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Abstract

Applying classical dynamic voltage scaling (DVS)
techniques to real-time systems running on processors
with discrete voltage/frequency modes causes a waste of
computational resources. In fact, whenever the ideal
speed level computed by the DVS algorithm is not avail-
able in the system, to guarantee the feasibility of the task
set, the processor speed must be set to the nearest level
greater than the optimal one, thus underutilizing the sys-
tem. Whenever the task set allows a certain degree of
flexibility in specifying timing constraints, rate adaptation
techniques can be adopted to balance performance (which
is a function of task rates) vs. energy consumption (which
is a function of the processor speed).

In this paper, we propose a new method that combines
discrete DVS management with elastic scheduling to fully
exploit the available computational resources. Depending
on the application requirements, the algorithm can be set
to improve performance or reduce energy consumption, so
enhancing the flexibility of the system. A reclaiming mech-
anism is also used to take advantage of early completions.

1 Introduction

In battery powered real-time systems, reducing energy

consumption through Dynamic Voltage Scaling (DVS)

techniques may create overload conditions that can jeop-

ardize the schedulability of the task set. Hence, the is-

sue of reducing energy consumption must be considered

in conjunction with the one of meeting timing constraints.

Moreover, in current processors, the voltage level can-

not be varied continuously, but only a limited number of

voltage/frequency operating modes are usually available,

causing the processor to run at a speed selectable within

a discrete range. In this conditions, the speed selected by

the power manager will likely be different than the ideal

one that could minimize some cost function, thus either

timing constraints are not met or energy is not minimized.

∗This work has been partially supported by the Italian Ministry of

University Research under contract 2004095094 (COFIN04).

The problem of minimizing energy consumption while

guaranteeing real-time constraints has been widely ad-

dressed in the real-time literature. However, most of

the achieved results were derived under simplified system

models, where the processor, for example, can change its

voltage and frequency within a continuous range. Adapt-

ing a continuous model to a discrete DVS system clearly

causes a waste of computational resource, because, in or-

der to guarantee the feasibility of the task set with a single

speed level, the processor must be set to the nearest level

greater than the optimal one [17].

Other authors focused on energy aware scheduling for

specific task models. The most investigated task model

is the periodic one [2, 3, 10, 23], but energy-aware algo-

rithms have also been proposed and analyzed for aperiodic

tasks [21], sporadic tasks [18] and mixed task sets [22].

Recently, some authors proposed solutions for proces-

sors having discrete speed levels. Some works deal with

the problem splitting the task and running each part at a

different frequency [9, 23, 12]. Mejia-Alvarez et al. [16]

proposed an approach where each task is assigned a dif-

ferent frequency; however, the problem is NP-hard, thus it

can be solved on line only by a heuristic algorithm. More

recently, Bini et al. [5] presented a method for approx-

imating any speed level with two given discrete values,

which are properly switched as a pulse width modulation

signal to obtain its average value.

In order to guarantee task timing constraints, most of

the algorithms for hard real-time systems perform the

analysis assuming that each task executes for its worst

case execution times (WCET). This is usually a strong

conservative hypothesis which may cause a waste of com-

putational resources. To exploit the additional slack com-

ing from early completions, some authors [4, 10] proposed

to mix an off-line approach based on WCETs with an on-

line reclaiming method.

In this paper, we present a novel DVS management al-

gorithm that integrates energy-aware with elastic schedul-

ing to cope with processors with a limited number of op-

erating modes. To avoid wasting processing time due

to speed quantization, we consider a more flexible task

model [13], in which tasks can operate within a given

range of periods, with different performance. The al-

gorithm allows the application to select energy-oriented,
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performance-oriented, and user-defined strategies.

An on-line reclaiming mechanism is integrated in the

algorithm to exploit the unused computation time result-

ing from early completions of the jobs. To better consider

the effects of the hardware architecture on task execution

times, we use an enhanced execution time model [19, 13]

that splits the code in two parts: one that varies with speed

and one that is speed independent. This enables a more

precise representation of the application code, allowing

the user to distinguish, for example, between code for pure

computations and code accessing peripheral devices.

The proposed algorithm has been implemented in the

Shark [8] real-time operating system as a new scheduling

module, and experimental results have been derived on an

Athlon64 3000+ processor.

The rest of the paper is organized as follows: Section 2

introduces the models used to describe the execution time

and the energy consumption of a task; Section 3 describes

the integrated DVS-elastic algorithm; Section 5 describes

some experimental results; and Section 6 states our con-

clusions and future work.

2 Models

This section introduces the models adopted in this work

to represent task execution times and power consump-

tion. Moreover, the elastic model is also briefly recalled

for the sake of completeness. To simplify the compar-

ison between processors with different frequency range

[fmin, fmax], all the quantities of interest (power, com-

putation times, etc.) will be expressed as a function of

speed, defined as the normalized frequency s = f/fmax.

Hence, the validity range for the normalized speed is

[smin, smax], where smin = fmin/fmax and smax = 1.

If more voltage levels can be used for a given fre-

quency, the rule adopted in this work is to select the mini-

mum voltage level compatible with the frequency selected

by the algorithm.

2.1 Execution Time Model
Typically, task execution times are considered to be in-

versely proportional to the clock frequency and are mod-

eled as Ci(s) = Cimax/s, where Cimax is the task exe-

cution time at the maximum processor speed. Extensive

experiments on real hardware, however, show that this as-

sumption is not correct. A more accurate model is to split

the execution time in two parts: one dependent on the

CPU frequency, and one independent. While the former

part is due to the code that works with the processor or

with the hardware running at the CPU frequency, the lat-

ter part comes from the code that uses hardware devices

that are not affected by frequency changes. For example,

the video output operates at the frequency of the PCI bus,

so its execution time does not change with the CPU speed.

Let Cimax be the execution time evaluated at the max-

imum processor speed, and let φi be the percentage of

code which deals with the frequency-dependent hardware.

Then, the task execution time can be modeled as

Ci(s) =
φiCimax

s
+ (1 − φi)Cimax . (1)

2.2 Energy Consumption Model
In CMOS integrated circuits, the dominant component

of power consumption is the dynamic power dissipation

due to switching, which is given by P = CeffV 2
ddf where

Ceff is the effective capacity involved in switching, Vdd

is the supply voltage and f is the clock frequency. The

value of the capacity Ceff depends on two factors: the

load capacity C being charged/discharged and the activity

weight α, which is a measure of the actual switching ac-

tivity. Thus, Ceff = αC. Moreover, a voltage reduction

causes an increase of the delays in the gates, according to

the following formula: D = k Vdd

(Vdd−Vt)2
where k is a con-

stant and Vt is the threshold voltage. Observing that the

processor speed is directly proportional to the clock fre-

quency f and inversely proportional to the gate delay, it

turns out that the power consumption of a processor grows

with the cube of its speed. The overall energy consump-

tion of the system, however, also depends on other com-

ponents of lower grade. Martin et al. [14, 15] derived the

following relation to describe the power consumption as a

function of the speed:

P (s) = K3s
3 + K2s

2 + K1s + K0. (2)

The K3 term is a coefficient related to the consumption of

those components that vary both voltage and frequency.

The K1 coefficient is related to the hardware components

that can only vary the clock frequency, whereas K0 rep-

resents the power consumed by the components that are

not affected by the processor speed. Finally, the second

order term (K2) describes the non linearities of DC-DC

regulators in the range of the output voltage.

2.3 Elastic Task Model
In our framework, each task is considered as flexible

as a spring, whose utilization can be modified by chang-

ing its period within a specified range. More specifically,

each task is characterized by four parameters: a worst-

case computation time Ci, which depends on the proces-

sor speed according to equation (1), a minimum period

Timin (considered as a nominal period), a maximum pe-

riod Timax , and an elastic coefficient Ei. The elastic coef-

ficient specifies the flexibility of the task to vary its uti-

lization for adapting the system to a new feasible rate

configuration: the greater Ei, the more elastic the task.

Hence, we consider a set of n elastic tasks, each denoted

by: τi(Ci, Timin , Timax , Ei). In the following, Ti denotes

the actual period of task τi, which is constrained to be in

the range [Timin , Timax ]. Moreover, Uimax = Ci/Timin

and Uimin = Ci/Timax denote the maximum and mini-

mum utilization of τi, whereas Umax =
∑n

i=1 Uimax and

Umin =
∑n

i=1 Uimin denote the maximum and minimum

utilization of the task set.
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Note that both Umax and Umin depend on the pro-

cessor speed, hence any load variation due to a speed

change is always subject to an elastic guarantee and is ac-

cepted only if there exists a feasible schedule in which

all the periods are within their range. In our framework,

tasks are scheduled by the Earliest Deadline First algo-

rithm [11]. Hence, if Umax ≤ 1, all tasks can be created

at the minimum period Timin
, otherwise the elastic algo-

rithm is used to adapt the tasks’ periods to Ti such that∑ Ci

Ti
= Ud ≤ 1, where Ud is some desired utilization

factor. It can easily been shown (see [6] for details) that a

solution can always be found if Umin ≤ Ud.

As shown in [6], if Γf is the set of tasks with maxi-

mum period (i.e., minimum utilization) and Γv is the set

of tasks whose utilization can still be compressed, then to

achieve a desired utilization Ud < Umax each task has to

be compressed up to the following utilization:

∀τi ∈ Γv Ui = Uimax
− (Uvmax

− Ud + Uf )
Ei

Ev
(3)

where

Uvmax =
∑

τi∈Γv

Uimax ; Uf =
∑

τi∈Γf

Uimin ; Ev =
∑

τi∈Γv

Ei.

If there exist tasks for which Ui < Uimin , then the period

of those tasks has to be fixed at its maximum value Timax

(so that Ui = Uimin), sets Γf and Γv must be updated

(hence, Uf and Ev recomputed), and equation (3) applied

again to the tasks in Γv . If there exists a feasible solution,

that is, if Umin ≤ Ud, the iterative process ends when each

value computed by equation (3) is greater than or equal to

its corresponding minimum Uimin .

2.4 Overall task model
To integrate the execution time model with the elastic

one, each task will be denoted as follows:

τi(Cimax , φi, Timin , Timax , Ei)

where the meaning of the parameters has been explained

in the previous sections.

3 Algorithm Description

The algorithm proposed in this paper combines DVS

management with elastic scheduling to enhance perfor-

mance or reduce energy consumption in systems with dis-

crete operating modes. In the following, we assume the

task set is feasible when the processor runs at the maxi-

mum speed and all tasks execute at their maximum period,

that is,

Umin(smax) ≤ Ud (4)

(where Ud ≤ 1), otherwise no feasible solution can be

found and the task set is rejected by the feasibility test.

The Ud parameter allows the user to account for the over-

head introduced by the kernel, which can be measured off

line. A value Ud = 1 should never be used, since other in-

ternal kernel activities (e.g., the interrupt handlers for the

network or other peripheral devices) could create critical

transient overload conditions.

At the application level, the user can choose among

three high level strategies:

• Energy oriented: energy consumption is minimized

by selecting the lowest processor speed se that guar-

antees schedulability with the maximum periods;

then, if Umin(se) < Ud (note, strictly less), periods

are reduced by the elastic algorithm to reach the de-

sired utilization Ud, thus improving the control per-

formance.

• Performance oriented: control performance is max-

imized by selecting the lowest processor speed sp

that provides full performance, that is, that guar-

antees schedulability with the minimum periods; if

sp > smax, that is, if Umax(smax) > Ud, then sp

is set to smax and task periods are enlarged by the

elastic algorithm to reach feasibility with the desired

utilization Ud.

• User mode: this mode allows the user to manually

select a speed level su included in the range [se, sp]

defined by the two previous modes. If Umax(su) >
Ud, periods are enlarged by the elastic algorithm to

reach feasibility with the desired utilization Ud.

The algorithm consists of three hierarchical levels. At

the top level, the power manager performs the acceptance

test and computes the working frequency according to the

selected strategy. At the medium level, the elastic sched-

uler computes the task periods and passes the task set to

the system scheduler at the bottom level (EDF in the spe-

cific case). We can see each level as a function that con-

verts the input task model into a new one accepted at the

lower level. The hierarchical structure of the algorithm

is illustrated in Figure 1. The power manager is invoked

every time a new task enters/leaves the system or a new

speed is selected by the application.
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iT
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Figure 1. Block diagram of the algorithm.

3.1 Computing the frequency bounds
The algorithm starts computing a subrange of speeds

[s∗e, s
∗
p] in which the schedulability of the task set is guar-

anteed and there is no energy waste when the tasks run at

their minimum periods.
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In the energy-oriented strategy, assuming a single

speed is used for the whole application, the minimum the-

oretical speed s∗e (in a continuous range) is computed as

the speed that minimizes energy consumption while guar-

anteeing the schedulability of the task set.

Considering the computation time model expressed in

equation (1), the total processor utilization can also be ex-

pressed as a function of the processor speed:

U(s) =
n∑

i=1

Ci(s)
Ti

=
n∑

i=1

φiCimax

sTi
+

n∑
i=1

(1 − φi)Cimax

Ti

=
UD

s
+ UF (5)

where UD is the processor utilization due to the

frequency-dependent code, estimated at the maximum

speed, whereas UF is the one that is frequency indepen-

dent. The minimum utilization (Umin) computed with the

maximum periods can also be expressed as a function of

speed. Imposing Umin(s) = Ud (desired utilization), the

related speed is given by

s∗e =

∑n
i=1

φiCimax

Timax

Ud − ∑n
i=1

(1−φi)Cimax

Timax

=
UDmin

Ud − UFmin

.

If s∗e is out of the range [0,1], the task set is not feasible

and it is rejected by the guarantee test.

In the performance-oriented strategy, if

Umax(smax) > Ud, the speed s∗p that guarantees

the best performance is clearly smax. Otherwise, the

best theoretical speed s∗p to achieve full performance

is computed as the minimum speed that guarantees

schedulability with the nominal periods.

Imposing Umax(s) = Ud, the best theoretical speed s∗p
is given by

s∗p =

∑n
i=1

φiCimax

Timin

Ud − ∑n
i=1

(1−φi)Cimax

Timin

=
UDmax

Ud − UFmax

.

Hence, in general,

s∗p =

{
UDmax

Ud−UFmax
if Umax(smax) ≤ Ud

smax otherwise.

3.2 Frequency selection and period adjustment
Due to the discrete range of frequencies, it may not be

possible to set the CPU speed at s∗e or s∗p. Hence, we set

se = min
k

{sk | sk ≥ s∗e} ; (6)

sp = max
k

{
sk | sk ≤ s∗p

}
. (7)

Once the speeds se and sp are computed and task set

schedulability is guaranteed in the worst-case situation,

there can be different strategies to select the operating fre-

quency as a function of the high level approach.

• If the objective is to minimize energy consumption,

the actual speed is set to se. If se > s∗e , then

Umin(se) < Ud. Hence, to fully utilize the proces-

sor, periods are reduced through elastic scheduling to

bring the task set utilization at the desired level Ud.

• If the objective is to improve performance, the actual

speed is set to sp. Note that, if Umax(sp) ≤ Ud, all

tasks can run at their nominal period and the elas-

tic algorithm is not used, otherwise task periods are

expanded to reach the desired utilization Ud.

• Finally, if the user decides to select a specific speed

su ∈ [se, sp] (among the available levels), then the

elastic method is invoked to reach Ud.

It is worth observing that, in the energy-oriented strat-

egy, the elastic mechanism is always used to reduce pe-

riods to bring the processor utilization up to Ud, so im-

proving the control performance whenever possible. Such

an improvement is larger when the number of available

speeds is small. Clearly, the values of computation times

used in the elastic method are computed using the speed

level set by the power manager or selected by the user.

3.3 Power consumption and elastic coefficients
Another advantage of using the elastic approach in this

context is that, if tasks have different power consumption,

elastic coefficients can be set to reduce the energy of the

tasks with higher power consumption. In fact, since the

energy consumed by a task in a given interval is propor-

tional to the number of jobs executed in that interval, elas-

tic coefficients can be assigned so that tasks with higher

power will be more compressed, that is are subject to a

larger period variation to decrease their energy consump-

tion. To obtain this result, the elastic coefficient Ei can

be set as Ei ∝ Pi(s)Ci(s) where Pi(s) is the power con-

sumed by task τi, as defined in equation (2).

3.4 Online reclamation of unused bandwidth
Real-time tasks are characterized by worst-case com-

putation times, but most jobs usually run for much less

time. Our DVS algorithm takes advantage of such a sav-

ing for a further reduction of the processor speed.

When a job is released, determining its actual compu-

tation requirements is very hard (if not impossible), so the

conservative assumption of the worst-case value must be

used. When the job completes, it is possible to compute

the saved time by accounting the actual execution. Instead

of wasting this time leaving the CPU idle, the processor

can be slowed down to further reduce energy consump-

tion. To do so, each time a job is released or completed,

the computation of the working speed is performed using

the actual status of the task set. For this purpose 3 new

variables are added to the task model:

• ei is the execution time actually consumed by the

current job of task τi;

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00  © 2006



• ciD
is the worst-case remaining computation time

due to the frequency-dependent part of the task at the

maximum speed;

• ciF is the worst-case remaining computation time re-

lated to the frequency-independent code.

Note that, under the Shark kernel, these variables can be

easily handled using the Job Execution Time (JET) moni-

tor. Moreover, at any time, Ci(s) = ei +ciF
+ ciD

s . These

variables are updated upon the occurrence of the following

events: job release, job completion, and job preemption.

When a job is released, ei is reset to zero, while ciD and

ciF
are restored to their worst-case values (φiCimax

and

(1−φi)Cimax
, respectively). If the job activation triggers

a speed switch, ei is increased by δ, which is the over-

head to switch the speed. When a job completes, the two

remaining computation times (ciD
and ciF

) are set to 0,

while ei is increased of δ. At a context switch, the vari-

ables are updated to account for the amount of used com-

putation (σ). In order to maintain the worst-case approach,

the algorithm first subtracts σ from ciF
until its exhaus-

tion, then starts decreasing ciD
with a rate that depends

on the speed. The speed-dependent code is the last to be

subtracted because, in general, the amount of frequency-

dependent code could vary from different jobs.

At job termination or activation, the reclaiming algo-

rithm recomputes the working speed. Tasks periods are

left unchanged to save overhead and avoid extra jitter in

task activations. If all tasks terminated the current job and

the CPU has enough time to switch down the frequency

(the next activation is at least ahead of δ) the chosen speed

is smin, otherwise the minimum speed that guarantees the

actual status of the task set is computed. The actual task

utilization can be computed as:

Ui(s) =
1
Ti

(ei + ciF +
ciD

s
).

So, the total utilization of the task set is expressed as:

U(s) =
n∑

i=1

Ui(s) =
n∑

i=1

1
Ti

(ei + ciF +
ciD

s
)

=
n∑

i=1

ei

Ti
+

n∑
i=1

ciF

Ti
+

1
s

n∑
i=1

ciD

Ti
.

Imposing U(s) ≤ Ud, the ideal dynamic speed resulting

from the reclaiming algorithm results to be

s∗dyn ≥
∑n

i=1

ciD

Ti

Ud − ∑n
i=1

ei

Ti
− ∑n

i=1

ciF

Ti

. (8)

The chosen discrete frequency is the minimum one that

satisfies the inequality, then

sdyn = min
k

{
sk | sk ≥ s∗dyn

}
. (9)

If the reclaiming algorithm was triggered by the comple-

tion of a job τj and the proposed speed sdyn is equal to the

actual one, then the frequency switch time δ is subtracted

from ej .

4 Quality of Control

In control applications the performance of a periodic

control task is a function of the activation period. In-

creasing the task activation period leads to a performance

degradation, which is typically measured through a Per-

formance Index J(T ) [7, 20]. Often, instead of using

the performance index, many algorithms use the differ-

ence ΔJ(T ) between the index and the value of the per-

formance index J∗ of the optimal control. Many control

systems belong to a class in which the function express-

ing the degradation is monotonically decreasing, convex

and can be approximated as ΔJ(Ti) = αie
− βi

Ti where the

magnitude αi and the decay rate βi characterize the single

task. The evaluation of the whole task set is computed as

ΔJ =
n∑

i=1

wiΔJ(Ti) =
n∑

i=1

wiαie
− βi

Ti

where wi are weights used to characterize the relative im-

portance of the tasks.

To have a common scale for all task sets, the Quality of

Control index used in this paper is expressed as QoC =
ΔJnom

ΔJ where ΔJnom is the value of the index calculated

when tasks run at their nominal periods. A value of 1

means that all tasks are running with nominal periods.

5 Experimental Results

To validate the proposed approach, the elastic-DVS al-

gorithm has been implemented in the S.Ha.R.K. kernel

[8] as an external scheduling module. The experiments

were performed on an AMD Athlon64 3000+ with Pow-

erNow! technology, whose clock accepts four frequen-

cies: 1000, 1800, 2000 and 2200 MHz. Hence, the avail-

able normalized speeds are 0.4545, 0.8181, 0.9090, and

1, respectively. This section describes four experiments,

each showing a different characteristic of the proposed al-

gorithm. The first experiment shows the advantages of

using the elastic task model when working on a proces-

sor with discrete clock frequencies. The second experi-

ment is used to test how the user-selected speed su af-

fects the power consumption and the quality of control.

The third experiment shows how the average power can

be reduced by making elastic coefficients proportional to

individual task power consumption. Finally, the last ex-

periment illustrates the advantage of using the reclaiming

mechanism.

All the tasks used in the experiments have the follow-

ing characteristics:

• Tmin was generated as a random variable uniformly

distributed in the range [1ms, 100ms];
• Tmax was generated as the product of Tmin and a

random number with Gaussian distribution, mean 4

and standard deviation 2;
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• Cmax was computed to give each task the same frac-

tion of the total utilization when running at the full

speed with nominal period: Umax(smax) = Utot/n;

• φ was generated as a random value with Gaussian

distribution, mean 0.5 and standard deviation 0.4;

• All the elastic coefficients were set equal to 1.

Finally, the desired utilization was set to Ud = 0.9 to take

overheads into account, and all the weights in the quality

of control index were set to 1 to simplify the comparison

in the experimental results.

5.1 Effects of the elastic task model
This experiment is aimed at evaluating the advantages

of using the elastic task model with respect to an approach

with fixed task periods. In a first simulation, the energy-

oriented approach is applied on a set of elastic tasks with

periods in [Tmin, Tmax] and compared with the case in

which all task periods are fixed and equal to Tmax.
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Figure 2. Comparison of the energy-
oriented approach on tasks with elastic and
fixed (maximum) periods.

Figure 2 shows the results in term of selected speed

(upper graph) and quality of control (lower graph)

when the total utilization of the task set at full speed

(Umax(smax)) varies from 0.8 to 2.8 with a step of 0.1.

For each step, the value on the y-axis represents the mean

obtained on 100 task sets of 50 tasks each. We can see

that, although the two algorithms select the same speed,

the quality of control of the performance-oriented strategy

is always higher. As expected, for high workloads, elastic

tasks tend to run with larger periods, hence the QoC de-

crease towards the one of the fixed task set. On the other

hand, when the maximum utilization of the task set is less

than one, the QoC achievable by the elastic approach is

significantly higher than that obtained by the fixed tasks.

In a second simulation, the performance-oriented strat-

egy is applied on a set of elastic tasks with periods in

[Tmin, Tmax] and compared with the case in which all

task periods are fixed and equal to Tmin. As in the previ-
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Figure 3. Comparison of the performance-
oriented approach on tasks with elastic and
fixed (minimum) periods.

ous experiment, results are derived in terms of speed and

quality of control and are illustrated in Figure 3. Since the

performance-oriented approach also considers energy is-

sues, the quality of control index is less than 1, where the

value of 1 corresponds by definition to the performance in-

dex of the tasks running with the minimum periods. When

the two algorithms select the same speed, the quality re-

duction in the elastic task set (with respect to the fixed set)

is relatively small. On the other hand, a higher decrease

in the QoC is compensated by a larger speed reduction

(i.e., energy saving). Also note that, when the system is

overloaded, the task set with fixed periods may not be fea-

sible, whereas the elastic application can always be exe-

cuted with degraded performance.

Note that the QoC index decreases as the task set uti-

lization grows because periods are enlarged. The spike at

U = 0.9 is due to a speed switch from 0.4545 to 0.8181.

Such a speed increase creates a slack, which is used by the

algorithm to reduce periods, so increasing the QoC.

5.2 Impact of the user-defined strategy
Sometimes, the energy-oriented strategy could be too

penalizing in term of performance, and the performance-
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oriented one could be too energy consuming. In this cases,

the processor speed can be manually selected by the user

at a level suitable for the application aims. This experi-

ment shows the effect of the user-defined strategy on the

task set behavior. The experiment has been performed on

a task set with maximum utilization of 0.9 and 1.1. For

each utilization, 100 task sets with a random number of

tasks in the range [20,100] have been generated. For ev-

ery task set, the quality of service has been computed at

each speed between se and sp. The results are reported in

Figure 4.
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Figure 4. QoC for the user defined strategy.
The experiment shows that a trade-off between perfor-

mance and energy consumption is achievable by acting on

the processor speed. If the selected value is within the

computed bounds se and sp, the feasibility of the sched-

ule is always guaranteed. It is interesting to observe that,

in applications where the task set is static (e.g., in OSEK

compliant systems [1]) the speed selection could be done

automatically by a tool according to user-defined param-

eters, such as the minimum allowed QoC, the maximum

available mean power, and so on.

5.3 Power consumption and elastic coefficients
As mentioned in Section 3.3, assigning the elastic coef-

ficients to express job energy consumption allows to priv-

ilege tasks tasks with lower power demand. This experi-

ment is aimed at showing how the elastic coefficients may

affect the mean power consumption. To do so, the power-

related assignment is compared with the one in which all

elastic coefficients have the same value.

The power model is the one expressed in Equation (2),

where, for the sake of simplicity, K2, K1 and K0 are set

to 0, and only K3 is managed. The maximum utilization

of the task set at the maximum speed (Umax(smax)) is

1.1 and 100 task sets (of 4 tasks) are generated for each

configuration. From a configuration to the next one, the

value of K3 is increased by a value equal to the task index

(Ki
3 = Ki

3 + i). For each task set, the power consumed by

tasks with fixed elastic coefficients and with power-related

ones is computed as

P = K3s
3 C(s)

T
.

Then, the mean is computed among all task sets for the

same configuration and approach. For each coefficient

configuration, the comparison between the two assign-

ments is expressed as the ratio between the power-related

approach and the fixed-coefficients approach.
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Figure 5. Power consumption ratio.

Figure 5shows that the power-related assignment of the

elastic coefficients can produce a significant power saving

in the application. In this example, the reduction starts

from 0.8%, when the ratio between the maximum and

minimum is 1.2727, to 12.7%, when the ratio grows to

4. Also note that implementing this features does not in-

crease the runtime overhead of the acceptance test.

5.4 The online reclaiming mechanism
This experiment shows the effect of the reclaim-

ing mechanism on the power consumption. The

energy-oriented strategy was used on a task set with

Umax(smax) = 2.0. To generate early completions, job

execution times were set equal to rCmax, where r was

varied from 0.2 to 1. For each value of r, 100 task

sets were generated and the off-line and the dynamic ap-

proaches were compared in terms of speed and power con-

sumption. For the dynamic algorithm, speed and power

consumption were computed as means over the hyperpe-

riod. Results are reported in Figure 6, which shows the

ratio between the dynamic and the off-line approach as a

function of r.

When r = 1, the ratio is almost 1 because tasks run for

their worst-case execution time, as supposed in the off-line

algorithm. The real value of the ratio is less than 1 because

a sporadic idle times allow the reclaiming algorithm to set

the speed to smin. The ratio decreases with r and reaches
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Figure 6. Speed and power ratio.
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a stable level for values of r smaller than 0.6. This is

explained with the limitation imposed by the value of the

minimum discrete speed (0.4545), which does not allow

the algorithm to produce the desired reduction.

6 Conclusions

In this paper we presented an integrated approach that

combines DVS techniques with elastic scheduling to bal-

ance control performance with energy consumption in em-

bedded systems running on architectures with a limited

number of operating modes. An enhanced task execution

time model was used to consider some real architecture

characteristics, such as the access to peripherals, whose

execution is not scalable with the clock frequency.

Experimental results on an AMD Athlon64 3000+ with

four operating modes showed the validity of the proposed

execution model, and illustrated the advantage of the in-

tegrated approach, both for maximizing performance and

minimizing energy consumption. Simulation experiments

also illustrated the effectiveness of a reclaiming mecha-

nism that takes advantage of early completions to perform

a further reduction of the processor speed.

As a future development, we plan to use the proposed

approach on a different platform which allows to obtain

direct measurements of the real power consumptions, so

that a full set of tests can be carried out to precisely com-

pare our method with other related work proposed in the

literature.

We also plan to apply the proposed approach to wire-

less mobile networks, for prolonging battery lifetime of a

team of mobile robots that need to operate under stringent

performance constraints.
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