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Abstract—Several real-time applications include tasks in which
the output must be produced at precise time instants, rather
than “within” a deadline, and the overall system performance
significantly degrades when the task is executed too late or too
early with respect to the desired time.

This paper illustrates one of such applications and takes it
as a reference case study to propose a general approach to
show how to derive the timing constraints from the application
requirements, how to implement the application on top of a real-
time kernel, identifying the operating system features necessary
to enforce such constraints, and how to analyze the schedulability
of the task set. A set of experimental results are also presented
to validate the proposed approach.

I. INTRODUCTION

Most of the real-time scheduling theory has been developed

for time sensitive applications in which computational activi-

ties have to be executed within a specified deadline. Examples

of such tasks include periodic sensory acquisition and control

in robotics applications, image processing activities, video

encoding and decoding in multimedia applications, and many

others.

There are other real-time applications, however, in which

the output must be produced at a precise time instant (target

time), and the execution jitter strongly affects the performance

of the system. A number of perceptual studies have shown

that for streams of individual audio events, the human ear is

capable of perceiving a time jitter on the order of one mil-

lisecond, particularly in the context of rhythmically complex

and syncopated ensemble music [17], [14]. As a consequence,

in computer music, the notes generated by the program must

be played at precise time instants, with a tolerance of a few

milliseconds. To express such a property, Dannenberg and

Jameson [7] proposed a task model in which the deadline

is considered the best time at which a task should execute

(non preemptively), rather than the maximum time instant at

which the execution should complete. Hence, a performance

degradation is perceived by the listener not only when a note

is played too late, but also when it is played too early with

respect to the specified time. Then, Brandt and Dannenberg [5]

discussed the main features that a real-time operating system

should have to support low-latency music software.

Other applications in which tasks must be executed “on

time” with a given tolerance are those in which a moving

target has to be caught by a robot system [13], [1], [6], [8],

[16]. In this case, the tolerance left to the scheduler depends

on the target size and speed.

The problem of scheduling real-time tasks at precise time

instants has been addressed by many authors from different

perspectives. For instance, Farzinvash and Kargahi [9] intro-

duced the concept of Instant Value Function (IVF), according

to which the exact instant where a job is executed affects the

accrued value, and presented a scheduling algorithm that tries

to maximize the total accrued value of the system.

Guerra and Fohler [12], [11] proposed a gravitational model

to schedule overlapping events around the same time instant.

To do that, each task is assigned a different importance value,

considered as a mass hanging on a pendulum centered at the

desired time and used to compute the mass distribution along

the timeline based on the equilibrium state.

Tidwell et al. [19] solved a Markov Decision Process for-

mulation of the scheduling problem and derived value-optimal

scheduling policies for periodic task sets and stochastic non-

preemptive execution intervals.

a) Contributions of the work: This paper describes how

to implement and analyze real-time applications in which

one or more tasks must be executed at precise time in-

stants, with a given maximum tolerance, and may contain

non preemptive regions. Starting from a real application, the

paper first shows how to derive timing parameters from the

application requirements, including periods, activation times,

safety intervals, and tolerances. Task implementation issues

are also discussed, illustrating the main operating system

features necessary to enforce such constraints. Then, a method

for analyzing the schedulability of the task set is proposed

both under fixed priorities and Earliest Deadline First (EDF).

Finally, we present some experimental results that show the

performance of the system and validate the proposed approach.

b) Organization of the paper: Section II illustrates the

application used as a case study throughout the paper. Sec-

tion II-C discusses some implementation issues; Section III

presents the schedulability analysis; Section IV reports some

experimental results carried out on the physical system; and

Section V states our conclusions.

II. A CASE STUDY

Let us consider the system illustrated in Figure 1, where a

ball has to be shot against a moving target consisting of a hole

on a rotating disc, whose angular velocity ω is unknown and

must be estimated by a sensor (e.g., a camera located in front

of the disc). The value of ω is hypothesed to change slowly

and can be considered constant during a rotation.
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The shooting device is assumed to be correctly aligned to

hit the target when it is located in the upper position of the disc

(firing position), as shown in the figure. Hence, the objective

of the computing system is to determine the exact time instant

at which the gun has to fire to hit the target in the upper disc

position.

camera

gun
ω

Fig. 1. The system used as a case study.

It is worth observing that the real-time issues presented un-

der the considered case study can also be found in many other

real world applications, from ignition control in automotive

systems to target tracking in defense military systems.

A. Deriving timing constraints and tolerances

A simple method for estimating the angular velocity ω of

the disc is to divide the difference of two consecutive angular

readings (θ − θold) by the task period, that is

ω =
θ − θold

Ts

. (1)

If εθ is the position error due to the angular measurement, the

error in the computed speed is equal to

εω =
2εθ
Ts

. (2)

Note that, if the rotation direction is unknown, the difference

of two consecutive target samples cannot exceed π, that is

|ω| ≤
π

Ts

. (3)

Moreover, to guarantee different consecutive angular readings

(i.e., to guarantee that θ 6= θold), the angle covered by the disc

in the sampling period Ts must be greater than 2εθ, which

gives a lower bound on ω:

|ω| ≥
2εθ
Ts

. (4)

For a given Ts, equations (4) and (3) provide a feasibility

range for ω to be correctly estimated. Vice versa, if the rotation

speed is known to be in a limited range [ωmin, ωmax], then

the sampling period Ts has to be bounded by

2εθ
ωmin

≤ Ts ≤
π

ωmax

. (5)

The angular difference with respect to the firing position θ0
can be computed as

∆θ = θ0 − θ +

{

2π if θ0−θ
ω

< 0
0 otherwise.

(6)

Note that ∆θ is always positive and represents the angular

distance that the disc has to cover from the current target

position θ to the firing position θ0 in the direction of rotation.

The corresponding time needed to cover such an angular

distance (assuming a constant rotation speed) is given by

∆t =
∆θ

|ω|
. (7)

Hence, the absolute time t0 at which the hole will reach the

firing position θ0 is given by

t0 = t+∆t = t+
∆θ

|ω|
. (8)

Time t0 also represents the time at which the ball must be in

the hole, hence the gun must be triggered a time ta in advance

to allow the ball to cross the distance D at speed vB , that is

ta =
D

vB
. (9)

Hence, the shooting time must be set at ts = t0 − ta; that is,

ts = t+
∆θ

|ω|
−

D

vB
. (10)

It is worth observing that the time interval ∆t estimated by

Equation (7) is affected by an error εt, which is given (in the

worst case) by

εt =
∆θ + εθ
|ω| − εω

−
∆θ

|ω|
. (11)

If the center of the hole is at distance R from the disc center,

such a timing error, at speed ω, generates a maximum target

displacement of εt|ω|R, which can be tolerated only if it does

not exceed the difference between the hole radius RH and the

ball radius RB , that is, if

εt|ω|R ≤ RH −RB. (12)

Note that the difference RH−RB is actually the chord approx-

imation of the corresponding arc, which is acceptable for small

angular values. For this reason, its value represents radians,

and the angular tolerance ρ that guarantees a successful shot

the target is

ρ =
RH −RB

R
. (13)

Hence, the inequality expressed in Equation (12) can be

written as

εt ≤
ρ

|ω|
. (14)

Substituting Equation (11) into Equation (14), it is possible to

derive a safety condition as a function of ∆θ:

∆θ ≤ |ω|Ts

ρ− εθ
2εθ

− ρ. (15)

Hence, the maximum angular difference ∆θmax at which a

prediction still guarantees centering the target, at speed ω, is

given by

∆θmax = |ω|Ts

ρ− εθ
2εθ

− ρ. (16)

Observe that a value ∆θmax > 2π means that the target hit

can be guaranteed even by planning the shoot more than one

rotation ahead.
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Also note that ∆θmax decreases with ω; in fact, small speed

values increase the interval ∆t in which the speed error εω
is integrated, hence the ∆θmax must be reduced to keep the

angular drift within the tolerance ρ.

Similarly, a minimum angular difference ∆θmin is required

to allow the ball reaching the target, given by

∆θmin = |ω|ta = |ω|
D

vB
. (17)

In this case, a value ∆θmin > 2π indicates that the target hit

must be planned at least one rotation ahead.

It follows that to guarantee a correct behavior, the shooting

time can be set only when, at time t, the angular distance ∆θ
of the target from the firing position is within the safe interval

[∆θmin, ∆θmax].

B. Task structure and functional behavior

The application can be organized into three tasks interacting

through a shared buffer, as illustrated in Figure 2:

• Task τ1 (estimate_speed) is a periodic task that

reads the camera with a period T1 = Ts, computes the

current angle θ of the target and, using the previous an-

gular value (θold), estimates the current angular velocity

ω of the disc according to Equation (1). The estimated

value is written into a buffer shared with task τ2.

• Task τ2 (plan_shooting) is a periodic task that at

each period T2 reads the angular velocity ω from the

buffer, reads the current target position θ and, if the target

is within the safe region, computes the shooting time ts
at which the gun has to be triggered, using Equation (10).

Such a value is used to post an event at time ts that will

activate task τ3, which actually triggers the gun to fire.

• Task τ3 (fire) is an aperiodic task that just triggers the

gun to fire as soon as it is activated.

�
�
�
�

�
�
�
�

camera

gun

τ1 τ2

τ3

ω

Fig. 2. Tasks structure of the application.

The application functional behavior can be described by the

state diagram shown in Figure 3. The system starts in the

IDLE state waiting for a “fire request”. When the user issues

a “fire request”, the system enters the ARMED mode, where

the disc is periodically sampled until the target is found in the

safe region. As soon as the target is found in the safe region,

task τ2 computes the next firing instant ts, posts the firing

event, and moves the system to the LOCKED state, where it

waits for the gun to fire. At time ts, after shooting the ball,

task τ3 brings the system back to the IDLE state.

C. Implementation issues

This section discusses some timing issues related to the task

implementation of the activities. The following functions are

Fire request

Fire

Start

Target acquired

IDLE ARMED

LOCKED

Fig. 3. States diagram of the application.

used in the pseudo code:

• current_time() returns the current time of the system;

• set_state(value) sets the system state at the value of

the argument, which can be IDLE, ARMED, or LOCKED;

• read_sensor() returns the current angular position of

the target;

• write_buffer(value) writes the passed value in a

shared buffer;

• read_buffer() returns the value of the variable in the

shared buffer;

• post_task(τ,ts) activates task τ at time ts;

• wait_for_next_activation() suspends the execu-

tion of the task until the beginning of the next period.

Moreover, we assume that at system initialization, the state is

set to IDLE and that the system is brought in the ARMED state

by a fire request coming from the user (e.g., by pressing a

button).

1) Estimating the target velocity: If task τ1
(estimate_speed) is executed at the highest priority, then

two consecutive job executions are exactly separated

by an interval of time equal to the task period Ts,

hence the disc angular velocity can be estimated using

Equation (1). A possible implementation of the task

(referred to implementation A) is shown in Figure 4.

Function read_sensor() acquires the image from the

camera, identifies the hole, and returns its angular position,

while function wait_for_next_activation() is

an operating system call that suspends the task until the

beginning of its next period.

Note that implementation A, assumes that the task is ex-

ecuted at the highest priority, which guarantees a constant

interval between consecutive samples of exactly Ts. When

the task has an intermediate priority and is executed together

with other activities, the interval between consecutive sensor

readings may be different than the task period, due to the

interference of higher priority tasks or to blocking delays

from lower priority tasks. In this more general case, the disc

rotational speed has to be estimated using the actual time

difference between consecutive readings:

ω =
θ − θold
t− told

. (18)

The corresponding task implementation is shown in Figure 5.
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task estimate speed A {

float theta; // current position

float theta old; // previous position

float omega; // estimated speed

theta old = read sensor();

wait for next activation();

while (1) {

theta = read sensor();

omega = (theta − theta old) / task period;

write buffer(omega);

theta old = theta;

wait for next activation();

}

}

Fig. 4. Implementation A of task τ1 for estimating the disc rotation speed.

task estimate speed B {

float theta; // current position

float theta old; // previous position

float t; // current time

float t old; // previous time

float omega; // estimated speed

theta old = read sensor();

t old = read current time();

wait for next activation();

while (1) {

theta = read sensor();

t = current time();

omega = (theta − theta old) / (t − t old);

write buffer(omega);

theta old = theta;

t old = t;

wait for next activation();

}

}

Fig. 5. Implementation B of task τ1 for estimating the disc rotation speed.

Note that implementation B provides correct estimations

only if the current time is always acquired immediately after

the sensor acquisition, as specified in the code. If the task is

preempted between the two instructions, the acquired time is

affected by a delay and the corresponding speed will be wrong.

To avoid such a possibility, the sensor and the current time

readings must be encapsulated within a non-preemptive region,

so they are executed as an atomic action. The corresponding

task implementation is shown in Figure 6.

The presence of non-preemptive regions in the task code,

however, creates a potential blocking time (δ) to higher priority

tasks that need to be taken into account in the feasibility

analysis, as shown in Section III.

task estimate speed C {

float t; // current time

float t old; // previous time

float theta; // current position

float theta old; // previous position

float omega; // estimated speed

disable preemption();

theta old = read sensor();

t old = current time();

enable preemption();

wait for next activation();

while (1) {

disable preemption();

theta = read sensor();

t = current time();

enable preemption();

omega = (theta − theta old) / (t − t old);

write buffer(omega);

theta old = theta;

t old = t;

wait for next activation();

}

}

Fig. 6. Implementation C of task τ1 for estimating the disc rotation speed.

This also affects the bounds for the safety region, because

δ has to be added to εt in Equation (12), so ∆θmax becomes:

∆θmax = |ω|Ts

ρ− εθ
2εθ

− ρ− |ω|δ
|ω|Ts − 2ǫθ

2ǫθ
. (19)

2) Shooting the target: Once the disc speed is correctly

estimated, task τ2 (plan_shooting) must compute in ad-

vance the time instant ts at which the gun must fire to catch

the target. Such a time can be computed using Equation (10),

which takes into account the time needed by the target to reach

the uppermost position (θ0) from the current position (θ), and

the delay needed by the bullet to cross the distance D. Note

that, if the target is outside the safe interval, the time of fire

cannot be precisely estimated, hence no action is performed

by τ2, which suspends itself until the next period. As soon

as the target is found in the safe zone, then ts is estimated

by Equation (10) and the activation of τ3 is posted at time

ts. When activated, task τ3 (fire) just triggers the gun to

fire and brings the system in the IDLE state. The pseudo code

corresponding to tasks τ2 and τ3 is shown in Figure 7 and

Figure 8, respectively.

Observe that the period T2 of task τ2 presents a constraint,

since at least one task execution must take place inside the

safe interval [∆θmin, ∆θmax], that is

T2 + I2 ≤
∆θmax −∆θmin

|ω|
, (20)

where I2 is the maximum start time delay due to the interfer-
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task plan shooting C {

float t; // current time

float t s; // shooting time

float theta; // current position

float omega; // estimated speed

while (1) {

if (state == ARMED) then

omega = read buffer();

<compute ∆θmax by Eq. (16)>;

<compute ∆θmin by Eq. (17)>;

disable preemption();

t = current time();

theta = read sensor();

<compute ∆θ by Eq. (6)>;

if (∆θ ∈ [∆θmin,∆θmax] ) then

<compute t s by Eq. (10)>;

post task(fire, t s);

set state(LOCKED);

}

enable preemption();

}

wait for next activation();

}

}

Fig. 7. Pseudo code of task τ2 for computing the shooting time.

task fire {

trigger gun();

set state(IDLE);

}

Fig. 8. Pseudo code of task τ3 for firing.

ence of high priority tasks (τ1 and τ3). Substituting equations

(16) and (17) we have:

T2 ≤ Ts

ρ− εθ
2εθ

−
ρ

|ω|
−

D

vB
− I2. (21)

Note that the correct system behavior assumes that task τ3
is precisely activated at time ts and immediately executed by

the operating system. This means that τ3 must be the highest

priority task, preempting all the other tasks in the system. This

task has also significant impact on the schedulability of the

other periodic tasks, which need to be analyzed by properly

extending the feasibility test as shown in the next section.

III. SCHEDULABILITY ANALYSIS

This section illustrates how to verify the schedulability of

such a class of target sensitive applications, both under fixed

priorities and EDF.

To perform an off-line guarantee of the task set, it is

necessary to treat the aperiodic task τ3 as a sporadic task,

evaluating the minimum interarrival time T3, given the appli-

cation characteristics. From the functional behavior illustrated

in Section II-B, it is clear that τ3 can be activated at most

once for each turn of the disc, hence T3 = 2π/ωmax.

In addition, since τ3 must execute as soon as it arrives, it

cannot experience interference from the other tasks, thus it

can be assigned a relative deadline equal to its computation

time: D3 = C3. The other two periodic tasks, τ1 and τ2, are

implemented to be tolerant to interference, hence their relative

deadlines can be set equal to their periods: D1 = T1 and

D2 = T2.

A. Analysis under fixed priorities

In the presence of non-preemptive regions, each task τi
can experience an additional blocking factor Bi equal to the

longest non-preemptive region belonging to lower priority

tasks. If qi denotes the length of the largest non-preemptive

region in task τi, assuming that tasks are ordered by decreasing

priorities, each blocking time Bi can be computed as

Bi = max
k>i

{qk}. (22)

Under fixed priorities, the schedulability analysis of a peri-

odic or sporadic task set in the presence of blocking factors

can be performed using the workload analysis [4], which

can be restated as follows by considering non-preemptive

regions [20]:

Theorem 1 (Bini and Buttazzo, 2004). Let Γ be a set of n pe-

riodic tasks in which each task τi may include non-preemptive

regions of maximum length qi. Then, Γ is schedulable with a

fixed priority algorithm if and only if for all τi ∈ Γ there exists

a time t ∈ (0, Di] such that

Bi +

i
∑

k=1

⌈

t

Tk

⌉

Ck ≤ t. (23)

where

Bi = max
k>i

{qk} (24)

B. Analysis under EDF

Under EDF, the feasibility analysis can be carried out using

the processor demand approach [2], considering the highest

priority task τ3 as an equivalent task scheduled by EDF having

deadline equal to its computation time: D3 = C3.

Hence a task set Γ is feasible under EDF if and only if for

all L > 0,

n
∑

i=1

⌊

L

Ti

⌋

Ci +

⌊

L+ Pa − Ca

Pa

⌋

Ca ≤ L (25)

In the presence of blocking terms, the Processor Demand

Criterion has been extended by Baruah [3], using the concept

of Blocking Function B(L), defined as the largest amount of

time for which a task with relative deadline ≤ L may be

blocked by a task with relative deadline > L.

If δjh denotes the maximum length of time for which τj
holds a resource that is also needed by τh, the blocking
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function can be computed as follows:

B(L) = max {δj,h | (Dj > L) and (Dh ≤ L)} . (26)

Then, a task set can be scheduled by EDF if

n
∑

i=1

Ci

Ti

+
Ca

Ta

< 1

and

∀L ∈ D B(L) +

n
∑

i=1

⌊

L

Ti

⌋

Ci +

⌊

L+ Pa − Ca

Pa

⌋

Ca ≤ L

(27)

where D is the set of all absolute deadlines no greater than

a certain point in time, given by the minimum between the

hyperperiod H and the following expression:

max

(

Dmax,

∑n

i=1
(Ti −Di)Ui

1− U

)

.

where Dmax = max{D1, . . . , Dn}.

IV. EXPERIMENTAL RESULTS

This section presents some experiments performed on a

real platform, developed to test the proposed approach and

compare the behavior of different implementation solutions of

the tasks described in Section II-B.

A. Hardware platform

The application has been developed using a small low-

cost plant, in which a compact disc is rotated by a dc motor

actuated by a PWM motor controller. The angular position

of the target is measured by an optical encoder having a

resolution of 360 clicks per rotation.

The plant is controlled using a Flex1 board equipped with

a Microchip 16-bit dsPIC microcontroller running the appli-

cation tasks and the real-time operating system.

For practical reasons, the gun has been substituted with a

laser pointer, whose beam points to a photoresistor located

behind the disc and acquired by a 12-bit analog-to-digital

converter. A digital output line is used for firing the target

with the laser. When firing, the laser is turned on for 500 µs,

which is the time just sufficient to activate the photoresistor.

The hole (i.e., the target) has a radius of 2.5 mm and its center

is located at 53 mm from the center of the disc.

In this setting, RB = 0 and the shooting time can be

neglected (i.e., ta = 0). Moreover, the finite sensing area of

the photoresistor, whose radius is RP = 2.5 mm, has the effect

of enlarging the target radius of exactly RP . Therefore, in all

the computations, the target radius is considered to be RH = 5
mm.

Given the resolution of the optical encoder, the angular

position error results to be

εθ =
2π

360
= 17.45 · 10−3. (28)

The maximum rotation speed of the motor is 860 deg/s (that

is, 15 rad/s), but to stress the system beyond the theoretical

1Flex board web site: http://www.evidence.eu.com/products/flex.html

limits, we considered ωmax = 600 deg/s (10.47 rad/s). We also

imposed a minimum speed ωmin = 130 deg/s (2.27 rad/s) to

compute a safe value of period T2, based to Equation (21).

According to equations (17) and (16), the bounds of the

safe interval result to be
{

∆θmin = 0
∆θmax = 2.2|ω|Ts − ρ

where, according to Equation (13), ρ = 94.34 · 10−3 rad.

B. Software implementation

The application software has been implemented on the

ERIKA Enterprise kernel [10], which is an open-source (GPL2

with linking exception) multiprocessor real-time operating

system, with a programming interfaces compatible with the

OSEK/VDX standard [18]. ERIKA tasks are implemented

as functions and scheduled according to a scheduling policy

selected by the user at compile time. Both fixed priority

and EDF scheduling algorithms are supported, and the time

resolution can be selected by the application developer to

match the granularity required by the plant. The results re-

ported in this section have been obtained under fixed priority

scheduling, where priorities were assigned to tasks according

to the Deadline Monotonic algorithm [15].

To stress the system, the sampling period T1 of task τ1 has

been set as the maximum allowed by Equation (5), that is

T1 = Ts =
π

ωmax

= 300 ms,

while the period T2 has been selected within the bound ex-

pressed in Equation (21) (T2 ≤ 660 ms). In our experiments,

we set T2 = 300 ms. Considering that task τ3 can be activated

at most once for each turn of the disc, its minimum interarrival

time T3 has been set as T3 = 2π/ωmax = 600 ms.

The application also includes a data logging task, τlog ,

which monitors the main variables and send them to a PC

through a serial line for the analysis.

Finally, to test the various implementations under different

workload conditions, 4 disturbing tasks (τd1 , τd2 , τd3 , and τd4 )

have been added, with a computation time equal to 4 ms and

a frequency that can be proportionally increased by a factor

k to modify their utilization and increase the interference on

the application tasks:

T d
i (k) = T d

i /k.

The total utilization of the disturbing tasks is denoted by Ud

and their parameters have been defined so that for k = 10 the

system reaches a total utilization of 1.0. The timing parameters

of the task set are reported in Table I.

Note that, without disturbing tasks, the schedulability of

the application is guaranteed under both RM and EDF. With

disturbing tasks the application is guaranteed under RM for

k ≤ 6.

C. Experiments

In a first experiment, the three implementations of task τ1
(A, B, and C) presented in Section II-B have been compared to
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Task Ci (ms) Ti (ms) Ui

τ1 0.028 300 9.33 ·10−5

τ2 0.040 300 1.33 ·10−4

τ3 0.003 600 5.33 ·10−6

τlog 4.2 1000 4.20 ·10−3

τd
1

3.92 131 2.99 ·10−2

τd
2

3.92 151 2.59 ·10−2

τd3 3.92 171 2.29 ·10−2

τd
4

3.92 191 2.05 ·10−2

TABLE I
TASK PARAMETERS USED IN THE EXPERIMENTS.

evaluate their effectiveness in catching the target as a function

of the rotation speed ω, which was varied between 6.63 rad/s

(380 deg/s) and 12.50 rad/s (720 deg/s). In this test, the

disturbing tasks were not activated (i.e., Ud = 0). For each

rotation speed, the measure was obtained by performing 100

shots and counting the number of times the targets was missed.

The results are presented in Figure 9, where the ratio between

the number of missed shots and the number of fired shots,

denoted as miss ratio, is plotted on the y-axis.
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Fig. 9. Miss ratio as a function of ω for the three implementations (A, B,
and C) of task τ1.

The three implementation present a miss ratio that quickly

reaches 100% as soon as the rotation speed crosses the value

ωmax = 10.47 rad/s. When the angular speed is below

such a value, the differences among the three solutions are

significant. Implementation A starts presenting pronounced

shooting errors (> 10%) for values of ω that are more that

20% smaller than ωmax. Implementation B presents a similar

behavior, but characterized by a smaller miss ratio. Finally,

Implementation C presents a negligible number of missed

targets even for ω values quite near to ωmax.

A second experiment has been performed to evaluate the

robustness of the three solutions of task τ1 against an increas-

ing interference. This has been done by measuring the miss

ratio for different values of the disturbing load, obtained by

increasing the frequencies of tasks τdi ’s by the factor k, varied

from 0 to 9. Note that the computation of ts performed by τ2 is

not affected by the disturbing tasks, because it only requires

the coherence between t and θ, which is guaranteed by the

non preemptive region. In this test, the angular velocity has

been fixed to ω = 6.63 rad/s (380 deg/s), which is the highest

value that still guarantees a negligible miss ratio for all the

three implementations without disturbing workload (Ud = 0).

As in the first experiment, for each value of the disturbing

load (i.e., of k), the measure was obtained by performing 100

shots and counting the number of times the target was missed.

The results are presented in Figure 10, which shows that

increasing the utilization of disturbing tasks all the implemen-

tations increase their miss ratio. However, Implementation A

presents a higher number of failed shots.
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Fig. 10. Miss ratio as a function of Ud for the three implementations (A,
B, and C) of task τ1.

A third experiment was carried out to evaluate the behavior

of the system around the border ∆θmax of the safe zone, that

is, when the shooting time ts is predicted when the hole is

located at an angular distance ∆θ (from θ0) comparable with

∆θmax. This has been done by measuring the miss ratio for

different ∆θ around the value ∆θmax. The measurements have

been performed only for implementation A, which is the one

presenting a stronger performance degradation near the bound.

In this test, 100 shots were fired for each value of ∆θ, and

the disc rotation speed was fixed at ω = 5 rad/s, leading to a

value ∆θmax = 3.31 rad. The results of this experiment are

reported in Figure 11.

V. CONCLUSIONS

This papers discussed some implementation and analysis

issues related to target-sensitive applications, in which the

output of one or more tasks must be produced at precise time

instants, rather than within a deadline. A specific real-time

system involving a prediction task to catch a moving target

has been used as a case study to show how to derive the

timing constraints from the application requirements, how to

implement the application on top of a real-time kernel and

how to analyze the schedulability of the task set.

Three alternative implementations have been proposed and

compared to evaluate the effect of the interference produced

by other activities.
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Fig. 11. Miss ratio as a function of ∆θ for the implementation A of task
τ1.

The experimental results reported in the paper, besides

confirming the effectiveness of solution C, can also be used to

extract a set of general implementation guidelines that should

be used to drive the design of such systems:

• Predict a future system state using a sequence of state

values (state history), associating each sensor value with

the corresponding acquisition time; to ensure consistency

between times and state values, both readings must be

performed atomically, within a non-preemptive region.

• Post the action in the future at the predicted time (target

time) and trigger it as an aperiodic task executed at the

highest priority.

• Handle overlapping events through a suitable shifting

policy (e.g., the gravitational method [12], [11]) taking

event importance into account.

• Verify the schedulability of the system off-line by taking

into account the periodic task set, the aperiodic load acti-

vated at the minimum interarrival time, and the blocking

intervals introduced by the non-preemptive regions.

As a future work, to verify the correctness of predictions in

a more realistic setting, we plan to replace the laser pointer

with a pneumatic shooting device that launches plastic spheres

on the target. We also plan to evaluate the performance of the

system under different scheduling algorithms (e.g., Deadline

Monotonic and EDF).

We also plan to analyze the effect of other factors, such

as the errors due to simplistic assumptions in the modelling

phase, the effect noises in the measurements, and so on. More-

over, in this work, time predictions were computed assuming a

constant angular velocity. However, the system should also be

able to cope with variable speeds. In this case, predictions

could be computed with a Kalman filter, as proposed for

instance by Facchinetti et al. [8]. Another problem to be

addressed is to find a trade off between accuracy of predictions

and available processing power. In fact, good predictions

require algorithms with high computational complexity that

could be too demanding for a small embedded processor. On

the other hand, simple predictions increase the error εω on

the estimated speed, thus reducing the safe bound ∆θmax and

imposing stronger timing constraints on the tasks.
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