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Abstract—A crucial objective in battery operated embedded
systems is to work under the minimal power consumption that
provides a desired level of performance. Dynamic Voltage and
Frequency Scaling (DVFS) and Dynamic Power Management
(DPM) are typical techniques used on processors and devices
to reduce the power consumption through speed variations and
power switching, respectively. The effectiveness of DVFS and
DPM methods needs to be considered in the development of
a power management policy for systems that consist of DVFS-
enabled or DPM-enabled components.

This paper explores how to efficiently reduce the power
consumption of real-time applications with constrained resources,
like energy, CPU and transmission bandwidth. A combined
DVFS-DPM approach with a reduced complexity is proposed
to make use of on-line strategies for embedded systems.

I. INTRODUCTION

Embedded systems cover a wide spectrum of application

domains, such as consumer electronics, biomedical systems,

surveillance, industrial automation, automotive, and avionics

systems. In particular, the technology evolution of sensor

and networking devices paved the way for plenty of new

applications involving distributed computing systems, many

of them deployed in wireless environments and exploiting

the mobility and the ubiquity of components. In most cases,

devices are battery operated, making energy-aware algorithms

of paramount importance to prolong the system lifetime.

In each node of the system, at the processor level, two main

mechanisms can be exploited to save energy: the Dynamic

Voltage and Frequency Scaling (DVFS) and the Dynamic

Power Management (DPM).

For DVFS processors, a higher supply voltage generally

leads to both a higher execution speed/frequency and to a

higher power consumption. On the other hand, DPM tech-

niques are used to switch the processor off during long idle

intervals, hence they tend to postpone tasks execution as long

as possible still preserving the schedulability of the task set.

At the network level, the energy consumption due to com-

munication is usually managed by DPM techniques, although

other mechanisms have been proposed in the literature, as the

Dynamic Modulation Scaling (DMS) [1].

The research leading to these results has received funding from the
European Community’s ArtistDesign Network of Excellence under grant
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In micrometer CMOS technology, the dynamic power dis-

sipation due to switching activities prevails against the static

power dissipation caused by the leakage current. However,

in most modern processors developed with sub-micron tech-

nology, the static power is comparable or even greater than

the dynamic power [2], [3]. When the dynamic power is

dominant, DVFS techniques are used to execute an application

at the minimum processor speed that guarantees meeting real-

time constraints. Conversely, when static power is dominant,

there exists a critical processor speed below which the energy

wasted is greater than that consumed at the critical speed [4].

For this reason, some authors recently proposed energy-aware

algorithms that combine DVFS and DPM techniques to im-

prove energy saving [5], [6].

In distributed systems there is the need of taking into

account processor and network bandwidth to guarantee per-

formance requirements. In particular, in wireless distributed

embedded systems, energy consumption and quality of service

represent two crucial design objectives. Messages have to be

transmitted within a deadline to guarantee the desired quality

[7], [8], and the transmission itself represents an energy cost

to be minimized. Although a lot of research has been done

to reduce power consumption while guaranteeing real-time

requirements, most papers focus either on task scheduling or

network communication. However, a co-scheduling of task and

messages would allow exploring more degrees of freedom and

could lead to higher energy saving.

Finally, an effective approach has to be platform indepen-

dent and easily portable to new hardware just by changing a

small set of parameters, such as the energy consumption of

the CPU in different working modes.

Contributions: This work addresses the challenging prob-

lem of co-scheduling both tasks and messages in a distributed

system with the objective of saving energy and meeting real-

time constraints on the local nodes composing the system.

An algorithm that minimizes the energy consumption of the

system nodes is presented. The proposed approach takes into

account the communication bandwidth reserved for each node

and combines DVFS and DPM techniques to achieve higher

energy saving.

This work improves the approach previously proposed by

Santinelli et al. [9] in several directions. First of all, tasks are

assumed to be sporadic, rather than peridoc. Second, the DVFS

model is more realistic, since the CPU frequency is assumed to



vary within a set of discrete values, rather than in a continuous

range. Third, the algorithm is completely redesigned to con-

sider the effects of the execution platform, while containing

the overall computational complexity. Finally, the experimental

section includes new test cases and simulation results.

Organization of the paper: Section II presents the system

model, in terms of resources, power dissipation, computational

and communication workloads. Section III summarizes the

theoretical results used to analyze the task set schedulability.

Section IV illustrates the proposed approach, and Section V

presents the scheduling algorithm implementing the method.

Section VI reports the simulation results carried out to evaluate

the performance of the approach, and finally, Section VII ends

the paper with the concluding remarks.

A. Related work

A lot of research papers presenting DVFS algorithms for

energy-aware real-time task scheduling have been published

in the past years, such as [10]–[12]. Conversely, some other

papers focused on DPM techniques, see for instance [13], [14]

and the related works therein. DVFS scheduling algorithms,

e.g., [15]–[17], tend to execute events as slow as possible,

preserving timing constraints: by trading processor speed with

energy consumption. DPM algorithms are used to switch the

processor off during long idle intervals [2], [13], [18].

Some papers proposed the use of DVFS techniques at the

CPU level and DPM approaches at the network level, but, to

the best of our knowledge, not many papers combined DVFS

and DPM techniques for task scheduling under communication

constraints.

In [19], the authors addressed energy saving issues for a

system composed by a DVFS capable CPU and a network

interface supporting the DPM. They proposed two DVFS

based algorithms: one, Limited Look-Ahead EDF (LLE),

favors energy saving at the CPU level, whereas the other,

Timeout Aware Scheduler (TAS), favors energy saving at

the network level. LLE tries to minimize the average power

wasted by all tasks using a modified version of the LaEDF

algorithm [20]. Instead, TAS tries to maximize the sleep time

of the network card by gathering the packet transmissions into

bursts, exploiting LaEDF.

Poellabauer et al. [21] proposed an integrated resource man-

agement algorithm that considers both CPU and a bandwidth

reservation protocol for the network interface, in wireless real-

time systems. The aim of the proposed method is to guar-

antee task and message deadlines while reducing the power

consumption. The resource management system is composed

by two parts: a Task and Speed Scheduler (TSS) and a Packet

Scheduler (PS). TTS is in charge of producing task scheduling

and DVFS selection. Instead, PS is in charge of producing

packets queuing and delivering to the network interface.

Kumar et al. [22] presented two slack allocation algorithms

for energy saving based on both DVFS and DMS techniques.

The authors consider a single-hop wireless real-time embedded

system, where each task node is composed by precedence con-

strained message-passing subtasks. Furthermore, sub-tasks and

messages are considered non-preemptable. Energy consump-

tions for both computation and communication are analyzed

by a new metric, called normalized energy gain. The authors

proposed two algorithms: the Gain based Static Scheduling

(GSS) and the Distributed Slack Propagation (DSP). While

the former is used off line and computes the slack considering

the worst-case execution for each scheduled entity (sub-task

or message), the latter is used on-line to exploit the additional

slack available when tasks execute for less than their predicted

worst-case computations.

II. SYSTEM MODELS

We consider a distributed real-time embedded system com-

posed by autonomous nodes interconnected through a shared

media (e.g., wireless communication). A generic node exe-

cutes a set Γ = {τ1, . . . , τn} of sporadic tasks. Each task

τi = (Ci, Ti, Di) is characterized by a worst-case number of

machine cycles Ci, a minimum inter-arrival time Ti, and a

relative deadline Di ≤ Ti. At a generic instant t, the residual

number of machine cycles of task τi is denoted as ci(t). The

worst-case execution time is given by Ci/f , where f is the

CPU frequency used by the system. A task τi generates an

infinite sequence of jobs τi,j , each having activation time ai,j
and absolute deadline di,j = ai,j + Di. Tasks are scheduled

by Earliest Deadline First (EDF) [23].

Each task τi produces a message mi characterized by a

payload Mi and a deadline Li relative to the task activation,

such that Li > Di. The absolute deadline of the message

produced by job τi,j is denoted by li,j = ai,j + Li.

The analysis we are proposing assumes a given bandwidth

allocation specified according to a Time Division Multiple

Access (TDMA) scheme, modeled as a set of disjointed slots

B = {slot1, . . . , slotr}, where each slot slotk is described

by a start time bsk and an end time bek. Such slots are

externally assigned by a network coordinator that guarantees

that messages are transmitted/received within their deadlines.

However, the design of the coordinator is out of the scope of

this work.

To simplify the power management algorithm, task schedul-

ing is decoupled from message communication by making the

following assumptions:

1) The messages generated by a task are moved into

a shared communication buffer and transferred to the

transceiver internal buffer whenever the bandwidth is

available. The transfer time is considered to be negli-

gible.

2) To allow messages transfer between buffers, the proces-

sor must be active during communication slots, whereas

CPU activity is not required outside such intervals.

3) The bandwidth slots allocated by the external network

coordinator are such that any scheduling algorithm that

guarantees the timing constraints of the task set also

meets the messages deadlines.

A graphic explanation about all the defined parameters

is reported in Figure 1 for both the computational and the

communication components.

A. Power Model

Each node consists of a CPU (processing element) and a

Transceiver (transmitting and receiving element). The CPU

can be in one of the following states.
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Fig. 1. Timing parameters for a task (b) and its generated message (a).

• Active. In this state, a device performs its job, executing

tasks or handling messages. The power consumed in this

state at frequency fi is denoted as Pai
;

• Standby. In this state, the device does not provide any

service, but consumes a small amount of power Ps to be

ready to become active within a short period of time;

• Sleep. In this state, the device is completely turned off

and consumes the least amount of power Pσ; however, it

takes more time to switch to the active state.

For a processor that supports DVFS management, the power

consumed in active mode depends on the frequency at which

the processor executes. Such a frequency, measured in cycles

per seconds (CPS), is assumed to vary in a set of F possible

elements [f1 = fmin, f2, . . . , fF = fmax], In particular, the

processor power consumption in active mode is described

according to the model proposed by Martin et al. [24]:

Pai
= a3f

3
i + a2f

2
i + a1fi + a0, (1)

which considers all components that affect power consump-

tion, such as voltage, frequency, non-linearities and leakage

effects.

Switching from two operating modes takes a different

amount of time and consumes a different amount of energy,

depending on the specific modes. In particular, the following

notation is used throughout the paper: txy and Exy denote the

time and the energy required for a transition from state x to

state y, respectively. For example, taσ and Eaσ represent the

time and the energy required for the active-sleep transition. For

all devices we have that Pσ < Ps < min
i

Pai
and tsa < tσa.

The switching overhead between the standby and the active

mode is considered to be negligible, compared to the other

switches, which is the same assumption made by other authors

[25], [26].

In this work, we assume the usage of a standalone

transceiver with minimal functionality, with only two states:

ON and OFF . As the transceiver implements only the

physical layer of the communication stack, the computational

unit has to manage the remaining layers. This choice forces the

device to be OFF if the CPU is in Standby or Sleep states.

As our analysis needs only these two fundamental working

states, it is applicable to all existing communication devices.

In the following, the transceiver power consumption in the ON
and OFF states are denoted as Pon and Poff , respectively.

Table I summarizes all the allowed modes with their total

power consumption.

Radio On Radio Off

CPU Sleep Not allowed Pσ + Poff

CPU Standby Not allowed Ps + Poff

CPU On Pai + Pon Pai + Poff

TABLE I
ALLOWED POWER MODES.

III. SCHEDULABILITY ANALYSIS

This paper addresses the problem of guaranteeing real-

time constraints of a sporadic task set minimizing the energy

consumption of a computational node composed by a CPU

and a transceiver.

Schedulability analysis of the task set is performed using the

demand bound function dbf [27] to describe the application

computational requirements, and the supply bound function

sbf [28] to characterize the service provided by the processor.

The next section briefly recalls the results used for the analysis.

A. Fundamental results

In the case of EDF, Baruah [29] showed that the dbf of a

sporadic task set, in a generic interval, can be computed as

dbf(t1, t2) =
∑

i∈Γ

(⌊

t2 + Ti −Di

Ti

⌋

−

⌈

t1
Ti

⌉)

Ci. (2)

In the processing model considered in this paper, the pro-

cessor can run at a frequency f whenever the processor is in

active mode, while it is steady if the processor is in standby

or sleep mode. Hence, the sbf linearly increases with slope f
when the CPU is active, and remains constant in standby and

sleep states. For a given power state, the sbf in an interval

[t1, t2) is computed as

sbf(t1, t2, f) = (t2 − t1)f. (3)

The real-time constraints of a scheduling component are met

if and only if, in any interval of time, the resource demand of

the component never exceeds the resource supply curve. That

is, if and only if

∀t1, t2 ∈ ℜ+, t2 > t1, dbf(t1, t2) ≤ sbf(t1, t2, f). (4)

Ripoll [30] gave an upper bound La on the time interval

in which Equation (4) must be checked, under the assumption

that Di ≤ Ti for each task τi. This work extends such an

analysis taking into account the system frequency f as

La(f) = max

{

D1, . . . , Dn,

∑

i
(Ti−Di)Ui

f
fmax

−U

}

.

Spuri [31] also defined the Busy Period (BP ) as the longest

interval of time where the processor is never idle, computed

assuming synchronous and offset-free activations of tasks. This

work extends the concept of BP considering a system working

at frequency f . Hence, BP (f) can be used as another upper

bound for the schedulability test. Therefore, if U < f
fmax

, to

guarantee the feasibility it is sufficient to check Equation (4)

just at the task deadlines in [t1, t1 + L∗(f)), where L∗(f) is

defined as

L∗(f) = min{La(f), BP (f)}. (5)

To speed up the schedulability test, the QPA algorithm

proposed by Zhang and Burns [32] could be used in our

approach.



IV. PROPOSED APPROACH

The proposed approach mixes at run-time DVFS and DPM

techniques to reduce energy consumption while meeting all

task deadlines, if there exists a feasible schedule. The combi-

nation of DVFS and DPM is done by forcing a CPU sleep

interval followed by an active interval executed at a fixed

frequency. Such a frequency is selected to minimize the energy

(per unit of computation) between the current and the next

invocation of the analysis.

The j-th instance of the analysis is performed either at the

end of an active interval or at the end of a communication

slot. The former instant represents the beginning of an idle

period that can be prolonged further by the analysis, while the

latter is selected to exploit the slack, if any, collected during

the forced activity inside the slot.

The following terminology is used to identify particular

timing instants.

• t denotes the current time.

• next act(t) denotes the next activation time after t.
• taj

denotes the time at which the j-th instance of the

analysis is invoked. If there are pending jobs at time t,
taj

is set at the current time t, otherwise taj
is postponed

at next act(t):

taj
=

{

next act(t), if no pending jobs at t;

t, otherwise.
(6)

The index j referring to a particular instance will be

omitted whenever not necessary.

• twi
denotes the latest time after taj

at which the processor

can return active with frequency fi and still guarantee the

schedulability of the task set.

• tidlei denotes the first idle time after twi
assuming the

processor is executing at frequency fi.
• tei denotes the effective time at which the processor

can become idle considering the activity constraint inside

bandwidth slots. Hence, if tidlei falls before bsk, tei is set

at tidlei ; otherwise tei is forced to occur at the end of the

bandwidth slot, that is, tei = bek.

When the analysis is invoked at time ta, the following

actions are performed:

1) For each frequency fi, the analysis derives the longest

inactive interval δi exploitable in sleep state from ta,

such that the task set is still feasible when the CPU is

turned active at ta + δi. A negative value of δi implies

that the task set can not be schedulable at that frequency.

δi is determined as the minimum among the inactive

intervals computed for each deadline, that is

δi(t) = min
dj∈[t,t+L∗(fi))

{

dj −
dbf(t, dj)

fi
− t

}

. (7)

2) To ensure that the CPU is active during the assigned

bandwidth slots, the wake up time twi
is set equal to

the minimum between ta + δi and the beginning of the

next slot bsk

twi
= min{ta + δi(ta), b

s
k}. (8)

3) For each frequency fi, the analysis also computes the

next idle time tidlei from twi
assuming worst-case exe-

cutions. In particular, tidlei is computed as the minimum

value satisfying the following recurrent relation:

ts+1
idlei

(ta) =
∑

τj active

cj(ta)

fi
+

∑

j∈Γ

(⌊

tsidlei
Tj

⌋

−

⌊

ta
Tj

⌋)

Cj

fi
.

(9)

initialized with value t0idlei(ta) = ta+
∑

τj active
cj(ta)
fi

.

The analysis then computes the effective idle time tei
taking into account the bandwidth constraint.

tei =

{

tidlei , tidlei < bsk;

bek, otherwise.

4) Under a frequency fi, the energy consumption Ei in the

interval [ta, tei ] is computed as the sum of the energy

spent in sleep mode in [ta, twi
] and in active mode in

[twi
, tei ], that is

Ei(ta, twi
, tei) = (twi

− ta)Pσ + (tei − twi
)Pai

. (10)

Since each frequency fi causes a different amount

of computation in the interval [ta, tei ], denoted as

Wi(ta, tei), the normalized parameter Energy Per Cycle

(EPCi) is introduced, representing the energy cost per

instruction cycle. It is computed as

EPCi(t) =
Ei(ta, twi

, tei)

Wi(ta, tei)
. (11)

A detailed analysis about the computation of Wi is

carried out in Appendix A.

5) Among the possible frequencies that guarantee feasi-

bility, the approach selects f∗ featuring the minimum

EPCi. t∗w and t∗e denote the wake up time and the

effective idle time resulting from the selected frequency

f∗, respectively.

6) If the interval [t, t∗w) is shorter than taσ + tσa, it is not

possible to adopt the sleep state to wake up within t∗w,

so the standby state is chosen; otherwise, the sleep state

is selected.

7) The instant of the next occurrence of the analysis taj+1
is

set equal to t∗e; however, if the next idle time is advanced

due to early completions, the analysis is triggered as

soon as the idle occurs and taj+1
is updated accordingly.

Figure 2 illustrates an example that clarifies the steps of the

proposed approach. In the example, the CPU supports three

different frequencies sorted in ascending order: f1, f2 and f3.

In the example, frequency f1 leads to an unfeasible sched-

ule, since δ1 is negative, whereas f2 and f3 produce feasible

solutions, since both δ2 and δ3 are positive.

Notice that, when considering frequency f2, ta + δ2 falls

before bsk, hence tw2
= ta + δ2, whereas for f3, tw3

is set

equal to the beginning of the slot bsk, as ta + δ3 ≥ bsk.

For both frequencies f2 and f3, te2 and te3 takes the value

of bek, as both tidle2 and tidle3 occur after bsk.

To choose between the two feasible frequencies (f2 and f3),

the normalized energy consumption is computed. Such a value

is intrinsically derived from the platform power model.
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Fig. 2. Example of the analysis’ behaviour.

V. ALGORITHM

This section illustrates the Discrete Energy Aware Schedul-

ing (DEAS) algorithm that implements the approach intro-

duced in Section IV.

Algorithm 1 Discrete Energy Aware Scheduling - DEAS

procedure (t)
1: Input: t : ∀k, t /∈ [bsk, b

e
k)

2: compute ta according to Equation (6);
3: for all fi do
4: compute δi(ta) as in Equation (7);
5: if δi(ta) < 0 then
6: set fi not feasible and continue;
7: end if
8: compute twi according to Equation (8);
9: compute tei ,Wi as shown in Appendix A;

10: compute EPCi according to Equation (11);
11: end for
12: compute f∗ feasible that minimizes EPCi;
13: set wake up time at t∗w;
14: set CPU frequency to f∗;
15: if t∗w − t ≥ taσ + tσa then
16: put the processor in sleep state;
17: else
18: put the processor in standby state;
19: end if

A. Complexity

Equation (6), executed at line 2, has the complexity of

an extraction from an ordered list of task activation times;

that is, O(1). On the other hand, the insertion complexity is

O(log2(n)), where n is the number of tasks. Given n and the

maximum number of deadlines a single task can produce in the

analysis interval, p, the maximum number of analysis points

of the dbf is np. The upper bound of p is computed as the

number of occurrences of the task with the shortest period in

the analysis interval:
⌈

maxiL
∗(fi)

mini{Ti}

⌉

. Supposing to arrange the

active deadlines in a sorted list, with complexity O(log2(n))
(as the active deadlines are always n) to keep the ordering,

the computation of dbf , executed every time the algorithm is

invoked, has a total complexity of O(log2(n)np).
The computation of the δi, at line 4, involves a complexity

O(np). The computation performed at line 9 has a complexity

of O(nq), where q is defined as the maximum number of

activations a task can generate in [taj
, taj

+ maxiL
∗(fi) +

maxk{b
e
k−bsk}]. The reason is that the algorithm analyzes all

the activations, computing the actual workload and any idle

gap, as shown in Appendix A. The q upper bound is computed

as
⌈

maxiL
∗(fi)+maxk{b

e
k−bsk}

mini{Ti}

⌉

. The computation of the EPCi

has complexity O(1). Hence, the for loop, executed at line

3, has a complexity of O(nF (p + q)), where F is the total

number of available frequencies.

Globally, the proposed algorithm has a complexity of

O((log2(n) + F )qn), being q ≥ p.

B. Example

d
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Fig. 3. DEAS example.

The behavior of the DEAS algorithm is now illustrated

using the example in Figure 3. The assigned bandwidth is

composed by one slot in the interval [bs1, b
e
1] equal to [12,15].

The CPU allows 2 frequencies equal to f1 = 5 and f2 = 10,

and schedules a task set of 2 synchronous implicit periodic

tasks with periods T1 = D1 = 5 and T2 = D2 = 7, and

worst-case execution cycles C1 = 10 e C2 = 10. For the task

set under analysis, we have L∗(f1) = 4 and L∗(f2) = 2. The

result of the off-line computation for Lmax is 7. The power

consumptions in the active state are Pa1
= 3 and Pa2

= 6,

while Pσ = 1 and taσ + tσa is considered negligible for the

sake of simplicity.

The algorithm has its first invocation at ta1
= 0 because

two jobs are already pending. Both frequencies guarantee the

task set feasibility with wake up times tw1
= 3 and tw2

= 4,

respectively.

Executing at frequency f1, the first idle time tidle1 occurs at

t = 13 because, from time tw1
= 3, the busy period consists

of three instances of τ1 and two instances of τ2, for a total

execution of 10 units of time. Due to the bandwidth activity

constraint, te1 is set to 15. Instead, running at frequency f2,

the next idle time tidle2 , from time tw2
= 4, occurs at time

t = 8 and, since it falls before bs1, we have te2 = 8. Once

the interval [twi
, tei ] is determined, the algorithm computes

EPC1 = 0.71 and EPC2 = 0.70, and therefore sets f∗ = f2.



Using f2, the second invocation of the algorithm occurs at

t = 8, causing the postponement of ta2
to t = 10. Running at

frequency f2, the CPU can wake up at 13, but, for the activity

constraint, tw2
is set to bs1 = 12. Consequently, tidle2 = 13

and te2 = be1 = 15. Instead, using frequency f1, the algorithm

obtains tw1
= 12, tidle1 = 18, and te1 = be1 = 15.

In such a scenario, the energy consumptions are EPC1 =
0.73 and ECP2 = 1, and therefore the chosen frequency is

f∗ = f1.

VI. EXPERIMENTAL RESULTS

This section presents a set of experimental results that

show the effectiveness of our approach with respect to other

classical solutions. The results are obtained by simulation

using a synthetic workload under three power consumption

profiles derived from real platforms according to the power

consumption model described in Section II-A.
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Fig. 4. Speed-Power characterization for different platforms.

To test the behavior of our algorithm, three CPU consump-

tion profiles (power models), shown in Figure 4, are intro-

duced. Each profile is described by the power consumption

coefficients [a3, a2, a1, a0]:

• Fully-DPM [0.0, 5.6, 246.12, 25.93];
• Fully-DVFS [0.0, 0.0, 330.62,−53.32];
• Mixed [0.0, 150.55, 24.5, 100.78].

The fully-DPM model has been extracted from the Mi-

crochip dsPIC 1 datasheet, interpolating the typical consump-

tions. The other two models have been synthetically derived

from the first one to achieve different but comparable behav-

iors, at the same time, with respect to the original. Fully-DPM

and fully-DVFS represent opposite cases: in a fully-DVFS

scenario, halving the speed (doubling the execution time)

always implies a reduction of the energy consumption, while

in fully-DPM cases, the consumption increases. A model is

defined as DPM or DVFS according to its position with respect

to the straight line. Such a line represents a theoretical situation

in which slowing down has the same energy consumption

of executing at a different speed. The mixed model has

a threshold frequency fth at speed 0.65 meaning that its

behavior is DVFS-like above fth and DPM-like below.

The frequency range of the CPU used in the simulation

is [12.5, 40] MHz. The sleep state consumption Pσ is 1.49

1DSPIC33FJ256MC710 microcontroller

mW and the wake up time takes about 20 ms. The standby

state has a higher consumption Ps of 9.9 mW, but a shorter

wake up time within 8 cycles. As for the fully-DPM model

consumptions, such values were extracted from the dsPIC

datasheet. All the simulations have been executed using a set

of 8 evenly distributed frequencies.
For comparison purposes, four scheduling policies have

been implemented in the simulator:

• EDF with no energy considerations, where the processor

is assumed always active at the maximum frequency, even

during idle intervals.

• pureDVFS on top of EDF, where the CPU runs with

the minimal speed, computed off-line, that guarantees

feasibility according to the task set. The actual speed is

the lowest frequency greater than the minimal one.

• pureDPM, where, as soon as there is an idle time and

no assigned bandwidth, the task execution is postponed

as much as possible and then scheduled by EDF at the

maximum speed.

• DEAS, the algorithm introduced in this paper.

An execution scenario is characterized by the tuple

(U, nt, B, nB), where U denotes the utilization of the task

set, nt the number of tasks, B the communication bandwidth

(expressed as a percentage of the hyperperiod), and nB the

number of chunks in which the bandwidth is split. All the slots

are generated with the same length, whereas slot positions are

randomly generated with a uniform distribution.
Given the total utilization factor U , individual task utiliza-

tions are generated according to a uniform distribution [33].
Payload and message deadlines are generated to meet the

hypothesis on messages guarantee. The computed values are

not described here because they have no effect on the task

scheduling algorithm, as described in Section II.
Trying to find a trade-off between the simulation accuracy

and the simulation time (it increases exponentially with the

number of tasks), each result was computed as the average

consumption of 30 executions. To simplify comparisons, the

results are normalized against the value obtained applying the

EDF policy to the same tuple (U, nt, B, nB).
In the first experiment, the energy consumption is evaluated

as a function of the utilization U and the number of tasks

nt. All the three algorithms have been tested with Bandwidth

B = 0.3, nB = 5 chunks and three different utilization factors.

The results show that both U and nt do not affect energy

consumption significantly, therefore the graph is not reported.
The next experiments evaluate the energy consumption,

under different power models, as a function of the utilization

factor U with nt = 7, B = 0.3 and nB = 10.
Results show that DEAS always outperforms the other

algorithms for all power models and for any utilization.
As shown in Figure 5, due to the activity constraint posed

by the bandwidth slots, DEAS outperforms pureDPM even

in fully-DPM power models. Instead, Figure 6 shows that in

fully-DVFS power models such a constraint has no effect on

pureDVFS: keeping the system active represents the default

behavior and, with respect to the analyzed power model, the

best solution. For this reason, DEAS and pureDVFS have

similar performances.
Under a fully-DPM and in a mixed context, Figure 5 and

Figure 7 shows that pureDVFS acts better than pureDPM
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Fig. 5. Analysis of consumptions with a fully-DPM power model.
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Fig. 6. Analysis of consumptions with a fully-DVFS power model.

for low U values, because the CPU can not be switched off

inside bandwidth slots. Instead, for higher utilization values,

the consumptions are similar. Note that all the graphs show

that DEAS is always able to select the right balance between

DVFS and DPM depending on the specific characteristics of

the architecture.
VII. CONCLUSIONS

This paper addressed the problem of reducing the energy

consumption in distributed embedded systems with time and

communication constraints. The proposed solution exploited

both DPM and DVFS techniques to reduce the energy con-

sumption within each node, balancing them depending on

the specific architecture characteristics, actual workload, and

bandwidth allocation.

The method has been developed under realistic assumptions,

such as discrete frequency levels, mode switch overhead, and

communication constraints. Experimental results showed that

the combined DPM/DVFS approach dominates each individual

technique (pureDPM and pureDVFS) for all power models and

any task set utilization.

To simplify the analysis, in this paper the communication

bandwidth was assumed to be statically allocated according

to a TDMA scheme. As a future work, we plan to extend the

method to schedule both tasks and messages to further reduce

the energy consumption.

APPENDIX

This section presents the procedure compute te W , for-

mally defined in Algorithm 2, that computes the effective
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Fig. 7. Analysis of consumptions with a Mixed power model.

idle time tei and the effective workload Wi, concepts already

introduced in Section IV. The algorithm, based on the current

workload, computes next idle times tidlei till tei is found,

taking into account bandwidth constraints. However, note that

the procedure output is composed by tei and Wi only. To

reduce the DEAS algorithm complexity, such computations

are integrated into a single routine.

Algorithm 2 Procedure to compute tei and Wi

procedure compute te W
1: input: fi, twi

2: output: tei , Wi

3: Wi = 0; tstart = twi ;
4: loop

5: t0idlei = tstart +
∑

τj active
cj(tstart)

fi
;

6: do
7: compute tsidlei according to Equation (9);

8: if ts−1
idlei

< bek ≤ tsidlei then

9: tei = bek;
10: Wi += (tei − tstart)fi;
11: return;
12: end if
13: while ts−1

idlei
6= tsidlei ;

14: Wi += (tsidlei − tstart)fi;
15: if tsidlei /∈ [bsk, b

e
k] then

16: tei = tsidlei ;
17: return;
18: else
19: if next act(tsidlei) ≥ bek then
20: tei = bek;
21: return;
22: end if
23: tstart = next act(tsidlei);
24: end if
25: end loop

Figure 8 shows the effective workload of three key scenar-

ios. For each case, the effective workload is represented by

the sum of the slashed areas. Such a value is expressed as

number of machine cycles, so the working frequency must be

considered.

First, to determine tidlei the iterative approach is initialized

as described in Section IV. Whenever tsidlei , at a generic step

s, crosses the end of the current bandwidth slot ts−1
idlei

< bek ≤
tsidlei (cases a and c), the procedure stops setting tei = bek and

accounting in Wi the workload between the beginning of the
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Fig. 8. Examples of effective workload.

current Busy Period and the end of the bandwidth slot bek. Note

that, if the recurrent relation converges (ts−1
idlei

= tsidlei ) outside

the bandwidth slot, no slot occurs during the analyzed Busy

Period, hence tei = tsidlei and Wi is increased by (tsidlei −
twi

)fi. If tsidlei converges inside the bandwidth slot (cases

b and c), Wi is incremented by (tsidlei − twi
)fi. Then, the

routine checks whether a new task activation occurs after the

end of the current bandwidth slot, i.e. next act(tsidlei) ≥ bek.

In such a case (case b), the effective idle time tei is set to bek
and Wi is increased by (tsidlei − twi

)fi; otherwise (case c),
the contribution of the next Busy Period must be taken into

account considering next act(tsidlei) as a starting instant.
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