
ARTE: Arduino Real-Time Extension for Programming
Multitasking Applications∗

Pasquale Buonocunto
Scuola Superiore Sant’Anna

Pisa, Italy
p.buonocunto@sssup.it

Alessandro Biondi
Scuola Superiore Sant’Anna

Pisa, Italy
alessandro.biondi@sssup.it

Marco Pagani
Scuola Superiore Sant’Anna

Pisa, Italy
m.pagani@sssup.it

Mauro Marinoni
Scuola Superiore Sant’Anna

Pisa, Italy
mauro.marinoni@sssup.it

Giorgio Buttazzo
Scuola Superiore Sant’Anna

Pisa, Italy
g.buttazzo@sssup.it

ABSTRACT
This paper presents an extension to the Arduino framework
that introduces multitasking support and allows running
multiple concurrent tasks in addition to the single execu-
tion cycle provided by the standard Arduino framework.
The extension has been implemented through the ERIKA
Enterprise open-source real-time kernel, while maintaining
the simplicity of the programming paradigm typical of the
Arduino framework. Furthermore, a support for resource
sharing has also been integrated in the external Arduino
libraries to guarantee mutual exclusion in such a multi-task
environment.

CCS Concepts
•Computer systems organization → Embedded soft-
ware; Real-time operating systems;

Keywords
Arduino, Real-time operating system, Multitasking

1. INTRODUCTION
In recent years, Arduino established as the most popular
platform for rapid prototyping. It consists of a physical
programmable embedded board (often referred to as the mi-
crocontroller) and an integrated development environment
(IDE) that runs on a personal computer. Its widespread
adoption is mainly related to the simplicity of the develop-
ment and programming phases, that magnifies the Arduino
user experience. In fact, Arduino provides a framework that

∗This work has been partially supported by Telecom Italia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
SAC 2016,April 04-08, 2016, Pisa, Italy
c©2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851672

allows the user to develop a fully-working application without
knowing any details of the underlying hardware, in contrast
with most of embedded firmware development environments.
This is achieved through a minimal programming model,
clean library APIs to access the hardware resources and the
use of a simplified version of the C++ language, making
easier to learn how to develop an Arduino application. In
addition, there is a huge number of free third party libraries
and code examples that allows a quick interaction with exter-
nal devices, relieving the user from acquiring the knowledge
for their usage. Unlike most others programmable boards,
Arduino does not need external hardware (i.e., a program-
mer) to load the new code onto the board, since a USB cable
is used for power supply, programming and communication.
Finally, the Arduino board is designed with a common form
factor that allows making connections to the microcontroller
peripherals in a standard way.

In spite of its simplicity and effectiveness, Arduino does not
support concurrency and a program is limited to a single
block of instructions cyclically repeated. Such a limitation
prevents a full exploitation of the computing platform and in
several situations forces the user to adopt tricky coding solu-
tions to manage activities with different timing requirements
within a single execution cycle.

Paper contributions. To overcome the limitation ex-
plained above, this paper presents the Arduino Real-Time
Extension (ARTE), which introduces a support for imple-
menting concurrent real-time applications in the standard
Arduino framework with a minimal impact on the original
programming model. Furthermore, a preliminary API sup-
port is proposed to addresses the problem of guaranteeing
a mutually exclusive access to shared resources in such a
multitasking environment. In addition to the classical Ar-
duino programming model, consisting in a single main loop
containing the code to be executed, ARTE allows the user
to specify a number of different loops, each to be executed
with a given desired period. A set of experiments is finally
presented to evaluate the impact of the implemented solution
in terms of both memory footprint, runtime overhead and
cpu load on a concrete case-study.

ARTE design goals. ARTE has been conceived according
to the following design objectives:

1724

giorgio
Text Box
Proceedings of the 31st ACM Symposium on Applied Computing (SAC 2016), Pisa, Italy, April 4-8, 2016.

• Simplicity : although different works [2, 12, 4] have
been proposed to integrate a multitasking support in
Arduino, we decided to pursue the “Arduino philoso-
phy”, thus making all the new programming features
provided by ARTE ease of use. This has been achieved
by designing the ARTE programming model as similar
as possible to the original Arduino programming model,
hence limiting the additional effort required to the user
to implement concurrent applications.

• Real-Time multitasking support : Arduino is generally
used to build embedded systems that interact with the
environment through sensors, actuators and communi-
cation devices. For this reason, any delay introduced
in the computational activities may affect the overall
system performance [11]. Bounding the execution de-
lays in all the concurrent activities programmed by the
user is therefore crucial for ensuring a desired system
performance.

• Integration with standard Arduino Libraries: The huge
number of libraries provided with Arduino is one of
the key strength points that determined its widespread
use. To this purpose, ARTE has been conceived to
enable the use of all existing Arduino libraries inside a
multiprogrammed application. This has been achieved
through a slight modification of the libraries to ensure
data consistency under a multitasking execution.

• Efficiency : To preserve the performance of the Arduino
computing platforms, ARTE has been designed to have
a minimal impact on resource usage, in terms of both
footprint and run-time overhead.

Paper structure. The remainder of this paper is organized
as follows. Section 2 discusses the background including
the related work. Section 3 presents our proposed solution.
Section 4 describes the internal structure of ARTE with
details of its implementation. Section 5 reports an example of
usage of ARTE, a case-study and some experimental results
carried out to evaluate the performance of the proposed
approach. Finally, Section 6 states our conclusions and
future work.

2. BACKGROUND

2.1 Arduino Framework
The Arduino framework consists of a set of circuit boards
(equipped with one or more microcontrollers) and an inte-
grated development environment (IDE) used to develop the
user application and program the board. Various Arduino
boards have been released, having different computational
capabilities and different I/O devices. For instance, the first
board proposed, called Arduino UNO, is equipped with an
ATmega328P microcontroller running at 16 MHz, which of-
fers 14 digital I/O pins and 6 analog inputs. Another popular
board is Arduino DUE, which outperforms Arduino UNO
relying on a 32-bit Atmel SAM3X8E ARM Cortex-M3 mi-
crocontroller running at 84 MHz and offering a larger set of
I/O pins.

The Arduino framework offers a very simple programming
model structured in two basic functions, as reported in List-
ing 1. Function setup() contains the code that must be
executed when Arduino is powered on, while loop() con-
tains the code that must be cyclically repeated forever. These
two functions, together with other global data structures,
are part of the main file, denoted as sketch, where Arduino
applications are developed. As stated in the introduction,
such a programming model does not allow the user to specify
a multitasking application.

void setup() {
<code here>

}

void loop() {
<code here>

}

Listing 1: Arduino programming model

To support users in writing applications, a lot of standard
libraries are provided with the Arduino framework. Most of
them are platform independent (making possible using the
same API independently of the specific Arduino board) and
have been designed to hide as much as possible all details re-
lated to the functionality offered by the used microncontroller.
Being Arduino a mono-programming environment, all the
libraries are designed not to be executed in concurrency.

2.2 Related Work
A few works have been proposed to support multitasking
in the Arduino framework [2, 1, 3], all consisting in ad-hoc
libraries not relying on a real-time operating system (RTOS)
to manage concurrency. This approach mainly suffers from
the following drawbacks:

• tasks are cyclically executed in a cooperative manner,
making more difficult to achieve response time guaran-
tees on application tasks;

• the resulting programming model is quite more com-
plicated with respect to the original one offered by
Arduino, requiring the user to specify initializations
and explicit preemption points.

In addition, most of such extensions are not maintained and
do not provide an explicit support for periodic activities.

Another proposed approach is FreeRTOS-Arduino [4], which
is based on the FreeRTOS kernel, ported to be used as an
Arduino library. Although this solution uses a RTOS to
provide fixed-priority preemptive scheduling, it requires the
user to be confident with concurrent programming and with
the FreeRTOS API, which is far more complex than the
standard Arduino programming model. Moreover, FreeR-
TOS is not a static RTOS, because not all kernel code and
data structures can be tailored to the application at compile
time. For this reason, the kernel is characterized by a larger
footprint, memory, and runtime overhead due to dynamic
objects management.

Qduino [12] is another solution that extends the Arduino

1725

framework with a real-time kernel and a new API for han-
dling multiple concurrent control loops and mutual exclusion.
However, Qduino supports only x86 platforms and aims at
multicore CPUs, thus it is not compatible with the vast
majority of Arduino boards, whose CPUs are much simpler
and lack memory protection units. Furthermore, it requires
the average Arduino user to acquire additional knowledge on
real-time concurrent programming and the specific Qduino
API. The Qduino API is quite similar to the one previously
proposed by ARTE [10], but it requires the user to specify
more parameters than the task period.

Like FreeRTOS-Arduino and Qduino, ARTE relies on an
RTOS to implement concurrency, but unlike the previous
approaches preserves the simplicity of the Arduino program-
ming model, also providing a transparent integration of the
large set of standard Arduino libraries. Moreover, ARTE
supports the most common Arduino platforms (i.e., Arduino
UNO and Arduino DUE).

To meet the design goals described in Section 1, the underline
RTOS should have a minimal impact in terms of footprint
and runtime overhead and provide support for real-time task
management. Among the existing open-source real-time
kernels, ERIKA Enterprise [13] resulted to be the one that
best fitted the requirements. Other open-source RTOSes,
like FreeRTOS [5] and NuttX [6] could be used as well, but
have been discarded for their larger footprints due to the
dynamic management of their kernel objects. To provide the
background needed to understand the ARTE approach, the
next section briefly summarizes the features of the ERIKA
kernel.

2.3 Erika Enterprise
ERIKA Enterprise (ERIKA for short) is an open-source
real-time kernel [13] that allows achieving high predictable
timing behavior with a very small run-time overhead and
memory footprint (in the order of one kilobyte). ERIKA
is an OSEK/VDX [16] certified RTOS that uses innovative
programming features to support time sensitive applications
on a wide range of microcontrollers and multi-core platforms.
In addition to the OSEK/VDX standard features, ERIKA
provides other custom conformance classes, such as fixed-
priority scheduling with preemption thresholds [19], deadline
scheduling, through the Earliest Deadline First (EDF) algo-
rithm [14] and the Stack Resource Policy (SRP) [7], resource
reservations (FRSH) [15], and hierarchical scheduling (HR) [8,
9]. ERIKA supports both periodic and aperiodic tasks under
fixed and dynamic priorities and includes mutex primitives
for guaranteeing bounded blocking on critical sections.

ERIKA also provides two types of interrupt handling mecha-
nisms: a fast one (also referred to as Type 1) for short and
urgent I/O operations, returning to the application without
calling the scheduler, and a safe one (also referred to as Type
2) that calls the scheduler at the end of the service routine,
meant to be used for the interaction with kernel objects (e.g.,
for activating a task).

As specified by the OSEK/VDX standard, in ERIKA all the
RTOS objects like tasks, alarms and semaphores are static;
that is, all the RTOS configurations are predefined at compile
time and cannot be changed at run-time. The choice of using
a static approach is crucial for containing both footprint

and run-time overhead, obtaining a tailored RTOS image
that is optimized for a specific application-dependent kernel
configuration.

In ERIKA, the objects composing a particular application
are specified in OIL (OSEK Implementation Language) and
stored in proper configuration files. The ERIKA development
environment also includes RT-Druid, which is a tool in charge
of processing the OIL configuration to generate the specific
ERIKA code for the requested kernel configuration.

3. THE ARTE APPROACH

3.1 System description
The ARTE architecture proposed in this paper is illustrated
in Figure 1. In ARTE, a user application exploits the ARTE
framework to execute on the Arduino hardware platforms. In
addition to the single loop present in the standard Arduino
approach, the user can specify n concurrent loops. Loops can
use the standard Arduino libraries, which are also enhanced
to be executed on a multitasking environment, as presented
in Section 4.3. Overall, the user application and the Arduino
libraries rely on the Arduino framework, which has also been
extended to support multiple concurrent loops by integrating
it with the ERIKA Enterprise kernel (see Section 4.1). At
the bottom of the ARTE architecture there are the Arduino
hardware platforms. Today ARTE supports the most popular
platforms: Arduino UNO and Arduino DUE.

User
Application Loop 1 Loop 2 Loop 3 Loop n. . .

E h d
Framework

Enhanced
Arduino Libraries

Scheduler Resource SharingFP EDF SRP

Enhanced Arduino Framework

Scheduler Resource SharingFP EDF SRP

Arduino UNO Arduino DUE …Hardware

Figure 1: The ARTE architecture.

3.2 The ARTE programming model
As explained in the introduction, the ARTE programming
model has been designed to result as similar as possible to
the original Arduino programming model. Each periodic
loop defined by the user is specified as follows:

void loopi(int period) {
<code here>

}

where i = 1, 2, 3, . . . and period represents the time interval
(in milliseconds) with which the loop is executed.

1726

As in the original Arduino programming model, the setup()
function is also available under ARTE with the same syntax
and semantics. Similarly, the original loop() function can
also be used under ARTE, offering the programmer the
possibility to execute background activities when no other
pending loops are running.

4. INTERNALS
This section describes the internal structure of ARTE. The
ARTE build process is first presented to explain how the user
code (i.e., the sketch) is processed to obtain a multitasking
ERIKA application and the binary executable file. Then the
section illustrates how ARTE provides support for mutual
exclusion inside the Arduino libraries.

4.1 ARTE build process
The whole ARTE build process flow is shown in Figure 2.
The original Arduino framework includes a sketch processing
phase, denoted as Arduino processing, which is implemented
inside the Arduino IDE. The main part of the ARTE build
process consists in extending the Arduino IDE with two ad-
ditional processing phases (shown inside the dashed box): (i)
ARTE pre-processing, which processes the sketch before the
original Arduino processing, and (ii) ARTE post-processing,
invoked after the original Arduino processing.

Sketch

ARTE pre-
processing

Arduino
processing

ARTE post-
processing

OIL
file

.cpp
source

files

RT-DRUID

ERIKA
config files

ERIKA
binary file

ERIKA
Build Process

Arduino
Build Process

Arduino
binary
files

LINK

ELF

Figure 2: Build process

ARTE pre-processing. During this phase, the sketch is
processed to extract the structure of the application, that is,
the identification of the loops with their periods, in order to
automatically generate the ERIKA configuration supporting
the execution of the user application. For each identified
loop, an ERIKA task configuration is generated in an OIL file
and then associated to the code inside the loop. In addition,
the period of the loop is extracted and used to configure
an OSEK alarm, which is the OSEK standard mechanism
conceived to trigger periodic activities. The remaining part

of the ERIKA configuration consists in an OIL section that
specifies the underlying hardware platform, which is selected
from a set of predefined OIL templates.

Arduino processing. This phase consists in the default Ar-
duino transformation needed to produce a compiler-compatible
code. In particular, the original sketch (in .pde or .ino for-
mats) is converted to a standard .cpp file (i.e., C++ code);
any additional files besides the main one are appended to
it. Please refer to the official Arduino documentation for
additional details on this phase.

ARTE post-processing. This phase is responsible for
transforming the sketch into an ERIKA application and
modify the .cpp file produced in the previous step to make it
compiler-compatible. Specifically, each ARTE loop declara-
tion is transformed into an OSEK compliant task declaration,
in the form TASK(loopi). Also, since Arduino sketches are
written in C++, while Erika is written in C, the ERIKA code
has to be wrapped into an extern "C" declaration to avoid
errors when the code is linked together. At this point, the
sketch is ready to be compiled, but it still requires additions
to make it fully functional. In particular, all the ERIKA ini-
tialization functions are added in the setup() function (i.e.,
before any user-defined code is executed), and each OSEK
alarm automatically generated in the ARTE pre-processing
phase is activated. In this way, task activations will be
completely transparent to the user.

Linking. As shown in Figure 2, the ARTE pre-processing
phase produces as output the ERIKA configuration con-
sisting in an OIL file. This file is given as input to the
RT-DRUID tool, which generates the specific files of ERIKA
describing its configuration. At this time, the ERIKA build
process is executed to obtain the RTOS binary. Note that,
as described in Section 2.3, this binary file is an RTOS image
specifically configured for the user application needs that are
automatically derived from the ARTE sketch. On the other
side, the user code is built by means of the standard Arduino
build process, enhanced to have the visibility of ERIKA C
headers, so obtaining the object files of the user application.
Finally, the LINK phase puts together the ERIKA binary
with the object files that resulted from the Arduino build
process, generating the final ELF binary file ready to be
loaded into the microcontroller.

4.2 Mutual exclusion
Since the standard Arduino framework is designed to be
single-threaded, not all of its code is thread-safe, including
all the external third-party libraries. A simple way to keep
them safe in a concurrent environment is to run all the
tasks in non-preemptive way. This solution however, would
introduce large blocking delays in the presence of loops with
long execution times. On the other hand, a fully preemptive
approach cannot guarantee data consistency on shared global
data structures.

The typical solution adopted in modern RTOSs is to guar-
antee data consistency is to access global data structures
through mutual exclusion semaphores (mutexes). The use
of mutex semaphores, however, requires inserting specific
lock/unlock primitives inside the code. In the context of
real-time operating systems, several resource access protocols,

1727

void WiFiDrv::config (...)
{

/∗ ∗∗∗ ARTE − begin critical section ∗∗∗ ∗/
arteLock();

<SPI transaction>

/∗ ∗∗∗ ARTE − end critical section ∗∗∗ ∗/
arteUnlock();

}

Listing 2: Modified Wifi shield library. File wifi drv.cpp

as Priority Inheritance Protocol (PIP) [17], Priority Ceiling
Protocol (PCP) [17], and Stack Resource Policy (SRP) [7]
have been developed to bound the blocking delays caused by
concurrent resource accesses.

An alternative solution is to adopt a limited preemptive ap-
proach [20], where preemption is disabled only inside specific
regions of code (the critical sections). Note that fully pre-
emptive and non-preemptive scheduling are two particular
cases of such general approach.

A simple implementation of limited preemptive scheduling
can be achieved by defining a single non-preemptive high-
priority task, as done in MansOS [18]. This solution, however,
is quite limiting because of the additional constraint on the
programming model. In fact, all the critical sections must be
inserted in the non-preemptive task, disallowing safe resource
sharing among multiple tasks. This can be acceptable for a
simple application scenario, like a small WSN application, but
cannot be considered a general solution for a more complex
embedded system application.

All the mechanisms discussed above are already implemented
in ERIKA and can be used in ARTE. However, they require
the user to insert specific RTOS primitives in the application
code and have a deep understanding of the problems related
to concurrency. Unfortunately, this is in contrast with the
Arduino philosophy, which aims at simplicity.

To address mutual exclusion while maintaining the simplic-
ity of the original Arduino framework, ARTE provides two
primitives that allow first and third-party library developers
to easily extend their library to guarantee safety in a multi-
task environment. In addition, since the libraries support is
crucial for using ARTE, all the Arduino standard libraries
have been modified to be included as part of the ARTE
framework.

The two primitives provided by ARTE to library developers
are arteLock() and arteUnlock(), allowing the definition of
critical sections. As an example, Listing 2 shows how a
function of the WiFi shield library has been modified to
include a critical section, protecting the transaction between
Arduino and the WiFi shield over the SPI bus. In ARTE,
mutual exclusion is implemented through a single shared
resource, denoted as (RES SCHEDULER), which is part of
the OSEK standard. When the running task acquires a lock
on that resource, the task becomes non-preemptive until such
a resource is released.

Thanks to this extension, any Arduino library developer, even
without any real-time system programming expertise, can
easily extends his own library code to be safe for a multitask
environment, without the need to declare and manage shared

static const uint8_t max_nesting_level_ = 1;
static uint8_t nesting_level_ = 0;

void arteLock(void)
{

EE_hal_disableIRQ();

if (++nesting_level_ <= max_nesting_level_)
GetResource(RES_SCHEDULER);

EE_hal_enableIRQ();
}

void arteUnlock(void)
{

EE_hal_disableIRQ();

if (nesting_level_ > 0) {
if (−−nesting_level_ < max_nesting_level_)

ReleaseResource(RES_SCHEDULER);
}

EE_hal_enableIRQ();
}

// For test purpose
uint8_t arteEnabled(void) { return 1; }
uint8_t lockNestingLevel(void) { return nesting_level_; }

Listing 3: ARTE primitives for mutual-exclusion.

resources.

Since many Arduino libraries are built using a hierarchical
structure (i.e., relying on other lower-level libraries), it is
necessary to deal with nested critical sections. To cope
with this problem, the ARTE mutual-exclusion support is
designed in such a way that only the first arteLock() and
the last arteUnlock() actually enters and exits the critical
section. Furthermore, to avoid side effects, arteUnlock() does
not have any effect if called from outside a critical section.

In order to be seamlessly integrated with the Arduino fram-
work, the API has been conceived to have no effect when
the ARTE extension is disabled. In this way, the Arduino
libraries, modified with the inclusion of critical sections, are
still compatible with the standard Arduino framework when
the ARTE extension is disabled. This choice facilitates the
distribution of ARTE enhanced libraries as main-line distri-
bution, having a common code for ARTE and non ARTE
users.

4.3 Library implementation
As a default option, functions arteLock() and arteUnlock()
are declared as weak aliases of the same ”empty” function,
thus implementing a null behavior. If ARTE extension is
enabled, the weak symbols are overridden by strong symbols
defined in the ERIKA image, whose source code is reported
in Listing 3. In both functions, interrupt are disabled to
avoid critical races on the variable nesting_level_, then the
nesting level is checked and the OSEK API GetResource (or
ReleaseResource) is used to disable preemption.

5. EVALUATION
This section presents some experiments carried out to evalu-

1728

ate the effectiveness of the proposed approach. An example
of ARTE application is illustrated to compare it with a pos-
sible formulation that would be necessary using the classical
Arduino programming model.

Furthermore, a complete case-study project has been de-
veloped with the purpose of testing the proposed extension
in a “real world” scenario, where multiple extension devices
and peripherals are attached to the Arduino board. This
provides an interesting test bench for this work since the
Arduino libraries, needed to control those additional devices,
are required to work properly in a multitask environment.

5.1 Example
The selected example consists in a simple multi-rate led
blinking application. In this example, the application is in
charge of making three different leds blinking with different
periods, equal to 3, 7, and 11 seconds, respectively.

int led1 = 13;
int led2 = 14;
int led3 = 15;
int count = 0;

void loop() {
if (count % 3 == 0)

digitalToggle (led1) ;

if (count % 7 == 0)
digitalToggle (led2) ;

if (count%11 == 0)
digitalToggle (led3) ;

if (count == 3 ∗ 7 ∗ 11)
count = 0;

count++;
delay(1000);

}

(a) Arduino sketch

int led1 = 13;
int led2 = 14;
int led3 = 15;

void loop1(3000) {
digitalToggle (led1) ;

}

void loop2(7000) {
digitalToggle (led2) ;

}

void loop3(11000) {
digitalToggle (led3) ;

}

(b) ARTE sketch

Listing 4: Example of multi-rate blinking leds sketches
written using classic Arduino and ARTE.

Listing 4a shows the considered example implemented with
the classical Arduino programming model. The single Ar-
duino loop() contains a delay instruction that is responsible
to define the time granularity of the loop. The argument
passed to the delay function must be equal to the greatest
common divisor (GCD) of the blinking periods (in this case 1
second). A variable count is used to keep track of the current
multiple of the time granularity to determine which led has
to blink.

On the other side, Listing 4b shows the same program for-
mulated using the ARTE programming model. Using the
proposed approach is it possible to specify three different
loops, one for each led. The parameter indicated in the
brackets of the loop is the period (in milliseconds) at which
it has to be executed.

Although such a simple example can still be easily handled
with the original Arduino framework, the situation can get
worse with more complex applications, requiring a much
higher programming effort to emulate a multithread behavior.

Another great advantage of the ARTE multithread support
is that loops are preemptive, with a context switch time
resulted to be lower than 10 microseconds on the Arduino
DUE platform. This feature is really important when the
application includes small loops running with short periods
together with time-consuming loops with a long period. This
situation, cannot be easily implemented using the classical
Arduino programming model.

Listing 5 shows the OIL configuration generated by ARTE
for the multi-rate blinking example. As the figure shows, an
OSEK-task specification is provided for each loop defined in
the ARTE sketch. In addition, an OSEK-alarm is associated
to each task. Task priorities are implicitly assigned following
the rate-monotonic policy (i.e., the lower the period, the
higher the priority).

CPU m3 {
OS EE {

CPU_DATA = CORTEX_MX {
MODEL = M3;
APP_SRC = "ARTE−sketch.cpp";
COMPILER_TYPE = GNU;
MULTI_STACK = FALSE;

};

MCU_DATA = ATMEL_SAM3 {
MODEL = SAM3xxx;

};
KERNEL_TYPE = BCC1;

};

COUNTER TaskCounter;

TASK loop3 {
PRIORITY = 0x03;
SCHEDULE = FULL;
STACK = SHARED;

};

ALARM Alarmloop3 {
COUNTER = TaskCounter;
ACTION = ACTIVATETASK { TASK = loop3; };

};

TASK loop2 {
PRIORITY = 0x02;
SCHEDULE = FULL;
STACK = SHARED;

};

ALARM Alarmloop2 {
COUNTER = TaskCounter;
ACTION = ACTIVATETASK { TASK = loop2; };

};

TASK loop1 {
PRIORITY = 0x01;
SCHEDULE = FULL;
STACK = SHARED;

};

ALARM Alarmloop1 {
COUNTER = TaskCounter;
ACTION = ACTIVATETASK { TASK = loop1; };

};
};

Listing 5: The OIL configuration generated for the
multi-rate led blinking example.

1729

5.2 Footprint
Arduino boards are typically memory constrained platforms,
therefore this section evaluates the impact of ARTE in terms
of memory occupation.

Table 1 compares the memory footprint obtained when com-
piling an empty sketch with the classic Arduino framework,
with the footprint of a sketch compiled with ARTE for a
different number of empty loops. The reference platform for
this evaluation is the Arduino DUE board. Note that, for the
case of a single loop, only 1216 bytes of additional memory
are required by ARTE, corresponding just to 0.23 percent
of the total available memory. If further empty loops are
declared, the memory footprint grows almost linearly with a
rate of less than 50 bytes per loop. The plot in Figure 3 shows
such a linear increase in memory footprint as a function of
the number of loops.

1 2 3 4 5 6 7 8 9 10
11,700

11,800

11,900

12,000

12,100

Number of loops

S
iz
e
(b
yt
es
)

Figure 3: Footprint for an ARTE empty sketch.

Table 2 compares the footprints resulting from the two ver-
sions of the three-led example shown in Listing 4. In this
case, the additional footprint of the ARTE version is only
1232 bytes.

Platform Footprint

Arduino
Size (bytes)

Uno Due

466 11,716

Arduino + ARTE

Loops Size (bytes)

Uno Due

1 802 11,716
2 822 11,764
3 840 11,804
5 878 11,884
10 974 12,084

Table 1: ARTE and Arduino footprints for an empty Sketch.

5.3 A case-study
This section presents an evaluation of the ARTE approach on
a more complex application developed on an Arduino DUE
board. The system includes an inertial measurement unit
(IMU), a servomotor and the Ethernet shield, an external
hardware device that provides Ethernet connection to the
Arduino board.

Platform Footprint

Arduino
Size (bytes)

10,852

Arduino + ARTE
Loops Size (bytes)

3 12,084

Table 2: Footprint for the blinking LEDs demo.

The goal of this application is to use a rotation angle mea-
sured by the inertial sensor to control the angular position of
the servomotor, while hosting a web page that displays the
values of the sensor and allows the user to enable or disable
the actuation of the servo. To improve the responsiveness of
the web user interface the orientation samples are streamed
to the web browser though a WebSocket connection. Fig-
ure 4 shows an overview of the software and hardware layers
involved in the demo.

Ethernet

MPU6050

Servo

I2Cdev

WireSPI

Arduino DUE

ERIKA RTOS

Ethernet shield MPU-6050 Servo

IMU
Task

FIR
Task

Servo
Task

WEB
Task

WS
Task

WS update
Task

LED [i]
Tasks

Arduino Framework + ARTE

Figure 4: Case-study: software and hardware layers

From a software perspective, the application is structured
into nine periodic tasks. Each task is defined through an
ARTE loop. Three loops are dedicated to motion control: the
first loop (IMU Task) periodically samples the orientation
from the IMU; the second loop (FIR Task) performs a low-
pass filtering on the collected samples trough a FIR filter; the
third loop (Servo Task) maps the filtered orientation samples
to the servo configuration space to control the servomotor.

The network functionality is realized by other three loops.
The first loop (WEB Task) listens for HTTP requests and,
once a request is received, it responds by sending a Web
page containing the HTML elements and the JavaScript code
that triggers the WebSocket connection. The request is then
received and processed by the WebSocket loop (WS Task)
that responds to the browser. Such a response concludes the
handshake and allows establishing a WebSocket connection
between the application and the browser. Once the Web-
Socket connection has been established, another task (WS
update Task) periodically sends orientation samples trough
the connection. The samples are received by the JavaScript

1730

code running on the browser and used to update an HTML5
element that dynamically shows the orientation to the user.

Finally, to provide the user with a visual feedback on the
periodic behavior of the ARTE loops, the application includes
three additional loops, each toggling a LED at a different
rate.

Table 3 reports the tasks periods and the profiled worst-case
execution times (pWCETs). As can be seen from Table 3,
the worst-case processor load is around 89 percent. However,
for every initialization phase occurring after each new HTTP
connection, the processor load stabilizes around 25 percent.

Finally, the memory footprint of the whole application re-
sulted to be equal to 104,032 bytes, occupying about 20
percent of the available flash memory on the SAM3 micro-
controller of the Arduino DUE board.

Overall, this case study shows that ARTE is able to manage
complex multitasking applications with a minimal runtime
overhead and footprint.

Task Period [ms] pWCET [µs]

FIR 10 285
IMU 10 1804
Servo 10 11
Web Server 500 216193
WebSocket 500 116428
WebSocket update 50 1003
LED-1 1000 7
LED-2 2000 7
LED-3 3000 7

Table 3: Tasks periods and estimated worst-case execution
times for the demo application.

6. CONCLUSIONS
This paper presented a solution for integrating real-time
multiprogramming capabilities in the Arduino framework
in order to simplify the development of complex embedded
systems characterized by multiple periodic tasks running at
different rates. The integration has been implemented by
exploiting the real-time features of the ERIKA Enterprise
kernel, an OSEK-compliant open source kernel for small
embedded platforms. The extended interface enables the user
to easily specify multiple loops to be executed at different
rates while guaranteeing mutual exclusion among shared
resources in a transparent way, thus preserving the simplicity
of the classical Arduino framework.

Thanks to the proposed extension, the user can quickly and
reliably exploit the full computational power of the platform
without adopting tricky coding solutions, typically needed
for managing activities with different timing requirements
within a single execution cycle.

The impact of the implemented extension in terms of both
memory footprint and runtime overhead has been evaluated
and resulted to be affordable for most practical uses.

In the future, we plan to enhance ARTE by including a trans-
parent mechanism to guarantee data consistency without
requiring the user to specify critical sections, thus preserv-

ing the simplicity characterizing the Arduino programming
model.

7. REFERENCES
[1] Arduino-compatible multi-threading library.

https://github.com/jlamothe/mthread.

[2] Arduino scheduler library.
https://www.arduino.cc/en/Reference/Scheduler.

[3] Cooperative multithreading for microcontrollers, including
arduino. https://code.google.com/p/threadkit.

[4] Freertos port for arduino.
https://github.com/greiman/FreeRTOS-Arduino.

[5] Freertos: Quality rtos and embedded software.
http://www.freertos.org.

[6] Nuttx real-time operating system. http://www.nuttx.org.
[7] T. P. Baker. Stack-based scheduling for realtime processes.

Real-Time Systems, 3(1):67–99, April 1991.

[8] M. Bertogna, N. Fisher, and S. Baruah. Resource-sharing
servers for open environments. IEEE Transactions on
Industrial Informatics, 5(3):202–220, August 1991.

[9] A. Biondi, G. Buttazzo, and M. Bertogna. Supporting
component-based development in partitioned multiprocessor
real-time systems. In Proceedings of the 27th Euromicro
Conference on Real-Time Systems (ECRTS 2015), Lund,
Sweden, July 8-10, 2015.

[10] P. Buonocunto, A. Biondi, and P. Lorefice. Real-time
multitasking in arduino. June 2014.

[11] G. Buttazzo. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications, Third
Edition. Springer, New York, 2011.

[12] Z. Cheng, Y. Li, and R. West. Qduino: A multithreaded
arduino system for embedded computing. In Proceedings of
the 36th IEEE Real-Time Systems Symposium (RTSS 2015),
San Antonio, Texas, December 2015.

[13] P. Gai, G. Lipari, L. Abeni, M. di Natale, and E. Bini.
Architecture for a portable open source real-time kernel
environment. In Proceedings of the Second Real-Time Linux
Workshop and Hand’s on Real-Time Linux Tutorial,
November 2000.

[14] C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal
of the Association for Computing Machinery, 20(1):46–61,
January 1973.

[15] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. IRIS: A
new reclaiming algorithm for server-based real-time systems.
In Proc. of the IEEE Real-Time and Embedded Technology
and Applications Symposium, Toronto, Canada, May 2004.

[16] OSEK. OSEK/VDX Operating System Specification 2.2.1.
OSEK Group, http://www.osek-vdx.org, 2003.

[17] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Transactions on Computers, 39(9):1175–1185, September
1990.

[18] G. Strazdins, A. Elsts, and L. Selavo. Mansos: Easy to use,
portable and resource efficient operating system for
networked embedded devices. In Proc. of the 8th ACM
Conference on Embedded Networked Sensor Systems. ACM,
2010.

[19] Y. Wang and M. Saksena. Scheduling fixed-priority tasks
with preemption threshold. In Proc. of the 6th IEEE Int.
Conference on Real-Time Computing Systems and
Applications (RTCSA’99), Hong Kong, China, December
13-15, 1999.

[20] Y. Wu and M. Bertogna. Improving task responsiveness with
limited preemptions. In Proceedings of the 14th IEEE
International Conference on Emerging Technologies &
Factory Automation, ETFA’09. IEEE Press.

1731

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160203085439
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

