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Abstract— Tracking the position and the orientation of
human limbs to reconstruct postures and actions is becom-
ing a crucial need in several application domains, including
medicine, rehabilitation, sport, and games. However, most
available solutions are expensive, imprecise, or require an
instrumentation of the environment. This paper presents
a low-cost tracking system based on a set of wearable
inertial measurement units (IMUs) coordinated as a wire-
less body area network. After the system description, the
characterization of the single node is provided through a
set of experiments. Issues related to real-time processing,
calibration, data synchronization, and energy consumption
are introduced using a preliminary simplified setup with
two nodes.

I. INTRODUCTION

Precise tracking of limb motion has always been a cru-
cial requirement for a wide range of applications, like
telemedicine, orthopaedic and neurological rehabilitation,
sports training, interactive games, and virtual reality. However,
for long time application developers have been forced to
choose between low-cost solutions with poor performances
and very expensive high-precision approaches requiring an
heavy environment instrumentation, like vision-based motion
capture. Inertial Measurement Units (IMUs) based on Mi-
croElectroMechanical Systems (MEMS) technology changed
the approach toward the motion tracking challenge, because
they allow acquiring the body dynamic with small integrated
circuits and without external hardware to instrument the en-
vironment. IMUs also provide the possibility to get rid of
some critical constraints, like the requirements of a line of
sight to the camera or the impossibility for the user to freely
move in the scene. Initially, MEMS performance was poor
and often wiring were required between sensors, processing
units and transmitters. Recently, the market has been popu-
lated by new generations of IMUs allowing higher quality in
the measurement together with onboard preprocessing. These
devices, together with latest technologies in communication
and embedded systems, offer new opportunities previously not
possible in wearable systems.
Contributions: This paper presents a very flexible, low-cost
tracking system based on inertial measurement units and latest
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cutting-edge technology for ultra low-power wireless appli-
cations. The architecture is described in terms of hardware
platform, system software and tracking application. A first set
of experiments is reported to show the quality of the acquired
data and the preliminary results indicate that the proposed
approach can effectively be used to obtain a good tracking
of body movements.
Paper structure: The remaining of the paper is organized as
follows. Section II discusses some related work regarding var-
ious technologies used in body motion tracking and presents
advantages and drawbacks of the considered approaches. Sec-
tion III describes the system architecture and the implemented
software solutions for dealing with real-time processing, wire-
less communication and data synchronization. Section IV
illustrates the issues of integrating kinematic constraints for
the correct reconstruction of limb postures. Section V reports
some experimental results carried out to evaluate the precision
of the system. Finally, Section VI states our conclusions and
future work.

II. RELATED WORK

Different approaches have been used to track limbs motion
with different precision, cost, and complexity. They are briefly
summarized below.
• Optical systems. They use visual data captured by one

or more cameras to triangulate the 3D position of a
set of points detected, with the aid of markers attached
to the body. Some of them can reach a high precision
(i.e, in the range of few millimeters), but also have very
high costs, like for example the Vicon [42]. A cheaper
solution is represented by Microsoft Kinect [31], which
uses only one RGB camera and an infrared depth sensor
composed by an infrared laser grid scanner and a related
infrared camera. It is not as precise as the more expensive
systems: it precision is in the order of centimeters instead
of millimeters, and has a limited maximum range (5
m). It also suffers by all typical disadvantages of optical
systems, the most important are the need of instrumenting
the scene, preparing a setup of cameras and the possibility
of operating properly only in the presence of line of sight
between the cameras and the object being tracked. There
are others kind of systems that exploit the high frequency
interference patterns caused by lasers [48] and sense
direct or reflected light using a high framerate lensless
2D image sensor. They can be used to track fast (i.e,



up to 1000Hz) motion using minimal hardware. Despite
their lower cost and much simpler hardware requirement
than camera-based sensor, these systems still need the
instrumentation of the scene.

• Exo-skeleton systems. They are rigid structures of
jointed, straight metal or plastic rods linked together with
potentiometers or encoders that articulate at the joints
of the body [39]. These systems offer real-time, high
precision acquisition and have the advantage of not being
influenced by external factors [30], such as visual occlu-
sion, quality and the number of cameras, and they have
no limit on maximum capture volume. Some systems
also provide haptic limited force feedback. Their main
disadvantage is the movement limitation imposed by the
mechanical constraints of the exoskeleton structures [15].

• Magnetic systems. They calculate the position and orien-
tation of a magnetic sensor probe moving in a magnetic
field generated by three orthogonal coils. The main dis-
advantage of these systems is that they are susceptible to
magnetic and electrical interference from metal objects
in the environment, which affect the magnetic field, or
electromagnetic sources, such as monitors, lights, cables
and computers [33].

• Inertial systems. Inertial Motion Capture [35] technol-
ogy is based on miniature inertial sensors, biomechanical
models, and sensor fusion algorithms. The motion data
of the inertial sensors (inertial guidance system) is often
transmitted via wireless to a computer, where the motion
is recorded or viewed. Most inertial systems use gyro-
scopes to measure rotational speed. These rotations are
translated to a skeleton by the software. Inertial motion
systems capture the full six degrees of freedom body
motion of a human in real-time and can also include
a magnetic sensor, although these have a much lower
resolution and are susceptible to electromagnetic noise.
Benefits of using inertial systems include low cost, small
dimensions, portability, and large capture areas. Disad-
vantages include lower positional accuracy and positional
drift.

A. Proposed approaches to IMU data integration

The advantages of inertial sensors have helped their rapid
adoption in a wide range of applications. To solve the issues
related to noise, drift, random walk, etc., a flourishing literature
on how to filter and integrate the available parameters has been
produced. In the following, we summarize some of the data
fusion approaches proposed in the literature.

• Accelerometer only. Using just triaxial accelerometer
alone, as done by Lee in [23], joint angles can be
determined by reconstructing the direction of the gravity
vector. This approach, however, can only be used for
motions involving just small linear accelerations because
gravity affects accelerometer measurement all the time,
and this becomes much more noisy when movements
become faster.

• Biaxial accelerometer and one gyroscope. This ap-
proach has been used by Sabatini in [37], who exploited
the cyclical feature of human gait to measure some
of its spatio-temporal parameters, like stride length and
walking speed. Since the accelerometers are unable to
detect rotations around the vertical axis, all the motion
is assumed to take place in a non-rotating sagittal plane.
Being this method highly application specific, it is not
suitable for a more general use.

• Accelerometer, gyroscope and magnetometer. This is
the most general and complete way to produce 3-D
orientation estimates relative to an Earth-fixed reference
frame, using MEMS technology. Data from a sensor
module containing a triad of orthogonally mounted linear
accelerometers, a triad of orthogonally mounted angular
rate sensors, and a triad of orthogonally mounted magne-
tometers are processed by suitable data-fusion filters, it
is possible to exploit the strength of each type of sensor
and overcome their weaknesses.

• Dual triaxial accelerometers. This is a quite uncommon
approach using only two spatially separated triaxial ac-
celerometers [41]. Error accumulation and drift problems
are mitigated with the use of domain specific knowledge,
including pause identification and geometric constraints
on the two nodes. A major disadvantage of this system is
that it is designed to work only when the two accelerome-
ters are located on opposite corners of the bounding cube,
so it must be re-tuned when using different geometries.
Furthermore, the distance between the two sensors cannot
be too small, making this approach not feasible for small
wearable sensors.

A variety of filtering techniques have been adopted for data
integration, some of which are listed below.

• Complementary filter. These filters follow a frequency-
based approach, and this is one of the first methodologies
used to address these issues [16]. The key idea is to
threat one signal through a low-pass filter, the other one
through a high-pass filter, and combine them to obtain the
final rate. In case of IMUs, it can be better to combine
slow moving signals from the accelerometer and mag-
netometer, and fast moving signals from the gyroscope.
The result is to favor accelerometer measurements of
orientation at low angular velocities and the integrated
gyroscope measurements at high angular velocities. Such
an approach is simple but may only be effective under
limited operating conditions.
Bachman et al. [3] and Mahony et al. [27] presented
separate algorithms that both employ a complementary
filter process, using adaptive parameters. This algorithm
structure has been shown to provide a good trade-off be-
tween effective performance and computational expense.

• Kalman filter. The Kalman filter [19] [46] has become
a basis for the majority of orientation algorithms and
commercial inertial orientation sensors, like Xsens [44],
Intersense [17], and many others. The widespread use of



Kalman-based solutions is a guarantee of their accuracy
and effectiveness [11], [25], [28], [36], [22].
Nevertheless, this method presents some disadvantages.
First, the Kalman filter implementation imposes an high
computational load due to lot of recursive formulas that
need to be calculated to minimize the least mean squared
error [43]. Furthermore, different kinds of Kalman filters
are needed for different state vectors, dynamic models,
and measurement models; and with the increase of ac-
curacy of the result, larger dimension state vectors are
needed, that will lead to higher computation demand.
These challenges require a large computational load for
implementing Kalman-based solutions, making it an not
optimal choice for small low-power microcontrollers.

• Madwick filter. The algorithm uses a quaternion rep-
resentation, allowing accelerometer and magnetometer
data to be used in an analytically derived and optimized
gradient descent algorithm to compute the direction of
the gyroscope measurement error as a quaternion deriva-
tive [26]. The algorithm achieves levels of accuracy
matching that of Kalman-based methods, but with much
lower computational load, and the ability to operate at
small sampling rates. These improvements significantly
reduce the hardware and computational power necessary
to implement the Madwick filter, and this is important
when battery duration is a key point in the design of a
sensor node.

B. Similar existing platforms

There are several commercial inertial tracking products
available today. Typical full body tracking systems, such as
the Moven motion capture suite by Xsens [44], or similar
product by Intersense [17], and many others. They are very
expensive (in the range of 10K euro and beyond), and are not
flexible because they cannot be customized and expanded (e.g.,
adding other kind of sensors), and use proprietary wireless
communication protocols that requires special hardware.

There are also several academic works involving motion
tracking using wireless nodes with onboard IMU. Neverthe-
less, most of them are highly application specific [20], [1],
[8], [40], [34], [47], [2] focusing on data processing rather
than on the sensor node hardware and firmware, because they
use already available nodes and the output of their sensors.

Furthermore, they use hardware platforms based on old
components that do not exploit the potential of new tech-
nologies, both hardware and software (e.g., radio integrated in
microcontroller, single chip 9-DoF IMU chip, very low power
consumption, real-time processing and communications), that
can be very useful for the final application. In particular,
the solutions presented in [47], [45], [2] used nodes with
old hardware (microcontroller, sensors and wireless) and this
translates to not-so-low power consumption compared with the
processing power provided.

Concerning wireless communication, most of them uses
ZigBee [20], [8], thus not being compatible with pc/tablet
without the use of an external dongle. Other works,

like [2] and [40] use custom protocols over 2.4Ghz or even
433Mhz [45]. All the works considered uses hardware plat-
forms with different sensors chip for accelerometer, gyroscope
and magnetometer (sometimes even with analog outputs).
Instead, having a single chip including all of these sensors
reduces inevitable errors due to non-optimal axis alignment
among various chips, and the chip should have a digital
output to reduce additional noise on ADC conversion. Finally,
none of them uses a microcontroller with an embedded radio
peripheral in its chip, nor real-time policies for processing and
wireless communications; these measures positively impact
on the overall efficiency, on power consumption and system
predictability.

Recently, aided by the trend of integrating multiple sensors
in the same package, hardware producers started proposing
solutions including filtering and data fusion capabilities. This
approach reduces noises and the computation power required
by the microcontroller, as well as power consumption. One of
these solutions has been integrated by InvenSense in their IMU
sensors [18]. They proposed a proprietary onboard filter called
Digital Motion Processor (DMP) that will be better explained
in Section III.

III. SYSTEM DESCRIPTION

This section describes the elements composing the platform
used in the proposed approach. Body movements are tracked
by integrating angular information acquired from a set of
nodes, each monitoring a single rigid limb segment. The rest
of this section first presents the functional and technical re-
quirements that had driven the hardware design; then describes
various features of the platform in detail.

The platform development has been driven by the following
design objectives:
• Accuracy. When monitoring limb positions and move-

ments, a crucial aspect is to guarantee a good level of
precision in the measurements. For example, in knee tele-
rehabilitation applications, the flexion/extension angle
must be typically monitored with a precision of 1 degree.

• Flexibility. The main idea is to design a platform that
is flexible enough to be adapted to different applications,
in such a way that will not be necessary to redesign it
every time. For example, it should be possible to use it in
various use cases, like tracking different human limbs or
a robotic manipulator. Furthermore, this platform is based
on the latest hardware and software technologies, and has
an expansion slot to handle several additional sensors.

• Real-time feedback. If data are presented to the user
as feedback, it is also important to guarantee a bounded
delay of a few hundred of milliseconds between move-
ment and visualization, especially in the presence of
more than one sensor, each of them with different timing
requirements. A similar requirement applies in a wide
range of applications, from gaming to remote teleoperated
systems.

• Low-power consumption. Sensor nodes should provide
a good balance between lifetime and dimensions. In



some applications is not possible to stop the activities to
recharge the sensor or change batteries. However, large
battery packs disturb the measurements (i.e., different
behavior while wearing the sensors) and reduce the
quality of the user experience.

A. Hardware platform

The platform is composed by a set of wearable sensor
nodes sending data to a central unit (master) that performs
the integration and provides the posture information to appli-
cations. In the current implementation, the central unit is a
high-end system that runs the application under the Android
Operating System [14]. The number of sensor nodes depends
on the number of joints that needs to be monitored. Figure 1
illustrates the block diagram of the main logical components
of a node.

Figure 1: Block diagram of the main node components.

Every node is powered by an ultra low-power Nordic
nRF51822 microcontroller with embedded 2.4Ghz
transceiver [32]; an InvenSense MPU-9150 9-axis IMU; an
integrated onboard chip-antenna with 20m range indoors/80m
range outdoors; an USB port; a microSD card for logging
and debugging; some I/O devices (3 LEDs, 2 buttons and
a buzzer); and six exported GPIO (that can be used both
for digital I/O or as analog input with ADC) to have the
flexibility to expand the board with other sensors, like ECG,
EMG, etc. The node is powered by a single cell LiPo battery
that guarantees more than 20 hours of continuous use and
can be charged using both USB or wireless recharge. The
nRF51822 microcontroller is built around a 32-bit ARM
Cortex-M0 CPU with 256kB flash and 16kB RAM, and
incorporates a rich selection of analog and digital peripherals.
The embedded 2.4GHz transceiver supports Bluetooth 4.0
low energy, as well as 2.4GHz raw operation. The nRF51822
microcontroller is targeted for low-energy applications and
supports several low-power operating modes with consumes
ranging from 420nA in deep sleep without RAM retention to
13mA in RX mode at 1Mbps.

The Inertial Measurements Unit is an InvenSense MPU-
9150, which combines a 3-axis MEMS gyroscope, a 3-axis
MEMS accelerometer, a 3-axis MEMS magnetometer, and a
DMP hardware accelerator engine. The MPU-9150 features

three 16-bit analog-to-digital converters (ADCs) for digitizing
the gyroscope outputs, three 16-bit ADCs for digitizing the
accelerometer outputs, and three 13-bit ADCs for digitizing
the magnetometer outputs. The DMP acquires data from all
sensors and computes the quaternion representing the chip
orientation with respect to Earth fixed frame with a selectable
output frequency up to 200Hz. An on-chip 1024-byte FIFO
buffer helps lowering system power consumption by allowing
burst reading from the microcontroller. This sensor is con-
nected to the microcontroller through I2C bus.

B. Wireless protocols

The radio subsystem integrated in the Nordic microcon-
troller allows selecting between different wireless communi-
cation technologies, in particular:
• Bluetooth 4.0 Low Energy (BLE) is the new exten-

sion of Bluetooth that is intended for strongly energy-
constrained applications, such as sensors or disposable
devices;

• ANT is a low-power proprietary wireless technology
developed focusing on sports and fitness sensors that have
to communicate with a display unit, for example a watch
or cycle computer. Similar to BLE, ANT devices may
operate for years on a coin cell.

• ZigBee is a low-power wireless specification based on
mesh networking to the low-power wireless space and is
targeted towards applications such as smart meters, home
automation, and remote control units.

While the first two protocol stacks are provided by Nordic in
the form of binary-only library (i.e. SoftDevice), the ZigBee
one is included in the very latest Erika RTOS kernel dis-
tribution [12]. An interesting feature of the BLE SoftDevice
is the possibility to reserve some timeslots for accessing the
radio peripheral in raw mode, temporarily bypassing the whole
BLE stack. This can be used to run different radio protocols
concurrently to BLE, and this is useful for several reasons:
• to have a faster, lower latency communication among

nodes using custom protocols, including those that can
provide temporal guarantees.

• to allow the use of just a single node in BLE mode to
transmit collected data to the master (pc/tablet),

• to connect the nodes to other wireless networks that use
different protocols.

Other possible solutions are represented by WiFi and Blue-
tooth. Compared to the ones supported by the Nordic chip,
they have a better data throughput but at the cost of high
power consumption, which is one of the primary concerns
of this platform. Furthermore, the implementation of WiFi
and Bluetooth needs an external hardware module in addition
to the Nordic microcontroller, and this contributes negatively
to energy consumption, device physical dimensions, firmware
complexity, and costs.

For this platform, the selected technology has been the BLE
for a number of reasons, including its widespread adoption,
lower power consumption, better immunity to interferences,



and net payload data-rate [21]. Considering the sensors on the
platform and typical acquisition rate, the bandwidth provided
by the BLE protocol resulted to be sufficient for most of the
applications.

Our current implementation exploits raw time slots, but
only to achieve time synchronization (as explained in Section
III-D). The data transfer to the master (pc/tablet) is done using
BLE from every single sensor node.

C. Real-time processing

In complex embedded devices like the one described in this
paper, the system must be able to execute several concurrent
activities, some of which subject to strict timing constraints,
while allowing a modular and flexible development cycle. For
instance, IMU data are acquired with a sampling period of 5-
10 milliseconds, while data transmission and data storage tasks
can be triggered with a lower frequencies and present lower
criticality. For example, the data storage function is necessary
to save motion data when the connection is not available. An
RTOS is needed especially in the presence of more than one
sensor with different timing constraints, as well as to maintain
a good code clarity and modularity. Furthremore, an RTOS is
crucial to predictably handle the radio reservation in order to
mix the BLE communication with custom protocols.

To ensure a timely execution of such different activities
and perform an off-line guarantee of the timing properties
of the application, the software has to be supported by a
real-time operating system. The software for the platform
presented in this paper has been developed on top of the
ERIKA Enterprise real-time kernel [12], which allows achiev-
ing high predictable timing behavior with a very small run-
time overhead and memory footprint. ERIKA Enterprise is
an innovative OSEK/VDX RTOS for small microcontrollers
that includes highly predictable real-time kernel mechanisms
and uses innovative programming features to support time
sensitive applications on a wide range of microcontrollers and
multi-core platforms. In addition to the OSEK/VDX standard
scheduling algorithm, ERIKA Enterprise implements other
scheduling algorithms such as Fixed Priority with preemp-
tion thresholds, Stack Resource Policy (SRP) [4], Earliest
Deadline First (EDF) [24], resource reservations (FRSH) [29]
and hierarchical scheduling (HR) [6], [7] which can be used
to schedule tasks with real-time requirements. In particular,
ERIKA supports periodic and aperiodic task scheduling ac-
cording to fixed and dynamic priorities; interrupt handling for
urgent peripherals operation (interrupts always preempt task
execution); and time bounded resource sharing through the
Immediate Priority Ceiling protocol [38], [10].

In the embedded system domain, drivers are often imple-
mented following a polling scheme, i.e., using busy waiting
during the interaction with I/O peripherals. Polling-based
drivers are typically simple to implement, but increase power
consumption and generally allow a lower I/O throughput. On
the other hand, interrupt-driven drivers are able to avoid busy
waiting, at the price of a more complex implementation. In this
case, during I/O operations, the CPU is available to execute

unrelated computations or move to a low-power function state,
leading to a reduced power consumption. Overall, the asyn-
chronous behavior of interrupt-driven drivers impacts signifi-
cantly on system predictability, leading to a greater complexity
in schedulability analysis with respect to polling-based drivers.
In order to squeeze-out the maximum performance from IMU
sensors as advertised by InvenSense, without sacrificing low
power consumption of the whole system, we had to carefully
design and implement the software to handle the sensor. To
this purpose, we developed a specific interrupt-driven driver
for the InvenSense sensor tailored over the I/O interactions that
are strictly required by the application domain. The driver is
composed by two nested state-machines showed in Figure 2.

Figure 2: Architecture of the IMU driver.

The inner state-machine is responsible for managing the
I2C communication with the sensor. As explained in the
previous Section, the InvenSense sensor is connected to the
microcontroller through the I2C bus: since the MCU allows
only a common interrupt for I2C events, it has been necessary
a state-machine implementation of the interrupt handler. Data
transfer over the I2C bus requires an I/O interaction composed
on different read/write phases. Such a state-machine is in
charge of dealing with the communication phases of the I2C
bus, tacking track of the current communication phase. Also
the InvenSense sensor depend upon I/O interactions based of
communication phases. The outer state-machine is therefore
in charge to handle the communication with the DMP: in
such a way the sensor data are collected in a buffer and made
available for the application.

D. Time synchronization

In a wireless network like the one proposed in this paper, the
analysis of gathered data is performed by processing samples
of measurements coming from different nodes of the network.
In order to minimize the error, it is important to elaborate
samples acquired at the same instant, especially if the nodes
are used to monitor the dynamic of some physical variables,
as in limb motion tracking. It is clear that the amplitude of
the error increases with the temporal misalignment among the
samples.

An example of the problem is illustrated in Figure 3, where
two signals f(t) and f ′(t) are sampled with a period Tc.
Suppose that f ′(t) represents the angle of moving knee, and let
ε be the clock drift rate of the node that samples this signal.



Figure 3: Effect of time synchronization errors.

After K samples, the clock skew ∆t between the samples
coming from the two nodes and having the same timestamp
can be computed as:

∆t = |KTc(1 + ε)−KTc| = εKTc . (1)

Under the assumption that the movement in a small interval
occurs at a fixed angular velocity ω, the angular error is

∆θ = ω∆t . (2)

Increasing the sampling period Tc can greatly extend battery
duration, but cannot be done without a proper time synchro-
nization, otherwise the achievable precision drops. In addition
to the advantages given by an accurate time for sampling data,
a precise time base can also be used to schedule global tasks,
like those used to trigger system reconfiguration or change the
behavior of each node in the network.

Clock synchronization allows a precise time alignment of
data acquired from nodes. The higher the protocol accuracy,
the lower the sampling frequency required to obtain small
errors while correlating two different samples. In this actual
version, we used the TPSN protocol [13] implemented over
the radio reservation not dedicated to BLE.

E. Energy management

Power management is becoming a crucial aspect in several
fields of information technology, from mobile devices that
need to prolong their lifetime without requiring huge batteries
or long recharge time, to server farms where managing thermal
issues is crucial to prevent failures and reduce costs. Almost
all modern devices are based on the CMOS technology which
is characterized by 2 major sources of energy consumption:
dynamic power due to switching activities and static power
due to the leakage current. For micrometer-scale semicon-
ductor technology, the dynamic power dominates the power
consumption of a processor. However, for technology in the
deep sub-micron domain, the leakage power consumption is
comparable to or even more significant than the dynamic
power dissipation. Reducing the voltage decreases the dynamic
power consumption, however it also reduces the maximum

operating frequency. The overall energy consumption of a
computing system also depends on other components.

Power management capabilities provided in modern devices
do not take timing constraints into account, thus time guar-
antees must be performed by proper energy-aware scheduling
algorithms implemented at an intermediate software layer. Two
major classes of power-aware algorithms can be distinguished
based on the kind of power they try to reduce. Dynamic
Voltage Scaling (DVS) techniques reduce dynamic power by
decreasing the supply voltage (and consequently the clock
frequency) of the system, whereas Dynamic Peripheral Man-
agement (DPM) approaches achieve energy saving by exploit-
ing operational states with reduced energy consumption (e.g.,
sleep or idle) whenever possible. When using DVS techniques
in the presence of resource constraints (e.g., under mutually
exclusive resources or non preemptive regions), the system
can experience scheduling anomalies in which a task could
even increase its response time when executed at a higher
speed [9]. Such problems prevent managing the performance
of a real-time application as a function of the processor
speed. To cope with the variable requirements coming from
different monitoring applications in a transparent way for
the application developer, energy-related issues are managed
through the abstraction layer proposed by Bambagini et al. [5],
integrated inside Erika kernel. This library allows selecting a
policy customized for a specific device, providing a uniform
interface. In this way, it permits to achieve advantages given
by energy management while taking timing constraints into
account.

IV. DATA FUSION

Limb postures are reconstructed by integrating the data
from different inertial measurement units that are positioned
on the body. In order to cope with the noisy IMUs, our
approach integrates kinematic constraints that limit the space
of possible configuration that the node can assume, thus a
better estimation of the final posture could be obtained.

In the following, a formal representation of the kinematic
constraints is presented.

A. How to estimate node attitude

The attitude is the orientation of a coordinate system with
respect to some reference system. Every node can produce
both raw data acquired from all sensors and an attitude infor-
mation. The IMU mounted in the proposed platform provides
a quaternion, which denotes the rotation of the ”Earth-fixed
frame” with respect to a frame attached to the sensor denoted
as ”body frame”. Compared to other techniques, like rotational
matrix and Euler Angles, quaternions improve computational
efficiency and avoid singularities problems (e.g., gimbal lock).

We now introduce some notation typically used by the
general statement of attitude estimation problem. Given n
bodies kinematically constrained as shown in Figure 4, we
denote:
• {F} as the inertial earth-fixed-frame reference,



Figure 4: General Case.

• {Bi} as the general sensor-fixed-frame reference (also
know as body frame),

• {Ei} as the estimate sensor-fixed-frame reference,

We assume that the frames {Bi} and {Bi+1} are kinemati-
cally constrained. To describe these constraints, we introduce
quaternions notation FpBi

. which expresses the rotation of
the inertial frame F with respect to the body frame Bi of a
sensor:

FpBi
=

(
a b c d

)T
(3)

where T denotes the vector transpose operator. Variables b,
c, and d are the ”vector part” of the quaternion, and can
be thought of as a vector about which rotation should be
performed. The element a is the ”scalar part” that specifies
the amount of rotation that should be performed about the
vector part. The inverse of a quaternion p is computed as

p−1 =
1

a2 + b2 + c2 + d2
(
a −b −c −d

)T
. (4)

The attitude quaternion FpBi
can be used to rotate an

arbitrary 3-element vector from the inertial frame to the body
frame. A vector vI can be rotated by considering it as a
quaternion with zero real-part and multiplying it by the attitude
quaternion FpBi

and its inverse Fp−1Bi

vB = FpBi

(
0
vI

)
(Fp−1Bi

) . (5)

The frames {Bi} and {Bi+1} are kinematically constrained
by the quaternion Bi+1pBi

(qi) where qi ∈ Qi and Qi ⊆ Rni

is the joint space, with ni the number of joint variables. For
easy readability we omit the dependence of the time from all
the variables.

Given SO(3) the space all rotations about the origin of
three-dimensional Euclidean space R3, we define also the
following quaternions:

• pi := FpBi
∈ SO(3) : relative orientation of {Bi}

respect to {F},
• p̂i := FpEi

∈ SO(3) : (estimated attitude) relative
orientation of {Ei} with respect to {F},

• p̄i := BipBi+1
(qi) ∈ SO(3) |qi ∈ Qi : relative ori-

entation of {Bi+1} respect to {Bi}. It follows that
p̄i = p−1i+1pi.

We would like to estimate the joint variables of the relative
orientation of {Bi+1} with respect to {Bi}, i.e. {qi(t) ∈
Qi| p̄i(qi(t)) ∈ SO(3)}. In theory, we could separately esti-
mate the attitudes of the {Bi} frames and then find the relative
orientation p̄i. Instead, the noisy measurements coming from
the IMUs degrades the performance of this straightforward
approach.

Lets examine the simple case of a body-fixed frame con-
strained with inertial fixed-frame. Suppose that the inertial-
fixed frame {F} and the body-fixed frame {A} are constrained
each other through a revolute joint. Let {E} be the estimate
reference frame as depicted in Figure 5. Although this is a
really simple case, it is a good starting point to model more
complex real-life kinematic scenarios.

Figure 5: Body-Fixed Frame Constrained with Inertial-Fixed
Frame.

We define p := FpA = p(q) ∈ SO(3), where q ∈ R is the
scalar variable to estimate.

The rotation p̂ := FpE(q̂) is the estimated attitude (cor-
responding to an estimated variable q̂ ∈ R). The orientation
error is defined as p̃ := EpA = p̂−1p ∈ SO(3). A perfect
attitude estimation is achieved when p̃ = I .

V. EVALUATION

In this section some preliminary experiments are presented
to evaluate the effectiveness of the proposed approach. The
first application test case we identified consists of a single
joint. Despite its simplicity, it is already realistic because it
models very well the case of knee rehabilitation, and requires
a precision of at least 1 degree and up to 0.3 rad/s angular
velocity. Two different types of measures were performed:
accuracy measures for both orientation and position, and time
delay measures.

A. Accuracy measures
The spatial accuracy of a single sensor node was evaluated

with respect to a reference given by a Polhemus Patriot sys-
tem [33]. This device is capable of measuring 6DOF (Degrees-
Of-Freedom), thus obtaining the full position and orientation



of a mobile probe with respect to a fixed reference. Its working
principle is based on emitting a tuned electromagnetic field
from the fixed reference (source) and measuring it with the
probe (mobile sensor). This procedure avoids the need for
hybrid data merging performed via software. The resulting
resolution is about 0.03 mm and 0.01 degrees, and a static
accuracy of 1.5 mm RMS for the X , Y , and Z position and
0.4 degrees RMS for the orientation. To perform the test, both
the Polhemus and the IMU have been mounted on a common
board in a way do avoid any measurement error caused by
misalignment. Figure 6 shows the experimental setup used to
evaluate the IMU accuracy measures.

Figure 6: Experimental setup used to evaluate the accuracy.

1) Orientation: The orientation accuracy of a single sen-
sor node was measured by converting quaternions to Euler
angles and directly comparing them to the ones given by
the Polhemus. Only the angles around X and Y axes were
measured, because the measurement around the Z-axis relies
on magnetometer which is strongly affected by the magnetic
field generated by the Polhemus. Figure 7 shows the IMU
measurement error with respect to the Polhemus reference.
The majority of errors are around the value of 0.65 degrees;
the Mean of the error is 0.8685 degrees and its RMS is 0.9871
degrees. For these reason the measure can be considered
a good result because it is obtained with a system that
is considerably cheaper than the Polhemus (i.e., few euros
compared to several thousand of euros).

Figure 8 shows that the error remains quite small even
during fast movements. During sudden changes of direction,
the IMU reacts with a little delay with respect to the Polhemus,
because it gets fooled by gyroscopes. In fact, the accelerom-
eters are more noisy for faster movements, and the DMP
data-fusion algorithm increases the weight to the gyroscopes.
Despite such a behavior due to its inner working, the error of
the IMU does not substantially vary from the average during
these fast circumstances.

2) Position: Position accuracy was measured in a simi-
lar setup. While the Polhemus gives out both orientations
and positions, the IMU sensor is only capable of angular
measurements, thus Y and Z coordinates must be computed
using simple trigonometric formulas as a function of the link
dimension. Figure 9 shows the distribution of the measured
position error on the Y -axis.

B. Processing time and communication delay

Finally, a specific test has been carried out to evaluate the
computation time spent by the sensor node to process data
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coming from the IMU, and the end-to-end delay of the data
acquisition, up to the graphical representation performed on
the pc/tablet user interface. Processing timing measurements
were performed by switching a GPIO pin at the beginning
and at the end of the computation, and capturing them by a
multi-channel logic analyzer. We captured the timing of the
following processing timing on the sensor node:
• DMP interrupts arrivals;
• duration of packet reading procedure through I2C bus;
• duration of data processing.
To measure the communication delay between nodes and

pc/tablet, instead, the simple switching of a GPIO is not
practically feasible for at least two reasons. Firstly, on PC’s
and tablets there is no cheap and simple way to instantaneously
change a GPIO pin state as on microcontrollers, considering
that we are exclusively using standard programming environ-
ments and tools. Secondly, there is no access to the internals
of the Bluetooth Low Energy (BLE) stack, neither on the pc
with Windows 8.1, nor on the tablet with Android and not
even on the nodes running the Nordic BLE library.

The adopted solution was to directly measure the time
instant at which the application reacts upon receipt of a data
packet. After the elaboration it activates a region of the tablet
screen. Thus the measurement was carried out using a photo-
resistor attached to the screen to detect the change of a small
rectangular image, between black and white. This caused
luminance changes, affecting the output of the photo-resistor,
thus allowing the logic analyzer to capture it.
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With the above setup, we acquired 60 seconds of data,
using a Nexus 7 tablet as a receiver. The sampling frequency
configured on the node was 20 Hz, resulting in 1200 samples.
Results of this experiment are reported in Table I, that contains
execution time statistics for I2Cread routines and the CPU time
spent until the sending of the data over radio link, and Table II,
that contains delay statistics of radio transmitting times and the
final delay measured to shows data on the user interface.

Time(ms) Mean RMS Std Dev. Variance
I2Cread 2.409 2.416 0.1833 0.0335
computation 0.218 0.228 0.0660 0.0043

Table I: Execution times (ms).

Delay(ms) Mean RMS Std Dev. Variance
BLEsend 2.627 2.634 0.197 0.039
display 23.730 27.575 14.052 197.470

Table II: Delay times (ms).

Variance of display delay is quite high due to several
reasons, the most relevant are:
• The delay that can occur during the transmission could

suffer due to the BLE protocol (e.g., busy channel, re-
transmission, etc.);

• the lack in the Android framework of a structured support
for managing time constraints at application and commu-
nication layer;

• the presence of a complex video rendering subsystem
that is optimized to improve user experience but it is

not aimed at a predictable timing behavior in the data
representation.

1) Performance differences between Windows and Android:
Although BLE is not explicitly designed for transmitting a
continuous data stream, but only for a sporadic data exchange,
it can be used without problem for this purpose assuming
the use of an efficient stack implementation that provides a
suitable throughput, both on the master (pc or tablet) and the
slaves (sensor nodes). Our first implementation of the master
application was developed on Windows 8 and we were unable
to achieve more than 24 packets/s. This bottleneck is due to
the Windows BLE stack poor implementation, independently
of the used BLE devices (i.e., two different USB dongles
produced the same throughput). Actually, the only way to
achieve better performance on Windows is by using a custom
dongle, for example based on the same microcontroller like
the one provided by Nordic in their development kit. Instead,
the BLE stack included in Android allowed our application to
achieve an higher throughput. Using this setup, we were able
to reach 200 packets/s coming from two different nodes.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a new set of wearable nodes that
integrate a selection of small, low-cost, energy-efficient com-
ponents and wireless communication to achieve a good balance
between cost and performance. The used of real-time method-
ologies allowed to squeeze-out the maximum performance
from ultra-low power hardware without sacrificing application
requirements, acquisition rates, and full compatibility with
new PC’s, smartphones, and tablets. The developed platform
allowed to obtain a highly wearable and inexpensive solution
characterized by a sufficient precision and good time pre-
dictability.

Preliminary experiments with the platform proved the qual-
ity of the approach and showed the precision of the measure-
ments. Next steps in the development will be:

• a set of more extensive experiments to evaluate the
accuracy of the system and the delay experienced with
respect to a more complex case than knee rehabilitation;

• a complete integration of inertial data with kinematic
constraints to reduce further measurements errors and
simplify the calibration phase;

• a more precise data synchronization among units,
achieved through an efficient time synchronization proto-
col and the use of advanced real-time kernel mechanisms;

• the further reduction of energy consumption, with an in-
tegrated power management approach applied at different
levels of the architecture. For example, a better synchro-
nization protocol could reduce the sampling frequency
and therefore the energy consumption.
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