
Energy-Aware Packet and Task Co-Scheduling
for Embedded Systems ∗

Luca Santinelli, Mauro Marinoni, Francesco Prosperi, Francesco Esposito,
Gianluca Franchino and Giorgio Buttazzo

RetisLab
SSSA Pisa

{name.surname}@sssup.it

ABSTRACT
A crucial objective in battery operated embedded systems is to
work under the minimal power consumption that provides a desired
level of performance. Dynamic Voltage Scaling (DVS) and Dy-
namic Power Management (DPM) are typical techniques used on
processors and devices to reduce the power consumption through
speed variations and power switching, respectively. The effective-
ness of both DVS and DPM needs to be considered in the develop-
ment of a power management policy for a system that consists of
both DVS-enabled and DPM-enabled components.

This paper explores how to efficiently reduce the power consump-
tion of real-time applications with constrained resources, like en-
ergy, CPU, and transmission bandwidth. A combined DVS-DPM
approach with a reduced complexity is proposed to make use of on-
line strategies for embedded systems. Simulation results reveal the
effectiveness of the proposed approach.

Categories and Subject Descriptors
C.3 [Special-Purpouse and Application-Based Systems]: Real-
Time and Embedded Systems

General Terms
Theory

Keywords
Real-Time, Energy-Aware Scheduling, Packet and Task Co-Scheduling

1. INTRODUCTION
Embedded systems cover a very wide spectrum of application do-
mains, from consumer electronics to biomedical systems, surveil-
lance, industrial automation, automotive, and avionics systems. In

∗The research leading to these results has received funding from the
European Community’s ArtistDesign Network of Excellence and
from the European Community’s Seventh Framework Programme
FP7/2007-2013 under grant agreement no. 216008.

EMSOFT’10, October 24–29, 2010, Scottsdale, Arizona, USA.

particular, the technology evolution of sensor and networking de-
vices paved the way for plenty of new applications involving dis-
tributed computing systems, many of them deployed in wireless
environments, exploiting the mobility and the ubiquity of compo-
nents. Moreover, in most cases, devices are battery operated, mak-
ing energy-aware algorithms of paramount importance to prolong
the system lifetime.

In each node of the system, at the processor level, two main mech-
anisms can be exploited to save energy: the Dynamic Voltage Scal-
ing (DVS) and the Dynamic Power Management (DPM). The for-
mer is used to reduce the dynamic energy consumption by trad-
ing the performance for energy savings. For DVS processors, a
higher supply voltage generally leads to both a higher execution
speed/frequency and also to a higher power consumption. On the
other hand, DPM techniques are used to switch the processor off
during long idle intervals, hence they tend to postpone tasks execu-
tion as long as possible still guaranteeing the schedulability of the
task set. At the network level, the energy consumption due to com-
munication is usually managed by DPM techniques, although other
mechanisms have been proposed in the literature, as the Dynamic
Modulation Scaling (DMS) [20].

In micrometer CMOS technology, the dynamic power dissipation
due to switching activities prevails against the static power dis-
sipation caused by the leakage current. However, in most mod-
ern processors developed with sub-micron technology, the static
power is comparable or even greater than the dynamic power [12,
13]. When the dynamic power is dominant, DVS techniques are
used to execute an application at the minimum processor speed that
guarantees meeting real-time constraints. Conversely, when static
power is dominant, there exists a critical processor speed below
which the energy wasted is greater than that consumed at the crit-
ical speed [6]. For this reason, some authors recently proposed
energy-aware algorithms that combine DVS and DPM techniques
to improve energy saving [9,27].

In wireless distributed embedded systems, energy consumption and
quality of service represent two crucial design objectives. Mes-
sages have to be transmitted within a deadline to guarantee the de-
sired quality [8,15], but the transmission itself represents an energy
cost to be minimized. Although a lot of research has been done to
reduce power consumption while guaranteeing real-time require-
ments (see next section), most papers focus either on task schedul-
ing or network communication. However, a co-scheduling of task
and messages would allow exploring more degrees of freedom and
could lead to higher energy saving.

Proc. of the 10th Int. Conference on Embedded Software (EMSOFT 2010), Scottsdale, Arizona (USA), October 24-29, 2010

1.1 Related work
A lot of research papers presenting DVS algorithms for energy-
aware real-time task scheduling have been published in the past
years, such as [2,14,21]. Conversely, some other papers focuses on
DPM techniques, see for instance [11], [10] and the related works
therein. DVS scheduling algorithms, e.g., [1, 24, 26], tend to exe-
cute events as slowly as possible, without any violation of timing
constraints: they trade processor speed with energy consumption.
DPM algorithms are used to switch the processor off during long
idle intervals [7,11,12].

Not many papers in the literature deal with tasks and packets energy-
aware co-scheduling. Moreover, they focus on combining CPU
DVS techniques for tasks and DPM approaches at the network
level. To the best of our knowledge, no one considered DPM tech-
niques for task scheduling.

In [18], the authors addressed energy saving issues for a system
composed by a DVS capable CPU and a network interface sup-
porting the DPM. They proposed two DVS based algorithms: one,
Limited Look-Ahead EDF (LLE), favors energy saving at the CPU
level and the other, Timeout Aware Scheduler (TAS) that favors en-
ergy saving at the network level. LLE tries to minimize the average
power wasted by all tasks using a modified version of the LaEDF
algorithm [19]. Instead, TAS tries to maximize the sleep time of
the network card by gathering the packet transmissions into bursts,
exploiting LaEDF. The choice of which algorithm is better to use
depends on the task set parameters and on the difference between
the CPU and the network device, in terms of power consumption.
Hence, the authors propose both off-line and on-line methods to
select the best performing algorithm.

Poellabauer et al. [25] proposed an integrated resource manage-
ment algorithm that considers both CPU and a bandwidth reserva-
tion protocol for the network interface, in wireless real-time sys-
tems. The aim of the proposed method is to guarantee task and
message deadlines while reducing the power consumption. The
resource management system is composed by two parts: a Task
and Speed Scheduler (TSS) and a Packet Scheduler (PS). TTS is in
charge of producing task scheduling and DVS selection. Instead,
PS is in charge of producing packets queuing and delivering to the
network interface. The input parameter of TTS is the next time-
slot available for packet transmissions, which is provided by the
PS. TSS uses a DVS scheduling technique, named Network Aware
EDF (naEDF), based on LaEDF. The PS is based on a modified
work-conserving EDF algorithm. The authors evaluate the perfor-
mance of the algorithms by simulation. Moreover, the effective-
ness of the algorithm is shown through a real implementation for
the Linux kernel.

Sudha et al. [16] presented two slack allocation algorithms for en-
ergy saving based on both DVS and DMS techniques. The authors
consider a single-hop wireless real-time embedded system, where
each task node is composed by precedence constrained message
passing sub-tasks. Furthermore, sub-tasks and messages are con-
sidered non-preemptable. Energy consumptions for both compu-
tation and communication are analyzed by a new metric, called
normalized energy gain. The authors proposed two algorithms:
the Gain based Static Scheduling (GSS) and the Distributed Slack
Propagation (DSP). While the former is used off-line and computes
the slack considering worst-case execution for each schedule entity
(sub-task or message), the latter is used on-line to exploit the addi-
tional slack, available when tasks execute for less than the predicted

worst-case computations. Notice that, while GSS is a centralized
policy that consider all task and messages of the system, DSP is
a distributed policy, independently executed at each node. This al-
lows reducing both time overhead and energy waste due to message
passing for global dynamic slack allocation. In this way, a dynamic
slack generated in a node is only utilized for local tasks and mes-
sages.

Contributions: This work addresses the challenging problem of
co-scheduling both tasks and messages in a distributed system with
the objective of saving energy and meeting real-time constraints on
local nodes. At this stage of the analysis we focus on the node be-
havior and its energy consumption. An algorithm that minimizes
the energy consumption of the system nodes is presented. The pro-
posed approach combines DVS and DPM techniques for energy
saving, taking into account the communication bandwidth reserved
for each node.

Organization of the paper: Section 2 introduces the modeling of
the system, in terms of resources, power dissipation, computational
and traffic workloads. Section 3 presents the scheduling algorithm
proposed in this work, while Section 4 analyzes the algorithm fo-
cusing on its schedulability and energy saving properties. Section 5
reports the simulation results outlining the performance of the ap-
proach, and finally, Section 6 ends the paper with the concluding
remarks.

2. SYSTEM MODELS
We consider a distributed real-time embedded system consisting of
a set of wireless nodes. Each node executes a set of independent
tasks that need to exchange information with tasks running in other
nodes. A node is modeled as a componentc = (Γ, S, M, B) that
takes as input a task setΓ = {τ1, . . . , τn}, a scheduling algorithm
S, a message setM = {s1, . . . sm} and a transmission bandwidth
B.

Tasks are scheduled by the node processor according to the given
scheduling policyS, while messages are transmitted during the in-
tervals in which the bandwidthB is made available by the adopted
protocol. Notice that a node is not required to work during the
remaining intervals, so it can be turned off to save energy.

The analysis we are proposing is focused on a bandwidth alloca-
tion protocol that provides a slotted bandwidth according to a Time
Division Multiple Access (TDMA) scheme. To decouple task ex-
ecution from the communication activity, all tasks in a node build
packets and move them to a shared communication buffer in the
processor memory. When the channel is available, packets are
transferred from the communication buffer to the transceiver for
the actual transmission.

As outputs, each component could provide a set of performance in-
dexes, such as message delays, task response times, and the energy
consumption. At the moment, only energy consumption is provided
as output. The component interface is schematically illustrated in
Figure 1.

2.1 Workload and Resource Models
An applicationΓ consists of a set of periodic tasks, where each task
τi = (Ci, Ti, Di) is characterized by a worst-case execution time
Ci, a periodTi, and a relative deadlineDi. Each taskτi produces
a message streamsi = (mi, Mi) characterized by a payloadmi

Proc. of the 10th Int. Conference on Embedded Software (EMSOFT 2010), Scottsdale, Arizona (USA), October 24-29, 2010

Γ

B

S

M

delay(messages)

R(tasks)

Figure 1: Node interface.

t1Bs
t1Be

t2Bs
t2Be

t3Bs
t3Be

Figure 2: Bandwidth assignment.

and a deadline (relative to the task activation)Mi for the message
transmission or reception.

In order to decouple the message production from the job execu-
tion we suppose that messages are generated at the job deadline.
The produced messages are enqueued in a buffer and then trans-
mitted as soon as the bandwidth becomes available. Assuming that
packets ready to be transmitted are stored as soon as they are cre-
ated and that the time for moving them is negligible, then message
transmission does not affect task scheduling.

In each node, the computational resource (i.e., the processor) is as-
sumed to be always available at any timet, hence it is modeled as a
straight linef(t) = t. On the other hand, the communication band-
width B is assigned by a bandwidth manager (running in a master
node) in a slotted fashion. In general, the transmission bandwidth is
modeled as set of disjointed slotsB = {b1, . . . br}, where each slot
is described by a start timeti

Bs
and an end timeti

Be
. An example

of slotted bandwidth assigned to a node is shown in Figure 2.

2.2 Power Model
Each node consists of a CPU (processing element) and a Transceiver
(transmitting and receiving element). Each device can be in one of
the following states:

• active. In this state, a device performs its job, executing tasks
or handling messages. The power consumed in this state is
denoted asPa.

• standby. In this state, the device does not provide any ser-
vice, but consumes a small amount of powerPs to be ready
to become active within a short period of time.

• sleep. In this state, the device is completely turned off and
consumes the least amount of powerPσ; however, it takes
more time to switch to the active state.

For a processor that supports DVS management, the power con-
sumed in active mode depends on the frequency at which the pro-
cessor can execute. Such a frequency is assumed to vary in a
range [fmin, fmax], while the processor execution speeds is de-
fined as the normalized frequencys = f/fmax and varies within
[smin, smax]. In particular, for the processor in active mode we use
the power consumption model derived by Martin et al. [17], which
can be expressed as

Pa(f) = a3f
3 + a2f

2 + a1f + a0 (1)

where

• a3 is the third order coefficient related to the consumption of
the core sub-elements that vary both voltage and frequency;

• a2 is the second order coefficient describing the non lineari-
ties of DC-DC regulators in the range of the output voltage;

• a1 is the coefficient related to the hardware components that
can only vary the clock frequency;

• a0 represents the power consumed by the components that
are not affected by the processor speed (like the leakage).

Switching from two operating modes takes a different amount of
time and consumes a different amount of energy which depends on
the specific modes, as shown in Figure 3. In particular, the fol-
lowing notation is used throughout the paper:ta−σ andEa−σ are
the time and the energy required for active-sleep transition, while
the active-standby transition is described byta−s andEa−s. For
all devices we have thatPσ < Ps < Pa and ts−a < tσ−a.
In this paper, we assume also that switching between the standby
mode and the active mode has negligible overhead, compared to
the other switches, which is the same assumption made by other
authors [23,28].

A simplified power consumption model is adopted for the transceiver
to concentrate on the interplay between DVS and DPM for the
processor. The communication bandwidth is then considered as
a constraint for serving the schedule that minimizes power con-
sumption while guaranteeing a desired level of performance. In
particular, a transceiver is assumed to be either inon (equivalent
to the active state) oroff (equivalent to the sleep state) mode only
(not instandby). Whenever the transmission bandwidth is available
the transceiver is considered in on mode; the power used to trans-
mit and receive messages is assumed to be equal toPon, that is:
Ptx = Prx = Pon. Whenever the transmission bandwidth is not
available, the transceiver is assumed to be in off mode with a power
consumption equal toPoff .

Table 1 summarizes all the allowed modes with their characteris-
tics, while Figure 3 illustrates the mode transition diagram and the
transition costs in terms of time and energy.

Radio On Radio Off
CPU Sleep / Pσ + Poff

CPU Standby / Ps + Poff

CPU On Pa(f) + Pon Pa(f) + Poff

Table 1: Power model: allowed power modes.

3. SCHEDULABILITY ANALYSIS
In real-time systems, the demand bound function (dbf) and the
supply bound function (sbf) are typically applied to verify the
schedulability of real-time applications under certain scheduling al-
gorithms and resource provisioning [4,22]. In particular, thedbf(t)
of an applicationΓ describes the resource requirement that the ap-
plication demands to the scheduling element in any interval[0, t).
On the other hand, thesbf(t) describes the resource amount the
scheduler supplies in any interval[0, t). Intuitively, the real-time
constraints of a scheduling component are met if and only if, in
any interval of time, the resource demand of the component never

Proc. of the 10th Int. Conference on Embedded Software (EMSOFT 2010), Scottsdale, Arizona (USA), October 24-29, 2010

Sleep Standby

Active +
Radio

Active

< ta−σ , Ea−σ >

<
t a

−
s
,
E

a
−

s
>

<
ta−

s,
Ea−

s
>

<
t
a
−

σ
,
E

a
−

σ
>

<
ta−σ , E

a−σ >

< 0, 0 >

Figure 3: Power model: transition costs.

exceeds the resource supply curve, as shown in Figure 4, with var-
ious sbf depicted. In the following, such an analysis is instanti-
ated under Earliest Deadline First (EDF) and Fixed Priority (FP)
scheduling paradigms.

For a sporadic task setΓ scheduled by EDF, Baruah [3] showed
that thedbf of Γ can be computed as

dbf(t1, t2) =
X

i∈Γ

„—

t2 + Ti − Di

Ti

�

−

‰

t1
Ti

ı«

Ci.

The schedulability of a task set is then guaranteed if and only if

∀t1, t2 dbf(t1, t2) ≤ sbf(t1, t2). (2)

The dbf represents both the minimal resource demand from the
applicationΓ and the minimal feasible service requirementsbf∗

that guarantees the tasks execution within their timing constraints,
sbf∗ = dbf .

Under fixed priority scheduling, the analysis can be carried out us-
ing a similar approach [11], but is not reported here for space limits.

Once thedbf(t) has been computed for an applicationΓ, the min-
imum supply bound function that guarantees the feasibility ofΓ
is sbf∗(t) = dbf(t). In the processing model considered in this
paper the processor supply function is a straight linesbf l(t) that
increases with a constant speeds whenever the processor is in ac-
tive mode while it is steady if the processor is in standby or sleep
mode. In particular, the minimumstraight line supply bound func-
tion sbf l∗ abovesbf∗ (which keepΓ feasible) is

sbf l∗ = min{sbf l|sbf l ≥ sbf∗}.

Everysbf l ≥ sbf l∗ ≥ sbf∗ keeps the system feasible, because it
anticipates the processor execution with respect tosbf l∗ andsbf∗,
which are feasible.

When applying DPM scheduling techniques it is possible to delay
the task execution inserting a sleep/standby intervalδ. In this case,
the problem is to find the largestδ that still guarantees the feasibil-
ity of the application (see [11] for more details) by postponing the
task executions. Thatδ is computed by executing the processor at
its maximum possible frequencyfmax as shown by the(d) curve
in Figure 4.

If no pending jobs are present at the actual instantt, selectingδ
that finishes before the first activation timetact produces only an
energy waste because it reactivates the processor while the ready
queue is still empty, thus, theδ is bounded bytact.

a bcd

dbf(t)

δ1

δ2

sbf(t, s) sbf(t, s)

time

Figure 4: Different supply bound functions with various re-
source provisioning rates and execution starting delayδ.

When applying DVS, from the analysis ofsbf l(t, smax), it is pos-
sible to derive the last time instanttfeas that makes the task set
schedulable. Under DPM, through the sbf-dbf analysis,tfeas is
derived as the maximum delayδ from the current timet to the next
task execution. Applying DVS after the DPM considerations means
anticipating such an activation time totx (with tx ≤ tfeas) by exe-
cuting at a smaller frequency. As shown in Figure 4 by the(c) and
(b) lines, this lead to a higher energy saving. Notice that anysbf
is constructed to satisfy the constraintsbf ≥ dbf , thus anysbf
ensures the schedulability of the task set.

3.1 Energy Aware Scheduling
Consider the example shown in Figure 5, where 3 tasks are acti-
vated at time3, 8 and10 sec (Activations on the figure) with dead-
lines at 40, 50 and 55, respectively. There is also a pre-defined
transmission slot in which the system is forced to transmit. With-
out such a constraint on transmission, tasks would have started as
soon as they became active, running at the maximum allowed speed
(dashed line). Using only DPM, task executions would be post-
poned as much as possible up to their deadlines, leading to the con-
tinuous line starting att = 25, with slope equal to the maximum
allowed execution speed. Notice however, that tasks could start ear-
lier, at timet = 15, and run at a reduced speed to better exploit the
transmission bandwidth (continuous line starting att = 15sec).

Such an example motivates the need for combining DVS and DPM
techniques to select the most appropriate delay and speed that re-
duces energy consumption, while coping with the available trans-
mission bandwidth and guaranteeing the application timing con-
straints. The proposed algorithm is referred to as the Energy Aware
Scheduler (EAS).

The EAS algorithm is applied at a generic time instantt. First, it
computes the interval[tmin, tmax] for the next activation pointta

that satisfies DPM requirements and timing constraints. Second,
the DPM is applied to compute the maximumtfeas at which the
processor can start executing at its maximum speedsmax, keeping
the task set schedulable. Third, task executions are postponed as
much as possible assuming execution at the maximum speedsmax,
to approach the starting pointtBs

of the transmission bandwidth.
The final step is to select the minimum processor speeds needed to
keep the task set schedulable. To take message communication into
account, the schedule is arranged to overlap with the bandwidth
allocated slot. In this way, message transmission corresponds to
task execution, allowing saving more energy.

The objective of the EAS algorithm is to compute the activation
timeta that minimizes energy consumption in the next task schedul-

Proc. of the 10th Int. Conference on Embedded Software (EMSOFT 2010), Scottsdale, Arizona (USA), October 24-29, 2010

EXEC

BANDWIDTH

Activations Deadlines

15 25 40 5055
time(sec)

sbf

Figure 5: An example of Energy Aware Scheduling that applies
DVS and DPM and copes with the transmission bandwidth.

ing and message transmission slot. Any valid activation pointta

must take into account the feasibility boundtfeas, the start time of
the bandwidth slottBs

, and the next activation timetact
1. Such

dependencies define the interval[tmin, tmax] for ta. The value
tmax is the minimum betweentfeas and tBs

. If the processor
has no pending jobs, the value oftmin is set to the next activa-
tion timetact, otherwisetmin = t. By the definition of the interval
[tmin, tmax], the actual selection ofta is done by computing the
time that minimizes the energy consumption from the current time
t to the end of the evaluation periodtF (discussed in Section 4).
Algorithm 1 reports the sequence of steps of the EAS algorithm,
while Figure 6 depicts the EAS application sequence and the re-
sult. Assumed task sets feasible under EDF, the feasibility of those
task sets scheduled according the EAS is guaranteed by construc-
tion because at each step the feasibility is kept. In other words, the
EAS applies the available slack to put in sleep the processor and it
tries to reduce the CPU execution speed. Due to the assumptions
on the system model, the bandwidth is a constraints only for the
energy saving problem and it does not affect the schedulability of
the task sets.

Algorithm 1 Energy Aware Scheduling - EAS

procedure t | t /∈ B
Compute thedbf(t);
Computesbf l∗(t) = sbf l(t, fmax) and obtaintfeas;
Calculatetmax = min{tfeas, tBs

};
if No pending jobs att then

tmin = tact;
else

tmin = t;
end if
Find ta ∈ [tmin, tmax] | minta

E(ta);
if ta ≥ t + 2ta−σ then

Put the processor in sleep state in[t, ta];
else

Put the processor in standby in[t, ta];
end if
Compute the min frequencyfa or slopesa guaranteeing feasi-
bility.

1tact is the first task activation time after the actual timet.

The system energy consumptionE(ta) is computed as

E(ta) = (ta − t)Pσ/s + (tF − ta)Pa(s(ta)fmax) +

+2Ea−σ + Eradio(t, tF), (3)

which is done according to the consumption models detailed in
the previous section. In particularEradio(t, tF) is the energy the
transceiver consumes in[t, tF] as a function of the available band-
width andPσ/s is the not-working power consumption, which is
equal toPσ if ta − t ≥ 2ta−σ, andPs otherwise.

As already said, the problem to be solved is to findta in the interval
[tmin, tmax] that minimizes energy consumption. That is,

ta | minta∈[tmin,tmax]{E(ta)}. (4)

In the next section, such a relationship will be deeply exploited by
comparing the energy saving contributions from DVS and DPM.

EXEC

BANDWIDTH

Activations Deadlines

t
ta−σ

ta tBs
tfeas

time

sbf

Figure 6: Feasibility and bandwidth guarantee: EAS algorithm
with three possible processor executions together with the time
instants when are applied.

4. ENERGY AWARE SCHEDULING:
IMPLEMENTATION DETAILS

The previous section illustrated how to combine DVS and DPM
techniques to save energy consumption and meet timing constraints.
The constrained transmission bandwidth is assumed to be provided
by the network coordinator. In this way we can concentrate on the
node behavior and its energy saving strategies.

In this section, we focus on some characteristics of the algorithm
to better understand its behavior. We first analyze how to select the
instants at which the algorithm has to be executed. Then, a more
detailed analysis of the energy minimization problem is carried out.
Finally, the computational cost of the method is evaluated.

4.1 EAS Applicability
The EAS algorithm has been developed to be applied at each schedul-
ing point, such as job activation and termination, preemption points,
etc. To better exploit the advantages of DPM, the algorithm should
be executed when the ready queue becomes empty and the proces-
sor is going to enter the idle state. Another point where the EAS
algorithm can be conveniently applied is when the bandwidth slot
ends,tBe

. Indeed, by forcing the processor to be active during the
transmission bandwidth interval, the possibility of reclaiming some

Proc. of the 10th Int. Conference on Embedded Software (EMSOFT 2010), Scottsdale, Arizona (USA), October 24-29, 2010

slack time for the running tasks increases. Vice versa, any proces-
sor idle time inside the bandwidth slot is not an interesting point to
apply the EAS algorithm, because we assumed the processor speed
is selected at the beginning of the processor active period and can-
not change until the end of the slot.

Note that, in this work, the bandwidth is considered as a constraint,
and it is assumed it is enough to transmit all the messages produced
by the task set2.

4.2 Scenarios
We have defined two scenarios to consider the typical situations
that can occur during system execution. We assume that at the
current timet, either the ready queue just became empty, or the
transmission slot just ended. Depending on the next bandwidth
chunk and on the processor demand of the task set (aftert), there
are different possible start times for the tasks, resulting in different
energy consumptions.

Activations Deadlines

EXECEXEC

BANDWIDTH

ta

(a) Case 1: the feasibility analysis forces the execu-
tion to start before the bandwidth

Deadlines

EXEC EXEC

BANDWIDTH

Activations

ta

(b) Case 2: execution can start at the beginning of
the bandwidth

Figure 7: Scenarios: the execution starts before or at the begin-
ning of the transmission bandwidth

Case 1: Execution starts before the transmission band-
width. In this case, the application is required to execute before
the beginning of the bandwidth (ta ≤ tBs

), as depicted in Fig-
ure 7(a). In this case, the energy consumption is

Pσ(ta − t) + Pa(s(ta))(tBs
− ta) + [Pa(s(ta)) +

+Pon](tBe
− tBs

)

which is given by the cost of the processor for executing before the
bandwidth (Pa(s(ta))(tBs

− ta)), the cost of the mandatory exe-
cution and transmission inside the bandwidth, and the transceiver
energy cost due to the transmission bandwidth
([Pa(s(ta)) + Pon](tBe

− tBs
)).

2In the future, we plan to consider the bandwidth as a resource to
be optimized, together with the system energy.

Case 2: Execution starts at the transmission bandwidth.
In this case,tfeas occurs after the beginning of the transmission
bandwidth, and the processor activation can be advanced at the be-
ginning of the bandwidthtBs

, as illustrated in Figure 7(b). The
EAS algorithm tends to overlap the processor activation timeta to
the beginning of the bandwidth to cope with the bandwidth con-
straint and save more energy. Note thatta can still be different than
tBs

, because it is the result of the energy minimization problem. If
ta = tBs

, the energy consumption is

Pσ(ta − t) + [Pa(s(ta)) + Pon](tBe
− tBs

),

which differs from the previous case by the termPa(s(ta))(tBs
−

ta), since there is no energy consumption before the slot. When-
everta = tBs

, it is also possible to anticipate the task execution
with respect totBs

to allow tasks producing messages ready to be
transmitted at the beginning of the slot. In this way, the bandwidth
would be better exploited by the nodes, even though the energy
consumption slightly deteriorates.

4.3 Energy Minimization
The EAS algorithm is applied to compute the next execution point
ta for the processor, whereta depends on the processor speeds
and on the range[tmin, tmax]. The relationships(ta) among the
speed and the activation point is quite intuitive and depends on the
demand bound function of the task set. A heavy loaded proces-
sor results in a higherdbf and consequently in a higher speed for
guaranteeing the task set. Due to such a dependency, a closed-form
formula fors(ta) cannot be derived. However, the function is con-
vex because defined as the maximum of straight lines with slope

y
x−ta

starting atta,

s(ta)
def
= max{

y

x − ta
} ∀x, y ∈ dbf.

Each(x, y) is a point of thedbf where the slope/speed can be con-
trolled.

The dependency of the execution speedsa from the task set and the
associateddbf is shown in Figure 8 for a simulated case. Note the
convexity of the function which depends on the utilization of the
system.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 202 204 206 208 210

S
lo

pe

Time [ms]

Utilization = 0.36
Utilization = 0.56

Figure 8: Slope/activation time relationships(ta) depending on
the demand bound function. Two task set with utilizationU =
0.36 and U = 0.56 respectively.

The energy consumptionE(ta), computed by Equation 4, has to
be minimized by evaluating the energy and workload requirements
in [t, tF]. The end instanttF depends on the next time at which
the EAS algorithm will be executed, which could be either the next
scheduling idle time or the end of the bandwidth slottBe

. Such a

Proc. of the 10th Int. Conference on Embedded Software (EMSOFT 2010), Scottsdale, Arizona (USA), October 24-29, 2010

dependency is a consequence of the policy applied, which gener-
ates different services and workload. In particular, pure DVS ad-
vancing execution at the beginning of the interval could provide
different computational resources than combining DVS and DPM,
which would postpone the execution atta, with ta ≥ t. Figure 9
illustrates the different services provided in the same interval by
varying the execution speed and the processor activation pointta.

To resolve the previous dependency we decouple the ending instant
tF from ta by choosingtF as the maximum among the scheduling
idle times. The DVS applied at the beginning of the interval (time
t) with the minimum feasible speed results in maximizing the time
distance betweent and the beginning of the next idle time, keeping
the time constraints guarantee. The value oftF is the minimum
between the DVS idle time and thetbE

.

For computing the activation timeta that minimizes the energy
consumptionE(ta) we must take into account the service supplied
by the processor during the interval[ta, tF]. In particular, the func-
tion to be minimized is not the plain energy, but the ratio between
the energy required in the interval[t, tF], with the chosenta, and
the service supplied in that intervalS(ta) = (tF − ta)sa. Hence,

ta|min
ta

E(ta)

S(ta)
. (5)

timeδ

sbf(t, s)

Figure 9: Different servicessbf provided in an interval δ by
different execution policy applied.

The EAS algorithm looks for the minimum ratioE(ta)/S(ta) by
spannings(ta) and varyingta. From equations 3 and 5,E(ta)
results to be convex in the interval[tmin, tmax]. The convexity is
guaranteed because Equation 3 is the composition of linear func-
tions (Pσ(ta − t)), convex functions (Pa(s(ta))) and convex func-
tions multiplied by linear and positive functions in such an interval
(Pa(s(ta))(t − tF). The ratioE(ta)

S(ta)
is convex, as well as the ratio

between a convex function and a linear function. Given the convex-
ity of E(ta)

S(ta)
, the minimum exists and can be found with well known

and efficient methods. The bisection method was used in this work.
Notice that the caseta = tmin represents the condition in which
the DVS effect is prominent with respect to the DPM one. Vice
versa,ta = tmax represents the case in which DPM dominates
over DVS.

4.4 Computational Cost
The complexity of the EAS algorithm comes form the components
of the algorithm itself. In particular:

1. The computation of thedbf has a polynomial complexity
O(n), wheren is the number of tasks activations in the anal-
ysis interval[t, tF];

2. The computation oftfeas requires to compute the intersec-
tion of sbf l∗ with the x-axes, which takesO(m), wherem
is the number of deadlines until the next idle time.

3. The computation of the two boundstmin and tmax has a
complexity ofO(n), due to the min/max operations and the
search fortact.

4. Finally, findingta means findingta | min E(ta). To solve
this we have applied the bisection method which has a poly-
nomial complexity.

Taking into account all the contributions, the EAS has a polynomial
complexity, which makes it applicable on-line.

5. SIMULATIONS
This section presents some simulation results achieved on the pro-
posed EAS method. An event-driven scheduler and an energy con-
troller simulator has been implemented in C language and inter-
faced to Gnuplot.

5.1 Simulation Setup
The simulator receives a task set and a bandwidth assignment as
inputs. The task set is executed with a chosen scheduling policy.
The energy consumed to schedule tasks and to transmit messages
is computed at each simulation run. A simulation run consists of
scheduling one task set with the assigned bandwidth until the task
set hyperperiodhyp. The power consumptionE

hyp
in the hyperpe-

riod is then considered.

The scheduling policies applied are:

• EDF with no energy considerations, meaning that the pro-
cessor is assumed always active at the maximum frequency,
even if tasks are not ready to execute.

• pureDVS on top of an EDF scheduling algorithm. Only speed
scaling is applied off-line to guarantee feasibility and the pro-
cessor speed is set to that value. Online changes are not al-
lowed.

• pureDPM where the task execution is postponed as much as
possible and then scheduled by EDF. The execution is at the
maximum processor speed.

• DVS and DPM are combined with EDF through theEAS al-
gorithm.

A simulator infrastructure automatically generates a stream of tu-
ples(U, nt, B, nB), whereU denotes the utilization of the generic
task setΓ, nt the number of tasks,B the communication bandwidth
(expressed as a percentage of the hyperperiod), andnB the number
of slots in which the bandwidth has been split. Both the task set
utilization and the number of tasks are controlled by the task set
assignment(U, nt). The bandwidth assignment(B, nB) allows to
control both the total bandwidth and its distribution within the hy-
perperiod.

Given the total utilization factorU , individual task utilizations are
generated according to a uniform distribution [5]. Each bandwidth
slot is set in the hyperperiod with a randomly generated offset. To
reduce the bias effect of both random generation procedures,1000

Proc. of the 10th Int. Conference on Embedded Software (EMSOFT 2010), Scottsdale, Arizona (USA), October 24-29, 2010

different experiments are performed for each tuples(U, nt, B, nB)
and the average is computed among the results obtained at each
run.

Two different CPUs have been considered: the Microchip DsPic
(DSPIC)3 and the Texas Instruments (TI)4, both using the CC2420
transceiver as communication device. Table 2 and Table 3 report
the parameters that characterize the power model of the processors
and the transceiver used in these tests, according to the models de-
scribed in Section 2. Minimum and maximum frequencies of the
CPUs are taken from the device data-sheets, whereas the coeffi-
cients[a0, a1, a2, a3] comes form Equation 1.

CPU Ps f Pa(s) Pσ tsw

[fmin, fmax] [a0, a1, a2, a3]
[mWatt] [Mhz] [mWatt] [mWatt] [sec]

TI − [25, 200] [7.7489, 17.5, 168.0, 0.0] 0.12 0.00125
DSPIC 9.9 [10, 40] [25.93, 246.12, 5.6, 0.0] 1.49 0.020

Table 2: Power profiles for processing devices.

Transceiver Ps [mWatt] Pa [mWatt]
CC2420 0.066 62.04

Table 3: CC2420 Transceiver power profile.

5.2 Simulation Results
In a first simulation, we tested the power consumption of the CPUs
as a function of the activation time. Figure 10 shows a general de-
pendency of the power consumption from the model adopted for
the processor. The figure shows also that both CPUs are DVS sen-
sitive, in the sense that both privilege DVS solutions than the pure
DPM ones. Indeed, the DSPIC and the TI exhibit a lower energy
at tmin than attmax (respectively160 and195 in this case as one
of the interval of analysis along the whole execution interval). This
means that a pure DVS solution costs less than a pure DPM one.
Moreover, the DSPIC shows a global minimum inside the interval,
meaning that a combined policy is able to reduce energy consump-
tion. The time value corresponding to the minimum is theta that
has to be found.

 140

 150

 160

 170

 180

 190

 200

 160 165 170 175 180 185 190 195P
ow

er
 c

on
su

m
pt

io
n

[m
W

]

Time [ms]

TI
DSPIC

Figure 10: Energy consumption in one interval with the two
CPUs and the same task set. The energy is obtained by varying
the activation time ta within [tmin, tmax].

Figure 11 compares the two architectures, showing a higher energy
consumption for the DSPIC. The power consumption has been av-
eraged to the hyperperiod of each task set. Note that both the CPUs
have a dependency on the utilization.
3DSPIC33FJ256MC710 microprocessor
4TMS320VC5509 Fixed-Point Digital Signal Processor

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

DSPIC

TI DSPIC

TI DSPIC

TI

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

[W
at

t]

Utilization = 0.3

Utilization = 0.6

Utilization = 0.9

Figure 11: CPU comparison by varying the utilization; nt = 4,
B = 0.3 and nB = 3.

We also investigated the effects of the transmission bandwidth to
the energy consumption of the system. The results are reported in
Figure 12, which illustrates the power consumption as a function
of the bandwidth assignment. Note how the dependency is stronger
with respect to the bandwidth amount, because the transmission
cost increases when there is more bandwidth available; in fact, we
assumed the CPU remains active while the bandwidth is available.
Moreover we assumed to have messages available to be transmit-
ted, so that the bandwidth is fully used for transmission with an in-
creasing cost when the assigned bandwidth increases. On the other
hand, the dependency with respect to the bandwidth allocation slots
(how muchB is split) is quite weak. This is because message dead-
lines were assumed to be large enough not to create a scheduling
constraint.

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 1 2 3 4 5

 0.12

 0.14

 0.16

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

[W
at

t]

Bandwidth
of slots

Figure 12: Average power consumption varying the bandwidth
assignment;U = 0.3, nt = 4.

Figure 13 shows how the EAS policy is affected by the task set,
in terms ofU andn. Notice that the power consumption is signif-
icantly affected by the utilization but not much by the number of
tasks.

Figure 14 compares the EAS policy with respect to thepureDVS.
The results are quite similar, since the considered CPUs are both
sensitive to DVS. Nevertheless, the EAS is able to exploit the DPM
capabilities and the available bandwidth to reduce the power con-
sumption in all the task set assignments, mainly when the processor
is not heavily loaded (low utilization cases).

Finally, Figure 15 and Figure 16 compare the four scheduling poli-
cies (for TI and DSPIC, respectively), under the sameB, nB , and
nt conditions, but for different task set utilizations. Notice how
the EAS policy outperforms the other policies, especially for low
utilizations. For high utilization, EAS andpureDVS exhibit the

Proc. of the 10th Int. Conference on Embedded Software (EMSOFT 2010), Scottsdale, Arizona (USA), October 24-29, 2010

same performance (but lower power consumption with respect to
thepureDPM and EDF). This happens because, for high utilization
there is no room for DPM improvements and only DVS is effective.
Also note that, for very low utilizations,pureDPM provides better
results thanpureDVS. This is due to the fact thatU = 0.1 would
require a speed lower than the TI minimal speed, hencepureDVS
forces the CPU to have a speed greater than the utilization, provid-
ing more service than required.

To conclude, the EAS algorithm is proved to be effective with re-
spect to the other policies because it looks for the minimum energy
consumption in[tmin, tmax] and in any possible condition. If the
minimum is found intmin or tmax, the combined method is equiv-
alent to the pure DVS or the pure DPM, respectively. Most of the
time, however, the minimum is found inside the[tmin, tmax] inter-
val, so that the EAS is able to further reduce energy consumption
with respect to the pure versions.

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 1 2 3 4 5

 0.1

 0.2

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

[W
at

t]

Utilization
of tasks

Figure 13: Average power consumption by varyingU and nt.
EAS policy applied with B = 0.5 and nB = 3 and the TI pro-
cessor.

 0.1 0.3 0.5 0.7

 1 2 3 4 5

 0.0625

 0.125

 0.25

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

[W
at

t]

DVS

EAS

Utilization# of tasks

Figure 14: Average power consumption by varyingU and nt.
The two policies applied withB = 0.5 and nB = 3 and the TI
processor.

6. CONCLUSIONS
In this paper we have presented a first stage analysis of distributed
embedded systems, where nodes communicate via control or data
messages. The functional aspects of a single node of a complex
architecture have been investigated in order to provide real-time
guarantees on applications with given timing constraints, including
the provided transmission bandwidth.

An on-line energy-aware scheduling algorithm (EAS) has been pre-
sented, capable of reducing the energy consumption of each node,

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 P
ow

er
 C

on
su

pt
io

n
[W

at
t]

Utilization

EDF

DPM

DVS

EAS

Figure 15: Average power consumption by varyingU . All the
policies are applied withB = 0.5, nB = 3 and nt = 4 and the
TI processor is considered.

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
ow

er
 C

on
su

pt
io

n
[W

at
t]

Utilization

EDF

DPM

DVS

EAS

Figure 16: Average power consumption by varyingU . All the
policies are applied withB = 0.5, nB = 3 and nt = 4 and the
DSPIC processor is considered.

while guaranteeing a real-time behavior of the task set, under band-
width constraints. A set of simulation experiments, carried out for
comparing the proposed method with other scheduling approaches,
showed the effectiveness of our solution under different scheduling
and bandwidth conditions.

As a future work, we intend to consider the bandwidth as a resource
that can be optimized together with the energy, thus relaxing some
of the assumptions made in this paper and making the algorithm
more general.

7. REFERENCES
[1] H. Aydin, R. Melhem, D. Mossé, and P. Mejía-Alvarez.

Dynamic and aggressive scheduling techniques for
power-aware real-time systems. InProceedings of the 22nd
IEEE Real-Time Systems Symposium (RTSS), pages 95–105,
2001.

[2] H. Aydin, R. Melhem, D. Mossé, and P. Mejia Alvarez.
Power-aware scheduling for periodic real-time tasks.IEEE
Transactions on Computers, 53(5):584–600, May 2004.

[3] S. K. Baruah. Dynamic- and static-priority scheduling of

Proc. of the 10th Int. Conference on Embedded Software (EMSOFT 2010), Scottsdale, Arizona (USA), October 24-29, 2010

recurring real-time tasks.Real-Time Syst., 24(1):93–128,
2003.

[4] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one processor. In
In Proceedings of the 11th Real-Time Systems Symposium,
pages 182–190. IEEE Computer Society Press, 1990.

[5] E. Bini and G. C. Buttazzo. Biasing effects in schedulability
measures. InProceedings of the 16th Euromicro Conference
on Real-Time Systems, Catania, Italy, June 2004.

[6] J.-J. Chen and T.-W. Kuo. Procrastination determination for
periodic real-time tasks in leakage-aware dynamic voltage
scaling systems. InICCAD ’07: Proceedings of the 2009
International Conference on Computer-Aided Design, pages
289–294, New York, NY, USA, 2007. ACM.

[7] J.-J. Chen and T.-W. Kuo. Procrastination determination for
periodic real-time tasks in leakage-aware dynamic voltage
scaling systems. InInternational Conference on
Computer-Aided Design (ICCAD), pages 289–294, 2007.

[8] N. Christian, M. Mauro, S. Luca, P. Paolo, L. Giuseppe, and
F. Gianluca. Baccarat: a dynamic real-time bandwidth
allocationpolicy for ieee 802.15.4. InProceedings of IEEE
Percom 2010, International Workshop on Sensor Networks
and Systems for Pervasive Computing (PerSeNS 2010),
Mannheim, Germany, 2010.

[9] V. Devadas and H. Aydin. On the interpaly of dynamic
volatage scaling and dynamic power management in
real-time embedded applications. InEMSOFT’08:
Proceedings of the 8th ACM Conference on Embedded
Systems Software, pages 99–108, New York, NY, USA,
2008. ACM.

[10] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and
G. Buttazzo. Adaptive dynamic power management for hard
real-time systems. InRTSS’09: Proceedings of the 30th
IEEE Real-Time Systems Symposium, Washington, DC,
USA, 2009. IEEE Computer Society.

[11] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and
G. Buttazzo. Periodic power management schemes for
real-time event streams. InCDC’09: Proceedings of the 48th
IEEE Conference on Decision and Control, pages 6224 –
6231, Washington, DC, USA, 2009. IEEE Computer Society.

[12] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware
dynamic voltage scaling for real-time embedded systems. In
Proceedings of the 41st ACM/IEEE Design Automation
Conference (DAC), pages 275–280, 2004.

[13] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S.
Hu, M. J. Irwin, M. Kandemir, and V. Narayanan. Leakage
current: Moore’s law meets static power.Computer,
36:68–75, 2003.

[14] W. Kim, D. Shin, H. Yun, J. Kim, and S. Min. Performance
camparision of dynamic voltage scaling algorithms for hard
real-time systems. InProc. 8th IEEE Real-Time and
Embedded Technology and Applications Symp., pages
219–228, San Jose, California, September 2002.

[15] A. Koubâa, M. Alves, E. Tovar, and A. Cunha. An implicit
gts allocation mechanism in ieee 802.15.4 for time-sensitive
wireless sensor networks: theory and practice.Real-Time
Syst., 39(1-3):169–204, 2008.

[16] G. S. A. Kumar and G. Manimaran. Energy-aware
scheduling of real-time tasks in wireless networked
embedded systems. InRTSS ’07: Proceedings of the 28th
IEEE International Real-Time Systems Symposium, pages

15–24, Washington, DC, USA, 2007. IEEE Computer
Society.

[17] T. Martin and D. Siewiorek. Non-ideal battery and main
memory effects on cpu speed-setting for low power.IEEE
Transactions on VLSI Systems, 9(1):29–34, 2001.

[18] B. Mochocki, D. Rajan, X. S. Hu, C. Poellabauer, K. Otten,
and T. Chantem. Network-aware dynamic voltage and
frequency scaling. InRTAS ’07: Proceedings of the 13th
IEEE Real Time and Embedded Technology and Applications
Symposium, pages 215–224, Washington, DC, USA, 2007.
IEEE Computer Society.

[19] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. InSOSP ’01:
Proceedings of the 18th ACM Symposium on Operating
Systems Principles, pages 89–102, Washington, DC, USA,
2008. IEEE Computer Society.

[20] C. Schurgers, V. Raghunathan, and M. B. Srivastave.
Modulation scaling for real-time energy aware packet
scheduling. InGlobal Telecommunications Conferance
(GLOBECOMM 01), pages 3653–3657, San Antonio, Texas
(USA), 2001.

[21] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg.
Fast: Frequency-aware static timing analysis. InProc. 24th
IEEE Real-Time Systems Symposium, pages 40–51, Cancun,
Mexico, December 2003.

[22] I. Shin and I. Lee. Compositional real-time scheduling
framework with periodic model.ACM Trans. Embed.
Comput. Syst., 7(3):1–39, 2008.

[23] C.-Y. Yang, J.-J. Chen, C.-M. Hung, and T.-W. Kuo.
System-level energy-efficiency for real-time tasks. Inthe
10th IEEE International Symposium on
Object/component/service-oriented Real-time distributed
Computing (ISORC), pages 266–273, 2007.

[24] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced CPU energy. InProceedings of the 36th Annual
Symposium on Foundations of Computer Science (FOCS),
pages 374–382, 1995.

[25] J. Yi, C. Poellabauer, X. S. Hu, J. Simmer, and L. Zhang.
Energy-conscious co-scheduling of tasks and packets in
wireless real-time environments. InRTAS ’09: Proceedings
of the 2009 15th IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 265–274, Washington,
DC, USA, 2009. IEEE Computer Society.

[26] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and
voltage selection for energy minimization. InProceedings of
the 39th ACM/IEEE Design Automation Conference (DAC),
pages 183–188, 2002.

[27] B. Zhao and H. Aydin. Minimizing expected energy
consumption through optimal integration of dvs and dpm. In
ICCAD ’09: Proceedings of the 2009 International
Conference on Computer-Aided Design, pages 449–456,
New York, NY, USA, 2009. ACM.

[28] J. Zhuo and C. Chakrabarti. System-level energy-efficient
dynamic task scheduling. InProceedings of the 42nd
ACM/IEEE Design Automation Conference(DAC), pages
628–631, 2005.

Proc. of the 10th Int. Conference on Embedded Software (EMSOFT 2010), Scottsdale, Arizona (USA), October 24-29, 2010

