

 978-1-4244-3304-9/09/$25.00 ©2009 IEEE

Model based Real-Time networked

applications for Wireless Sensor Networks

Christian Nastasi∗, Paolo Pagano∗, Mauro Marinoni∗, Giuseppe Lipari∗, Francesco Focacci,†

Paolo Gai†, Simone Mannori‡ and Roberto Bucher§
∗ReTiS lab, Scuola Superiore Sant’Anna, 56127 Pisa (I)

†Evidence s.r.l., Via Carducci 64/A, 56010 S. Giuliano Terme (I)
‡The Scilab Consortium (DIGITEO), INRIA Roquencourt, 78153 Le Chesnay Cedex (F)

§DTI, Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), 6928 Manno (CH)

Abstract—In industrial contexts it might be useful
to deploy Wireless Sensor Networks to constantly
monitor the status of a plant. At early design stage of
any monitoring application, it is envisaged to reinforce
real-time paradigms both for task execution and node-
to-node communication.

Model driven applications are usually seamless
provided the system description is complete and
robust, and the code generation (platform specific)
appropriately complies with the model.

We present a demo where acceleration measure-
ments gathered by sensor nodes are conveyed to
a fixed location devoted to surveillance. A higher
level control system or an operator can take action
whenever these readings deviate from the expected
behavior.

We follow a model-based implementation of the
system exploiting the Scilab / Scicos support for the
ERIKA Enterprise real-time kernel. Timeliness at the
node level is reinforced by the features of the kernel
scheduler; moreover the recent implementation of
the IEEE 802.15.4 wireless communication standard
permits time bounded communications among the
nodes 1.

I. INTRODUCTION

Model-based design refers to a general frame-

work for the development of complex embedded

systems in which mathematical models are used

for representing the HW/SW system and its func-

tions. The most popular modeling paradigm for

the representation of embedded (control) functions

is today the synchronous reactive model of Mat-

lab/Simulink by Mathworks and its open source

matching project Scilab/Scicos [1]. The behavior of

the modeled system can be simulated or properties

can be inferred/verified on the model before any

physical prototype and/or code is obtained, there-

fore shortening the duration and cost of the changes

that are required for bug fixing if compared with

the traditional cycle in which defects are detected

late, during the testing stage. Of course, to retain

the advantage of early modeling, simulation and

1This work has been partially funded by the Italian MUR ART-DECO

project (FIRB/ RBNE05C3AH) and ARTIST2/ARTISTDesign NoE.

verification, it is essential that the system imple-

mentation is derived automatically from the model,

using automatic code generators or any other type

of synthesis tools.

Among the few existing real-time kernels ported

to popular Wireless Sensor Networks platforms,

ERIKA Enterprise [2] supports code generation

from Scilab/Scicos projects and implements the

Scicos blocks adopting a real-time profile. More-

over ERIKA supports the real-time communica-

tion paradigms standardized in the IEEE 802.15.4

suite of protocols for wireless communications in

sensor networks. Namely contention free access is

guaranteed (upon request) to wireless devices in

time bounded intervals known as Guaranteed Time

Slots (GTS). The GTS support permits to allocate

the available bandwidth following a priority driven

paradigm and guaranteeing the service time asso-

ciated to network activities. Modeling the commu-

nication services provided by the ERIKA network

stack in native Scicos blocks permits testing and

validation of networked applications and eases the

model driven implementation of actual code.

In this paper we propose a demonstrative appli-

cation where four FLEX demo-boards [3] (three

devices and a sink) build up a single-clustered star-

shaped sensor network. We show how real-time

transmission of data packets is guaranteed by the

ERIKA wireless stack and how this guarantee is

resilient to concurrent best-effort periodic trans-

missions generated by other devices. The demo

stands for a class of applications to be deployed in

pervasive contexts where the coexistence of best-

effort and real-time traffic fluxes is realistic. An

example might be that of combining monitoring

activities (real-time) with self-diagnostic and data

logging (best effort) ones.

In Section 2 we present our modeling framework

(kernel, wireless network stack, Scilab/Scicos inte-

gration); in Section 3 we describe the networked

application we propose for demonstration.

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on May 04,2010 at 14:37:15 UTC from IEEE Xplore. Restrictions apply.

II. A MODELING FRAMEWORK

A. ERIKA kernel

ERIKA is an open-source (GPL2 with linking ex-

ception) multi-processor real-time operating system

(RTOS) kernel, implementing a collection of Ap-

plication Programming Interfaces similar to those

of OSEK/VDX standard for automotive embedded

controllers. ERIKA is available for several hard-

ware platforms and introduces innovative concepts,

real-time mechanisms and programming features to

support and exploit the microcontrollers and multi-

core systems-on-a-chip.

The main ERIKA features, related to the multi-

programming support, are: task scheduling accord-

ing to fixed and dynamic priorities; interrupt han-

dling for urgent peripherals operation (interrupts

always preempt task execution); resource sharing

with Immediate Priority Ceiling protocol.

B. The IEEE 802.15.4 compliant stack

The implementation of the IEEE 802.15.4 proto-

cols over ERIKA is organized in a layered architec-

ture, see Fig. 1. The overall software architecture

fulfills to disentangle the hardware specific con-

structs from functionalities provided by the MAC

and kernel layers. More specifically this stack has

been coded for the dsPIC R©platform over the FLEX

[3] boards equipped with CC2420 radio transceiver.

Fig. 1. Layered Architecture

We implemented the MAC functionalities fol-

lowing a priority driven paradigm having mapped

services to real-time tasks and adopting Fixed

Priority as scheduling policy. A set of priority

levels have been reserved to the MAC layer in

order to protect the stack execution pattern from

user tasks and to guarantee the time accuracy

for critical services (like beacon transmission, slot

synchronization, GTSs, etc.). Detailed description

of the performances attained by ERIKA Enterprise

+ Open-ZB are given in [4].

C. System Modeling in Scilab/Scicos

Scilab is an interactive user-friendly environment

for numerical computation, available for different

platforms (Windows, Linux and Mac OSX). It

contains a rich set of primitives that allow to

build complex numerical simulation using high-

level instructions.

Scicos is the built-in block-based dynamical sim-

ulator of Scilab. It allows the simulation of hybrid

systems, continuous and discrete explicit blocks. It

uses the classical “block” representation familiar to

control systems engineers. Two functions are asso-

ciated to each block: the interfacing function, writ-

ten in Scilab language, handle the “look” (graphical

aspect) and “feel” (editing of block’s internal pa-

rameters); the computational (simulation) function,

usually written in C, is pre-compiled and stored in

a library used by the Scicos simulation engine.

Both Scilab and Scicos are open-source projects

distributed under GPL2.

The Scicos Code Generator: The Scilab/Scicos

framework provides a code generator which is

capable to produce a completely stand-alone code.

It reuses the same computational functions library,

integrated with additional information, of the Sci-

cos simulation engine. It produces a high-level

code that can be cross-compiled for different archi-

tectures having this further positive consequence:

within some hypothesis, the final target code be-

haves in the same way of the simulation, preserving

the properties previously proved in the original

model.

Integration inside ERIKA: The code generator

for ERIKA has been derived from a previous ver-

sion working with RTAI Linux [5]. In the following

we describe the main issues addressed during the

implementation of the ERIKA version. Since the

RTAI system is not suited for small embedded

microcontrollers, the code generator has been mod-

ified in order to cope with the typical matters of

these kind of platforms, i.e. small footprint and

memory, low computation power, no FPUs and so

on. Moreover the code generation has been adapted

to the timeliness managing of the ERIKA kernel

which is radically different from RTAI.

Finally a set of Scicos blocks, “certified” for both

simulation and code generation, has been developed

to exploit the functionality provided by several

hardware components.

To be more specific, three types of Scicos blocks

have been developed: the first one to interact with

the on-chip features of the microcontroller (A/D

converters, General purpose I/O, quadrature en-

coders, etc.); the second one to access external

devices (motor control, sensor reading, etc.); the

third group for communication purposes (wireless

networking, USB, etc.).

In the latter case the block can be seen as

an entry point to an underlying complex commu-

nication subsystem handled by ERIKA that may

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on May 04,2010 at 14:37:15 UTC from IEEE Xplore. Restrictions apply.

require some time constraints related to the specific

protocol. For instance, the IEEE 802.15.4 stack,

in beacon enabled slotted mode, requires some

timely activities like management of beacons, time

slots, idle periods, GTS, and so on. To let the

actual code behaves like the simulation, it might be

required to decouple the time constraints used by

the communication blocks from those used by the

communication subsystems. This is automatically

solved by a wise usage of the RTOS features, like

those present in the ERIKA kernel, during the code

generation process.

III. APPLICATION SETUP

The components of the setup, shown in Figure 2,

are: three End-Devices (EDs), a disturbing wireless

node, a Coordinator and a Remote Collector. The

End−Device 3

End−Device 2

End−Device 1

Coordinator
USB

IE
E
E
 802.15.4

Disturbing node

Remote Collector

!!
!!
!!
!!

Fig. 2. Hardware Setup.

EDs and the disturbing node are connected to

the Coordinator through a 2.4 GHz channel mak-

ing use of the Texas Instruments R©CC2420 radio

transceiver; the Coordinator communicates with the

Remote Collector via an USB link.

An End-Device is a FLEX demo-board that ac-

quires data from a three-axis accelerometer, thus

sends them to the Coordinator by means of a

wireless protocol compliant to the IEEE 802.15.4

standard. More specifically, the network is config-

ured to work in the slotted mode with the GTS

mechanism enabled. In order to enable a real-

time data exchanging the End-Devices communi-

cate with guaranteed time slots that are formerly

allocated by the Coordinator at system start-up. The

sensor readings are encapsulated in data frames

and then sent to the the Coordinator using the

previously allocated GTS.

The Coordinator is a FLEX demo-board and

is the access point between the wireless network

and the Remote Collector. Its role is that of an

IEEE 802.15.4 PAN coordinator, responsible to

send beacons, associate End-Devices, allocate GTS,

and so on. Its main function is to collect all the

sensor readings sent by the End-Devices. From the

Remote Collector point of view the Coordinator is

an USB compliant device that periodically transfers

the aggregated information.

The Remote Collector is a PC which is in charge

of retrieving the accelerometers values from the

WSN and plotting them, at run-time, in the Scicos

scope. A snapshot of this component is shown in

Figure 3.

Fig. 3. Snapshot of the Remote Collector.

Finally in the application we include a further

node programmed to send dummy packets using

the slotted CSMA/CA mechanism of the IEEE

802.15.4 standard. In the demonstration we show

that using the reserved bandwidth provided by the

GTSs the disturbing CSMA/CA traffic does not

interfere with the guaranteed one, allowing for a

real-time processing of the sensor readings.

The whole system is derived from full cus-

tomized Scicos blocks diagrams. The firmware for

the FLEX demo-boards (EDs, Coordinator, dis-

turbing node) is automatically generated by the

Scicos code generator, while the Remote Collector

is executed in the Scilab/Scicos environment.

ACKNOWLEDGMENT

The authors would like to thank Prof. Marco

Di Natale for his exceptional expertise and kind

support in model driven applications.

REFERENCES

[1] “Scilab. A Free Scientific Software Package. ,” Available:
http://www.scilab.org.

[2] “E.R.I.K.A.” http://erika.sssup.it/.
[3] “The Flex board,” http://www.evidence.eu.com/.
[4] P.Pagano et al., “ERIKA and Open-ZB: an implementation

for real-time wireless networking,” in To appear in the

Proceedings of the 2009 ACM Symposium on Applied

Computing (SAC), Honolulu, Hawaii, USA, March 8 - 12,

2009. Poster Session. ACM, 2009.
[5] R. Bucher and S. Balemi, “Scilab/scicos and linux rtai - a

unified approach,” Control Applications, 2005. CCA 2005.

Proceedings of 2005 IEEE Conference on, pp. 1121–1126,
Aug. 2005.

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on May 04,2010 at 14:37:15 UTC from IEEE Xplore. Restrictions apply.

