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Abstract—The real-time research community is often con-
cerned with finding suitable assumptions to simplify the schedu-
lability analysis of current real-time systems. This includes sim-
plified power models, negligible scheduling overhead, negligible
preemption cost, bounded cache misses and bus contention, etc.
However, the actual behavior of a real application might be
significantly different than that expected from a simplifiedsystem
under the adopted set of assumptions.

This paper investigates the impact that preemption cost might
have on the energy consumption under a given energy-aware
scheduling algorithm. A set of simulation experiments illustrate
the influence of context switch and scheduling overhead on the
actual energy consumed in a given system. Results show that,
in certain conditions, the penalty due to the runtime overhead
might be as large as the amount of energy saved using aggressive
DPM and DVFS scheduling techniques. In this context, limited
preemptive scheduling is proposed as a possible solution for
limiting the main sources of overhead to fully exploit the benefits
of power saving features of current computer architectures.

I. I NTRODUCTION

Energy management is becoming more and more a crucial
issue in modern embedded systems. Increasing lifetime, re-
ducing energy bill, and decreasing the risk of temperature-
related faults are only few of the motivations behind the
growing interest in this topic. However, the reduction of power
consumption leads to a decrease of performance, which could
be critical for real-time applications where a set of time
constraints need to be guaranteed.

Nowadays, the CMOS technology is the market leader and
its power consumption could be roughly divided in dynamic
and static components. The first one is due to the system
activity and depends on the clock frequency, while the second
one is a consequence of the static dissipation and could be
reduced only switching off the gates. Over the years, hardware
mechanisms have been developed to manage these two causes
of consumption and a lot of techniques based on these mech-
anisms have been proposed to save energy. Two of the most
widely used groups of techniques areDynamic Voltage and
Frequency Scaling (DVFS) andDynamic Power Management
(DPM). The DVFS approach trades energy with performance
by decreasing the voltage and/or frequency of the processor
to reduce the overall energy consumption. Since a frequency
reduction increases the execution times of the computational
activities, the objective of this technique is to find the slowest
processor speed that still guarantees real-time constraints. On
the other hand, DPM techniques aim at switching the processor

in a low-power inactive state for the longest possible time,
thus postponing the tasks execution as long as possible still
guaranteeing the task real-time constraints.

With the growing importance of energy management, an
increasing number of energy-aware scheduling algorithms
have been proposed in the last years. Most of them consider
either a fully preemptive or a non-preemptive model. In a fully
preemptive system, if a newly activated task has a priority
higher than the running one, a preemption occurs to move the
running task in the ready queue and assign the processor to
the new one. This implies a context switch overhead, which
generally includes the time for suspending the running task
and dispatching the new one, the time taken to flush the
processor pipeline, and the cache-related preemption delay
due to cache misses. Such an overhead is either neglected in
the schedulability analysis (leading to an actual consumption
higher than the predicted one) or overestimated by making
pessimistic assumptions (so deteriorating the overall system
performance). On the other side, non-preemptive scheduling
can save a lot of runtime overhead and make the execution
time more predictable, but it may introduce large blocking
times in high priority tasks, degrading the schedulabilityof
the system.

To mitigate the drawback of both approaches, limited pre-
emptive scheduling has recently been proposed as a hybrid
technique to decrease the number of preemptions without
affecting the schedulability of the system. In this model, each
task is view as a sequence of non-preemptive chunks and can
be preempted only between chunks. Buttazzo, Bertogna, and
Yao [1] have shown that limited preemptive scheduling in-
creases the schedulability of fixed priority systems with respect
to both fully preemptive and non-preemptive scheduling, even
when preemption cost is neglected. The improvement is even
more significant when considering preemption cost, due to the
smaller number of context switches and the more predictable
location of preemption points. Moreover, limited preemptive
scheduling allows an implicit mutual exclusion management
(when critical sections are encapsulated inside non-preemptive
regions) and permits reducing stack memory requirements.

The objective of this paper is to investigate the impact of
runtime overhead in energy-aware scheduling algorithms. In
particular, simulation experiments show that the penalty asso-
ciated with context switch overhead can significantly deterio-
rate the performance of energy-aware algorithms, introducing



an additional energy consumption comparable to the amount of
energy saved by aggressive DPM algorithms. Considerations
will be also made on the scheduling overhead related to DPM
techniques that require a significant number of operations at
each idle interval. Finally, the impact of the overhead sources
will be measured under different power models.

Preliminary results will be shown on the effectiveness of
limited preemptive scheduling in reducing the minimum DVFS
speed that can guarantee feasibility. Finally, some considera-
tions will be presented on the integration of limited preemptive
models with DPM techniques.

The remainder of the paper is organized as follows; Sec-
tion II presents the state of art on energy saving algorithms;
Section III introduces the system model in terms of tasks,
energy consumption, and overhead sources; Section IV reports
a set of simulation experiments aimed at showing the impact
of runtime overhead on an energy-saving algorithm; SectionV
presents some ideas to decrease energy consumption by ex-
ploiting limited preemptive models; and Section VI concludes
the paper.

II. RELATED WORK

This section presents the state of the art regarding energy
management, first discussing DVFS algorithms, then DPM
approaches.

One of the first papers about power management exploiting
frequency scaling was due to Yao et al. [2]. The authors
proposed an off-line algorithm that, given a task set, computes
the minimum energy schedule under the Earliest Deadline
First scheduling (EDF) algorithm [3] with a complexity
O(n · log2(n)). Then, they introduced two online methods to
scale the speed according to the actual workload requiring
O(n) at every scheduling event andO(n · log2(n)) at every
task arrival, respectively. The analysis compares the efficiency
of the algorithms with respect to different power models,
but without taking switching and algorithms overhead into
account.

Seong et al. proposed two algorithms. The first one
(OLDVS) [4] accumulates the time generated by early ter-
minations and exploits it to decrease the CPU speed so that
the current task is completed at the same time at which it
would have completed in the worst case. The second algorithm
(OLDVS∗) [5] divides each task in two parts: the first one is
executed at a slower speed, while the second one is executed
at a higher speed. The approach is based on the assumption
that the probability of ending the task instance in the first
part is significantly higher than finishing on the second part.
Both algorithms do not take switching overheads into account.
Bambagini et al. [6] extended the previous approaches by
considering switching overheads. Moreover, they implemented
the algorithms on a real embedded platform and showed that
the more aggressive algorithm does not improve the energy
consumption as expected, due to the actual power function.

Aydin et al. [7] proposed three algorithms with growing
complexity. The first one computes the lowest CPU speed
such that the task set is schedulable under the assumption

that all tasks execute for their WCET. The second algorithm
(DRA) keeps track of the times at which a task is going to be
dispatched (computed off-line and stored in a dispatch queue).
At runtime, if a task is dispatched earlier, the CPU is slowed
down to prolong the execution until the original finishing time.
The third algorithm (AGR) estimates the tasks completion
times based on past instances and computes the lowest CPU
speed to keep the task set feasible assuming that tasks execute
for such estimates. However, since the estimations can be
optimistic, the algorithm may speed the CPU up to recover
from a task overrun. Neither this paper considers the overhead
due to speed scaling, algorithm complexity or preemptions.

The problem of obtaining an optimal frequency from a
discrete frequency range was discussed by Bini et al. [8]. The
authors provided a method for computing the optimal speed
off-line (that could be unavailable in a specific architecture)
and introduced a speed modulation technique to achieve the
required speed using two discrete values. The analysis selects
the pair of frequencies that minimizes energy consumption
also considering switching overheads. Since the algorithm
works mostly off-line (as only the speed moluation is exe-
cuted online) the algorithm overhead does not increase overall
utilization. Despite its innovative contribution, such anoff-line
approach does not take advantage of tasks early terminations
to further reduce consumption.

Some authors [9], [10] reported that online DVFS tech-
niques that frequently scale the execution speed may lead to
transient faults. This problem was also addressed by Zhao et
al. [11], who proposed a recovery allowance and an additional
recovery task to run in case of fault.

Another side effect of DVFS techniques was emphasized by
Kim et al. [12], who noticed that such algorithms increase the
number of preemptions, leading to a higher system utilization
and, therefore, a higher energy consumption. This is because
scaling the speed increases the computation times, exposing
each task to a larger number of preemptions. To mitigate such
a problem, they proposed two preemption control techniques
integrated with a DVFS algorithm.

The raising impact of leakage power in modern architec-
tures, highlighted by Kim et al. [13], is driving the research
on power management toward DPM techniques.

Lee et al. [14] proposed two leakage control algorithms for
procrastinating tasks execution as long as possible, both under
fixed (LC-EDF) and dynamic (LC-DP) priority scheduling.
Using a dual priority scheme [15], LC-DP computes the
longest delay (promotion time) each task can suffer still
satisfying its deadline. The drawbacks are that the critical
speed is not taken into account (i.e., the system runs at the
maximum speed) and the overhead introduced at runtime due
to the higher complexity of the online analysis is high (O(n2)).

Jejurikar et al. [16] proposed an approach (CS-DVS-P)
based on critical speed analysis and task procrastination work-
ing for periodic tasks under EDF. First, an off-line DPM
algorithm computes the maximum amount of time each task
can spend in the sleep state within its period. Then, at run-time,
sleep management is delegated to an external controller that



switches the system off for the corresponding pre-computed
time. Jejurikar and Gupta [17] extended the previous method
to consider early terminations and fixed priority scheduling
[18]. More precisely, the approach proposed in [18] differs
from the first one for the computation of the maximum sleep
time for each task. These values are obtained exploiting the
dual priority of [14]. Since most of the computation is done
offline, the online complexity reduces toO(1). However, a
dedicated external hardware is required to run the algorithm,
increasing the power consumed, and no preemption overhead
is considered.

Chen and Kuo [19] showed that the DPM part of the
algorithm in [18] may lead to deadline misses, and proposed
some solutions to avoid such a problem. The first method
(OSS) simulates the execution of periodic tasks to compute the
idle time available until the next deadline. Then, such a time
is used to postpone the task activations and switch the system
into the sleep state. An improved version of the algorithm
(VOSS) further increases the sleep intervals making use of the
virtual blocking, which is the maximum blocking that tasks
can suffer. Neither the algorithm complexity (O(n · log(n))
at every idle time) nor preemption overhead were taken into
account into such analysis.

Marinoni et al. [20] proposed a different approach: instead
of computing a single speed off-line and postponing task
execution on line, they compute the sleep interval and the
speed at every idle time, to guarantee the feasibility within the
next busy period. In addition, they also considered bandwidth
allocation constraints that force the processor to be active
during the assigned communication intervals. Altough such
proposal aims at finding the optimal configuration at every
idle time, the introduced complexity is pseudo-polynomial.

Awan and Petters [21] proposed to accumulate task execu-
tion slack to switch the processor off during such intervals
under EDF, considering tasks with different criticality and
processors with several low-power states and different break-
even times. However, tasks are always executed at the maxi-
mum speed. The slack accounts both dynamic and static spare
capacity. The static slack is due to an utilization lower than the
maximum obtainable and the dynamic slack is ascribable to
task early terminations. The same authors [22] observed that
task procrastination algorithms significantly reduce the number
of preemptions, leading to a lower system utilization and a
larger slack for sleep states. Procrastinating tasks produces a
synchronous activation of some tasks, which are then executed
following the priority order without preemptions among them.

Irani et al. [23] addressed the problem concerning the
estimation of the distance between the resulting schedule
and the optimal one. More precisely, they proposed anα-
approximation leakage-aware algorithm which produces a
scheduleα times worse than the optimal from the energy
consumption point of view considering a continuous set of
speeds.

Niu and Quan [24], [25] proposed an algorithm that, work-
ing with periodic tasks, computes at run-time the latest starting
time for each task to guarantee the feasibility considering

the jobs activated within the hyperperiod. Even though the
proposed solution obtains good results, it introduces a consid-
erable computation overhead that makes it unsuitable to actual
real-time systems.

Huang et al. [26], [27] proposed an off-line analysis that
combines DPM and Real-Time Calculus to estimate tasks
arrivals, compute the CPU idle intervals and then, at run-time,
modulate between active (at maximum speed) and sleep states.
The main idea is similar to [8], but applied to DPM-based
architectures. This approach leads to sleep intervals thatare
generally smaller and more frequent than those obtained by
procrastination algorithms.

Rowe et al. [28] presented a technique that harmonizes task
periods to cluster task execution such that processor idle times
are lumped together. More precisely, the algorithm introduces
the harmonizing period, so that the scheduler notifies task
arrivals at integer multiples of such a period. If there is
no task to execute, the system can put itself in sleep state
until the next period. Although the algorithm allows entering
a sleep state every time there is an idle period, it is less
effective than postponing computation times, and it has a
smaller schedulability bound.

Wang and Mishra [29] investigated DVS and dynamic cache
reconfiguration in hard real-time systems for minimizing the
overall energy consumption considering every single compo-
nent, such as processor, cache and bus.

To the best of our knowledge, only Maxim et al. [30]
have addressed the problem of exploiting a limited preemption
model to further reduce energy consumption and the number
of preemptions. However, their preliminary work does not
consider the critical speed, switching overhead and DPM
approaches.

III. SYSTEM MODEL

We consider a setΓ of n fixed priority tasks,τ1, τ2, . . . , τn
executing upon a single processor platform with preemption
support. We assume that tasks are indexed in decreasing
priority order (i.e., if 0 < i < j ≤ n, then τi has higher
priority thanτj). The processor can vary the clock frequency
f by selecting one of the available frequencies in a discrete set
{f1, . . . , fm}, ordered by ascending values. In the following,
the normalized speeds, defined ass = f/fm, will be used as
a more convenient parameter.

Each sporadic taskτi is characterized by a worst-case
execution time (WCET)Ci(s), which is a function of the
speed, a relative deadlineDi and a periodTi. The WCET
of τi depends on the actual speed of the processor and is
computed asCi(s) = CNP

i /s, whereCNP
i denotes the time

to executeτi in a non-preemptive mode at the maximum speed
(CNP

i = Ci(sm)). Relative deadlines can be smaller than,
equal to, or greater than periods. All parameters are assumed in
N

+. Each task generates an infinite sequence of jobs, with the
first job arriving at any time and subsequent arrivals separated
by Ti units of time.



A. Power model

The power model derived by Martin et al. in [31] represents
a general expression of the power consumption of an active
processor as a function of the speed:

P (s) = K3s
3 +K2s

2 +K1s+K0. (1)

The K3 term is the coefficient related to the consumption of
those components that vary both voltage and frequency. The
second order term (K2) describes the non linearity of DC-
DC regulators in the range of the output voltage. TheK1

coefficient is related to the hardware components that can only
vary the clock frequency, whereasK0 represents the power
consumed by the components that are not affected by the
processor speed.

Note that the energy needed to execute a job is the product
of the power and the execution time at the selected speed;
moreover, a higher speed reduces the execution time, but
increases the power consumption. Hence, the quantity that it
is important to minimize is the energy consumption of each
clock cycleEclk(s) = P (s)/s. Considering the shape ofP (s)
as a function ofs, as reported in Equation (1), a critical speed
s∗ that minimizedEclk(s) can be found [19].

As an example, two generic processors are considered with
ten speeds uniformly distributed from 0.1 to 1.0 and power
functionsP (dvfs)(s) = 0.9s3 + 0.1 andP (dpm)(s) = 0.9s+
0.1. The first one models a DVFS-sensitive architecture, as
scaling down the speed (untils∗ = 0.4) is energy-convenient.
The second one represents a DPM-sensitive architecture, as
running at a speed slower than the maximum one (s∗ = 1.0)
is not suitable from an energy point of view. In these cases,
the curves representing the power functions and the energy
per clock functions are reported in Figure 1 and Figure 2,
respectively.
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Stating which model better describes the current architecture
trend is not easy. In fact, although DPM-like models seem
to be dominant in real processors (but less studied in the
literature) [6], [21], a different trend has been reported by
Kandhalu et al. in [32], considering the power consumed by
a full board: a Motorola Xoom platform [33] equipped with a
NVidia Tegra 2 [34]. In order to derive general results, in this
paper we consider both power models.
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An additional feature provided by almost all the current
processors is the possibility to switch to low-power states
while the code execution is suspended. Different device sub-
systems could be switched off defining different low-power
states. Each stateσx is characterized by the power consumed
in it, denoted asPσx

, and by the times required to enter and
exit it, denoted asδs→σx

and δσx→s, respectively. The sum
of such switching times, referred to asbreak-even time, δx,
determines the shortest idle interval that must be available
in the schedule to exploit the sleep state. Such an overhead
is assumed to be independent of the actual running speed.
The energy consumed during a transition from active toσx

and viceversa is denoted byEδx . Different power states are
characterized by different parameters, as illustrated in Figure 3,
which shows three different state transitions. The first case
refers to a sleep state with a short break-even time, but a
power consumption only slightly smaller than that of the active
state. On the other hand, the third case refers to a state with
the lowest power consumption, but with the longest transition
times from active to sleep states and viceversa. Finding the
most suitable low-power state depends on the available idle
time and on the real-time constraints of the application.

Measurements carried out on Flex Boards equipped with
a Microchip dsPIC33FJ256MC710 microcontroller [35] show
that the power consumption at the slowest speed is86.12mA,
while the deepest sleep state consumes26.40mA, requiring
19.30ms for handling a complete transition. On the other hand,
the second low-power state is characterized by a consumption
of 56.38mA and a much shorter break-even time, equal to8
instruction cycles.

B. Overhead

When evaluating the performance of a energy-aware
scheduling algorithm, different overhead sources need to be
taken into account, including the preemption cost, the time
taken to switch to a low-power state, and the complexity of
the online algorithm. As mentioned in Section II, most of the
existing works underestimate the importance of these factors,
neglecting them in the schedulability analysis. This results
in overly optimistic performance characterizations that can
significantly differ from the real performance of the system.
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In this paper, we explicitly consider the preemption cost,
denoted asξ, which includes several penalties, such as the
context switch overhead, the pipeline invalidation delay,and
the cache-related preemption delay. Since only the context
switch time depends on the actual speed, the preemption cost
ξ is assumed to be constant and speed independent.

The switching overhead between two frequencies affects
both time and energy. Performing the operations needed to
modify voltage and frequency requires time to change and
stabilize these parameters. More precisely, the switchingover-
head increases with the difference between the two frequen-
cies, as more operations need to be performed. For example,
the speed tuning is delegated to a PLL module which is a close
feedback loop, such that the wider the frequency difference,
the longer the required time to stabilize the loop. On the
dsPIC33FJ256MC710 microcontroller [35], it takes almost
10µs to scale from40 to 8 MIPS, and barely3µs to scale
from 40 to 35 MIPS. Moreover, when passing from2 MIPS
to 40, the PLL must be turned on, since when operating at2
MIPS the clock is taken directly from the external crystal. In
this case, the tuning time is more than1ms.

Finally, we also take into account the overhead related to the
online execution of the energy-aware algorithm. Dependingon
the complexity and frequency of invocation of the algorithm,
additional operations need to be performed, decreasing the
available idle time and increasing the overall energy consumed
by the system. As a consequence, aggressive DPM algorithms
that require too many on-line operations can result in a

decreased system performance, compensating the longer time
spent in sleep modes with the additional energy required to
run the algorithm.

IV. EXPERIMENTAL RESULTS

This section presents a set of simulation experiments to
show the impact of the runtime overhead on the overall energy
consumption of the system.

Synthetic task sets consist of 10 periodic tasks randomly
generated using the UUniFast algorithm [36], where the total
utilizationU is varied in a given range, and each computation
time Ci is uniformly distributed in the interval[100, 500]. Pe-
riods are derived once computation times and task utilizations
have been generated and relative deadlines are set equal to
periods. Tasks are scheduled under fixed priorities assigned
with the Rate Monotonic algorithm and each simulation run
is performed until the hyperperiod. In each graph, output
results for each parameter configuration are averaged over 100
different runs.

Simulations have been carried out assuming a processor
with 19 discrete speeds varying in the range of[0.1, 1] with
step 0.05. Results are reported for both the power models
introduced in Section III-A. For the sake of simplicity, a single
sleep state is considered, withPσ = 0.0025, andEδ = 0.1 · δ,
where the break-even timeδ is varied in a given range.

All simulations have been performed on the VOSS algo-
rithm, by Chen and Kuo [19], because it has been shown
to outperform other algorithms under fixed priority systems
without requiring an additional hardware controller. However,
it is worth noticing that VOSS is an on-line algorithm with a
complexity ofO(n · log(n)), which has to be paid at each idle
interval. The slowest feasible speed used by VOSS has been
computed using the more precise Response Time Analysis
[37] (including preemption costs) instead of Liu and Layland’s
bound [3].

The first experiment considers the DVFS-sensitive power
model,P (dvfs)(s), comparing the improvement obtained using
aggressive DPM techniques with the penalty due to preemption
overhead. Figure 4 reports the improvement of VOSS for
different preemption costs (ξ ∈ {0, 5, 10}) and negligible
break-even timeδ = 0, with respect to a plain DVFS solution
with no preemption overhead. In other words, the figure shows
the net improvement of VOSS (including the preemption cost)
over a non-DPM scheduler that runs always at the speed
obtained by the Response Time Analysis with null preemption
cost.

For utilizations smaller than0.35, the energy improvement
is high. At these utilizations, the task sets are schedulable at
speeds smaller than the critical ones∗. Since these speeds are
non convenient form an energy point of view, the task sets
are scheduled at speeds∗, leading to a significant slack time
exploitable by the DPM algorithm.

For larger utilizations, task sets are instead executed at
the minimum speed that guarantees all deadlines to be met,
leading to smaller idle times. Nevertheless, when the pre-
emption overhead is neglected (ξ = 0), VOSS is able to



decrease the power consumed by around 10-13%. The relative
improvement decreases for larger utilizations. This is because
larger utilizations imply higher speeds and, therefore, higher
energy requirements, so that the relative improvement of the
DPM algorithm represents a smaller percentage of the overall
power consumed.

When considering a more realistic scenario with a non
negligible preemption cost, the relative performance of VOSS
significantly decreases. For example, settingξ = 10, the
energy improvement atU = 0.7 drops from almost10% down
to less than4%. This is due the large number of preemptions in
the considered systems. As noted by Kim et al. [12], executing
at the lowest possible speed leads to an increase in the number
of preemptions. The reason is that there is less idle time, so
that higher priority arrivals are more likely to happen when
another task is executing, leading to a preemption. This causes
an additional workload that must be executed by the system,
increasing the energy consumption.

Increasing the utilization, the performance loss due to
preemptions is larger. Comparing the curves withξ = 0 and
ξ = 10, the energy loss due to the preemption overhead goes
from 1 − 2% at utilization 0.4, to 6 − 7% at utilization 0.8.
Note that the number of preemptions is almost constant at
different utilizations, due to speed scaling. The performance
loss at higher utilizations is instead due to the larger impact of
the preemption overhead when executing at higher speeds. The
additional overhead is executed at energy-expensive speeds,
increasing the overall consumption.
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When the break-even time is considered non-negligible, the
situation is even worse, as reported in Figure 5 (δ = 500) and
Figure 6 (δ = 1000). In such examples, the break-even time is
considered once and twice the maximum task execution time,
respectively. In many cases, there is a negative improvement,
meaning that the impact of the preemption overhead is so
high that the DPM algorithm is not able to compensate such
overhead.

When the DPM-sentitive modelP (dpm)(s) is considered,
the impact of the preemption overhead is significantly smaller,
due to several reasons. First of all, tasks are always executed at
the highest speed, so that there is significant idle time in the
system, improving the performance of DPM algorithms and
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decreasing the number of preemptions. Moreover, as noticed
by Awan and Petters [22], the number of preemptions is further
reduced when applying DPM algorithms, because jobs arriving
during the sleep phase are executed in priority order when the
processor wakes up, without any preemption.

As already introduced in Section III-B, the overhead due
to the DPM algorithm itself is another key parameter. Since
VOSS has a complexityO(n · log(n)), its overhead has been
considered equal to2 · n log(n) units of time, at each idle
interval. Forn = 8, this corresponds to less than a half of the
smallest task execution time that can be generated. The impact
of the algorithm overhead on the overall energy consumption
is reported in Figure 7 and Figure 8 forP (dvfs)(s) and
P (dpm)(s), respectively. The experiments assume a negligible
preemption costξ, a global utilization of0.7, and a break-even
time δ varying in {0, 500, 1000}.

With null break-even time, the impact of the algorithm
overhead is around1 − 2%, increasing with the number
of tasks. Considering non-negligible break-even times (δ ∈
{500, 1000}), the impact is much higher, up to6% and17%
for theP (dvfs)(s) andP (dpm)(s) power model, respectively.
The overhead has a greater impact on DPM-oriented architec-
tures, since the algorithm is invoked more often due to the
larger number of idle intervals in the system.

When increasing the number of tasks, the relative impact of
the overhead decreases. This is because the ideal configuration
with null algorithm overhead, which is used as a comparing



term, has a drastically lower performance. In fact, a larger
number of tasks implies a higher fragmentation of the idle
intervals, which are often smaller than the break-even time,
so that the DPM algorithm cannot be efficiently invoked.
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-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 4  6  8  10  12  14  16  18  20

S
av

ed
 E

ne
rg

y 
P

er
ce

nt
ag

e

Number of Tasks

            δ=0 δ=500 δ=1000

Fig. 8. Impact of algorithm overhead withP (dpm)(s).

V. POSSIBLE SOLUTIONS

The results reported in the experimental section indicate that
preemption cost degrades the performance of energy-aware
algorithms. As a consequence, we believe that limited preemp-
tive scheduling can be effectively exploited to further reduce
energy consumption while guaranteeing real-time constraints.

The two main benefits coming from the limited preemptive
approach are a reduced number of preemptions (which reduces
the relative overhead) and an increased number of schedulable
task sets with respect to both fully preemptive and non
preemptive fixed priority schedulers.

In particular, the possible improvements concerning DVFS
and DPM approaches are discussed in Section V-A and Sec-
tion V-B, respectively.

A. DVFS approach

Using the limited preemptive algorithm to guarantee the
feasibility of a higher number of task sets can be equivalent
to using a lower speed to schedule the task sets than under
fully preemptive and non-preemptive algorithms, hence saving
more energy.

To better understand this aspect, let us consider a processor
with two speeds,s1 = 0.5 and s2 = 1, executing two
tasks,τ1 and τ2, with the following parameters:C1 = 30,
T1 = D1 = 80, C2 = 25 andT2 = D2 = 200 (computation
times are referred to speeds2). Tasks are scheduled using
Rate Monotonic and, for the sake of simplicity, preemption
costs are considered negligible. The processor utilization factor
at speeds2 is U = 0.5 and the task set results feasible
under fully-preemptive, non-preemptive, and limited preemp-
tive scheduling. Switching tos1, however, computation times
becomeC1 = 60 andC2 = 50, causing a global utilization
U = 1, which makes the task set unfeasible under both
fully-preemptive and non-preemptive modes. Nevertheless, a
feasible schedule can be found under the limited preemptive
model by splitting taskτ2 in three chunks of length (under
speeds1) equal to10, 20, and20 units of time, respectively.
The schedules produced by the Rate Monotonic under the three
different preemption modes ats2 are shown in Figure 9.

A more extensive analysis has been carried out to inves-
tigate such feature. More precisely, data reported in Fig-
ure 10 represents the average lowest speed that guarantees the
task set feasibility considering non-preemptive, fully preemp-
tive and limited preemptive models, obtained by considering
P (dvfs)(s) and 700 task sets for each utilization step of0.025.
Although the non-preemptive model is not affected by the
preemption cost, it requires always the highest average speed
without guaranteeing the task set feasibility for at least half
of the generated task sets at utilizations higher than0.9. Even
without considering preemption costs, the limited preemptive
task model allows reducing the execution speed of2% and1%
with respect to non-preemptive and fully preemptive modes,
respectively. If preemption cost is accounted in the analysis,
the fully preemptive performance drops significantly, evenfor
ξ = 10, whereas the limited preemption behavior is only
slightly degraded.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.7  0.725  0.75  0.775  0.8  0.825  0.85  0.875  0.9  0.925  0.95

A
ve

ra
ge

 lo
w

es
t s

pe
ed

Utilization

Non-Preemptive

Fully-Preemptive, ξ=10

Fully-Preemptive, ξ=0  

Limited Preemptive, ξ=10

Limited Preemptive, ξ=0  

Fig. 10. Average lowest speed for different schedulers and preemption costs.

Hence, an interesting research challenge is to find an off-
line algorithm that can define a set of preemption points such
that the feasible speed at which a real-time task set can be
executed is minimized. A promising possibility is to extend
the algorithm proposed by Bertogna et al. [38] to return not
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Fig. 9. Schedules produced by Rate Monotonic at speeds = 0.5 under Non-Preemptive (NP), Fully-Preemptive (FP), and Limited Preemptive (LP) scheduling.

only the set of preemption points, but also the optimal speed.
Since the chunks’ lengths depend on the actual speed and on
the system feasibility, which in turns relies on the chunks’
lengths, such an analysis is not trivial, as there is a cyclic
dependency among the variables.

Moreover, another interesting aspect concerns the possibility
of scaling the running speed at run-time while guaranteeing
a low algorithm complexity. The main problem is related to
the fact that scaling down the running speed would make the
execution of the actual non-preemptive chunk longer, thus
increasing the blocking time introduced in higher priority
tasks.

B. DPM approach

From a DPM point of view, there is significant room for
improvement, thanks to the larger blocking tolerances that
can be obtained using the limited preemptive model. This
property is mainly due to the smaller response times of tasks
having a non-preemptive region at the end of their execution.
In fact, all higher priority requests arriving while such a non-
preemptive region is executed are postponed after the end of
the considered task, decreasing the overall interference and
reducing the number of preemptions.

Unfortunately, applying DPM techniques, like those adopted
in VOSS, to limited preemptive models is not trivial. While
the idle times of a fully preemptive schedule can be collected
by VOSS just by postponing the task arrivals, the same is
not necessarily true for a limited preemptive schedule, where
the interference on a task changes depending on the particular
time at which a higher priority job arrives. Robust methods
are needed to safely delay task executions in order to exploit
the allowed blocking tolerance to extend the sleep times. This
has to be done with a reduced system overhead, without
requiring overly complicated on-line computations that would
compromise potential improvements.

VI. CONCLUSION

This paper investigated the impact of different overhead
sources on the performance of power-aware scheduling tech-
niques commonly adopted in the literature. In particular, the

preemption overhead has been showed to significantly con-
tribute to the overall power consumed, especially for DVFS-
oriented architectures. These systems tend to execute at the
smallest speed that guarantees all deadlines to be met, leading
to a typically large number of preemptions. DPM techniques
applied to these systems can be efficiently adopted to exploit
the available idle time switching the processor into sleep state.
However, the power consumed due to preemptions might be
as large, if not bigger, than the performance gain obtained
with these techniques, depending on system parameters like
preemption cost, break-even time and task set utilization.

DPM-oriented architectures are less influenced by the pre-
emption overhead, because they execute at larger speeds than
the smallest feasible one. This results in larger idle times, with
fewer preemptions and bigger energy gains for DPM tech-
niques. However, these algorithms are subject to a significant
on-line overhead when aggressive techniques are adopted to
collect the available slack. Using complex on-line routines has
a big impact on the overall power consumed. This impact is
bigger for DPM-oriented architectures, which tend to execute
at a larger speed. The reason is twofold. Firstly, the abundance
of idle time causes a more frequent invocation of the DPM
routines, increasing the overhead. Secondly, such an overhead
is paid at larger speeds and, therefore, with a higher cost in
terms of energy.

The adoption of limited preemptive techniques for power-
aware scheduling algorithms has been proposed to decrease
the system overhead, with particular relation to the context
switch overhead. The improved schedulability properties of
limited preemptive systems can be exploited to decrease the
processor speed of DVFS-oriented systems. The larger block-
ing tolerances can be used to extend the sleep times in DPM-
oriented systems. However, particular care should be takenon
the complexity of the on-line algorithm, limiting as much as
possible the amount of operations to be performed at run-time.
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