preemptive schedule can be collécte € adoption of imited preemptive techniques for power-
are scheduling algorithms has been proposed to decrease

by VOSS just by postponing the task arrivals, the same X . :
4 ] y postp g e system overhead, with particular relation to the cantex

. . . t
not necessarily true for a limited preemptive schedule,rethe” ™ . o .
'y mitec p PV . yvnch overhead. The improved schedulability propertiés o

the interference on a task changes depending on the particgl, . .
time at which a higher priority job arrives. Robust metho gmted preemptive systems can be exploited to decrease the

are needed to safely delay task executions in order to axplgriocessor speed of DVFS-oriented systems. The larger block

the allowed blocking tolerance to extend the sleep timess Y tolerances can be used to e>_<tend the sleep times in DPM-
has to be done with a reduced system overhead, with rl[ented systems. However, particular care should be taken

requiring overly complicated on-line computations thatwao the gglr\p:]exny of the fon-llne _aIgontk;)m, Im:cmng ZS much.as
compromise potential improvements. possible the amount of operations to be performed at rua-tim
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