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Abstract—Monitoring teams of mobile nodes is becoming
crucial in a growing number of activities. Where it is not
possible to use fixed references or external measurementsneo
of the possible solutions involves deriving relative posibns from
local communication. Well-known techniques such as trilatration
and multilateration exist to locate a single node although sch
methods are not designed to locate entire teams. The techniq
of Multidimensional Scaling (MDS), however, allow us to find
the relative coordinates of entire teams starting from the kowl-
edge of the inter-node distances. However, like every relize-
localization technique, it suffers from geometrical ambigities
including rotation, translation, and flip. In this work, we a ddress
such ambiguities by exploiting the node velocities to cortate
the relative maps at two consecutive instants. In particulg we
introduce a new version of MDS, called enhanced Multidimen-
sional Scaling (eMDS), which is able to handle these types of
ambiguities. The effectiveness of our localization techque is then
validated by a set of simulation experiments and our resultsare
compared against existing approaches.

I. INTRODUCTION

A. Contributions and summary

This work proposes a new implementation of MDS, namely
enhanced Multidimensional Scaling (eMDS), which coredat
the node-distances information at two consecutive timeins
with their velocities to solve all the geometric ambigustie
caused by inter-node relative distances. On one hand, the
proposed approach inherits from MDS the advantage of es-
timating the coordinates of all nodes jointly, even for karg
teams of nodes. On the other hand, it overcomes MDS limita-
tions by correlating the relative maps at consecutive iista
Furthermore, our eMDS technique allows a more advanced
coordination, as each node can not only locate the team, bu
can also exploit the knowledge on the nodes velocities to
predict future movements.

The rest of the paper is divided into five sections. Section Il
analyzes the state of the art, describing the existing isnisito
the problem. Section IIl reviews the MDS technique, focgsin
on the ambiguities introduced by the original method. Secti
IV describes the localization system we consider, and the
eMDS technique is proposed and formalized in more detail. In

Teams of mobile robots are used to carry out a varietysection V, we carry out a quantitative evaluation of the algo

of tasks, such as surveillance, monitoring, explorati@arsh
and rescue, cleaning of hazardous areas, and transportatio

representative example is given by localization systenas th

rithm in presence of noisy measurements. Finally, Sectibn V
draws conclusions and outlines future work.

are used to track and support human workers operating in

dangerous areas [1].

To be able to coordinate effectively between member
of the team, it is necessary to exchange information abo
the environment so that each node can locate the enti
team and perform the assigned activities properly. In som

situations, it may be possible figure out the absolute poysti
by exploiting an infrastructure that already exists (e.fph@l

Il. RELATED WORK

Relative localization is an important issue in many fields.
everal wireless communication techniques have beenadili

49 address the problem of locating nodes within a relative

goordinate system [4]. Many approaches present in litezatu
are based on the Simultaneous Localization and Mapping
(SLAM) [5] that constructs the map and the nodes positions

Positioning System (GPS)) or one that has potential higigt the same time. However, these solutions are composed o
costs but that can be designed from scratch. Moreover, thidumerous steps and typically require multiple sensors and &
option may not be viable in emergency situations. UsingllocaSignificant amount of computation to improve the quality of

communication to calculate the inter-node distances aed th localization. The other main family includes the algoritim
creating a relative map of the team is a common solutioffhat acquire the positions of the nodes starting from intze

when absolute localization is not feasible. There are otledir
known techniques including trilateration and multilatera ,

but these only permit us to locate single nodes. In recensyea
much attention has been paid to the Multidimensional Sgalin
(MDS) technique [2], which is widely used in various fields fo

scientific visualization and data mining [3] and also usetthin

field of robot localization to find relative maps of the nodes.

distances. An important advantage of the latter solutieriké
possibility it provides to obtain information on distandesm

the communication infrastructure, thus reducing the nefed o
auxiliary sensors. The rest of the paper will be focused on
this last family due to the exposed advantages that make then
suitable for small and low-cost nodes.

Trilateration or multilateration are often used in distanc

MDS is a method that represents measurements of similarityased |ocalization. Nevertheless, relative localizatoiffers

(or dissimilarity) among pairs of objects as distances betw

from ambiguities in terms of translation, rotation, and .flip

points in anN-dimensional space. However, like every relative\yhenever trilateration or multilateration are used, flipbégn-

localization technique, it suffers from geometrical amiitigs

ities also arise during the map construction process, dimee

that make it difficult to correlate the coordinates of the @dd ositions of the nodes are estimated one at a time. Kannan et a
that are calculated at successive time instants. More fépeci [6] have provided a formal geometric analysis of flip ambigui
cally, even with no measurement errors, the original togplo roplems, which are possible sources of computationaliperr

of the network can only be estimated up to an isometrigjon in trilateration-based algorithms. Several authooppsed

transformation (i.e., rotation, translation, and flip).
978-1-4673-7509-2/15/$31.0@2015 European Union

distributed techniques that can solve the problem in the cas
of large (static) wireless networks [7], [8], [9].



However, in several multi-agent applications of mobilerelative coordinates online. Our technique can not onlyidi®
robots, a node is required to locate the position of multiplethe coordinates of the nodes, but also their likely future
team members simultaneously. This can be achieved effinovements, providing more information to any coordination
ciently by the MDS [10], a general approach for exploiting algorithm.
similarities in data to assign a location to each item in an
N-dimensional space. In the context of robot localization,

MDS is used to acquire the coordinates of a group of nodes. m

This is achieved by minimizing the mismatch between a set ’

of pairwise-estimated inter-node distances and the distan

corresponding to the unknown coordinates. Remarkablikeinl - This section reviews the MDS algorithm, with close at-

trilateration and multilateration, MDS-based techniqus tention paid to the issues related to its use in the context of

not suffer from the problem of flip ambiguities during the (g|ative localization.

map construction process, since they are able to find all the

coordinates consecutively. The algorithm takes pairwise (dis)similarities (e.g., Eu-
Many variants of MDS have been introduced in the Iiter-CIIdean distances) as input data, grouped in a distance (or

ature (see [10] and references therein). Among these \twiand|33|m|lar|ty) matrix D and returns a set of estimated co-

THE MDS ALGORITHM AND ITS AMBIGUITY
PROBLEM

classical MDS constructs the relative map of the nodes using'dinates X = [#1,...,7,], as shown in Figure 1. More
the eigenvectors corresponding to the largest eigenvalues
of the dissimilarity matrix, while non-classical MDS retor D e

to an iterative method that minimizes a stress functionhin t
latter category, weighting schemes have also been proposed
to increase the robustness of the minimization procedure in
case of missing information [11]. Efatmaneshnik et al. [12]
proposed a modified version of MDS targeting VehicularFig. 1. The Multidimensional Scaling algorithm.

Adhoc NETworks (VANETS) where nodes can be equippedspecifically, givenn nodes in anN-dimensional space and
with GPS, which provides a priori information to be fused {he estimated pairwise distanagg, MDS estimates the nodes
with short-range measurements. coordinatesz; for all nodes minimizing the mismatch between

All of the techniques mentioned above either require thehe estimated distances; and the distancef; — 7;||. The
use of a fixed infrastructure (e.g., GPS or anchors), or suffenismatchSy,ps is calledstress function
the problem of correlating the maps produced consecutively

MDS

In the literature, the problem of correlating the inforroati "z ~

of two consecutive outputs of MDS has been widely studied: Sups(Z1, ..., &n) = Z Z[”fi — 7| — dij]* 1)
Ambrosi and Hansohm [13] described a dynamic Multidimen- i=1 j=1

sional Scaling (dMDS) method that makes use of a super- J#i

dissimilarity matrix that includes information regardirig

instants. However, in the context of localization, thigteique . .

cannot be applied at all due to cross-time inter-node digtan  However, since only pairs of range measurements are used
information not being available. A different approach can b the relative mapX produced by MDS represents the correct
taken with dMDS, by simply carrying out an MDS analysis for Positions of the nodes up to translation, rotation, and flip.
each time period separately, and then matching the regultifFigures 2 and 3 illustrate an example that shows the real
configurations using a Procrustes analysis [10]. Howewath b Positions of the nodes in a bidimensional space (a) and the
methods only aim to plot the data together without any stric€orresponding MDS output (b) at two successive instaatsd
physical correlations. Cabero et al. [14] used dMDS for rdo ¢’ With no error in the distance measurements. In both cases,
people tracking. However, they also make use of a large nunfs expected, MDS estimates the correct relative coordinate
ber of anchors which means that the problems of flip, rotationup to translation, rotation, and flip, since there are norsrro
and translation become irrelevant. Other works tried toromp ~ However, since at every MDS instance the resulting map is
MDS localization by exploiting inertial measurements [15] affected by different ambiguities, it is difficult to i) agpany

but only mitigating the inconsistencies induced by the MDSfiltering to the MDS output if nodes are moving, since this
algorithm. would require a characterization of the noise and the knowl-

] ] edge of the node dynamic; ii) understand where the nodes

To our knowledge, only two works in the literature addressare moving or heading; iii) apply information on the abselut
the problem of mobile robot localization without anchors. orientation (given by the compass) directly on the MDS otitpu
Oliveira and Almeida [16] in particular proposed a techmiqu |n [16], confidence values are obtained between time instant
that gives confidence values to position estimates obtaiyed using distance information only, while in [17] a solution is
MDS at successive instants. Instead, Beck and Baxley [17froposed that exploits dMDS to correlate information geetie
proposed an anchor-free node tracking technique that usegconsecutive instants. However, both approaches arebtey
dMDS and odometry. They successfully locate the nodes ab solve the first of the requirements mentioned above.
several instants, but the drawback of this approach is that
the computational complexity proportionally grows witheth In this work, we propose a modified version of MDS
number of nodes and instants, making it unsuitable for enlinthat not only provides a correct correlation between time
localization. This work proposes an improved implementati instants, but also inform us of nodes’ direction of traved @n
of MDS, called eMDS, where the nodes velocities are usegbrediction of their likely future movements. Since we only
to solve the ambiguities generated by two consecutive MDSieed the distance information at the previous and current
outputs. Unlike in [17], the computational complexity ofth instants, the algorithm is well-suited for online locatipa
algorithm only depends on the number of nodes, and producesith fast dynamics.
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Fig. 3. (a) Real positions of the nodes at the successivarinst, with
incoming dashed lines representing the traveled distgib3eCorresponding
MDS output at instant’. The topology of the network is completely unrelated
to the previous MDS output.

Fig. 2. (a) Real positions of four nodes at instantvith outgoing arrows
representing the speed vectors of the nodes. (b) MDS outpime instantt.
The topology of the network is preserved up to an isometangoformation.

A. MDS with limited range and communication errors Kalman filters. Section IV-C presents the Kalman Filter used
_ ) o ~ in this work together with its implementation details.
The MDS algorithm requires a symmetric distance Matrix
D as input. However, since distances estimated by RF signals
are subject to errors, the measured distadge may be IV. PROPOSED APPROACH
different fromd;;, leading to a non-symmetrical matrix. In this ) ) L
case,D must be converted into a symmetrical form. Possible !N this section the system description is presented along
solutions which are commonly adopted in the literature Eir] with the complete formulation of our improved eMDS tech-

to calculate the mean value df; andd;;, or to simply select nique.

one of the two as a unique value. If instead a reliability vagig

is associated to each distance information (e.g. an irmlicdt o

the link quality), another possible solution could be toesel A. System description

that which has the highest weight. Moreover, due to limited In this work, we consider a system composed:afiobile

range, it may happen that not all pairwise distances are know . o ; k
However, a fully connected matrix is required as an input tohodes in a two-dimensional space that communicate througk

MDS. Several techniques have been proposed in the literatuf* ra((jjl_o channellan? form fuII)(/j conlnecteclj ne_tvvork.h'lt;ge real
to overcome this issue. For instance, it is possible to etxible coordinates, real ve ocmeg, an (rjeg acce ergt;cl).nsm es
network topology to obtain the missing distances [19], & us at every time instant are denoted b,V and A:

a modified version of MDS for partially connected matrices -

[20] Tt 171,t 51,t

' Tt Ut ot

In this work, we over-approximate the missing distances XO)=| . [,Vve=|. [A0=] .. @
between pairs of nodes and j by adding the distances i , 7 \ .,

along the shortest path composed of intermediate nodes, as
previously done in [18]. The shortest path can be calculated
by Dijkstra or Floyd-Warshall algorithm [19], and then MDS  Each node is equipped with a radio system that is al-
can be regularly applied. This technique provides a validowed to estimate the inter-node distances (e.g., Received
approximation of the missing values, since the distance beSignaI Strength Indicator (RSSI), Time of Flight (ToF), talt
tween two disconnected nodes is shorter or equal than th@ideBand (UWB)) and that can estimate its velocity with
distance between the sum of the nodes that indirectly cdnnegedicated sensors (e.g., Inertial Measurement Unit (IMU),
them (e.9.dis < diz + d3). Although pessimistic, this compass, optical flow smart camera, odometry) that are se-
approximation is acceptable in our localization systemeai  |ected according to the specific needs of the applicatiornEv
for the purpose of team localization, an imprecise estomati node shares its information with the entire team through a
of the positions of distant nodes can be tolerated from timerpmA-like communication protocol, and internally estireat

to time. Additionally, some packets may be lost during localthe distance traveled since the previous transmission ratsse
communication. In particular, it/;; is not available due to enough information to reconstruct it in the receiving nottee
packet loss, such distance information can be replaca@iby selection of the transmitted data and the estimation apbroa.
if available. An alternative, also implemented in this ‘work both depends on the nodes’ dynamic and on the specific

is to predict unavailable measurements with some filteringvailable sensors. In our scenario we assume a slow chang
techniques. This filter may also allow reducing fluctuationsin the speed between two consecutive transmissions, thulis ea

due to inaccuracy of sensor measurements (e.g. RSSI). Tewde obtains all the new inter-node distances and the dstima
address these problems, bayesian filters [21] are widelgt usevelocities at every TDMA round, storing this informationan
in literature. Amongst the most used include particle fiitend  distance matrixD and a velocity vecto#/:
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According to this discrete time model, the velocity of each

node is assumed to be constant over each TDMA round. Then, since the speed estimation is affected by a non-zerc
errore,, it is necessary to reformulate the linear constraints as

Figure 4 clarifies the structure of the entire system: at timgnequalities, i.e. |AX = b| < €,. Hence, in the general case
t, each node computes the relative mat) using eMDS, the constraints in Equation (3) become
which will be described in detail in Section I1V-B, and the

result is filtered with a Kalman Filter (KF). The output of the AX <b-+e,
KF, denoted asX (¢), is then used as a feedback to reduce the —AX < —b+ e,
ambiguities. -
The stress functiort is coercive (i.e.,S(X) — +oo as
v R B [| X|| = +00), but not convex. Hence it is guaranteed to have
. X X a global minimum, but may present multiple local minima.
D eMDS KF An accurate choice of the starting point for the minimizatio
could lead to the discovery of the global minimum. To help
avoid local minima, most implementations of MDS attempt

multiple random initial configurations. In this work, inatk
Fig. 4. Model of the proposed relative localization system. of using random initial points, we exploit the positions and
velocities estimated at the previous instant. In particutze
B. The enhanced Multidimensional Scalin starting pointX, used in the minimization is set as follows:

' 9 the firstn variables are set as equal to the vector of coordinates
A different version of the MDS, denoted as eMDS, is X (¢) obtained at the previous step, and the lastre set
proposed to solve the problem of correlating two MDS outputsas X (t) + V' At. With zero-noise in the measurements, the

at consecutive instants. MDS, as shown before, performs @MDS finds the global minimum in few algorithm iterations.
non-linear unconstrained optimization where coordinates  After finding the global minimum for the first time, it will
are evaluated starting from a distance matrix. We proposgontinue to find all the future global minima. However, there
to reformulate such optimization as a non-linear const@in is a particular case where not all ambiguities can be solved,
problem with 2n variables. The stress function considersthe case where the nodes move at the same constant speed a
the mismatch between estimated and real distances at twgith the same orientation. When dMDS is used (e.g., in [17]),
consecutive instants, while the constraints are used telete  this configuration cannot be distinguished from the caseravhe
real positions relying on the knowledge of the node velesiti  all the nodes are moving back and forth, since dMDS does
The formulation of eMDS as optimization problem is then: N0t account for the node orientation but only for the diseanc
traveled. Instead, with our approach the problem appears,
unless the nodes start moving in this particular configarati
In the latter case, the algorithm can solve ambiguities up to

min - S@et o Tty Lo Tnt) a flip (with respect to the speed direction), which cannot be
. - . disambiguated until one of the nodes changes its direction.
Tit=T1p—1 + V11 At
) Tot = Top—1 + Va1 - Al o _ _
subject to arm 1 2t . (3 C. Filtering the eMDS with a Kalman Filter
Tnt = Tnt—1+ Tnp—1- At In the presence of noisy distance estimates, the eMDS
minimization procedure may find some local minima corre-
where S is the stress function, defined for> 0 as: sponding to a flipped configuration with respect to the real
n o n one. This effect is not caused by the algorithm itself, as in
S = Z Z[(Hfat — T4l — diju)*+ :Ee caﬁe Otf téled.o?glnal I\{lhD? Ratr;er,dlttls the mtach:[utracyI of
== 4) e estimated distances that may lead to an output topology
i that are compatible with the erroneous estimated distanges
(11 . a 2 not with those that are accurate. These flipped configurmation
+ (IZe-1 = e || = dije-1)7]- can easily be filtered by implementing a filter for each node.

The state equation of each Kalman Filter, used in this work,

The linear equality constraints in Equation (3) can beiS defined as follows:

rewritten in matrix form asAX = b, where:

s_]-At s—1 At? 1 S.
Pep e e

(e s}

00 ... 1 0 0 .. -1 P=[% 7], (6)



whereas the state vectéris defined in Equation (6) ang® is

the Gaussian noise of the state at instanfhe measurement ‘ ‘ R ‘ T
equation is defined as: s SRR R t i 1
Y = P%+v°, (7 é 6 . -
. i . £ i + - ‘
wherev® is the Gaussian noise of the measurement. sl " + R S S
£ + + i o
V. SIMULATION RESULTS 8 at cek 1 % o
S I !
This section presents a simulation study carried out to tes 3 5| i ¥ E .
and validate the localization system proposed in this pape ° % % C B
In the following experiments, we aim to evaluate the impact 5 2+ S ‘ ‘
of the measurement noise on the performance of eMDS an 2 |4 Q E E o L
its effectiveness in solving geometrical ambiguities. We a 1F % Q I R
not interested in studying the robustness of the approac i T
with respect to the underlying communication protocol (e.g O 7 os o8 1 12 14 15 18 o
communication delay, packet losses, hidden nodes), whic UWB 1op  Cal(meters) RSS|

can be addressed using techniques similar to those prdsent

in Section IlI-A. Thus, we could assume without loss of
generality that the simulations occur under the hypothekis Fig. 5.
ideal communication, i.e., the network is fully connected a

there are no packet losses.

A. Simulation Setup

Our methodology has been tested through a set of sim-
ulation experiments conducted in MATLAB. In order to
perform a simulation of our proposed approach on realistic
data, we model our sensor measurements using real values
estimated with specific technologies; in particular we @bers
as a reference platform a small low-cost wheel robot equippe 0 ‘ ‘ ‘ ‘
with encoders and a compass that communicates using a 0 20 40 60 80 100
2.4GHz transceiver capable of performing ToF measurements Time (seconds)

The range measur.emen.ts used in our simulations are pedt_ur_b% . 6.  Convergence of eMDS. The dash-dot lines representtandard
by a gaussian noise with zero mean and standard deviatiQfviation, while the dashed line represents the mean error.

o4 = 0.6 m. Table | summarized the typical values @f for

different wireless technologies.

Normalized position error

extend to the most extreme data points that are not considere
uws ToF RSSI outliers, and outliers are plotted individually as red nsark
ou 02m 0.6m om this experiment, we have simulated a team of 6 nodes, and the
parametetry has been varied from 0 to 2 m at steps of 0.2. For
each step, we have run eMDS for 200 time instants in order to
characterize the behavior of the algorithm in detail. Thage
clearly demonstrates that the mean error increases almos
Furthermore, we have considered an error on the velocitjinearly depending omr,, and the average values are always
measurements that is consistent with a generic encoderdwheeelow 3.5 m even for high values of;. Most of the outliers
i.e., a few centimeters per meter. We have modeled the efror in Figure 5 are due to an initial settling time needed to reach
the speed estimates accordingly as a gaussian noise with zeéhe mean error, during which eMDS may be stuck in some
mean and standard deviatiop = 0.05 m/s. The orientation of local minima. Thanks to the accurate selection of the sigrti
the velocity vector is given by a compass with an error belowpoint for the minimization procedure which was previously
one degree, hence in this setup the orientation has a nagligi discussed in Section IV-B, the algorithm then convergessto i
error. The initial positions of the nodes are randomly gatest  steady state. In order to evaluate the convergence time, we
in a 15 m by 15 m arena. At each time instant, the module ohormalized all the data collected in the previous experimen
the speed is randomly varied, and the orientation of eaclke nodwith respect to their mean error. Figure 6 shows that in this

TABLE I. TYPICAL VALUES FOR THE STANDARD DEVIATION o4 OF
RANGE MEASUREMENTS WITH DIFFERENT TECHNOLOGIES

is increased by an angle selected in the intefvat/2, 7/2]. case the algorithm takes 9 seconds to converge within the
tolerance region which is fixed to the standard deviatioteAf
B. Experimental Results reaching the steady state, subsequent local minima anedilte

i . . . . out by the KF.
The first simulation experiment aims to demonstrate how

the error of the estimate varies depending @n Figure 5 We have also observed the confidence of the measurements
reports the obtained results and shows that our methodwesshie calculating the percentage of estimated positions coedain

a highly decent performance even when there are significariside different scales of the covariance ellipse. In Fégidr
errors. We calculate the error of the estimate as the difftsse we report a snapshot of an experiment where all the nodes
between the estimated positions and the real ones. In there inside the 3-standard deviation ellipse, and their majo
box plot, the central mark indicates the median, the edges dfy lies inside the 1-standard deviation ellipse, reveagplihe

the box indicate the 25 and 753" percentiles, the whiskers great accuracy of the predicted positions. In this paricul
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Fig. 8. Snapshot of the simulation field for 10 instants, wfite nodes,  Then, the increase of the team size has a beneficial effebeon t
ou = 0.05 m/s, At = 1 s and two different values of,. The full lines  mean error, since the algorithm can exploit more infornmatio
epresent e paih of e nodes h dotd Ino i croskers ndcate Ue 1o consiruct the relative: map. However, this posiive trend
represent the position estimates with = 0.6 m. To make a comparison, all Continues only up to a certain value dft (between 1 and
the trajectories of the nodes are translated with respetite@aeal positons 3 seconds in our case). In fact, from that point on, the
of Node 1. communication latency is the prevailing effect, progreslsi
leading to a slight error increase. From this experiment we
) can conclude that the increase of the team size and the time
experiment, we have set = 6, o4 = 0.6 m, 0, = 0.05  step are two conflicting effects balancing each other, ard th
m/s, andAt = 1 s. Another snapshot, reported in Figure 8, best performance can be obtained as a trade-off betwees thes
illustrates the accuracy of the node estimates with resjgect two quantities. The dotted white line in Figure 9 represents
the real paths followed by the nodes. Our proposed method particular experiment, the results of which are illustdat
allows achieving a correct correlation across differemeti in Figure 10. In this case)t is computed a$.2n seconds,
instants, and nullifies all geometric ambiguities introgldiby  resembling the TDMA communication round. As expected, as
the original MDS algorithm. the number of nodes increases(and, accordinty, the error

. . starts decreasing. After = 9, the communication delay leads
We have also conducted an extensive experiment to evalys an error increase, due to the combination of the above-

ate the error on the position estimates depending on the @umb,antioned effects

of nodesn and time stepA¢. For this experiment, we have set '

ocq = 2 m ando, = 0.05 m/s, and the number of nodes has Finally, we compared our results with existing solutions.
been varied between 3 and 11. Again, the simulation has beddliveira and Almeida [16] reach a mean ergoin the position
performed for 200 instants for each valueof The results estimates equal td.3 m starting from a standard deviation
are reported in Figure 9, where we observe that, the nodim the measurement noise; = 0.6 m and 99% of the
movement is comparable with,; for low values of A¢ (i.e., errors are undef m. With the same measurement noise, our
in the range 0-1 seconds),meaning that it is not possible talgorithm achieves the same mean error but 3b& of the
distinguish the node movement from the measurement noiserrors are below2.65 m. Beck and Baxley [17] solve the



ambiguity problem with the dMDS technique, which takes a
super-distance matrix of sizex k, wheren is the number of
nodes andk is the number of time instants that we want to
correlate, as input. Their algorithm has a number of vagisbl
equal to the size of the matrix, with an overall complexity of
O(k*n?). Instead, our proposed technique correlates only twol[2]
time instants, hence the number of variables in the optitioiza
problem is2n. The overall complexity of eMDS i£)(n?),

since the stress function in Equation (4) is expressed addl
a double sum oven. The authors of [17] show that the
position error tends to increase withand to decrease with

n. Compared to their work, the complexity of our approach [4]
only depends on the number of nodes, and the mean error
is not affected by the time step, since only two time instants
are considered at each execution. A direct comparison withl5]
their simulation results reveals that, withy = 0.1 m and

o, = 0.01 m/s, our mean errop(= 0.427 m) is equal to their

best case (reached fér= 2), and always lower in all other (6l
cases. Moreover, a notable advantage of our method is that it
is able to produce the relative coordinates online instefad o [7;
calculating the entire paths offline.

VI.

This paper presented a novel approach for relative lo-
calization, called eMDS, which solves all the geometrical
ambiguities introduced by the original MDS algorithm. In
particular, MDS has been reformulated as a constrained nonf9]
linear optimization problem to provide correct correlatio
between relative maps at consecutive instants. The error of
the position estimates has been calculated as a function
the measurement error, and the proposed method achievéd!
high quality performance in all of the tested configurations
In addition, our algorithm has been compared to currenéstat
of-the-art techniques, and has been shown to outperform,the 1]
both in terms of complexity and error in the position esti@sat
As a notable aspect, the proposed technique overcomes some
important limitations of current state-of-the-art teajues.
Firstly, it is suitable for online team localization and da®ot
require any fixed infrastructure, unlike most existing nalap-
proaches which require the use of anchors to localize thetrob
paths. Secondly, the coherence across time instants pvidj;4
us with the opportunity to predict likely future movements,
exploiting the knowledge on the node velocities. In the fetu
our work will be extended in multiple directions. First, we
plan to test eMDS in a real environment with a team of[15]
mobile robots. Real experiments will validate our algaritn
terms of computational requirements, convergence timd, an
communication delays. Moreover, the Kalman filter is not thej;¢
most suitable bayesian filter, due to its sensitivity withanels
to noise statistics. A more efficient technique that we would
like to explore is the Daum Huang filter, correlating it with [17]
the node dynamics. It would also be interesting to further
extend eMDS to be applied in a tridimensional space. However
moving beyond bidimensional into tridimensional spacd wil [18]
most likely require more information (e.g., the height oé th
nodes from the ground) and more constraints, in order tcesolv[lg]
all the ambiguities that may arise. Finally, we plan to ingu
acceleration to track nodes with fast dynamics, which canno
be modeled by assuming constant speed between consecutjzej
position estimates.
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