
The Multiprocessor BandWidth Inheritance Protocol

Dario Faggioli, Giuseppe Lipari, Tommaso Cucinotta

ReTiS Lab, Scuola Superiore Sant’Anna, CEIICP

Via G. Moruzzi 1, 56124, Pisa (Italy)

e-mail: {d.faggioli, g.lipari, t.cucinotta}@sssup.it

Abstract—In this paper, the Multiprocessor Bandwidth Inheri-
tance (M-BWI) protocol is presented, which constitutes an exten-
sion of the Bandwidth Inheritance (BWI) protocol to symmetric
multiprocessor and multicore systems.

Similarly to priority inheritance, M-BWI reduces priority
inversion in reservation-based scheduling systems; it allows the
coexistence of hard, soft and non-real-time tasks; it does not
require any information on the temporal parameters of the tasks;
hence, it is particularly suitable to open systems, where tasks can
dynamically arrive and leave, and their temporal parameters are
unknown or only partially known. Moreover, if it is possible to
estimate such parameters as the worst-case execution time and
the critical sections length, then it is possible to compute an upper
bound to the task blocking time. Finally, the M-BWI protocol
is neutral to the underlying scheduling scheme, since it can be
implemented both in global and partitioned scheduling schemes.

I. INTRODUCTION

The wide popularity of multi-core platforms raised the in-

terest of the real-time community for multiprocessor real-time

scheduling. Recently, many authors focused the attention on

multiprocessor scheduling, analysis and design methodologies.

When using symmetric shared memory multi-core plat-

forms, one popular programming model is to implement task

communication through shared memory variables. To avoid

inconsistencies due to concurrency and parallelism, access to

shared variables must be protected by an appropriate access

scheme. In the literature, many different approaches have been

proposed until now, and it is not clear yet which one is going to

be used in the future. Examples are wait-free [14] and lock-free

[2] approaches. Recently, hardware supports for transactional

memory systems have been proposed [32]. However, the most

widely used techniques in the programming practice so far are

based on locks: before accessing a shared memory area, a task

must lock a mutex semaphore and unlock it after completing

the access. The mutex can be locked by only one task at a time;

if another tasks tries to lock an already locked semaphore, the

task must wait for the previous one to unlock it.

In single processor systems, the waiting task is usually

blocked, and the scheduler chooses a new task to be executed

from the ready queue. The blocked task will be unblocked only

when the mutex is unlocked its owner. In multi-core systems,

it may be useful to let the waiting task execute, performing an

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme FP7 under grant
agreement n.214777 “IRMOS – Interactive Realtime Multimedia Applications
on Service Oriented Infrastructures” and n.248465 “S(o)OS – Service-oriented
Operating Systems.”

idle loop, until the mutex is unlocked. Such technique is often

called spin-lock or busy-wait. The advantage of busy waiting

is that the overhead of suspending and reactivating the task is

avoided, and this is particularly useful when the time between

the lock and the unlock operations is very short.

A resource access protocol is the set of rules that the

operating system uses to manage blocked tasks. These rules

mandate whether a task blocks or it performs a busy-wait; how

the queue of tasks blocked on a mutex is ordered; whether the

priority of the task that owns the lock on a mutex is changed

and how. When designing a resource access protocol for real-

time applications, there are two important objectives: 1) at run-

time, we must devise scheduling schemes and resource access

protocols to reduce the waiting-time (or blocking-time) of a

task; 2) off-line, we must be able to bound the waiting-time

and account for it in a schedulability analysis methodology.

In open real-time systems, tasks can dynamically enter or

leave the system at any time. Therefore, a run-time admission

control scheme is needed to make sure that the new tasks do

not jeopardize the schedulability of the already existing tasks.

In addition, for robustness, security and safety issues, it is nec-

essary to isolate and protect the temporal behavior of one task

from the others. In this way, it is possible to have tasks with

different levels of temporal criticality coexisting in the same

system. Resource Reservations [31] proved themselves as

effective techniques to achieve the goals of temporal isolation

and protection, and real-time execution. Resource reservation

techniques have initially been designed for the execution of

independent tasks on single processor systems. Recently, they

were extended to cope with hierarchical scheduling systems

[19, 34, 23], and with tasks that interact with each other using

shared memory and mutual exclusion semaphores (mutex)

[12, 20]. Lamastra et al. proposed the Bandwidth Inheritance

(BWI) protocol [24] that combines the Constant Bandwidth

Server [1] with Priority Inheritance [33] to achieve bandwidth

isolation in open systems.

A. Contributions of this paper

In this paper, the Multiprocessor BWI (M-BWI) protocol is

proposed, that extends the original BWI scheme to symmetric

multiprocessor/multicore systems. In order to reduce task

waiting times, busy waiting techniques are combined with

blocking and task migration, in M-BWI. The protocol allows

for the coexistence of hard, soft and non-real-time tasks; it

does not require any information on the temporal parameters

of the tasks; hence, it is particularly suitable to open systems.

Nevertheless, the protocol supports hard real-time guaran-

tees for critical tasks: when it is possible to estimate such

parameters of the task set as the worst-case execution times

and the duration of the critical sections, it is possible to

compute an upper bound to the task waiting times.

Finally, the M-BWI protocol is neutral to the underlying

scheduling scheme, since it can be implemented with both

global and partitioned scheduling algorithms.

B. Organization of the paper

The reminder of this paper is organized as follows: in

section II, existing solutions to real-time multiprocessor syn-

chronization are analyzed. In section III, the system model

is introduced, along with some basic terminology and defini-

tions, while the needed background concepts are provided in

section IV. Details about the new synchronization protocol are

provided in section V, while its implications on scheduling

analysis are discussed in section VI. Results obtained by

simulating the protocol behavior are discussed in section VII.

Finally, conclusions are drawn in section VIII, along with

possible directions for future work.

II. RELATED WORK

Numerous solutions for sharing resources in multiprocessors

already exist. Most of these have been designed as extensions

of uniprocessor approaches, such as [30, 29, 13, 26, 21, 22,

17]; fewer have been specifically conceived for multiprocessor

systems, such as [16, 11].

The Multiprocessor Priority Ceiling Protocol (MPCP) [30]

and its later improvement [29] constitute an adaptation of PCP

to work on fixed priority — partitioned only — multiprocessor

scheduling algorithms. A recent variant [22] of MPCP differs

from the previous ones in the fact that it introduces some

“busy waiting”. This succeeds in lowering the blocking times

of higher priority tasks, but the protocol still addresses only

partitioned, fixed priority scheduling. Chen and Tripathi pre-

sented [13] an extension of PCP, while both Gai et al. [21]

and Lopez et al. [26] extended the SRP for partitioned EDF.

They deal with critical sections shared between tasks running

on different processors by means of FIFO-based spin-locks,

and forbid their nesting.

Concerning global scheduling algorithms, Devi et al. pro-

posed [16] the analysis for non-preemptive execution of global

critical sections and FIFO-based wait queues under EDF.

Block et al. proposed the FMLP [11] and validated it for

different scheduling strategies (global and partitioned EDF and

Pfair). FMLP employs both FIFO-based non-preemptive busy

waiting and priority inheritance-like blocking, depending on

the critical section being declared as short or long by the user.

Nesting of critical sections is not avoided in FMLP, but the

degree of locking parallelism is reduced by asking the user to

group the accesses to shared resources.

Recently, Easwaran and Andersson presented [17] the gen-

eralization of PIP for globally scheduled multiprocessor sys-

tems. They also introduced a new solution, which is a tunable

adaptation of PCP with the aim of limiting the number of

times a low priority task can block a higher priority one.

As it comes to sharing resources in reservation and hier-

archical systems1, work has been done by Behnam et al. [7]

and by Fisher et al. [20]. In both cases, a server that has not

enough remaining budget to complete a critical section blocks

before entering it, till the replenishment. Davis and Burns

proposed [15] a generalization of the SRP for hierarchical

systems, where servers that are running tasks inside critical

sections are allowed to overcome the budget limit.

For all these algorithms, any kind of scheduling analysis is

only possible if computation times and critical sections lengths

of the tasks are known in advance, which might be not true

in an open system. To the best of the authors’ knowledge,

the only two attempts to overcome this requirement are the

BandWidth Inheritance protocol by Lipari et al. [24], and

the non-preemptive access to shared resources by Bertogna

et al. [9]. These approaches are well suited for open systems,

but are limited to uniprocessors.

Finally, there is work ongoing by Nemati et al. [27, 28]

on both integrating the FMLP in hierarchical scheduling

frameworks, or using a new adaptation of SRP — called

MHSRP — for resource sharing in hierarchically scheduled

multiprocessors. However, in order to perform the scheduling

analysis, they again need full knowledge of all system param-

eters (e.g., critical section durations, etc.).

III. SYSTEM MODEL

In this paper the focus is on shared memory symmetric

multiprocessor systems, consisting of m identical unit-capacity

processors p1, . . . , pm that share a common memory space.

More specifically, open systems are considered, where new

tasks can dynamically arrive and be admitted into the system,

or leave the system at any time. Also, the seamless support

for hard real-time, soft real-time and non real-time tasks is

among the goals of M-BWI.

A task τi is defined as a sequence of jobs Ji,j – each

job being a sequential piece of work to be executed on one

processor at a time. Every job has an arrival time ai,j , a

computation time ci,j and a finishing time fi,j ≥ ai,j +ci,j . A

task is sporadic if ai,j ≥ ai,j+1 + Ti, and Ti is the minimum

inter-arrival time (MIT). If ∀j ai,j+1 = ai,j +Ti, then the task

is periodic with period Ti. Finally, if Ci = maxj{ci,j} is the

worst-case execution time (WCET) of τi, then its processor

utilization Ui is defined as Ui = Ci

Ti
. Real-time tasks have a

relative deadline Di and an absolute deadline di,j = ai,j +Di.

A deadline is missed by a job Ji,j if fi,j > di,j .

Hard real-time tasks must respect all their deadlines, other-

wise their computation cannot be considered as correct. Soft

real-time tasks can tolerate occasional and limited violations

of their timing constraints, which usually lead to Quality of

Service degradation. Non real-time tasks have no particular

timing behavior to comply with.

1These, under certain assumptions and for the purposes of this paper, can
be considered as a particular form of reservation-based systems

To guarantee a-priori that hard real-time tasks will complete

all their jobs before the absolute deadlines, it is necessary to

have a-priori information on their temporal behavior, i.e., their

execution times and the shared resources they access. Given

such information, it is possible to do an off-line schedulability

analysis. Therefore, in the remainder of the paper it is assumed

that accurate information on hard real-time tasks is available.

For soft real-time and non-real time tasks, instead, no assump-

tion is made on the knowledge of their temporal behavior.

A. Critical Sections

Concurrently running tasks often need to interact through

shared data structures, located in common memory areas.

Since an uncontrolled access to this data may result into

inconsistent states, they have to be protected by locks (or

mutexes). In more detail, when τj successfully locks a resource

Rl it is said to become the lock owner of Rl. If any other task

τi tries to lock Rl while it is owned by τj , then τi blocks

on Rl. This is denoted by τi → Rl. Later, when τj releases

Rl, one of the blocked tasks wakes up and becomes the new

owner of Rl, if any. The code between a lock operation and

the corresponding unlock operation on the same resource is

called critical section. A critical section of task τk on resource

Rj can be nested inside another critical section on a different

resource Rh, if the task executes the locking operations in

the following order: lock on Rh, lock on Rj , unlock on Rj

and unlock on Rh. The worst case execution time (without

blocking or preemption) of the longest critical section of τk is

denoted by ξk(Rj), and it is called the length of the critical

section. The length ξk(Rj) includes durations of all nested

critical sections, if present.

Classical mutexes are prone to unbounded priority inver-

sion [33], which is an harmful phenomenon for real-time activ-

ities. Many solutions have been proposed, such as the Priority

Inheritance and Priority Ceiling Protocols (PIP, PCP [33]) or

the Stack Resource Policy (SRP [6]). In the case of nested

critical sections, the system can be subject to deadlock, unless

a specific protocol is used (such as the PCP or the SRP).

B. Multiprocessor Scheduling

The OS scheduler typically assigns priorities to each task

and chooses which ones must run on each processor at any

given time. In real-time scheduling literature, dynamic and

static priority algorithms have been proposed, e.g., Earliest

Deadline First and Rate Monotonic (EDF, RM [25]). From a

different standpoint, scheduling algorithms can be classified as

global or partitioned. Global algorithms use only one queue

for all the tasks in the system, while in partitioned algorithms

each processor has its own private scheduling queue. More

details about achieved results in multiprocessor scheduling can

be found in [4, 3, 5, 8, 10].

What is notable to say is that the proposed synchronization

mechanism is independent from the specific characteristics of

the scheduler, and works with both dynamic and static priority,

and under both global and partitioning approaches. Therefore,

in the remainder of the paper, it is assumed without loss of

generality that the scheduling algorithm is global EDF.

IV. BACKGROUND

A. Resource Reservation

Resource Reservations have proven to be effective tech-

niques to keep the deadline misses under control in Open

Systems [31, 1]. They basically build up on the concept of

server as the main schedulable entity. A server Si has a max-

imum budget Qi, a period Pi and a bandwidth Bi = Qi/Pi.

Each task τi is attached to a server Si and when the scheduler

chooses to run Si, τi is actually executed on that CPU. A

reserved task τi is guaranteed to execute at least for Qi time

units over every time interval of Pi time units. Therefore,

tasks are both confined — i.e., their capability of making their

deadlines only depends on their own behavior — and protected

against each other — i.e., they always receive their reserved

share of the CPU, without any interference from other tasks

— and this is called bandwidth isolation.

In this work, only the case where each server has one task

attached is considered. Situations where more than a task, e.g.,

an entire application, are scheduled inside a server will be

investigated in future work.

Two examples of resource reservation algorithms are the

Constant Bandwidth Server (CBS [1]), for dynamic priority

scheduling, and the Sporadic Server (SS [35]), for fixed

priority scheduling. The state machine diagram of a server for

a general reservation algorithm is depicted in Fig. 1. Usually, a

server has a current budget (or simply budget) that is depleted

as long as the server is dispatched. A server is active

whenever its task is ready for execution, the server has some

budget left, but some other server is being scheduled. When

an active server is dispatched, it becomes running, and its

served task is actually run. From there on, the server may:

• become active, if preempted by another server;

• become recharging, if its budget gets depleted;

• become idle, if its task blocks or suspends.

On the way out from recharging and idle many reser-

vation algorithms check whether the budget and the priori-

ty/deadline of the server need to be updated.

Figure 1. state machine diagram of a resource reservation server.

B. The BandWidth Inheritance Protocol

If tasks share some resources in a reservation based en-

vironment, they might start interfering, and the number and

the severity of deadline misses is likely to increase. In fact,

a special kind of priority inversion is possible in such a

case. However, allowing the lock owner server to overcome

its budget, or trying to naively extend traditional protocols

might lead to scheduling anomalies, as explained for example

in [24, 18].

The BandWidth Inheritance Protocol (BWI, see [24]) al-

ready solves this issue for uniprocessor systems, by allowing

the tasks that hold some resources to run also in the servers

of their lock owners. This helps in anticipating the resource

release event, and prevents inversions. A task τi that tries to

lock a resource Rh either becomes its lock owner or blocks. In

the latter case, it is possible to follow the chain of blocks up

to a non-blocked task, let it be τj . This situation is denoted by

τi → τj . In BWI, the τi server Si does not become idle, but

it keeps being active within the scheduler, and τj “inherits” it.

Namely, τj is also attached to Si in addition to its default

server Sj , thus it is able to run when either Sj or Si is

dispatched. τj is either the lock owner of Rh or, if this is

blocked on its own, then it is the ready task at the end of

the chain of blocked tasks. Later, when Rh is released and τi

eventually locks it, τi has to replace the lock owner of Rh in all

the servers it inherited in the meanwhile, except Si (see [24]

for a more complete description).

A blocking chain from a task τi to a task τj is a sequence

{τi, R1, τ1, R2, . . . , τn−1, Rn, τj} of alternating tasks and re-

sources such that: τi locks R1; each task τk (with 1 ≤ k < n)

locks Rk+1 in a critical section nested inside another critical

section on Rk; τj locks Rn. Proper nested access to critical

sections is assumed, thus a task never appears more than

once in each blocking chain, and deadlock situations are not

possible. There might exist more than one blocking chain for

a task τi, so Hh
i denotes the h-th one.

V. MULTIPROCESSOR BANDWIDTH INHERITANCE

Due to their heterogeneous nature, open systems signif-

icantly benefit from multiprocessor support, probably much

more than safety critical real-time ones. The BWI protocol is

a natural candidate for use in open systems, so it seems natural

to use the BWI on multiprocessor systems. Unfortunately, the

extension of BWI over multiprocessors is not trivial.

An important problem to be solved is what happens when a

task tries to lock an already locked resource, and the lock

owner is executing on a different processor. In this case,

it makes no sense to attach the lock owner to the server

of the blocked task, since it is not possible to execute the

same task on two processors at the same time. On the other

hand, blocking the task and suspending the server may create

problems to the resource reservation algorithm: the suspended

server must be treated as if its task were terminated and an

unblocking must be treated as a new instance of the server. In

this condition, it may be impossible to provide time guarantees

to the task, as shown in [24].

In this case, M-BWI lets the blocked task perform an active

waiting inside its server. However, if the lock owner is not

executing, because its server has been preempted or exhausted

its budget while inside the critical section, the inheritance

mechanisms of BWI must still be applied, otherwise the

waiting time could be too long. Therefore, it is necessary to

understand what is the status of the lock owner before taking

a decision on how to resolve the contention. The final choice

to be taken is how to order the queue of tasks blocked on a

locked resources.

This section gives full details about M-BWI protocol rules

and properties.

A. State Machine

A server using the M-BWI protocol has some additional

states. The new state machine is depicted in Figure 2. For the

sake of completeness, the diagram also considers the events of

a task blocking on a non M-BWI mutex, or self-suspending,

which are not expanded in the paper for space reasons.

Figure 2. State machine diagram of a resource reservation server when
M-BWI is in place.

As long as the task does not try to take a M-BWI lock, the

server follows its original behavior. However, when τj tries to

take a lock – whether it manages to do it or not – its server

Sj starts behaving as in the bottom part of the diagram. The

same happens for the tasks blocked on τj and their servers.

Some of the new states are replication of their original

counterparts, e.g., recharging and BWI_recharging,

and have been added just to make the diagram simpler to

understand. This is not true for the BWI_running state,

which has also been split in two sub-states: LO-Running,

which stands for Lock Owner Running, and LO-RAS, which

stands for Lock Owner Running in Another Server.

When a server Sj enters the LO-Running state, it executes

a task, either τj or the lock owner of the resource Rh upon

which τj is blocked, or, if the latter is blocked on its own,

the ending task of the corresponding blocking chain. Forcing

the nomenclature, this ending task is sometimes referred to,

in what follows, as the “lock owner” for τj and Rh. If τj or

its lock owner are already running in some other server (Sr)

on a different CPU, Sj enters the LO-RAS sub state. A server

in this state executes preemptively a busy wait until: (i) it is

preempted or it exhausts its budget; or (ii) its lock owner is

preempted or it exhausts its budget. These events are modelled

in the diagram as a signal sig1 that is broadcasted to all the

LO-RAS servers, and consumed by only one of them.

B. Protocol Rules

The M-BWI protocol works according to the following

blocking and scheduling rules. Let λj denote the set of tasks

blocked waiting for τj to release some resource: λj = {τk |
τk → τj}. Also, let Λj denote the set of servers currently

inherited by τj (Sj included): Λj = {Sk | τk ∈ λj} ∪ {Sj}.

Then, the protocol rules may be stated as follows:

• M-BWI blocking rule: when a task τi blocks trying to

lock an already owned resource Rh, the chain of blocked

tasks is followed until one that is not blocked is found –

let it be τj . Therefore, τj inherits Si and all the servers

in Λi.

• M-BWI scheduling rule I: whenever a server Sk ∈
Λj is dispatched, it runs the lock owner (τj , in the

LO-Running state). If τj is already executing some-

where else, it performs a busy wait (LO-RAS state).

Whenever Sk is preempted or exhausts the budget while

running τj , one of the other servers that were busy

waiting will start executing it.

• M-BWI scheduling rule II: whenever a server Sk ∈ Λj

blocks on something not related to M-BWI, all the servers

in Λj become idle (BWI_idle state). When it unblocks,

all Sl ∈ Λj become active again (BWI_active state).

• M-BWI unblocking rule: when τj unlocks Rh and

wakes τi up, τj is discarded from Si and τi replaces

it in all Sl ∈ Λj .

• M-BWI waking order: when more than one task is

blocked waiting for locking Rh, access is granted in

FIFO ordering, i.e., tasks enter the critical section on Rh

according to the order they issued the lock request.

C. Examples

To better explain how M-BWI works, two complete exam-

ples are shown in this section, conceived to highlight the rules

of the protocol.

In the figures below, each time line represents a server, and

the default task of server SA is τA. However, since with M-

BWI tasks can execute in servers different from their default

one, the label in the execution rectangle denotes which task is

executing in that server at that instant. Light gray rectangles

are tasks executing non critical code, dark gray rectangles are

critical sections and black rectangles correspond to servers that

are busy waiting. Which critical section is being executed by

which task can again be inferred by the execution label, thus

A1 denotes task τA executing a critical section on resource

R1. Finally, arrows represent “inheritance events”, i.e., tasks

inheriting servers as consequences of some blocking.

The schedule for the first example is depicted in Figure 3.

It consists of 3 tasks accessing only 1 resource, scheduled on

2 processors.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

SA

SB

SC

A

L(1)

A1

U(1)

A

B

L(1)

C1 B1

U(1)

B

C C1

L(1)

U(1)

C

Figure 3. First example, 3 tasks on 2 CPUs and 1 resource.

At time 6, τB tries to lock R1, which is already owned

by τC . Thus, τC inherits SB and starts executing its critical

section on R1 inside it. Then, when at time 9 τA tries also

to lock R1, both τC and τB inherit SA, and both SA and SB

want to execute τC . Therefore, as prescribed by the scheduling

rule I, one of the two servers has to start busy waiting (SA in

this example). Also, the FIFO wakeup policy is highlighted in

this example: when, at time 14, τC releases R1, τB grabs the

lock because it made the locking request before τA.

The second example, depicted in Figure 4, is more compli-

cated by the presence of 5 tasks on 2 processors, two resources,

and a nested access: the request for R1 is issued by τC at time

7 when it already owns R2.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

SA

SB

SC

SD

SE

A

L(1)

U(1)

A

B B

C

L(2)

C2

L(1)

U(1) U(2)

C

D

L(2)

A1 C1 C2 D2

U(2)

D

E

L(2)

E2

U(2)

E

Figure 4. Second example, 5 tasks on 2 CPUs with 2 resources — one
accessed nested inside the other by one task.

Notice that both τD and τE , despite they only use R2,

are blocked by τA, which uses only R1. This is because

the behavior of τC establishes the blocking chains HD =
(τD, R2, τC , R1, τA) and HE = (τE , R2, τC , R1, τA). For the

same reason SD and SE are subject to the interference either

by busy waiting or executing τA until it releases R1.

D. Formal Correctness

In this section formal proofs of the following facts are given:

(i) a task only executes when it is ready, and never in more

than one server at a time; (ii) no server misses its scheduling

deadline. The former is the basic property for complying with

the system model, and proof is given in Lemma 1 and 2. The

latter is proven in Theorem 2 and it means that:

1) bandwidth isolation among non interacting tasks at-

tached to servers is always enforced,

2) tasks attached to servers are not automatically guaran-

teed to meet their deadlines. However, as long as it is

possible to compute the interference of other tasks, hard

guarantees can be provisioned.

Thus, if the system is correct and feasible with a resource

reservation algorithm of any kind, then the following lemmas

and theorems hold if M-BWI is used on-top of it.

Lemma 1: M-BWI will never cause a task τj to execute on

more than one server at the same time.

Proof: By contradiction. Suppose that τj is a lock owner

that has inherited some server. For τj to execute in more than

one server, at least two servers in Λj should be LO-Running.

However, the scheduling rule I ensures that there is only

one of these servers in the LO-Running state. Here the

contradiction, and the lemma follows.

Lemma 2: M-BWI will never cause a blocked or suspended

task τi to execute in any server.

Proof: This directly follows from the blocking rule and

from scheduling rule II. Suppose the lemma is true when τi is

not blocked or suspended. According to the blocking rule, if τi

blocks, its lock owner inherits all the servers in Λi. This means

it can execute — instead of τi — when they are dispatched,

and the lemma is still true. Thus, according to scheduling

rule I, if τi blocks or suspends, all the servers in Λi become

BWI_idle and can no longer be dispatched and execute τi.

Hence the lemma.

Theorem 1: An (BWI_)active or (BWI_)running

server Si always has attached exactly one ready or running

task.

Proof: Suppose initially Si is (BWI_)active or

(BWI_)running with only one ready (running) task τk

attached. It is not important if τk is its default task for the

theorem to hold.

Task blocking and suspending events can decrease the

number of ready or running tasks in a server. However, if it

reaches zero Si becomes (BWI_)idle, and the theorem still

holds. On the contrary, task unblocking or resuming events

always raise the number of ready or running tasks from zero

to one, since it must have been preceded by a corresponding

blocking or suspending event, and the thesis keeps being

respected.

According to the blocking rule, as long as τk blocks, its lock

owner inherits Si. τk is thus quitting ready state, and its lock

owner may be ready, running, blocked or suspended. If it is

ready or running, Si remains BWI_running, with such lock

owner as the only task to run. If it is blocked or suspended,

Si becomes BWI_idle, and in both cases the theorem holds.

Finally, according to the unblocking rule, the unblocking of

τk — either if τk is the default task or a lock owner — turns it

back to ready or running state and make Si discard the former

lock owner. Moreover, Si becomes either BWI_running or

running, with τk as the only runnable task, which means

the theorem follows.

Corollary 1: With M-BWI a server never blocks.

Proof: A server never blocks if there is no way, for a

lower priority server Sl to prevent a higher priority server Sh

from being dispatched, if it is (BWI_)active, or to continue

executing if it is BWI_running.

In fact, let Sh be a (BWI_)running server with one

runnable/running task τk attached to it. The only way a server

blocking can occur is if τk suspends or blocks.

Given Theorem 1, in all such cases Sh either becomes

(BWI_)idle or stays BWI_running, no matter if in

LO-Running or in LO-RAS. In the former case, there is

no blocking involved, since the server scheduler only sees a

server deactivation and treats it accordingly. Since, obviously,

no blocking is involved in the latter case as well, the corollary

follows.

Theorem 2: A server Si never misses its scheduling dead-

line.

Proof: It has been shown, e.g., in [1], that the resulting

schedule of a resource reservation based system is the same

as the one of a set of real-time tasks τi — one per server Si

— each with WCET equal to the reservation budget Qi and

period equal to the reservation Pi. Therefore, feasibility of the

set of servers may be verified by exploiting any of the available

tests, according to the in-place scheduling algorithm, i.e., fixed

or dynamic priority and partitioned or global scheduling.

However, if no blocking times are taken into account in

the test, then its outcome is valid only if servers never block.

Therefore, given corollary 1, the theorem follows.

E. Important Considerations

The choice of using FIFO waking order for blocked tasks

might be questionable, mainly because it does not reflect the

priority/deadline of tasks and servers in the system, as it

usually happens in real-time systems and literature. Using a

priority/deadline wakeup order might be possible, and its costs

and benefits are being studied and will be analyzed in future

works. However, FIFO ordering has at least the interesting

property of being starvation free, which also makes it simpler

to calculate blocking and interference times, and that is why

it has been chosen here (as also done in the FMLP or the

M-SRP).

Another important consideration to be made regards server

busy waiting in LO-RAS state. What is important for M-BWI

is that a server, while in LO-RAS state, (i) stays schedulable

and (ii) if running depletes its budget while running. There-

fore, wasting processor time by preemptively busy waiting is

something that can be avoided. For instance, a smart enough

implementation of M-BWI would let some other task run,

while keeping depleting the LO-RAS server budget. Even from

the analysis point of view these “extra time” intervals could be

identified and redistributed as a sort of reclaiming mechanisms,

to improve the guarantees to hard or soft tasks.

VI. M-BWI SCHEDULABILITY ANALYSIS

A. Isolation for Soft Activities

In an open system, temporal isolation and protection of

the different components are key features. M-BWI has been

designed exactly for that purpose, i.e., to seamlessly allow

accessing critical sections in isolation on multiprocessor envi-

ronments. The theorems, lemmas and corollaries demonstrated

above are all it is necessary to state that bandwidth isola-

tion among the different applications of a reservation-based

system is provided by M-BWI not only without additional

calculations, but, more importantly, without any need for

modifications neither to the scheduler nor to the reservation

algorithm.

B. Guarantees for Hard Activities

Open systems may also include hard real-time applications,

for which an estimation of the parameters (computation times,

critical sections length, etc.) have been performed. For these

tasks, it is a must to be able to bound the time they stay

blocked on a resource, so that their deadlines may be guar-

anteed. From the perspective of M-BWI, this can be done

computing the interference their server will be subject to.

The interference time Ii is defined as the amount of time

a server Si is running but it is not executing its default task

τi. In other words, Ii for Si is the sum of two types of time

interval:

• the ones when tasks other than τi execute inside Si;

• the ones when τi is blocked and Si busy waits in LO-RAS

state.

Hence, schedulability guarantees to hard real-time activities in

the system are given by the following theorem.

Theorem 3: A hard real-time task τi, with WCET Ci and

MIT Ti attached to a server Si = (Qi = Ci + Ii, Pi = Ti)
never misses its scheduling deadline.

Proof: As for Theorem 4 in [24], well known results (e.g.,

from [1]) ensure that Si never postpones its deadline if never

executing more than Qi. This guarantees that τi always makes

its scheduling deadline. With M-BWI, the budget of Si can

be consumed by execution of both τi up to Ci, and by other

tasks and busy waiting loops, up to Ii. Hence, the theorem

follows.

The set of tasks that are directly or indirectly (i.e., by means

of a blocking chain due to critical section nesting) interact with

a resource Rj is defined as

Γj = {τl | ∃Hh
k = (. . . τl . . . Rj . . .)} (1)

Theorem 3 also implies that if the system includes solely hard

real-time tasks, servers are scheduled in task’s priority order.

Thus, as Corollary 1 states that with M-BWI a server never

blocks, the m earliest deadline (BWI_)active servers are

always executing. Under these conditions, the following two

Lemmas hold.

Lemma 3: For each resource Rj | τi ∈ Γj a task τl ∈ Γj

with Tl ≥ Pi can contribute to the interference on Si.

Proof: τl and τi interact with Rj and since they are

guaranteed-behavior hard real-time tasks, it is true that Di ≤
Dl. Thus, if τi blocks on Rj and τl is the owner (or even if it

issued a request for Rh before τi, given the FIFO ordering), it

will happen that τl inherits Si, causing interference to it, and

never the vice-versa.

Lemma 4: For each resource Rj | τi ∈ Γj at most m − 1
tasks τl ∈ Γj with Tl < Pi contribute to the interference on a

server Si.

Proof: Since servers execute in tasks’ deadline order,

the running servers will be the m earliest deadline ones, at

any given time. Then, the worst possible situation for a task

τi (attached to Si) is being one of the running ones, at the

moment in which they are all trying to access Rj . Therefore,

given the FIFO ordering policy, it will in the worst case have

to wait for the other m − 1 tasks to complete their requests,

and suffering for their interference (in terms of busy waiting).

Let Φj
i = {τl | τl ∈ Γj ∧ Pl ≥ Pi} − {τi} denote the set of

tasks (attached to servers) with larger period than τi (Si) that

can interfere with τi (Si) itself. Let also Ωj
i = {ξl(Rj) | τl ∈

Γj ∧ Pl < Pi} − {ξi(Rj)} denote the set of maximal critical

sections length of tasks interacting with τi (attached to servers)

with smaller period than τi (Si). Given the two Lemmas, the

interference a server Si is subject to, due to M-BWI, can be

expressed as follows:

∀Rj | τi ∈ Γj , I
j
i =

∑

k|τk∈Φ
j

i

ξk(Rj) +

m−1⊎
Ωj

i (2)

and

Ii =
∑

j|τi∈Γj

Ij
i (3)

where
⊎n S is the sum of the min(n, ‖S‖) biggest elements

of set S (and ‖S‖ is the number of elements in S).

In open systems it is also possible that hard real-time tasks

share some resources with soft real-time ones, e.g., if critical

sections are part of a shared library. In this scenario, even if

the durations of the critical sections are known in advance,

the problem that soft real-time tasks can deplete the budget

of their servers — even inside these code segments — has to

be taken into account. When this happens, the conditions of

Lemma 3 and 4 are no longer verified, and this means that all

the potentially interfering tasks must be considered. An upper

bound to the interference a server Si incurs serving a hard

task, due to the presence of soft tasks, is:

Ij
i =

∑

k|τk∈Γj ,k 6=i

ξk(Rj) (4)

It must be said that if a system consists only of hard real-

time tasks, then M-BWI is probably not the best solution. In

fact, other protocols, specifically aimed at this kind of systems,

might provide more precise estimation of blocking times, and

thus attain a superior performance. Where M-BWI is – as per

the authors’ knowledge – really unique, is in heterogeneous

environments where isolation is the key feature for making it

possible for hard real-time, soft real-time and non real-time

tasks to coexist.

VII. SIMULATION RESULTS

The closed-form expression for the interference time derived

above can be used to evaluate how, and under what conditions,

the interference that M-BWI introduces affects the schedula-

bility of hard real-time tasks in the system. To this purpose, the

effectiveness of the protocol has been evaluated through some

simulations. Synthetic task sets and shared resources have been

generated, according to the following parameters.

Simulations have been carried out for m = {2, 4, 8} CPUs.

Each time, the maximum number of tasks was set to N = 5·m,

and tasks were added to the task set until this limit was reached

or their total utilization exceeded m/2.

Each task has a processor utilization chosen uniformly

within (0, Umax], and a computation time chosen uniformly

within [0.5ms, 500ms) (the task period is calculated accord-

ingly). Tasks execution time includes the execution of any

critical section it will use.

As per the resources, both short and long critical sec-

tions have been considered. Short resources are accessed

by critical sections with a duration uniformly chosen within

[10µs, ξmax), while long ones within [80µs, 120µs]. Each task

has a probability of accessing 0, 1, 2 or 3 short resources of

0.125, 0.25, 0.50 and 0.125, respectively. On the other hand,

each long resource (if any) is accessed by 2, 3 or 4 tasks with

a probability of 0.125, 0.625 and 0.25, respectively.

Finally, for each task and each resource it accesses, 1 or

2 nested resources are generated with a probability of 0.25
and 0.0625, respectively. Nested resources are always short

and their length is obtained exactly as above. A resource Rh

nested inside Rk by means of τj is always accessed by τj but

it may also be accessed by any other task that accesses Rh

with probability 0.5.

The results are obtained by generating 1000 task sets for

each combination of the parameters of the experiment, and

then inflating the computation time of each task by the

interference it suffers. After that, checking how many of the

generated task sets remained schedulable was done using the

response time based test by Bertogna et al. [8].

In the first set of experiments, Nshort = N/2 short re-

sources and Nlong = m/2 long resources have been generated,

and then nested requests are added as described. Different

simulations have been performed, changing the value of Umax

between 0.2 and 0.8 at steps of 0.2, and varying ξmax between

10µs and 80µs at steps of 10µs.

Figure 5 shows that in presence of both short and long

resources, especially when Umax is small (which results in a

higher number of tasks), the schedulability loss is significant

(insets (a) and (b)). This is due to the accumulation of

interference of the pessimistic upper bound. However, it is

interesting to see that, if the number of tasks is kept small,

then the loss is about 30% on 8 CPUs, and much better on 4
or 2 CPUs (insets (c) and (d)), despite the presence of long

resources, short resources lasting much more than expected,

and individual tasks with high utilization. This also suggests

that if the number of hard real-time activities is small enough

– which is a common case in open systems – the M-BWI

protocol can be used without wasting too much bandwidth.

Nevertheless, given the fact that it is both desirable and

common for critical sections to be short, a second set of

experiments has been performed where only Nshort = N/2
short resources (and the nested ones generated from them)

were used. Again, different runs for the same combinations

of values of Umax and ξmax as above have been studied.

Results in Figure 6 are much more encouraging, since even in

worst possible conditions, e.g., many small tasks interacting

on resources with high ξmax as depicted in inset (a), the M-

BWI protocol only suffers of a moderate schedulability loss.

Again, if the number of hard real-time interacting tasks is

limited, the protocol causes almost no waste of CPU capacity.

Moreover, in these cases (insets (c) and (d)), the actual length

of the short critical sections does not seem to negatively affect

schedulability.

In short, these results validate the initial expectations on

the M-BWI protocol concerning its capability of providing

isolation: the protocol can effectively support a few hard real-

time tasks by providing temporal isolation and by bounding the

interference time. The protocol is very suited to soft real-time

tasks, as we expect that in low contention systems, the average

interference time (and thus the overhead of the protocol) is

particularly low.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, the Multiprocessor Bandwidth Inheritance (M-

BWI) protocol has been presented, an extension of the Band-

width Inheritance (BWI) protocol to symmetric multiprocessor

and multicore systems. The protocol is particularly suitable to

open systems, where tasks can enter and leave the system at

any time, and hard, soft and non real-time tasks can coexist.

After describing the protocol, a method to calculate an upper

bound to the interference due to blocking on shared resources

has been derived. This makes it possible to compute the budget

to be assigned to hard real-time tasks in order to guarantee

they will meet their deadlines in the worst-case. Also, the

schedulability penalty that incurs when taking this interference

into account has been evaluated.

However, the proposed upper bound is very pessimistic,

and more careful analysis that may improve its expression

is already planned as a future work. In addition, we plan to

implement the algorithm to estimate the average interference

time of a task under different operating conditions.

REFERENCES

[1] L. Abeni and G. Buttazzo. Integrating multimedia appli-

cations in hard real-time systems. In Proc. IEEE Real-

Time Systems Symposium, pages 4–13, Madrid, Spain,

Dec. 1998.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

%
 o

f
S

ch
ed

u
la

b
le

 T
as

k
 S

et
s

Maximal Duration of Short Resources

2 CPUs
4 CPUs
8 CPUs

(a) Umax = 0.2

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

%
 o

f
S

ch
ed

u
la

b
le

 T
as

k
 S

et
s

Maximal Duration of Short Resources

2 CPUs
4 CPUs
8 CPUs

(b) Umax = 0.4

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

%
 o

f
S

ch
ed

u
la

b
le

 T
as

k
 S

et
s

Maximal Duration of Short Resources

2 CPUs
4 CPUs
8 CPUs

(c) Umax = 0.6

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

%
 o

f
S

ch
ed

u
la

b
le

 T
as

k
 S

et
s

Maximal Duration of Short Resources

2 CPUs
4 CPUs
8 CPUs

(d) Umax = 0.8

Figure 5. Schedulability loss due to M-BWI for hard tasks, varying the maximal duration of short resources. Insets show simulations with different values
used for Umax. In these experiments, both short and long resources were present.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80

%
 o

f
S

ch
ed

u
la

b
le

 T
as

k
 S

et
s

Maximal Duration of Short Resources

2 CPUs
4 CPUs
8 CPUs

(a) Umax = 0.2

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80

%
 o

f
S

ch
ed

u
la

b
le

 T
as

k
 S

et
s

Maximal Duration of Short Resources

2 CPUs
4 CPUs
8 CPUs

(b) Umax = 0.4

 90

 92

 94

 96

 98

 100

 0 10 20 30 40 50 60 70 80

%
 o

f
S

ch
ed

u
la

b
le

 T
as

k
 S

et
s

Maximal Duration of Short Resources

2 CPUs
4 CPUs
8 CPUs

(c) Umax = 0.6

 90

 92

 94

 96

 98

 100

 0 10 20 30 40 50 60 70 80

%
 o

f
S

ch
ed

u
la

b
le

 T
as

k
 S

et
s

Maximal Duration of Short Resources

2 CPUs
4 CPUs
8 CPUs

(d) Umax = 0.8

Figure 6. Schedulability loss due to M-BWI for hard tasks, varying the maximal duration of short resources. Insets show simulations with different values
for Umax. In this experiments, only short resources were present.

[2] J. H. Anderson and S. Ramamurthy. A framework for im-

plementing objects and scheduling tasks in lock-free real-

time systems. In IEEE Real-Time Systems Symposium,

pages 94–105. IEEE Computer Society, 1996. ISBN 0-

8186-7689-2.

[3] B. Andersson. Static-Priority Scheduling on Multiproces-

sors. PhD thesis, Department of Computer Engineering,

Chalmers University, 2003.

[4] B. Andersson, S. Baruah, and J. Jansson. Static-priority

scheduling on multiprocessors. In Proceedings of the

IEEE Real-Time Systems Symposium, pages 193–202.

IEEE Computer Society Press, December 2001.

[5] T. P. Baker. An analysis of fixed-priority schedulability

on a multiprocessor. Real-Time Systems: The Interna-

tional Journal of Time-Critical Computing, 32(1–2):49–

71, 2006.

[6] T. P. Baker. Stack-based scheduling of real-time pro-

cesses. Real-Time Systems, (3), 1991.

[7] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: a

synchronization protocol for hierarchical resource shar-

ing real-time open systems. In Proceedings of the 7th

ACM and IEEE international conference on Embedded

software, 2007.

[8] M. Bertogna and M. Cirinei. Response-time analysis for

globally scheduled symmetric multiprocessor platforms.

In 28th IEEE Real-Time Systems Symposium (RTSS),

Tucson, Arizona (USA), 2007.

[9] M. Bertogna, F. Checconi, and D. Faggioli. An Imple-

mentation of the Earliest Deadline First Algorithm in

Linux. In Proceedings of the 1st Workshop on Composi-

tional Theory and Technology for Real-Time Embedded

Systems, Dec. 2008.

[10] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability

analysis of global scheduling algorithms on

multiprocessor platforms. IEEE Transactions

on Parallel and Distributed Systems, 2008. doi:

http://doi.ieeecomputersociety.org/10.1109/TPDS.2008.129.

[11] A. Block, H. Leontyev, B. B. Brandenburg, and J. H.

Anderson. A flexible real-time locking protocol for

multiprocessors. In Proceedings of the 13th IEEE Inter-

national Conference on Embedded and Real-Time Com-

puting Systems and Applications, pages 47–56, 2007.

[12] M. Caccamo and L. Sha. Aperiodic servers with resource

constraints. In IEEE Real Time System Symposium,

London, UK, December 2001.

[13] C.-M. Chen and S. K. Tripathi. Multiprocessor priority

ceiling based protocols. In tech. rep., College Park, MD,

USA, 1994.

[14] H. Cho, B. Ravindran, and E. D. Jensen. Space-optimal,

wait-free real-time synchronization. IEEE Trans. Com-

puters, 56(3):373–384, 2007.

[15] R. I. Davis and A. Burns. Resource sharing in hierarchi-

cal fixed priority pre-emptive systems. In Proceedings of

the IEEE Real-time Systems Symposium, 2006.

[16] U. C. Devi, H. Leontyev, and J. H. Anderson. Ef-

ficient synchronization under global edf scheduling on

multiprocessors. In Proceedings of the 18th Euromicro

Conference on Real-Time Systems, pages 75–84, 2006.

[17] A. Easwaran and B. Andersson. Resource sharing in

global fixed-priority preemptive multiprocessor schedul-

ing. In Proceedings of IEEE Real-Time Systems Sympo-

sium, 2009.

[18] D. Faggioli, G. Lipari, and T. Cucinotta. An efficient

implementation of the bandwidth inheritance protocol

for handling hard and soft real-time applications in the

linux kernel. In Proceedings of the 4th International

Workshop on Operating Systems Platforms for Embedded

Real-Time Applications (OSPERT 2008), Prague, Czech

Republic, July 2008.

[19] X. Feng and A. K. Mok. A model of hierarchical real-

time virtual resources. In Proc. 23rd IEEE Real-Time

Systems Symposium, pages 26–35, Dec. 2002.

[20] N. Fisher, M. Bertogna, and S. Baruah. The design of

an EDF-scheduled resource-sharing open environment.

In Proceedings of the 28th IEEE Real-Time System

Symposium, 2007.

[21] P. Gai, G. Lipari, and M. di Natale. Minimizing memory

utilization of real-time task sets in single and multi-

processor systems-on-a-chip. In Proceedings of the IEEE

Real-Time Systems Symposium, Dec. 2001.

[22] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coor-

dinated task scheduling, allocation and synchronization

on multiprocessors. In Proceedings of IEEE Real-Time

Systems Symposium, 2009.

[23] G. Lipari and E. Bini. A methodology for designing

hierarchical scheduling systems. Journal of Embedded

Computing, 1(2), 2004.

[24] G. Lipari, G. Lamastra, and L. Abeni. Task synchroniza-

tion in reservation-based real-time systems. IEEE Trans.

Computers, 53(12):1591–1601, 2004.

[25] C. L. Liu and J. W. Layland. Scheduling algorithms

for multiprogramming in a hard real-time environment.

Journal of the Association for Computing Machinery, 20

(1):46–61, Jan. 1973.

[26] J. M. Lopez, J. L. Diaz, and D. F. Garcia. Utilization

bounds for EDF scheduling on real-time multiprocessor

systems. In Real-Time Systems: The International Jour-

nal of Time-Critical Computing, volume 28, pages 39–68,

2004.

[27] F. Nemati, M. Behnam, and T. Nolte. Multiprocessor

synchronization and hierarchical scheduling. In Proceed-

ings of the First International Workshop on Real-time

Systems on Multicore Platforms: Theory and Practice

(XRTS-2009) in conjunction with ICPP’09, September

2009.

[28] F. Nemati, M. Behnam, and T. Nolte. An investigation

of synchronization under multiprocessors hierarchical

scheduling. In Proceedings of the Work-In-Progress

(WIP) session of the 21st Euromicro Conference on Real-

Time Systems (ECRTS’09), pages 49–52, July 2009.

[29] R. Rajkumar. Real-time synchronization protocols for

shared memory multiprocessors. In Proceedings of

the International Conference on Distributed Computing

Systems, pages 116–123, 1990.

[30] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time syn-

chronization protocols for multiprocessors. In Proceed-

ings of the Ninth IEEE Real-Time Systems Symposium,

pages 259–269, 1988.

[31] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Re-

source Kernels: A Resource-Centric Approach to Real-

Time and Multimedia Systems. In Proc. Conf. on

Multimedia Computing and Networking, January 1998.

[32] T. Riegel, C. Fetzer, and P. Felber. Time-based transac-

tional memory with scalable time bases. In P. B. Gibbons

and C. Scheideler, editors, SPAA, pages 221–228. ACM,

2007. ISBN 978-1-59593-667-7.

[33] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority

inheritance protocols: An approach to real-time syn-

chronization. IEEE Transactions on Computers, 39(9),

September 1990.

[34] I. Shih and I. Lee. Periodic resource model for com-

positional real-time guarantees. In Proc. 24th Real-Time

Systems Symposium, pages 2–13, Dec. 2003.

[35] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task

scheduling for hard-real-time systems. Journal of Real-

Time Systems, 1(1):27–60, 1989.

