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Abstract—Monitoring teams of mobile nodes is becoming
crucial in a growing number of activities. Where it is not
possible to use fixed references or external measurements, one
of the possible solutions involves deriving relative positions from
local communication. Well-known techniques such as trilateration
and multilateration exist to locate a single node although such
methods are not designed to locate entire teams. The technique
of Multidimensional Scaling (MDS), however, allow us to find
the relative coordinates of entire teams starting from the knowl-
edge of the inter-node distances. However, like every relative-
localization technique, it suffers from geometrical ambiguities
including rotation, translation, and flip. In this work, we a ddress
such ambiguities by exploiting the node velocities to correlate
the relative maps at two consecutive instants. In particular, we
introduce a new version of MDS, called enhanced Multidimen-
sional Scaling (eMDS), which is able to handle these types of
ambiguities. The effectiveness of our localization technique is then
validated by a set of simulation experiments and our resultsare
compared against existing approaches.

I. I NTRODUCTION

Teams of mobile robots are used to carry out a variety
of tasks, such as surveillance, monitoring, exploration, search
and rescue, cleaning of hazardous areas, and transportation. A
representative example is given by localization systems that
are used to track and support human workers operating in
dangerous areas [1].

To be able to coordinate effectively between members
of the team, it is necessary to exchange information about
the environment so that each node can locate the entire
team and perform the assigned activities properly. In some
situations, it may be possible figure out the absolute positions
by exploiting an infrastructure that already exists (e.g. Global
Positioning System (GPS)) or one that has potential high
costs but that can be designed from scratch. Moreover, this
option may not be viable in emergency situations. Using local
communication to calculate the inter-node distances and then
creating a relative map of the team is a common solution
when absolute localization is not feasible. There are otherwell-
known techniques including trilateration and multilateration ,
but these only permit us to locate single nodes. In recent years,
much attention has been paid to the Multidimensional Scaling
(MDS) technique [2], which is widely used in various fields for
scientific visualization and data mining [3] and also used inthe
field of robot localization to find relative maps of the nodes.
MDS is a method that represents measurements of similarity
(or dissimilarity) among pairs of objects as distances between
points in anN -dimensional space. However, like every relative
localization technique, it suffers from geometrical ambiguities
that make it difficult to correlate the coordinates of the nodes
that are calculated at successive time instants. More specifi-
cally, even with no measurement errors, the original topology
of the network can only be estimated up to an isometric
transformation (i.e., rotation, translation, and flip).

A. Contributions and summary

This work proposes a new implementation of MDS, namely
enhanced Multidimensional Scaling (eMDS), which correlates
the node-distances information at two consecutive time instants
with their velocities to solve all the geometric ambiguities
caused by inter-node relative distances. On one hand, the
proposed approach inherits from MDS the advantage of es-
timating the coordinates of all nodes jointly, even for large
teams of nodes. On the other hand, it overcomes MDS limita-
tions by correlating the relative maps at consecutive instants.
Furthermore, our eMDS technique allows a more advanced
coordination, as each node can not only locate the team, but
can also exploit the knowledge on the nodes velocities to
predict future movements.

The rest of the paper is divided into five sections. Section II
analyzes the state of the art, describing the existing solutions to
the problem. Section III reviews the MDS technique, focusing
on the ambiguities introduced by the original method. Section
IV describes the localization system we consider, and the
eMDS technique is proposed and formalized in more detail. In
Section V, we carry out a quantitative evaluation of the algo-
rithm in presence of noisy measurements. Finally, Section VI
draws conclusions and outlines future work.

II. RELATED WORK

Relative localization is an important issue in many fields.
Several wireless communication techniques have been utilized
to address the problem of locating nodes within a relative
coordinate system [4]. Many approaches present in literature
are based on the Simultaneous Localization and Mapping
(SLAM) [5] that constructs the map and the nodes positions
at the same time. However, these solutions are composed of
numerous steps and typically require multiple sensors and a
significant amount of computation to improve the quality of
localization. The other main family includes the algorithms
that acquire the positions of the nodes starting from inter-node
distances. An important advantage of the latter solutions is the
possibility it provides to obtain information on distancesfrom
the communication infrastructure, thus reducing the need of
auxiliary sensors. The rest of the paper will be focused on
this last family due to the exposed advantages that make them
suitable for small and low-cost nodes.

Trilateration or multilateration are often used in distance-
based localization. Nevertheless, relative localizationsuffers
from ambiguities in terms of translation, rotation, and flip.
Whenever trilateration or multilateration are used, flip ambigu-
ities also arise during the map construction process, sincethe
positions of the nodes are estimated one at a time. Kannan et al.
[6] have provided a formal geometric analysis of flip ambiguity
problems, which are possible sources of computational corrup-
tion in trilateration-based algorithms. Several authors proposed
distributed techniques that can solve the problem in the case
of large (static) wireless networks [7], [8], [9].978-1-4673-7509-2/15/$31.00c©2015 European Union



However, in several multi-agent applications of mobile
robots, a node is required to locate the position of multiple
team members simultaneously. This can be achieved effi-
ciently by the MDS [10], a general approach for exploiting
similarities in data to assign a location to each item in an
N -dimensional space. In the context of robot localization,
MDS is used to acquire the coordinates of a group of nodes.
This is achieved by minimizing the mismatch between a set
of pairwise-estimated inter-node distances and the distances
corresponding to the unknown coordinates. Remarkably, unlike
trilateration and multilateration, MDS-based techniquesdo
not suffer from the problem of flip ambiguities during the
map construction process, since they are able to find all the
coordinates consecutively.

Many variants of MDS have been introduced in the liter-
ature (see [10] and references therein). Among these variants,
classical MDS constructs the relative map of the nodes using
the eigenvectors corresponding to theN largest eigenvalues
of the dissimilarity matrix, while non-classical MDS resorts
to an iterative method that minimizes a stress function. In the
latter category, weighting schemes have also been proposed
to increase the robustness of the minimization procedure in
case of missing information [11]. Efatmaneshnik et al. [12]
proposed a modified version of MDS targeting Vehicular
Adhoc NETworks (VANETs) where nodes can be equipped
with GPS, which provides a priori information to be fused
with short-range measurements.

All of the techniques mentioned above either require the
use of a fixed infrastructure (e.g., GPS or anchors), or suffer
the problem of correlating the maps produced consecutively.
In the literature, the problem of correlating the information
of two consecutive outputs of MDS has been widely studied:
Ambrosi and Hansohm [13] described a dynamic Multidimen-
sional Scaling (dMDS) method that makes use of a super-
dissimilarity matrix that includes information regardingT
instants. However, in the context of localization, this technique
cannot be applied at all due to cross-time inter-node distance
information not being available. A different approach can be
taken with dMDS, by simply carrying out an MDS analysis for
each time period separately, and then matching the resulting
configurations using a Procrustes analysis [10]. However, both
methods only aim to plot the data together without any strict
physical correlations. Cabero et al. [14] used dMDS for indoor
people tracking. However, they also make use of a large num-
ber of anchors which means that the problems of flip, rotation,
and translation become irrelevant. Other works tried to improve
MDS localization by exploiting inertial measurements [15],
but only mitigating the inconsistencies induced by the MDS
algorithm.

To our knowledge, only two works in the literature address
the problem of mobile robot localization without anchors.
Oliveira and Almeida [16] in particular proposed a technique
that gives confidence values to position estimates obtainedby
MDS at successive instants. Instead, Beck and Baxley [17]
proposed an anchor-free node tracking technique that uses
dMDS and odometry. They successfully locate the nodes at
several instants, but the drawback of this approach is that
the computational complexity proportionally grows with the
number of nodes and instants, making it unsuitable for online
localization. This work proposes an improved implementation
of MDS, called eMDS, where the nodes velocities are used
to solve the ambiguities generated by two consecutive MDS
outputs. Unlike in [17], the computational complexity of the
algorithm only depends on the number of nodes, and produces

relative coordinates online. Our technique can not only provide
the coordinates of the nodes, but also their likely future
movements, providing more information to any coordination
algorithm.

III. T HE MDS ALGORITHM AND ITS AMBIGUITY
PROBLEM

This section reviews the MDS algorithm, with close at-
tention paid to the issues related to its use in the context of
relative localization.

The algorithm takes pairwise (dis)similarities (e.g., Eu-
clidean distances) as input data, grouped in a distance (or
dissimilarity) matrix D and returns a set of estimated co-
ordinates X̃ = [~x1, ..., ~xn], as shown in Figure 1. More

X̃
MDS

D

Fig. 1. The Multidimensional Scaling algorithm.

specifically, givenn nodes in anN -dimensional space and
the estimated pairwise distancesdij , MDS estimates the nodes
coordinates~xi for all nodes minimizing the mismatch between
the estimated distanceŝdij and the distances‖~xi − ~xj‖. The
mismatchSMDS is calledstress function:

SMDS(~x1, ..., ~xn) =

n∑

i=1

n∑

j=1

j 6=i

[‖~xi − ~xj‖ − d̂ij ]
2. (1)

However, since only pairs of range measurements are used,
the relative mapX̃ produced by MDS represents the correct
positions of the nodes up to translation, rotation, and flip.
Figures 2 and 3 illustrate an example that shows the real
positions of the nodes in a bidimensional space (a) and the
corresponding MDS output (b) at two successive instantst and
t′ with no error in the distance measurements. In both cases,
as expected, MDS estimates the correct relative coordinates
up to translation, rotation, and flip, since there are no errors.
However, since at every MDS instance the resulting map is
affected by different ambiguities, it is difficult to i) apply any
filtering to the MDS output if nodes are moving, since this
would require a characterization of the noise and the knowl-
edge of the node dynamic; ii) understand where the nodes
are moving or heading; iii) apply information on the absolute
orientation (given by the compass) directly on the MDS output.
In [16], confidence values are obtained between time instants
using distance information only, while in [17] a solution is
proposed that exploits dMDS to correlate information gathered
at consecutive instants. However, both approaches are onlyable
to solve the first of the requirements mentioned above.

In this work, we propose a modified version of MDS
that not only provides a correct correlation between time
instants, but also inform us of nodes’ direction of travel and a
prediction of their likely future movements. Since we only
need the distance information at the previous and current
instants, the algorithm is well-suited for online localization
with fast dynamics.
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Fig. 2. (a) Real positions of four nodes at instantt, with outgoing arrows
representing the speed vectors of the nodes. (b) MDS output at time instantt.
The topology of the network is preserved up to an isometric transoformation.
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Fig. 3. (a) Real positions of the nodes at the successive instant t′, with
incoming dashed lines representing the traveled distance.(b) Corresponding
MDS output at instantt′. The topology of the network is completely unrelated
to the previous MDS output.

A. MDS with limited range and communication errors

The MDS algorithm requires a symmetric distance Matrix
D as input. However, since distances estimated by RF signals
are subject to errors, the measured distanced̂ij may be
different fromd̂ji, leading to a non-symmetrical matrix. In this
case,D must be converted into a symmetrical form. Possible
solutions which are commonly adopted in the literature [18]are
to calculate the mean value of̂dij and d̂ji, or to simply select
one of the two as a unique value. If instead a reliability weight
is associated to each distance information (e.g. an indicator of
the link quality), another possible solution could be to select
that which has the highest weight. Moreover, due to limited
range, it may happen that not all pairwise distances are known.
However, a fully connected matrix is required as an input to
MDS. Several techniques have been proposed in the literature
to overcome this issue. For instance, it is possible to exploit the
network topology to obtain the missing distances [19], or use
a modified version of MDS for partially connected matrices
[20].

In this work, we over-approximate the missing distances
between pairs of nodesi and j by adding the distances
along the shortest path composed of intermediate nodes, as
previously done in [18]. The shortest path can be calculated
by Dijkstra or Floyd-Warshall algorithm [19], and then MDS
can be regularly applied. This technique provides a valid
approximation of the missing values, since the distance be-
tween two disconnected nodes is shorter or equal than the
distance between the sum of the nodes that indirectly connect
them (e.g.d13 ≤ d12 + d23). Although pessimistic, this
approximation is acceptable in our localization system, since,
for the purpose of team localization, an imprecise estimation
of the positions of distant nodes can be tolerated from time
to time. Additionally, some packets may be lost during local
communication. In particular, if̂dij is not available due to
packet loss, such distance information can be replaced byd̂ji,
if available. An alternative, also implemented in this work,
is to predict unavailable measurements with some filtering
techniques. This filter may also allow reducing fluctuations
due to inaccuracy of sensor measurements (e.g. RSSI). To
address these problems, bayesian filters [21] are widely used
in literature. Amongst the most used include particle filters and

Kalman filters. Section IV-C presents the Kalman Filter used
in this work together with its implementation details.

IV. PROPOSED APPROACH

In this section the system description is presented along
with the complete formulation of our improved eMDS tech-
nique.

A. System description

In this work, we consider a system composed ofn mobile
nodes in a two-dimensional space that communicate through
a radio channel and form fully connected network. The real
coordinates, real velocities, and real accelerations of the nodes
at every time instantt are denoted byX ,V , andA:

X(t) =




~x1,t
~x2,t

...
~xn,t


 , V (t) =




~v1,t
~v2,t

...
~vn,t


 , A(t) =




~a1,t
~a2,t

...
~an,t


 . (2)

Each node is equipped with a radio system that is al-
lowed to estimate the inter-node distances (e.g., Received
Signal Strength Indicator (RSSI), Time of Flight (ToF), Ultra-
WideBand (UWB)) and that can estimate its velocity with
dedicated sensors (e.g., Inertial Measurement Unit (IMU),
compass, optical flow smart camera, odometry) that are se-
lected according to the specific needs of the application. Every
node shares its information with the entire team through a
TDMA-like communication protocol, and internally estimates
the distance traveled since the previous transmission or sends
enough information to reconstruct it in the receiving node.The
selection of the transmitted data and the estimation approach
both depends on the nodes’ dynamic and on the specific
available sensors. In our scenario we assume a slow change
in the speed between two consecutive transmissions, thus each
node obtains all the new inter-node distances and the estimated
velocities at every TDMA round, storing this information ina
distance matrixD̂ and a velocity vector̂V :



D̂(t) =




d̂1,1,t d̂1,2,t . . . d̂1,n,t
d̂2,1,t d̂2,2,t . . . d̂2,n,t

...
...

. . .
...

d̂n,1,t d̂n,2,t . . . d̂n,n,t


 , V̂ (t) =




~̂v1,t
~̂v2,t

...
~̂vn,t


 .

According to this discrete time model, the velocity of each
node is assumed to be constant over each TDMA round.

Figure 4 clarifies the structure of the entire system: at time
t, each node computes the relative mapX̂(t) using eMDS,
which will be described in detail in Section IV-B, and the
result is filtered with a Kalman Filter (KF). The output of the
KF, denoted as̃X(t), is then used as a feedback to reduce the
ambiguities.

eMDS KF

V̂

D̂
X̂ X̃

Fig. 4. Model of the proposed relative localization system.

B. The enhanced Multidimensional Scaling

A different version of the MDS, denoted as eMDS, is
proposed to solve the problem of correlating two MDS outputs
at consecutive instants. MDS, as shown before, performs a
non-linear unconstrained optimization wheren coordinates
are evaluated starting from a distance matrix. We propose
to reformulate such optimization as a non-linear constrained
problem with 2n variables. The stress function considers
the mismatch between estimated and real distances at two
consecutive instants, while the constraints are used to correlate
real positions relying on the knowledge of the node velocities.

The formulation of eMDS as optimization problem is then:

min S(~x1,t−1, . . . , ~xn,t−1, ~x1,t, . . . , ~xn,t)

subject to





~x1,t = ~x1,t−1 + ~v1,t−1 ·∆t
~x2,t = ~x2,t−1 + ~v2,t−1 ·∆t

. . .
~xn,t = ~xn,t−1 + ~vn,t−1 ·∆t

, (3)

whereS is the stress function, defined fort > 0 as:

S =

n∑

i=1

n∑

j=1

j 6=i

[(‖~xi,t − ~xj,t‖ − d̂ij,t)
2+

+ (‖~xi,t−1 − ~xj,t−1‖ − d̂ij,t−1)
2].

(4)

The linear equality constraints in Equation (3) can be
rewritten in matrix form asAX = b, where:

A =




1 0 . . . 0 −1 0 . . . 0
0 1 . . . 0 0 −1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . −1


 ,

X =




~x1,t−1

...
~xn,t−1

~x1,t
...

~xn,t




, b =




~v1,t−1∆t
...

~vn,t−1∆t
~v1,t∆t

...
~vn,t∆t




.

Then, since the speed estimation is affected by a non-zero
error ǫv, it is necessary to reformulate the linear constraints as
inequalities, i.e.,|AX − b| ≤ ǫv. Hence, in the general case,
the constraints in Equation (3) become

{
AX ≤ b+ ǫv
−AX ≤ −b+ ǫv

.

The stress functionS is coercive (i.e.,S(X) → +∞ as
||X || → +∞), but not convex. Hence it is guaranteed to have
a global minimum, but may present multiple local minima.
An accurate choice of the starting point for the minimization
could lead to the discovery of the global minimum. To help
avoid local minima, most implementations of MDS attempt
multiple random initial configurations. In this work, instead
of using random initial points, we exploit the positions and
velocities estimated at the previous instant. In particular, the
starting pointX0 used in the minimization is set as follows:
the firstn variables are set as equal to the vector of coordinates
X̃(t) obtained at the previous step, and the lastn are set
as X̃(t) + V∆t. With zero-noise in the measurements, the
eMDS finds the global minimum in few algorithm iterations.
After finding the global minimum for the first time, it will
continue to find all the future global minima. However, there
is a particular case where not all ambiguities can be solved,i.e.,
the case where the nodes move at the same constant speed and
with the same orientation. When dMDS is used (e.g., in [17]),
this configuration cannot be distinguished from the case where
all the nodes are moving back and forth, since dMDS does
not account for the node orientation but only for the distance
traveled. Instead, with our approach the problem appears,
unless the nodes start moving in this particular configuration.
In the latter case, the algorithm can solve ambiguities up to
a flip (with respect to the speed direction), which cannot be
disambiguated until one of the nodes changes its direction.

C. Filtering the eMDS with a Kalman Filter

In the presence of noisy distance estimates, the eMDS
minimization procedure may find some local minima corre-
sponding to a flipped configuration with respect to the real
one. This effect is not caused by the algorithm itself, as in
the case of the original MDS. Rather, it is the inaccuracy of
the estimated distances that may lead to an output topology
that are compatible with the erroneous estimated distancesbut
not with those that are accurate. These flipped configurations
can easily be filtered by implementing a filter for each node.
The state equation of each Kalman Filter, used in this work,
is defined as follows:

P s =

[
1 ∆t
0 1

]
P s−1 +

[
∆t2

2
1

0 ∆t

]
ψs; (5)

P = [~x ~v ] , (6)



whereas the state vectorP is defined in Equation (6) andψs is
the Gaussian noise of the state at instants. The measurement
equation is defined as:

Y s = P s + νs, (7)

whereνs is the Gaussian noise of the measurement.

V. SIMULATION RESULTS

This section presents a simulation study carried out to test
and validate the localization system proposed in this paper.
In the following experiments, we aim to evaluate the impact
of the measurement noise on the performance of eMDS and
its effectiveness in solving geometrical ambiguities. We are
not interested in studying the robustness of the approach
with respect to the underlying communication protocol (e.g.,
communication delay, packet losses, hidden nodes), which
can be addressed using techniques similar to those presented
in Section III-A. Thus, we could assume without loss of
generality that the simulations occur under the hypothesisof
ideal communication, i.e., the network is fully connected and
there are no packet losses.

A. Simulation Setup

Our methodology has been tested through a set of sim-
ulation experiments conducted in MATLABR©. In order to
perform a simulation of our proposed approach on realistic
data, we model our sensor measurements using real values
estimated with specific technologies; in particular we consider
as a reference platform a small low-cost wheel robot equipped
with encoders and a compass that communicates using a
2.4GHz transceiver capable of performing ToF measurements.
The range measurements used in our simulations are perturbed
by a gaussian noise with zero mean and standard deviation
σd = 0.6 m. Table I summarized the typical values ofσd for
different wireless technologies.

UWB ToF RSSI

σd 0.2 m 0.6 m 2 m

TABLE I. T YPICAL VALUES FOR THE STANDARD DEVIATIONσd OF
RANGE MEASUREMENTS WITH DIFFERENT TECHNOLOGIES.

Furthermore, we have considered an error on the velocity
measurements that is consistent with a generic encoder wheel,
i.e., a few centimeters per meter. We have modeled the error of
the speed estimates accordingly as a gaussian noise with zero
mean and standard deviationσv = 0.05 m/s. The orientation of
the velocity vector is given by a compass with an error below
one degree, hence in this setup the orientation has a negligible
error. The initial positions of the nodes are randomly generated
in a 15 m by 15 m arena. At each time instant, the module of
the speed is randomly varied, and the orientation of each node
is increased by an angle selected in the interval[−π/2, π/2].

B. Experimental Results

The first simulation experiment aims to demonstrate how
the error of the estimate varies depending onσd. Figure 5
reports the obtained results and shows that our method achieves
a highly decent performance even when there are significant
errors. We calculate the error of the estimate as the difference
between the estimated positions and the real ones. In the
box plot, the central mark indicates the median, the edges of
the box indicate the 25th and 75th percentiles, the whiskers
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Fig. 5. Error of the position estimates as a function ofσd.

0 20 40 60 80 100
0

1

2

3

4

Time (seconds)

N
or

m
al

iz
ed

 p
os

iti
on

 e
rr

or

Fig. 6. Convergence of eMDS. The dash-dot lines represent the standard
deviation, while the dashed line represents the mean error.

extend to the most extreme data points that are not considered
outliers, and outliers are plotted individually as red marks. In
this experiment, we have simulated a team of 6 nodes, and the
parameterσd has been varied from 0 to 2 m at steps of 0.2. For
each step, we have run eMDS for 200 time instants in order to
characterize the behavior of the algorithm in detail. The image
clearly demonstrates that the mean error increases almost
linearly depending onσd, and the average values are always
below 3.5 m even for high values ofσd. Most of the outliers
in Figure 5 are due to an initial settling time needed to reach
the mean error, during which eMDS may be stuck in some
local minima. Thanks to the accurate selection of the starting
point for the minimization procedure which was previously
discussed in Section IV-B, the algorithm then converges to its
steady state. In order to evaluate the convergence time, we
normalized all the data collected in the previous experiment
with respect to their mean error. Figure 6 shows that in this
case the algorithm takes 9 seconds to converge within the
tolerance region which is fixed to the standard deviation. After
reaching the steady state, subsequent local minima are filtered
out by the KF.

We have also observed the confidence of the measurements,
calculating the percentage of estimated positions contained
inside different scales of the covariance ellipse. In Figure 7
we report a snapshot of an experiment where all the nodes
are inside the 3-standard deviation ellipse, and their major-
ity lies inside the 1-standard deviation ellipse, revealing the
great accuracy of the predicted positions. In this particular
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σv = 0.05 m/s, ∆t = 1 s and two different values ofσd. The full lines
represent the path of the nodes, the dotted lines with cross markers indicate the
position estimates withσd = 0.2 m and the dashed lines with circle markers
represent the position estimates withσd = 0.6 m. To make a comparison, all
the trajectories of the nodes are translated with respect tothe real positions
of Node 1.

experiment, we have setn = 6, σd = 0.6 m, σv = 0.05
m/s, and∆t = 1 s. Another snapshot, reported in Figure 8,
illustrates the accuracy of the node estimates with respectto
the real paths followed by the nodes. Our proposed method
allows achieving a correct correlation across different time
instants, and nullifies all geometric ambiguities introduced by
the original MDS algorithm.

We have also conducted an extensive experiment to evalu-
ate the error on the position estimates depending on the number
of nodesn and time step∆t. For this experiment, we have set
σd = 2 m andσv = 0.05 m/s, and the number of nodes has
been varied between 3 and 11. Again, the simulation has been
performed for 200 instants for each value ofn. The results
are reported in Figure 9, where we observe that, the node
movement is comparable withσd for low values of∆t (i.e.,
in the range 0-1 seconds),meaning that it is not possible to
distinguish the node movement from the measurement noise.
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Fig. 9. Error of the position estimates as a function of the number of nodes
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where∆t = 0.2n s.
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n, with ∆t = 0.2n s.

Then, the increase of the team size has a beneficial effect on the
mean error, since the algorithm can exploit more information
to construct the relative map. However, this positive trend
continues only up to a certain value of∆t (between 1 and
3 seconds in our case). In fact, from that point on, the
communication latency is the prevailing effect, progressively
leading to a slight error increase. From this experiment we
can conclude that the increase of the team size and the time
step are two conflicting effects balancing each other, and the
best performance can be obtained as a trade-off between these
two quantities. The dotted white line in Figure 9 represents
a particular experiment, the results of which are illustrated
in Figure 10. In this case,∆t is computed as0.2n seconds,
resembling the TDMA communication round. As expected, as
the number of nodes increases(and, accordingly,∆t), the error
starts decreasing. Aftern = 9, the communication delay leads
to an error increase, due to the combination of the above-
mentioned effects.

Finally, we compared our results with existing solutions.
Oliveira and Almeida [16] reach a mean errorµ in the position
estimates equal to1.3 m starting from a standard deviation
in the measurement noiseσd = 0.6 m and 99% of the
errors are under5 m. With the same measurement noise, our
algorithm achieves the same mean error but the99% of the
errors are below2.65 m. Beck and Baxley [17] solve the



ambiguity problem with the dMDS technique, which takes a
super-distance matrix of sizen× k, wheren is the number of
nodes andk is the number of time instants that we want to
correlate, as input. Their algorithm has a number of variables
equal to the size of the matrix, with an overall complexity of
O(k2n2). Instead, our proposed technique correlates only two
time instants, hence the number of variables in the optimization
problem is2n. The overall complexity of eMDS isO(n2),
since the stress function in Equation (4) is expressed as
a double sum overn. The authors of [17] show that the
position error tends to increase withk and to decrease with
n. Compared to their work, the complexity of our approach
only depends on the number of nodes, and the mean error
is not affected by the time step, since only two time instants
are considered at each execution. A direct comparison with
their simulation results reveals that, withσd = 0.1 m and
σv = 0.01 m/s, our mean error (µ = 0.427 m) is equal to their
best case (reached fork = 2), and always lower in all other
cases. Moreover, a notable advantage of our method is that it
is able to produce the relative coordinates online instead of
calculating the entire paths offline.

VI. CONCLUSION AND FUTURE WORK

This paper presented a novel approach for relative lo-
calization, called eMDS, which solves all the geometrical
ambiguities introduced by the original MDS algorithm. In
particular, MDS has been reformulated as a constrained non-
linear optimization problem to provide correct correlation
between relative maps at consecutive instants. The error of
the position estimates has been calculated as a function of
the measurement error, and the proposed method achieves
high quality performance in all of the tested configurations.
In addition, our algorithm has been compared to current state-
of-the-art techniques, and has been shown to outperform them,
both in terms of complexity and error in the position estimates.
As a notable aspect, the proposed technique overcomes some
important limitations of current state-of-the-art techniques.
Firstly, it is suitable for online team localization and does not
require any fixed infrastructure, unlike most existing online ap-
proaches which require the use of anchors to localize the robot
paths. Secondly, the coherence across time instants provides
us with the opportunity to predict likely future movements,
exploiting the knowledge on the node velocities. In the future,
our work will be extended in multiple directions. First, we
plan to test eMDS in a real environment with a team of
mobile robots. Real experiments will validate our algorithm in
terms of computational requirements, convergence time, and
communication delays. Moreover, the Kalman filter is not the
most suitable bayesian filter, due to its sensitivity with regards
to noise statistics. A more efficient technique that we would
like to explore is the Daum Huang filter, correlating it with
the node dynamics. It would also be interesting to further
extend eMDS to be applied in a tridimensional space. However,
moving beyond bidimensional into tridimensional space will
most likely require more information (e.g., the height of the
nodes from the ground) and more constraints, in order to solve
all the ambiguities that may arise. Finally, we plan to include
acceleration to track nodes with fast dynamics, which cannot
be modeled by assuming constant speed between consecutive
position estimates.
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