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Abstract—Computing platforms are evolving towards heteroge-
neous architectures including processors of different types and
field programmable gate arrays (FPGAs), used as hardware
accelerators for speeding up specific functions. The increasing
capacity and performance of modern FPGAs, with their partial
reconfiguration capabilities, have made them attractive in several
application domains, including space applications.

This paper proposes a framework for supporting the develop-
ment of safety-critical real-time systems that exploit hardware
accelerators developed through FPGAs with dynamic partial
reconfiguration capabilities.

A model is first presented and then used to derive a response-
time analysis to verify the schedulability of a real-time task set
under given constraints and assumptions. Although the analysis
is based on a generic model, the proposed framework has been
conceived to account for several real-world constraints present on
today’s platforms and has been practically validated on the Zynq
platform, showing that it can actually be supported by state-of-the-
art technologies. Finally, a number of experiments are reported
to evaluate the worst-case performance of the proposed approach
on synthetic workload.

I. INTRODUCTION

Current computer architectures are evolving towards het-

erogeneous platforms consisting of hybrid computational de-

vices that may include processors of different types and field

programmable gate arrays (FPGAs). In particular, the repro-

grammable and reconfigurable capabilities of FPGAs, their

increasing capacity, and their suitability for signal processing

have made them attractive in several application domains, as al-

ternatives to application specific integrated circuits (ASICs) [1].

Xilinx [2] provided an analysis of recent progress in field

programmable logic, highlighting that FPGAs have become

bigger (comprising several million gates and up to a million

bits of on-chip memory), faster (allowing system clock rates

up to 200 MHz and I/O speed of up to 800 Mbits/second),

more versatile (featuring dedicated carry structures to support

adders, accumulators and counters), and cheaper, in terms of

cost per logic gate.

Reprogrammable FPGA featuring high flexibility, combined

with high performance and complexity are becoming increas-

ingly important for space applications. With satellite lifetimes

increased far beyond 10 years, re-programmability in flight

becomes a stringent requirement. Moreover, in space envi-

ronments, where radiation can cause bit flips in memory

elements and ionisation failure in semiconductors, the use of

reconfigurable hardware allows modifying on-board functions

by replacing faulty/outdated designs at different stages of a

mission.

Modern FPGA chips allow dynamic partial reconfiguration

(DPR) capabilities, enabling the user to reconfigure a portion

of the FPGA dynamically (at runtime), while the remainder of

the device continues to operate [3]. This is especially valuable

in mission-critical systems that cannot be disrupted while some

subsystems are being redefined. In this context, mission-critical

functions could continue to meet external interface require-

ments while other reconfiguration regions are reprogrammed

to provide different functionality.

Partial reconfiguration is also useful in systems where multi-

ple functions share the same FPGA resources. In such systems,

one section of the FPGA continues to operate, while other

sections are reconfigured to provide new functionality. Such

an interesting capability opens a new scheduling dimension for

applications running on heterogeneous platforms. As in mul-

titasking, where multiple applications share the processors by

switching contexts between software processes, DPR enables

the possibility of interleaving multiple functions implemented

as programmable logic on an FPGA recurrently shared by dif-

ferent processing components. However, this is possible at the

cost of reconfiguration times, which - today - are three orders

of magnitude higher than context switch times in multitasking.

Despite this limitation, there is a clear evolution trend show-

ing that reconfiguration times are progressively decreasing. Liu

et al. [4] designed a smart reconfiguration peripheral interface,

based on the Xilinx ICAP port [5], that is able to approach

a throughput of 400 MB/s. Also, Duhem et al. [6] designed

a fast reconfiguration interface by overclocking the ICAP port

up to 200 MHz, corresponding to a throughput of 800 MB/s.

An overview of the trend of reconfiguration times (obtained by

comparing the theoretical maximum throughput calculated from

platforms’ datasheets) is shown in Figure 1, based on the study

conducted by Pagani et al. [7]. For this reason, it is plausible

to expect that such a trend will continue in the upcoming years,

thus making DPR a relevant direction to be explored.

Although reconfiguration times are not negligible, FPGAs

allow hardware acceleration of a wide class of algorithms with

a significant speedup factor [8], [9] over the corresponding

sequential software implementation. For instance, in the case

study analyzed in this work, a speedup factor up to 15x has

been measured for an image processing filter implemented on

the Zynq-7010 platform, which can reach a throughput of 145

MB/s for the DPR, allowing to reconfigure an FPGA area

containing about 25% of the total resources in less than 3

milliseconds.

When exploiting FPGAs with DPR in real-time embedded

systems, a crucial issue is to provide worst-case response time

bounds of computations consisting of software tasks and hard-

ware accelerated functions. Although several works have been

done to analyze the timing behavior of real-time applications
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Figure 1. Trend of reconfiguration throughput.

using FPGAs, most of them did not consider DPR capabilities

at a job level. To overcome this lack, this work proposes a new

computing framework for enabling a timing analysis of real-

time activities that make use of hardware accelerators developed

through programmable FPGAs with DPR capabilities.

Contributions. This paper provides the following three main

novel contributions:

1) It presents FRED, a framework for supporting real-time

applications on FPGAs with DPR feature. It relies on a

static off-line partitioning of the FPGA fabric to limit

worst-case scenarios arising when using DPR. Design

issues related to scheduling and inter-task communication

are also discussed for bounding worst-case delays.

2) It proposes a new task model to abstract a set of real-time

activities running on the considered architecture.

3) It derives a response-time analysis to verify the schedula-

bility of a set of real-time tasks consisting of both software

parts and hardware accelerated functions.

Although based on a generic modeling abstraction, the pro-

posed framework has been conceived by considering several

real-world constraints that are present on today’s platforms. In

fact, FRED has been also practically validated with a proof-

of-concept implementation on the Zynq platform [10]. Such

a practical validation highlighted that the proposed approach

can be actually supported by state-of-the-art technologies with

a limited run-time overhead. Finally, to explore the worst-

case performance of FRED, an empirical study (based on syn-

thetic workload) has been conducted to evaluate the proposed

response-time analysis under different operating scenarios.

Paper organization. The remainder of this paper is organized

as follows. Section II presents a taxonomy of the different

approaches and then discusses the related work. Section III

describes the proposed framework and the related models.

Section IV derives a response-time analysis for a set of tasks

that use hardware acceleration. Section V presents some ex-

perimental results carried out on the Zynq platform to validate

the proposed approach. Section VI reports a set of experiments

aimed at evaluating the performance of the proposed response-

time analysis on synthetic workload. Section VII concludes the

paper and highlights some future work.

II. RELATED WORK

The solutions proposed in the literature to exploit FPGA

acceleration are quite heterogeneous due to the evolution of

such platforms and the wide range of applications that can

take advantage of this technology. The intrinsic parallelism,

the reduced interference among the running activities, and the

reduced variability in the execution made such a technology

appealing for real-time applications, ranging from network

management [11] to scheduling of hard [12] and soft [13]

tasks. However, these solutions are limited to static or slowly

evolving scenarios. Before analyzing the related work on DPR

for real-time task scheduling, a taxonomy is first introduced

to classify the existing solutions and precisely position the

proposed approach with respect to the literature.

Taxonomy. The features considered to organize the taxonomy

concern the reconfiguration approach, the allocation methods,

the model of the FPGA reconfiguration interface (FRI), and

the types of managed tasks.

Reconfiguration approaches. They can be distinguished be-

tween static and dynamic. In a static approach, the allocation

of hardware tasks (HW-tasks) is performed at the initialization

phase, while in a dynamic approach HW-tasks can be allocated

at runtime upon specific events. Dynamic approaches can be

used to support mode-changes in the application (allowing

tasks to be added and removed from the task set) or trigger

a reconfiguration every time a new job is scheduled (job-level

reconfiguration). A static approach has no runtime reconfigura-

tion overhead, but the maximum number of HW-tasks is limited

by the physical size of the FPGA. Dynamic approaches trade

extra reconfiguration overhead to increase the total number of

HW-tasks that can be managed.

Allocation methods. They can be distinguished between

slotted and slotless. In a slotted approach, the FPGA area is

partitioned into slots of given size connected via buses provided

on the static part of the FPGA. A HW-task can occupy one

or more slots. In a slotless solution, HW-tasks can arbitrarily

be positioned on the FPGA area and data are transferred

through the reconfiguration interface inside the FPGA. Slotted

approaches have the advantage of having the communication

channels already in place, but the FPGA area may be partially

wasted due to slot granularity. On the other hand, slotless

solutions increase the utilization efficiency of the FPGA area,

but are penalized by higher reconfiguration times due to the

instantiation of communication channels and the increased

traffic on the FRI due to the additional data transfer.

FRI model. The FRI plays a central role in FPGAs with

DPR, thus, building a proper model of the FRI is crucial for

estimating worst-case delays and enabling a real-time analysis.

The easiest approach is to reduce complexity by considering

reconfiguration delays negligible. This is a strong unrealistic

assumption, considering that, in current FPGAs, reconfiguration

delays can have the same order of magnitude of task execution

times. A simple approximation can be obtained using a constant

reconfiguration time. However, since the reconfiguration time is

proportional to the number of elements to be reconfigured, and

the FRI is a shared resource, providing a safe bound would

introduce a huge pessimism in the analysis. Less pessimistic



values can be obtained considering the reconfiguration time

composed by two elements: one proportional to the number

of elements to be reconfigured and one due to the time spent

in waiting for the FRI. Most of the works focused on kernel

mechanisms considered an FRI model tailored to real solutions,

as the Xilinx ICAP port [5].

Task model. Modern heterogeneous platforms include FPGAs

modules together with processors on the same chip [14]. On

such platforms it is thus possible to execute both HW-tasks,

running on the FGPA, and software tasks (SW-tasks), running

on the processors.

Related work analysis. The works considered in this section

are related to the proposed approach in that they provide a

timing analysis under reconfigurable FPGA architectures or

propose a software support for HW-task management.

Di Natale and Bini [12] proposed an optimization method

to partition the reconfigurable area of a homogeneous FPGA

platform into slots to be allocated to HW-tasks and softcores

running the remaining tasks. Given the high computational

complexity of the method, this approach can only be used off-

line to obtain a static task allocation, hence it does not exploit

the advantages of the dynamic reconfiguration. Pellizzoni and

Caccamo [15] addressed a similar problem in a more dynamic

scenario, proposing an allocation scheme and an admission test

to provide real-time guarantees of applications supporting mode

changes, where tasks can either be executed in software on a

CPU or in hardware on the FPGA.

Danne and Platzner [16] presented two algorithms (one

EDF-based and one server-based) to schedule only preemptive

HW-tasks, but the model adopted for the FPGA platform is

quite simple and does not consider any reconfiguration time

and allocation constraints. Saha et. al. [17] presented a new

scheduling algorithm for preemptable HW-tasks, exploiting

the higher speed and the improved capabilities of modern

reconfiguration interfaces to dynamically change the allocation

every time a task terminates. However, this approach assumes a

homogeneous partition and a fixed reconfiguration time, which

can lead to a huge waste of the area and a high pessimism

in the analysis. In summary, in all the works cited above, the

models used for the FPGA and the reconfiguration interface

are too simple to describe the limitations of the available plat-

forms, and the corresponding approaches do not fully exploit

reconfiguration capabilities under real-time constraints.

Dittmann and Frank [18] addressed the analysis of reconfigu-

ration requests as a single core scheduling problem. The paper

assumes a single set of homogeneous slots managed by a non-

preemptable FRI and considers only HW-tasks (SW-tasks are

not taken into account). Unfortunately, due to missing proofs,

it is not clear how response-time bounds follow. In addition,

the authors did not investigate sustainability issues and their

analysis may be affected by later-discovered misconceptions

concerning non-preemptive fixed-priority scheduling [19].

Other authors proposed methods for supporting a job-level

reconfiguration from a system perspective. The easiest solution

is to communicate with a HW-task through proper software

stubs that interact with the kernel scheduler and manage the

HW-tasks at the application level. Another approach is to

extend the operating system to provide specific primitives for

scheduling, allocating, and programming HW-tasks, along with

those related to SW-tasks management. For instance, Lübbers

and Platzner [20] proposed the ReconOS operating system,

which extends the classic multi-threading programming model

to hardware activities executed on a reconfigurable device. Orig-

inally designed for fully reconfigurable FPGAs, this solution

has then been extended by the same authors to support partial

reconfiguration [21], with a cooperative multitasking approach

to deal with slot contentions. More recently, Happe et. al. [22]

proposed an extension to the ReconOS execution environment

to provide HW-tasks preemptability. However, its focus is on

hardware enabling technologies, not on a kernel support for

exploiting this capability. Iturbe et al. [23] presented the R3TOS

operating system to support a more dynamic task allocation,

exploiting the reconfiguration interface to avoid preconfigured

static communication channels. The authors proposed a HW-

task model and algorithms for their scheduling and allocation.

However, a worst-case analysis is not provided and nothing is

said on the schedulability of SW-tasks.

Although based on a more realistic FPGA model, the ap-

proaches considered in this second set of papers have been

designed to improve the average system performance and fo-

cused on kernel implementation issues, without deriving worst-

case response times bounds. As a consequence, these methods

cannot be used for a real-time scheduling analysis.

Classification. Table I classifies the presented papers according

to the proposed taxonomy, also highlighting the availability of

a real-time analysis (RTA) to better emphasize the differences

with respect to the proposed approach. Summarizing, different

approaches have been proposed to exploit the advantages of

DPR-enabled FPGAs, but none of them provided worst-case

bounds for enabling a worst-case timing analysis of real-time

sets of mixed HW-tasks and SW-tasks. In addition, most of the

previous work did not consider heterogeneous FPGA slots. To

overcome these limitations, the work proposed in this paper

presents a heterogeneous slotted-based framework designed

to make reconfiguration times more predictable and derive

a schedulability analysis for real-time applications exploiting

DPR capabilities. FPGA reconfiguration is managed at the

job level and the schedulability analysis takes into account

the delays and the constraints coming from the FRI. Both

preemptive and non-preemptive reconfiguration are analyzed.

Paper Reconfig. Alloc. FRI model Tasks RTA

Lübbers, 09 Static Slotted ICAP HW/SW No
Lübbers, 10 Job-level NP Slotted ICAP HW/SW No
Happe, 15 Job-level P Slotted ICAP HW/SW No
Iturbe, 15 Job-level NP Slotless ICAP HW/SW No

Di Natale, 07 Static Slotless Not required HW/SW Yes
Pellizzoni, 07 Mode-ch NP Slotted Not addressed HW/SW Yes

Danne, 05 Job-level P Slotless Zero overhead HW Yes
Saha, 15 Job-level P Slotless Fixed overhead HW Yes

Dittmann, 07 Job-level NP Slotted General (NP) HW Yes

This paper Job-level NP Slotted General (P/NP) HW/SW Yes

Table I
CLASSIFICATION OF THE RELATED WORK.

III. FRAMEWORK AND MODELING

This work considers a platform consisting of a processor and

a DPR-enabled FPGA module that comprises b logic blocks.



The FPGA and the processor share a common memory M.

The blocks of the FPGA module are statically partitioned into

a set P = {P1, ..., PnP
} of nP partitions, where each partition

Pk is composed of bk logic blocks, with
∑nP

k=1 bk ≤ b. Blocks

are not shared among partitions. Furthermore, each partition

Pk is split into nS
k slots of bSk logic blocks, such that ∀Pk ∈

P, nS
k · bSk ≤ bk. Blocks are not shared among the slots.

As described in Section II, a slotted approach is more suitable

for real-time systems because reconfiguration delays are shorter

and more predictable than in a slotless solution, since there

is no overhead related to task allocation management and to

instantiation of communication channels. On the other hand, a

slotted approach introduces a granularity that may increase the

wasted area of the FPGA. This phenomenon can be mitigated

by a proper design of slots and partitions as a function of the

tasks. However, this issue is not addressed in this paper due to

space limitations.

A. Hardware task model

The activities executed on the FPGA are modeled as a set

ΓH = {τH1 , ..., τHnH
} of nH HW-tasks. Each HW-task τHi

requires bi logic blocks and has a worst-case execution time

(WCET) CH
i . A HW-task can execute only if it has been

programmed on a slot of the FPGA.

The considered platform is equipped with a FPGA reconfig-

uration interface (FRI) able to dynamically reconfigure a slot

at run-time by programming a specific HW-task τHi . Each slot

can accommodate at most one HW-task [5], [24]. As true in

real-world platforms (such as [25], [26]), we assume that

(i) the FRI can reconfigure a slot without affecting the

execution of the HW-tasks currently running in other slots;

(ii) no processor cycles are used for reconfiguring a slot (i.e.,

the FRI is an external peripheral, like DMA [14]); and

(iii) the FRI can program at most one slot at a time.

To program a given HW-task τHi into a slot, the FRI has to

program all its logic blocks, independently of the number bi of

logic blocks required by τHi , because unused blocks have to be

disabled to “clean” the previous slot configuration.

Each HW-task τHi can be programmed in any of the slots

belonging to a single partition. The partition hosting a HW-

task τHi is denoted as P (τHi ) and referred to as affinity. For

all HW-tasks with affinity P (τHi ) = Pk, it must be bi ≤ bSk .

The FRI is characterized by a throughput ρ, meaning that

rSk = bSk /ρ units of time are needed to program a slot of a

given partition Pk . Hence, the time ra needed to program a

HW-task τHa is ra = rSk : P (τHa ) = Pk.

B. Software task model

The activities executed on the processor are modeled as a set

ΓS = {τ1, ..., τnS
} of nS SW-tasks. Each SW-task can make

use of HW-tasks to accelerate specific functions and is subject

to timing constraints. In particular, each SW-task τi
• uses a set H(τi) ⊆ ΓH of mi HW-tasks;

• alternates the execution of mi+1 sub-tasks (also referred

to as chunks) with the execution of the mi HW-tasks in

H(τi); thus, the execution of a SW-task τi can be repre-

sented as a sequence τi:= 〈τi,1, τHa , τi,2, τ
H
b , . . . , τi,mi+1〉,

where {τHa , τHb , . . .} ∈ H(τi) and τi,j is the j-th sub-

task of τi. Whenever the execution of a HW-task τHa

is requested, the corresponding SW-task self-suspends

until the completion of τHa . The beginning of the self-

suspension phase coincides with the termination of the

sub-task that issued a request for a HW-task. In a dual

manner, the completion of a HW-task coincides with the

release of the next sub-task.

• has a total WCET Ci, composed of the WCETs Ci,j of

all its sub-tasks τi,j ; that is, Ci =
∑m+1

j=1 Ci,j .

• is periodically (or sporadically) released with a period

(or minimum inter-arrival time) of Ti units of time, thus

generating an infinite sequence of execution instances

(denoted as jobs);

• is subject to timing constraints; that is, each of its jobs

must complete its execution within a deadline Di relative

to its activation time.

Each HW-task can be used by at most one SW-task, that is
⋂

τi∈ΓS H(τi) = ∅.

Figure 2 reports the pseudo-code defining the implementation

skeleton of a SW-task τi that uses mi = 2 HW-tasks in the

set H(τi) = {τHa , τHb }. The statement <...> has been used

to represent a generic set of instructions that are part of a

computation executed by the SW-task on the processor.

1 TASK(τi)

2 {

3 <...>

4 <prepare input data for τH
a >

5 EXECUTE_HW_TASK(τH
a );

6 <retrieve output data from τH
a >

7 <...>

8 <prepare input data for τH
b >

9 EXECUTE_HW_TASK(τH
b );

10 <retrieve output data from τH
b >

11 <...>

12 }

Figure 2. Pseudo-code of the implementation skeleton of a SW-task.

The SW-task illustrated in Figure 2 is described by the

sequence 〈τi,1, τ
H
a , τi,2, τ

H
b , τi,3〉: the first sub-task τi,1 consists

of lines 3-5, the second sub-task τi,2 of lines 6-9 and the third

sub-task τi,3 of lines 10-11. EXECUTE_HW_TASK(τHj ) is a

blocking system call, which is in charge of (i) requesting the

execution of τHj and (ii) suspending the execution of τi until

the completion of τHj . Note that at line 4, τi,1 prepares the input

data for τHa . Similarly, τi,2 retrieves the output data produced

by τHa (line 6) and prepares the input data for τHb (line 8).

Further details on the inter-task communication mechanism are

discussed in Section III-D.

Figure 3 illustrates the execution behavior of another SW-task

τi:=〈τi,1, τHa , τi,2〉, visualizing the delays experienced when

requesting the execution of τHa .

accelerate

τi

τHa t

t

t0 t1 t2 t3 t4 t5 t6

prepare data retrieve data
EXECUTE HW TASK

S

∆a CH
a

ra

Ci,1 Ci,2

Figure 3. Execution behavior of a SW-task calling a HW-task.



As clear from the figure, task τi is activated at time t0. At

time t1, the first sub-task τi,1 requests the execution of the

HW-task τHa and self-suspends its execution at time t2, where

(t2−t1) corresponds to the system overhead to issue the request.

This example assumes that all the slots of partition P (τHa )
are busy (i.e., occupied by other HW-tasks that are currently

executing), hence a delay ∆a is introduced from time t2 until

time t3, at which one slot of P (τHa ) becomes free. Once there

is a free slot in P (τHa ), the HW-task can be programmed, from

time t3 to t4, by using the FRI: such an operation takes at most

ra units of time, where ra = bSk /ρ (being k the affinity of τHa ).

After the programming phase, τHa starts executing at time t4
on the FPGA and completes at time t5 within CH

a units of time.

Then, the SW-task is resumed and executes the second sub-task

τi,2, which completes at time t6. Note that τi is suspended for

the interval [t2, t5], which is no longer than S = ∆a+ra+CH
a .

While the example presented above has a single SW-task,

the system considered in this paper includes multiple SW-

tasks and HW-tasks that contend the resources available on the

platform. This means that a SW-task τi can suffer a temporal

interference from the execution of other SW-tasks that, if not

properly managed, can determine the violation of its deadline

Di. Such interference also depends on the contention for the

FPGA slots and the FRI caused by the other HW-tasks. For

such reasons, a scheduling infrastructure is needed to support

a set of concurrent HW-tasks and SW-tasks.

The symbols used in the paper are summarized in Table II.

b total number of logic blocks in the FPGA

nP number of partitions in the FPGA

Pk k-th partition in the FPGA

bk number of logic blocks in partition Pk

bS
k

number of logic blocks in a slot of Pk

nS
k

number of slots in partition Pk

ρ throughput of the reconfiguration interface

rS
k

time to program a slot of partition Pk

nS number of software tasks

nH number of hardware tasks

τi i-th software task

τi,j j-th sub-task of the i-th software task

τHa a-th hardware task

P (τHa ) partition hosting the a-th hardware task

ra time to program the HW-task τHa
CH

a worst-case execution time of HW-task τHa
∆a delay experienced by τHa to wait for a free slot

ba number of logic blocks required by τHa
Ci worst-case execution time of SW-task τi
Ci,j worst-case execution time of sub-task τi,j
πi priority assigned to SW-task τi
Ti period (or minimum inter-arrival time) of τi
Di relative deadline of SW-task τi
mi number of HW-tasks used by SW-task τi

Table II
SYMBOLS USED THROUGHOUT THE PAPER.

C. Scheduling infrastructure

Each SW-task τi is assigned a fixed priority πi, also inherited

by all its sub-tasks. A SW-task is denoted as ready when (i) it

has a pending job (i.e., a job released but not yet completed)

and (ii) it is not self-suspended waiting for the completion of a

HW-task. SW-tasks are assumed to be scheduled according to

a fixed-priority (FP) preemptive scheduling algorithm, so that,

at any point in time, the ready task with the highest priority is

executed on the processor.

Besides the processor, two other resources are contented

by SW-tasks: the slots in the FPGA partition (shared with

other HW-tasks having the same affinity) and the FRI. Hence,

multiple requests for such resources have to be scheduled. The

overall scheduling infrastructure managing the slots and the FRI

is based on a multi-level queue structure, illustrated in Figure 4.

Affinity

Hardware

Task

Q1

QnP

QFRI

P1

P2

PnP

Figure 4. Scheduling infrastructure for HW-tasks requests in FRED.

We begin by describing the scheduling policies used for

each resource; then, we present the scheduling rules that apply

to every request for HW-tasks when traversing the multi-level

queue structure of Figure 4.

Slot scheduling. For the purpose of scheduling, each slot can

be free or busy. A busy slot can in turn be active, when

there is a HW-task programmed on it that is executing, or

reserved. A HW-task τHi with affinity P (τHi ) = Pk, that is

waiting for a free slot in partition Pk , is kept in a queue

Qk managed according to a first-in-first-out (FIFO) policy.

Note that such a scheduling policy guarantees a starvation-free

progress mechanism. Moreover, it does not require preempting

the execution of HW-tasks, which is known to be a challenging

issue [27] [18] leading to non-negligible run-time overheads.

FRI scheduling. Whenever there are x free slots into a given

partition Pk, such x slots are reserved for the first x HW-task

requests waiting into Qk which then have to contend the FRI to

program their corresponding HW-task. While slots are shared

only among the HW-tasks belonging to the same partition, the

FRI is a single resource contented by all the requests for HW-

tasks in the system. HW-task requests contending the FRI are

kept in a queue denoted as QFRI .

In this paper, slot programming requests are managed ac-

cording to a ticket-based scheduling policy, which is described

below and can be configured to be executed either in a

preemptive or non-preemptive fashion. Please note that HW-

task execution is assumed to be non preemptive to contain

the preemption overhead associated to FPGA reconfigurations.

Hence, here preemptive and non-preemptive policies are only

related to the FRI programming phase. Under a non-preemptive

policy, the programming phase cannot be interrupted, whereas

under a preemptive policy, the programming phase can be

interrupted to serve another programming request.



Ticket-based scheduling. The ticked-based scheduling policy

is described by the following rules that apply to both non-

preemptive and preemptive management of the FRI:

R1 Each execution request Ra for an HW-task τHa is assigned

a “ticket” marked with the absolute time t(Ra) at which

Ra has been issued.

R2 Every partition queue Qk and the FRI queue QFRI en-

queues execution requests for HW-tasks by increasing

ticket time.

R3 When a request Ra for HW-task τHa is issued, Ra is

inserted in the partition queue Qk with Pk = P (τHa ).
R4 At any point in time t, for every partition queue Qk, the

first ηk(t) ≥ 0 requests in Qk are removed from Qk and

inserted in QFRI , where ηk(t) is the number of free slots

in Pk at time t. Contextually, these ηk(t) slots become

reserved (and hence busy).

R5 Once the HW-task τHa related to a request Ra has been

programmed onto a slot, Ra is removed from QFRI , that

slot becomes active, and τHa starts executing.

R6 When a HW-task τHa completes its execution, the corre-

sponding slot becomes free.

The following scheduling rules distinguish between non-

preemptive and preemptive management of the FRI. In the case

of preemptive FRI scheduling, the following rule holds:

R-P1 Whenever QFRI is not empty, the FRI programs the

HW-task related to the first request in QFRI (i.e., the

one having the earliest ticket time).

For non-preemptive FRI scheduling the following rules hold:

R-NP1 When the FRI is programming a HW-task it cannot be

interrupted to serve another request.

R-NP2 When the FRI completes a programming phase, or

QFRI becomes not empty, the FRI starts programming

the HW-task related to the first request in QFRI .

Example. Figure 5 shows an example of preemptive FRI man-

agement schedule under FRED for an FPGA module containing

two partitions P1 and P2, each consisting of a single slot.

Figure 5. Example of preemptive FRI scheduling under FRED.

The application consists of three SW-tasks: τ1 =
〈τ1,1, τHa , τ1,2, τ

H
b , τ1,3〉, τ2 = 〈τ2,1, τHc , τ2,2〉, and τ3 =

〈τ3,1, τHd , τ3,2〉. The priority assignment is such that π1 >
π2 > π3. HW-tasks τHa and τHb share partition P1 (i.e.,

P (τHa ) = P (τHb ) = P1), whereas HW-tasks τHc and τHd share

partition P2 (i.e., P (τHc ) = P (τHd ) = P2).

All the SW-tasks are synchronously released at time 0. Being

the highest-priority one, τ1 starts executing as first and at time

t = 1 completes its sub-task τ1,1 by issuing a request Ra

for HW-task τHa . Contextually, τ1 self-suspends its execution.

According to Rule R3, Ra is inserted in the partition queue

Q1. Since partition P1 is empty, at time t = 1 there is a

free slot (η1(1) = 1); hence, according to Rule R4, Ra is

moved to QFRI and the slot of P1 becomes reserved. Moreover,

according to Rule R-P1, the FRI starts programming τHa . At

time t = 5, τHa has been programmed and according to Rule R5

it starts executing.

At time t = 1, τ2 starts executing being the highest-priority

SW-task ready. At time t = 2, τ2 concludes its sub-task τ2,1
by issuing a request Rc for τHc . According to Rule R3, Rc is

inserted in the partition queue Q2. Since partition P2 is empty,

at time t = 2 there is free slot (η2(2) = 1); hence, according

to Rule R4, Rc is moved to QFRI and the slot of P2 becomes

reserved. However, since Rc has a later ticket time than Ra,

Rc is delayed until τHa has been programmed (time t = 5).

Then, τHc can be programmed and be executed.

At time t = 2, τ3 is the highest-priority SW-task ready, thus it

starts executing until time t = 3, when it terminates its first sub-

task τ3,1 by issuing a request Rd for τHd . According to Rule R3,

Rd is inserted in the partition queue Q2. However, being the

slot of P2 busy (specifically, reserved in [5,7] and active in

(7,11]), Rd waits in Q2 until time t = 11. At time t = 11, τHc
completes its execution, Rule R6 is applied and the slot of P2

becomes free. According to Rule R4, Rd is moved to QFRI ,

the slot of P2 becomes again busy (specifically, reserved) and

τHd starts to be programmed.

Now, consider again τ1. At time 9, τHa is completed and

hence the sub-task τ1,2 can be released. At time 10, τ1,2
completes by issuing a request Rb for HW-task τHb . By Rule R3

and Rule R4, Rb is inserted into QFRI . Being QFRI empty,

τHb starts to be programmed. However, as explained above,

at time t = 11, Rd (issued by τ3) is inserted into QFRI .

Being t(Rd) = 3 < t(Rb) = 10, according to Rule-R-P1 the

programming of τHb is preempted to program τHd until time

t = 13. Hence in [11, 13) Rb is delayed. Finally, note that the

FRI queue is not managed in a pure FIFO manner.

D. Communication between SW and HW tasks

As stated in Section III-B, SW-tasks make use of HW-tasks

to accelerate specific computations; that is, a SW-task offloads

a computation to the FPGA by requesting the execution of a

HW-task and then retrieves the output of such a computation to

continue the execution on the processor. As shown in Figure 2,

the communication between a SW-task τi and a HW-task τHa
includes two phases:

(i) sub-task τi,j prepares the input data for τHa ;

(ii) sub-task τi,j+1 retrieves the data produced by τHa .

It is worth observing that the approach used to enable such a

communication can affect the real-time performance of the sys-



tem by introducing different worst-case scenarios. For instance,

suppose that the output data produced by a HW-task are stored

in its internal memory area and that phase (ii) comprises a

copy from the local memory of the HW-task to a memory area

accessible by the SW-task. In such a case, the HW-task must

remain programmed onto the FPGA module until the sub-task

in charge of executing the phase (ii) will be executed, otherwise

output data would be lost.

Due to the scheduling delays suffered by SW-tasks, the actual

time a HW-task occupies a slot is hence dependent on SW-tasks’

execution behavior. Longer slot occupation times increase the

delays suffered by HW-tasks, which in turn increase the delays

suffered by SW-tasks by inflating their suspension time when

waiting for the completion of a HW-task. Such a circular de-

pendency can originate pathological scenarios that significantly

increase the worst-case response time of SW-tasks, thus making

this approach not attractive for a real-time system.

To overcome this problem, FRED adopts a different ap-

proach inspired by the capabilities of state-of-the-art platforms,

where the communication between SW-tasks and HW-tasks

is supported by allowing HW-tasks to directly access the

shared memory M. Hence, the two communication phases are

implemented as follows:

(i) sub-task τi,j prepares the input data for τHa in a memory

area MIN
a inside M, and τHa retrieves the input data by

directly accessing MIN
a ;

(ii) τHa stores the output data into a memory area MOUT
a

inside M, and τi,j+1 retrieves them directly from MOUT
a ,

hence τHa can release its slot as it finishes.

References (i.e., memory pointers) to both MIN
a and MOUT

a

are assumed to be provided to the HW-task or known a priori.

By adopting this solution, the time τHa must hold a slot is

totally decoupled from the scheduling delays of SW-tasks and

is always upper-bounded by the WCET CH
a plus the slot

reconfiguration time ra.

As done in most real-time analysis, bus contention times

due to the interaction between HW-tasks and SW-tasks can

be accounted in the WCETs. Finally, please note that such

a communication approach is not limited to platforms having

a main memory shared between the processor and the FPGA

module, but it can also be used in platforms where a dedicated

memory is reserved for such a communication. Indeed, the latter

solution is more suitable for safety-critical systems requiring a

higher level of predictability.

IV. REAL-TIME ANALYSIS

The goal of this section is to derive a sufficient response-

time analysis for the SW-tasks running under FRED. That is,

for each SW-task τi, this section provides an upper-boundRi on

its maximum response-time such that the system is guaranteed

to be schedulable if

∀τi ∈ ΓS , Ri ≤ Di. (1)

The upper-bounds are derived by building on Nelissen et

al.’s [28] response-time analysis for real-time fixed-segment self-

suspending tasks (SS-tasks). The SS-task model is a generic

model for real-time computational activities where multiple

execution phases are alternated to self-suspension phases, ex-

actly like the execution behavior of the SW-tasks under FRED.

Similarly to a SW-task, a SS-task τℓ alternates the execution of

mℓ + 1 sub-tasks, each having WCET Cℓ,j (j goes from 1 to

mℓ + 1) and mℓ suspension phases, each lasting at most Sℓ,j

time units (j goes from 1 to mℓ). The C, T and D parameters

of a SS-task are consistently defined as the corresponding ones

of a SW-task, as stated in Section III-B.

Each SW-task τi can hence be mapped (i.e., translated) into

a SS-task τℓ according to the following rules:

1) Cℓ,j = Ci,j , ∀j = 1, . . . ,mi + 1;

2) Sℓ,j = ra + CH
a + ∆a, ∀j = 1, . . . ,mi, where τHa ∈

H(τi) : τi := 〈. . . , τi,j , τHa , τi,j+1, . . .〉.
3) unless differently specified, Xℓ = Xi, where Xi is a

parameter of τi.

Intuitively speaking, Rule 1 maps each sub-task of the SW-

task τi into a sub-task of the SS-task τℓ, while Rule 2 defines a

suspension phase of the SS-task for each HW-task τHa used by

τi; such a suspension phase includes the reconfiguration time

ra, the WCET CH
a and the the worst-case delay ∆a suffered by

the HW-task under the FRED scheduling infrastructure. Finally,

Rule 3 enforces that the other parameters of the SS-task τℓ are

equal to the ones of the SW-task τi.
Please note that all the parameters mentioned in the rules

above are known, except for the delay ∆a: computing a safe

upper-bound on such a delay is the main challenge of the

proposed real-time analysis.

For the sake of completeness, the next section briefly summa-

rizes the Nelissen et al.’s response-time analysis for SS-tasks.

A. Summary on Nelissen et al.’s analysis

The response-time analysis of fixed-priority SS-tasks is a

problem studied since several years in the real-time community.

However, Nelissen et al. [28] discovered several errors in many

papers concerning the analysis of SS-tasks, proving that most

of the published results are not safe and proposing a safe and

accurate response-time analysis for SS-tasks based on mixed-

integer linear programming (MILP).

A MILP formulation is instantiated for each SS-task τℓ
whose objective is to maximize the response-time upper-

bound Rℓ,j of each sub-task τℓ,j composing τℓ. Each

response-time upper-bound is expressed as Rℓ,j = Cℓ,j +
∑

τk∈hp(τℓ)

∑mk

z=1 NIℓ,k,z × Ck,z where hp(τℓ) is the set of

tasks that have higher priority than τℓ and NIℓ,k,z is an integer

optimization variable modeling the number of jobs of τℓ,j in-

terfering with τℓ. Several constraints are enforced to bound the

value of NIℓ,k,z: please refer to [28] for further details. Finally,

once the MILP has been solved, the total response-time upper-

bound Rℓ of τℓ is computed as Rℓ =
∑mℓ

j=1 Rℓ,j+
∑mℓ−1

j=1 Sℓ,j .

B. Upper-bound for the delay ∆a

As stated above, computing a response-time upper-bound for

SW-tasks is crucial to bound the maximum time a SW-task can

be suspended to wait for the completion of a HW-task. This in

turn requires bounding the delay ∆a suffered by each HW-task

request Ra, which is the goal of this section.

As a first step, the following lemma establishes that the ticket-

based scheduling policy introduced in Section III-C is work-

conserving.



Lemma 1: A HW-task request Ra for τHa with affinity to

partition Pk = P (τHa ) is delayed at time t if and only if either

• all the nS
k slots of Pk are busy serving other HW-tasks

τHb 6= τHa with P (τHb ) = Pk; or

• the FRI is busy programming other HW-tasks τHb 6= τHa .

Proof: A HW-task request Ra can be delayed either (i)

when it is in the partition queue Qk or (ii) when it is in

the QFRI queue. In case (i), according to Rule 4, Ra can

wait as long as all the nS
k slots of Pk are busy. In case (ii),

we distinguish between preemptive and non-preemptive FRI

management. Under preemptive FRI management, being QFRI

non-empty (at least Ra is inside QFRI ), by Rule R-P1 the FRI

is still programming a HW-task τHa in a reserved slot in P (τHa ).
By Rule R4, for every request inserted into QFRI there is a

reserved slot in the corresponding partition. The same argument

holds under non-preemptive FRI management by considering

Rules R-NP1 and R-NP2.

By relying on the fact that SW-tasks issue HW-task requests

in a sequential fashion, it is possible to establish another key

property.

Lemma 2: Let R be an arbitrary HW-task request issued

by a SW-task τi at time t(R) and let ts(R) be the time

at which R is removed from QFRI (i.e., R is satisfied).

Let also pend(R) be the set of pending HW-task requests

during [t(R), ts(R)) that have earlier (or equal) ticket time,

i.e., ∀Ra ∈ pend(R), t(Ra) ≤ t(R). If HW-task requests are

serialized as specified in the model presented in Section III-B,

then each SW-task τj 6= τi can possibly issue at most one

HW-task request in pend(R).

Proof: By contradiction. Suppose that pend(R) contains

more than one HW-task request from SW-task τj , say Ra

and Rb, respectively issued at times t(Ra) and t(Rb) and

satisfied at times ts(Ra) and ts(Rb). Without loss of generality

assume t(Ra) ≤ t(Rb). By definition of set pend(R) we have

t(Ra) ≤ t(Rb) ≤ t(R), ts(Ra) > t(R) and ts(Rb) > t(R).
Hence we obtain t(Ra) ≤ t(Rb) ≤ t(R) < ts(Ra), which

implies that Rb has been issued before the completion of Ra.

This contradicts the assumption, according to which HW-task

requests issued by the same SW-task are serialized. Hence, the

lemma follows.

We are now ready to derive the upper-bound for the delay ∆a.

To this end, it is necessary to distinguish between preemptive

and non-preemptive management of the FRI.

1) Preemptive FRI management:

Theorem 1: Consider an arbitrary HW-task request Ra for

τHa issued by a SW-task τi. Let Pk = P (τHa ) be the affinity of

τHa . Under preemptive management of the FRI, the maximum

delay ∆a incurred by Ra is upper-bounded by

∆P
a =

∑

τj 6=τi

max
τH
b

∈H(τj)

{

∆slot
b + rb

}

(2)

where

∆slot
b =

{

CH
b

nS
k

if P (τHb ) = Pk

0 otherwise.

Proof: Let X be the set of HW-task requests that delay

Ra. Since we are considering preemptive management of the

FRI, Rule R-P1 applies. Because of such a rule and the FIFO

ordering of the partition queue Qk, Ra can only be delayed by

other requests that have earlier (or equal) ticket time. Hence,

∀R ∈ X , t(R) ≤ t(Ra).
To help the presentation we define the set of HW-tasks ΓH

X by

mapping each HW-task request R ∈ X into the corresponding

HW-task τH ∈ ΓH
X . By Lemma 2, each SW-task τj 6= τi can

have issued at most one HW-task request in X . Hence, ∀τi 6=
τj , |ΓH

X ∩ H(τj)| ≤ 1. Moreover, since one HW-task cannot

be used by multiple SW-tasks (i.e.,
⋂

τj∈ΓS H(τj) = ∅), each

request in X corresponds to one and only one HW-task in ΓH
X ,

hence |ΓH
X | = |X |.

The total workload W that can delay Ra cannot be greater

than the sum of (i) the execution time of HW-tasks in ΓH
X and

(ii) the reconfiguration time of HW-tasks in ΓH
X . In addition, by

Lemma 1, Ra cannot be delayed by the execution of HW-tasks

τHb with P (τHb ) 6= Pk . Hence, we have

W ≤
∑

τH
b ∈ΓH

X

P (τH
b )=Pk

(

CH
b + rb

)

+
∑

τH
b ∈ΓH

X

P (τH
b ) 6=Pk

rb,

and being HW-task requests scheduled in a work-conserving

manner (by Lemma 1), ∆a ≤ W holds.

Now, note that any interval in which Ra is delayed can be

considered as an alternating sequence of sub-intervals of two

types:

(i) type X: if QFRI contains at least a request with a ticket

time less than t(Ra), i.e., ∃R ∈ QFRI : t(R) ≤ t(Ra));
(ii) type Y: otherwise, i.e., ∄R ∈ QFRI : t(R) ≤ t(Ra).

Being such intervals complementary, this classification is well

defined.

Let ∆X be the total delay suffered by Ra during intervals

of type X and let ∆Y be the one suffered during intervals of

type Y. Hence, the total delay is given by ∆a = ∆X + ∆Y .

To derive a bound on ∆a, we proceed by deriving a bound on

each of these two terms.

Type X) Consider an arbitrary time instant during an interval

of type X. Let R be the request at the head of QFRI . By

definition of type X interval and Rule R2, t(R) ≤ t(Ra): hence

R contributes to the workload W . According to Rule R-P1, the

FRI is programming the HW-task related to R, and hence Ra

is delayed anyhow by such an operation.

In total, Ra cannot be delayed by more than the overall recon-

figuration times in the workload W , hence ∆X ≤
∑

τH
b

∈ΓH
X

rb.

Type Y) In this case, the queue QFRI can be empty or non-

empty. If QFRI is empty, being Ra delayed, it must be waiting

into its partition queue Qk. If QFRI is non-empty, Ra cannot

be into QFRI otherwise it would not be delayed according to

Rule R2 and Rule R-P1 (i.e., it would be at the head of QFRI );

hence Ra is waiting in Qk anyway.

According to Rule 4, if Ra waits into Qk, then all the nS
k

slots of Pk are busy. Moreover, none of these slots can be

reserved: this holds because of the FIFO ordering of Qk (in

fact no request with affinity Pk can be into QFRI ). Hence, in

this case, all the nS
k slots of Pk are active serving the execution

of HW-tasks τHb with P (τHb ) = Pk. As a consequence, if Ra

is delayed by ∆Y time units across all intervals of type Y, then

partition Pk served nS
k ·∆Y execution time units.



By looking at the workload W that can interfere with Ra, it

must be that

nS
k ·∆Y ≤

∑

τH
b ∈ΓH

X

P (τH
b )=Pk

CH
b

and hence

∆Y ≤
∑

τH
b ∈ΓH

X

P (τH
b )=Pk

CH
b

nS
k

.

Rewriting the expression for ∆a we obtain

∆a = ∆X +∆Y ≤
∑

τH
b ∈ΓH

X

P (τH
b )=Pk

(

CH
b

nS
k

+ rb

)

+
∑

τH
b ∈ΓH

X

P (τH
b ) 6=Pk

rb. (3)

The upper-bound on ∆a follows by maximizing Equation (3)

over all possible sets ΓH
X . Since by construction of ΓH

X each

SW-task τj 6= τi can have at most one request for a HW-task

τHb ∈ ΓH
X , Equation (2) accounts for the maximum contribution

to Equation (3) given by each SW-task τj 6= τi.

2) Non-preemptive FRI management: Building on the bound

∆P
a stated by Theorem 1, it is possible to derive a bound on

the delay incurred in the case of non-preemptive FRI.

Theorem 2: Consider an arbitrary HW-task request Ra for

τHa issued by a SW-task τi. Let Pk = P (τHa ) be the affinity

of τHa . Under non-preemptive management of the FRI, the

maximum delay ∆a incurred by Ra is upper-bounded by

∆NP
a = ∆P

a +NHmax
k × rmax

k (4)

where

NHmax
k =

∣

∣{τHb ∈ ΓH : P (τHb ) = Pk}
∣

∣

and

rmax
k = max

τH
b

∈ΓH
{rb : P (τHb ) 6= Pk}.

Proof: Any interval in which Ra is delayed can be

considered as an alternating sequence of sub-intervals of two

types:

(i) type X: if QFRI contains at least a request corresponding

to a HW-task τHb with P (τHb ) = Pk (i.e., same partition

of τHa ) waiting into QFRI ;

(ii) type Y: otherwise.

Note that these intervals have a different definition with

respect the ones used in the proof of Theorem 1, but the same

properties apply (i.e., the classification is well defined). We

proceed by considering each type separately.

Type X) Consider a single interval of type X. Because of

the FIFO ordering of partition queues Qk, whenever Ra is

delayed (during the considered interval), it must be waiting for

the reconfiguration of HW-tasks with affinity Pk (present into

QFRI by definition). According to Rule R-NP1 and Rule R-

NP2, their corresponding request (or Ra itself) can be delayed

by (i) other requests with lower (or equal) ticket time that are

into QFRI ; and (ii) at most one request with higher ticket time

which is (non-preemptively) served by the FRI. Because of the

FIFO ordering of partition queue Qk, this latter request must

be related to a HW-task with affinity 6= Pk. In case (i), the

same consideration argued in the proof of Theorem 1 holds

(preemptive FRI). In case (ii), the delay suffered by Ra cannot

be higher than rmax
k = maxτH

b
∈ΓH{rb : P (τHb ) 6= Pk} time

units. By Rule R-NP2, such a delay can occur at most once for

each interval of type X.

The total number of intervals of type X is maximized when,

during each of such intervals, there is only one request into

QFRI that corresponds to a HW-task with affinity Pk. Hence,

such a number is bounded by the total number of HW-tasks with

affinity Pk, given by NHmax
k = |{τHb ∈ ΓH : P (τHb ) = Pk}|.

Hence, the total delay in case (ii) across all intervals of type X

is upper-bounded by NHmax
k × rmax

k .

Type Y) By definition, QFRI contains no requests correspond-

ing to HW-tasks with the same affinity of τHa . This clearly

implies that Ra is either completed (and hence not yet delayed)

or waiting inside Qk. This is the same situation discussed in

the proof of Theorem 1 when considering the term ∆Y .

In summary, the total delay suffered by Ra in intervals of

type Y, plus the delay in case (i) during intervals of type X, is

bounded by the upper-bound ∆P
a of the delay suffered under

preemptive FRI management. Hence, the theorem follows.

V. PRACTICAL VALIDATION AND PROFILING

This section presents a preliminary case study implemented

on the Zynq-7000 platform to evaluate the feasibility of the

proposed approach, profile hardware acceleration speedup fac-

tors, and measure reconfiguration overheads. The considered

platform includes a dual-core ARM Cortex-A9 processor and

a 7-series FPGA integrated on the same chip. The internal

structure of a Zynq SoC can be divided in two main functional

blocks referred to as processing system (PS) and programmable

logic (PL) [14]. The PS block comprises the ARM Cortex-

A9 MPCore, the memory interfaces and the I/O peripherals,

while the PL block includes the FPGA programmable fabric.

The subsystems included in the PS are interconnected among

themselves and to the PL through an ARM AMBA AXI

(Advanced eXtensible Interface) interconnect.

The hardware modules configured on the PL can access the

interconnect through a set of master and slave AXI interfaces

exported by the PS side to the PL side. Slave interfaces allow

modules to access the global memory space and share the

DRAM memory with the processors. Dynamic partial recon-

figuration is supported under the PS control. PL fabric can be

fully or partially (re)configured by the PS through the device

configuration interface (DevC) subsystem. The DevC includes

a DMA engine that can be programmed to transfer bitstreams

from the main memory to the PL configuration memory through

the processor configuration access port (PCAP).

A. System architecture

In the prototype developed for the case study, the PL area is

divided in two main regions: a static region and a reconfigurable

region. The static region contains the communication infras-

tructure and other support modules, while the reconfigurable

region is organized as a single partition divided into S slots,

each hosting a HW-task.

In general, since bitstream relocation is not supported by

the Xilinx standard tools [25] [26], each HW-task τHi is



implemented as a set of nS
k bitstreams, one for each slot Sj of

its associated partition P (τHi ). Each slot Sj can accommodate

all the specific implementations of each HW-task τHi that

belongs to partition P (τHi ).
Since the slot interface should match the one of the HW-

tasks [26], we have defined a common interface that all HW-

tasks are required to implement. Such a common interface is

similar to the one adopted by Sadri et al. [29]. The interface

includes an AXI master interface for accessing the system

memory, an AXI slave interface through which the HW-task

can be controlled by the PS, and an interrupt signal to notify the

PS. The AXI master interface logic allows HW-tasks to retrieve

data autonomously from the memory space, implementing the

communication mechanism described in Section III-D.

In the current experimental setup, the AXI master interfaces

exported by the HW-tasks are attached to high-performance

slave ports exported by the PS, while the AXI slave control

interfaces are attached to the general purpose master ports. The

software part consists of a user-level library for the FreeRTOS

operating system. The library abstracts the reconfiguration

mechanism and provides a simple API that enables SW-tasks

to request the execution of HW-tasks on the PL through the

EXECUTE_HW_TASK() function, as described in Figure 2.

B. Experimental setup

The prototype has been deployed on a ZYBO board, fea-

turing the Z-7010 Zynq SoC supported by 512 MB of DDR3

memory. The ARM cores included in the PS run at 650 MHz

while the clock frequency for the PL is set to 100 MHz. In this

experimental setup the single reconfigurable partition has been

divided in two slots, each containing about 25% of the slices

available in the programmable logic. The remaining 50% of the

resources are allocated to the static part. Since both slots have

the same dimensions, also the partial bitstreams resulting from

the logic synthesis process have the same size of 338 KByte.

Therefore, a large number of partial bitstreams can be stored

in the 512 MB RAM memory.

The developed case study includes four standard functions

implemented both as HW-tasks and software code: three simple

image convolution filters (Sobel, Blur, and Sharp) and a matrix

multiplier. The HW-tasks have been designed with the Xilinx

Vivado ® high-level synthesis tool, while the software versions

have been implemented in C language. The image processing

HW-tasks process images of size 800 × 600 pixels, with

24-bit color depth. The matrix multiplier HW-task has been

synthesized to multiply 512 elements integer matrices.

C. Experimental results

1) Speedup evaluation experiment: A first experiment has

been carried out to measure the speedup factors achievable

from hardware acceleration on FPGA. The longest observed

execution times (LOET) of the four HW-tasks have been

measured and compared against the execution times of their

software counterparts over 1000 runs. The results are reported

in Table III. The minimum speedup has been computed as

the ratio between the minimum software execution time and

the maximum hardware execution time observed. Despite the

clock frequency (100 MHz) of the FPGA was slower than

the one of the processor (650 MHz), hardware accelerated

implementations provided a relevant speedup between 5 and

15 over their software counterparts.

Operation
FPGA

LOET [ms]
Software

LOET [ms]
Min speedup

Sobel 19.763 178.874 9.050

Blur 24.629 374.164 15.190

Sharp 24.630 306.539 12.386

Mult 1696.327 8774.103 5.170

Table III
SPEEDUP EVALUATION.

2) Response time experiment: A second experiment was

carried out to evaluate the longest observed response times in

a scenario where the number of HW-tasks exceeds the number

of slots. The task set used for this test includes four SW-

tasks that use the four HW-tasks defined in Section V-B. SW-

tasks are assigned priorities according to the rate-monotonic

algorithm. Table IV summarizes the task parameters and the

longest observed response times in a 8-hour run.

Considering the software execution times profiled in the

previous experiment, it is worth noticing that the task set used

for this experiment can only be scheduled through hardware

acceleration. The equivalent task set, implemented as purely

software tasks, with the same periods and priorities, it is clearly

not schedulable on the processor.

Task Period [ms]
Longest Observed

Response Time [ms]

Sobel 100 43.748

Blur 150 69.438

Sharp 170 74.855

Mult 2500 1723.200

Table IV
LONGEST OBSERVED RESPONSE TIMES.

Figure 6 shows the distribution of the reconfiguration times

observed in the previous scheduling test for more than 500,000

reconfiguration events. The longest observed reconfiguration

time is 2.845 ms. Therefore, given the size of the bistreams, the

minimum observed throughput of the PCAP configuration port

resulted to be 116 MB/s, which is consistent with the maximum

throughput of 145 MB/s stated by Xilinx [14].
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Figure 6. Distribution of reconfiguration times (ms).

It is worth mentioning that the set of four HW-tasks used

for this experiment cannot be implemented statically using

only 50% of the resources available on the the PL fabric.

Partial reconfiguration allows to virtually extend the number

of resources to accommodate all the HW-tasks in timesharing.

Overall, this case study has shown that, despite reconfigu-

ration times are not negligible, the proposed approach can be

implemented using current FPGA technology to improve the

performance of real-time applications with respect to a pure

software implementation.



VI. EXPERIMENTAL RESULTS

This section presents a set of experiments aimed at evaluating

the performance of the FRED scheduling infrastructure in

terms of schedulability analysis with synthetic workload. The

experiments are performed to verify the schedulability under

different architecture configurations and are obtained applying

the sufficient response time analysis presented in Section IV.

A. Task set and architecture generation

The synthetic workload has been generated as follows.

1) Hardware architecture: The FRI throughput is defined

as ρ = 100 and the total number of logic blocks is set as

b = 1, 000, 000: the ratio between these two values yields an

FRI throughput similar to the one observed in Section V. The

logic blocks of the FPGA are equally distributed among the

partitions. The same holds for the logic blocks of each partition,

which are equally distributed among its slots.

2) SW and HW-tasks: For simplicity, we focus on the

case where each SW-task accesses a single HW-task, i.e.,

mi = 2, ∀τi ∈ ΓS . Because of this restriction, we denote HW-

tasks with the same index of the corresponding SW-task (i.e.,

τHi is the HW-task used by SW-task τi). For each partition

Pk, a bucket of possible task periods is defined according

to the following rules: (i) the interval of periods covered by

any two buckets do not overlap; (ii) all the values in every

bucket are in the range
[

105, 106
]

µs. For each SW-task τi,
a random period Ti is chosen from the bucket corresponding

to partition P (τHi ) and then removed from the bucket. The

UUniFast algorithm [30] is used to generate the utilization

factor Ui of each SW-task τi, such that
∑

τi∈ΓS Ui = U , where

U is parameter defined in the experiments. The minimum task

utilization is set to Umin = 0.005. The WCET of each SW-

task τi is then computed as Ci = Ui · Ti. Such a value has

been then randomly split to obtain the WCETs Ci,1 and Ci,2

of each sub-task. Finally, a parameter UH has been defined

to “mimic” a notion of utilization of the FPGA (also referred

to as hardware utilization). Note that, due to the intrinsic

interaction between SW- and HW-tasks, this parameter cannot

be related to a pure concept of utilization like the parameter

U . Again, the UUniFast algorithm [30] algorithm was used

to generate the hardware utilization for each hardware task as

follows: ∀τHi ∈ ΓH , CH
i = UH

i · Ti. Like U , UH is another

parameter varied in the experiments. Task priorities πi are

assigned according to the rate-monotonic policy.

B. Experiments on schedulability analysis

This set of experiments has been carried out to measure the

schedulability ratio of the tested task sets under four different

configurations:

(i) Static: the FPGA is supposed to have an infinite area, so

that all the HW-tasks are statically assigned to a fixed slot,

thus reconfiguration is not needed.

(ii) FRED-P: the proposed approach is used with preemptive

FRI management and scheduling delays are computed

according to Theorem 1;

(iii) FRED-NP: same as FRED-P but with non-preemptive FRI

management and delays computed by Theorem 2;

(iv) Software: all task sets are implemented in software. Worst-

case execution times of the resulting software implemen-

tation of HW-tasks are computed considering a speed-up

factor Φ, assumed to be the same for all the HW-tasks.

A first experiment varied the utilization U of a fixed number

of tasks (both HW and SW), using nP = 3 partitions, each with

nS
k = 2 slots, and 3 HW-tasks with affinity to each partition.

The total number of tasks nS has been chosen to overload

the system: each partition Pk has nS
k + 1 tasks, hence all the

tested task sets are not feasible without enabling DPR. Figure 7

reports the results of an experiment where U was varied from

0.05 to 0.95 with a step of 0.05, with Φ = 1 and UH = 0.1.

Please keep in mind that the small value of UH cannot be

interpreted as in the classical software semantics.
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Figure 7. Schedulability ratio as a function of U .

As evident from the plots, the Software approach quickly

degrades at utilization values that are much lower than the ones

at which FRED-P and FRED-NP starts being no more able

to schedule the task sets. Even with an unrealistic and limit-

case value for the speed-up (Φ = 1), this happens because

the FPGA allows for intrinsic parallelism with respect to a

single processor. The small difference between FRED-P and

FRED-NP is due to the fact that the reconfiguration time

(chosen according the profiling of Section V) results almost

negligible with respect to the generated execution times of

HW-tasks. The Static approach represents a theoretical upper-

bound (i.e, not practically achievable because assumes FPGAs

with infinite area), whose performance depends on the absence

of reconfiguration times and contention for slots and the FRI.

In this experiment FRED obtains a schedulability ratio higher

than 50% up to U = 0.6, outperforming the pure Software

approach. Moreover, the results are quite close to the ideal

scenario provided by a fully Static approach.

Figure 8 reports the result of another experiment where the

the software utilization has been fixed to U = 0.1 and UH has

been varied from 0.05 to 0.95 with a step of 0.05. Also in this

case, FRED outperforms pure Software approach, guaranteeing

more than 50% of the tested task sets up to UH = 0.4.
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Figure 8. Schedulability ratio as a function of UH .
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Figure 9. Schedulability ratio as a function of the number nA of added tasks.

A third experiment has been carried out to investigate the

benefits of FRED for applications that fully saturate the FPGA

area and hence cannot be extended to include additional tasks

without exploiting DPR. We considered systems with 2 parti-

tions, 2 slots per partition and Φ = 3. Starting from a fixed

scenario (UH = 0.1, U = 0.1) where all the slots are occupied

by HW-tasks, Figure 9 reports the schedulability ratio obtained

by adding nA new tasks (each consisting of a SW-task and

the corresponding HW-task), where nA was varied from 0
to 12. Each added task τi has UH

i = 0.05 and Ui = 0.05,

while the other parameters were generated as in the previous

experiments. The affinity of each new task was chosen as

specified in Section VI-A2. This experiment clearly shows that

FRED allows guaranteeing real-time applications extended with

more than 5 tasks, which otherwise could not be executed.

VII. CONCLUSIONS

This paper presented a framework for supporting the devel-

opment of safety-critical real-time applications on computing

platforms that include a processor and an FPGA module with

dynamic partial reconfiguration capabilities.

After providing a model of the platform and the computa-

tional activities, a scheduling infrastructure was proposed to

bound the delays experienced by the tasks, and a response-

time analysis was derived to verify the schedulability of safety-

critical applications with real-time constraints. The approach

has also been implemented and validated on the Zynq platform

to demonstrate its practical applicability. The experimental

results performed on synthetic workloads showed the perfor-

mance of the analysis in different scenarios.

As a future work, we plan to incorporate the proposed frame-

work inside the Erika Enterprise operating system, providing

specific system call that simplify the development of safety-

critical real-time applications on heterogeneous computing plat-

forms using FPGA accelerated components.
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