
Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 1/10

AHM 2010AHM 2010
Sept 15Sept 15thth, Cardiff (UK), Cardiff (UK)

Challenges in Operating System Design for Challenges in Operating System Design for 
Future Many-Core SystemsFuture Many-Core Systems

Tommaso CucinottaTommaso Cucinotta

Real-Time Systems LaboratoryReal-Time Systems Laboratory
Scuola Superiore Sant'AnnaScuola Superiore Sant'Anna

Pisa, ItalyPisa, Italy



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 2/10

SnapshotSnapshot

General-Purpose Computing (GPC)General-Purpose Computing (GPC)
 General-Purpose Hardware

 Limited parallelism degree (few cores era)
 OS provides useful services to applications, e.g.:

 Hardware abstraction
 (GP) Scheduling of resources (e.g., tasks on available CPUs)

– Automatic separation between interactive and batch applications
 (GP) Filesystem, I/O and networking
 …

 Applications mostly sequential (with a few exceptions)
 Application-level programmers
 OS-level (and kernel-level) programmers



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 3/10

SnapshotSnapshot

High-Performance Computing (HPC)High-Performance Computing (HPC)
 Specialized hardware

 Vector machines, …
 Massive parallelism degree

 OS constitutes a “noise” (or “jitter”) to get rid of
 Applications often optimized for underlying hardware

 Optimized distributed filesystems
 Application-specific distribution and scheduling logic

 Assumption of availability of entire system: no need for caring 
about multiple applications multiplexed on the same system

 HPC programmers are experts of
 parallel programming techniques
 …



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 4/10

What's new ?What's new ?

Future Many-Core SystemsFuture Many-Core Systems
 Potentially suitable for both (high-end) GPC, CC and HPC
 Increasing need for a good OS-level support

 data distribution and replication
 workload distribution, load balancing and scheduling
 management of complex memory hierarchies and

incoherent shared memory segments
 Nowadays OSes unable to efficiently manage many cores

 Monolithic kernels
 Global in-kernel data structures (e.g., processes, file-system)
 Global in-kernel synchronization spin-locks (e.g., Linux bkl)
 Even fine-grained locking (e.g., object-level lock) inefficient

– When thousands of cores may potentially compete



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 5/10

What has been proposed ?What has been proposed ?
(for scalability in # of cores)(for scalability in # of cores)

Multikernel (and Barrelfish prototype)Multikernel (and Barrelfish prototype)
 One OS instance per-core
 Any sharing implemented by message-passing between 

different kernel instances

Partitioning of cores (Corey OS, GenerOS, FOS)Partitioning of cores (Corey OS, GenerOS, FOS)
 Application cores
 Kernel/service cores
 For example, a system call becomes a RPC

Application-level control of sharing (Corey OS)Application-level control of sharing (Corey OS)
 Help the kernel understand what is likely to be accessed by 

multiple tasks and what cannot
 Non-sharing default policy, sharing needs explicit actions



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 6/10

Real-Time ApplicationsReal-Time Applications

Time-sensitive applicationsTime-sensitive applications
 Throughput and/or latency constraints
 Computation times vary depending on data locality
 We don't want to design everything off-line

 but we expect to have a proper run-time OS-level support
 Scheduler needs to be real-time aware
 Adaptivity plays a key role

Real-Time Scheduling on Multi-ProcessorsReal-Time Scheduling on Multi-Processors
 Many open problems
 No known algorithm for efficient use of many CPUs



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 7/10

Problem presentationProblem presentation

Optimum/reasonable deployment of VSNs on PNsOptimum/reasonable deployment of VSNs on PNs
 Given computing/network/memory requirements
 Respecting end-to-end timing constraints

Physical
Link

Physical Host

Physical Host

Physical Host
Virtual Service Network

Maximum response-time

Computing/Memory
Requirements

Networking
Requirements Physical

Subnet

Physical Host



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 8/10

Scheduling ChallengesScheduling Challenges

Distributed Scheduling InfrastructureDistributed Scheduling Infrastructure
 No centralized scheduling decisions
 Hierarchical management of resources (and scheduling)
 What properties can we guaranteed system-wide ?

Synchronization and IPC MechanismsSynchronization and IPC Mechanisms
 More integration with scheduling mechanisms

Application Programming InterfaceApplication Programming Interface
 What info do we need to expose to the scheduler ?

 Application-level DFG and dependencies ?
 (expected) Communication paradigms/patterns ?
 Timing constraints and (expected) latencies ?

 What info can be automatically inferred by the kernel ?
 e.g., by (kernel-level) monitoring



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 9/10

More Scheduling ChallengesMore Scheduling Challenges

Heterogeneous HardwareHeterogeneous Hardware
 Different CPUs have different performance
 How to properly take scheduling decisions ?
 What goals to target ?

 maximize system throughput ?
 minimize maximum latency ?
 minimize energy consumption while keeping timing constraints ?
 … ?

 Adaptiveness: when to migrate tasks and how ?
 How to deal with the NUMA effect ?



Tommaso Cucinotta – ReTiS Lab – Scuola Superiore Sant'Anna – Pisa – Italy 10/10

Thanks!Thanks!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

