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Abstract

Energy-centric design is paramount in the current embedded computing era:
use cases require increasingly high performance at an affordable power budget,
often under real-time constraints. Hardware heterogeneity and parallelism
help address the efficiency challenge, but greatly complicate online power
consumption assessments, which are essential for dynamic hardware and
software stack adaptations. We introduce a novel power modeling methodology
with state-of-the-art accuracy, low overhead, and high responsiveness, whose
implementation does not rely on microarchitectural details. Our methodology
identifies the Performance Monitoring Counters (PMCs) with the highest
linear correlation to the power consumption of each hardware sub-system, for
each Dynamic Voltage and Frequency Scaling (DVFS) state. The individual,
simple models are composed into a complete model that effectively describes
the power consumption of the whole system, achieving high accuracy and
low overhead. Our evaluation reports an average estimation error of 7.5%
for power consumption and 1.3% for energy. We integrate these models in
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the Linux kernel with Runmeter, an open-source, PMC-based monitoring
framework. Runmeter manages PMC sampling and processing, enabling the
execution of our power models at runtime. With a worst-case time overhead of
only 0.7%, Runmeter provides responsive and accurate power measurements
directly in the kernel. This information can be employed for actuation policies
in workload-aware DVFS and power-aware, closed-loop task scheduling.

Keywords: Power modeling, runtime power estimation, embedded systems,
operating systems, Linux kernel

1. Introduction

Recent years have seen a dramatic evolution in the embedded and real-time
computing landscape, with increasingly demanding requirements. Applica-
tions strive for ever-higher computing capabilities and energy efficiency, push-
ing toward heterogeneous and massively parallel computing platforms [1, 2].
However, since the end of Dennard’s scaling, several walls have been hit, from
power consumption to memory, to hardware overspecialization [3]. With the
limits of current silicon technology exposed, pushing for maximum energy
efficiency at runtime and in a dynamic fashion is paramount to meet the
requirement for high performance within sustainable power budgets [4].

The de facto standard to boost hardware power efficiency at runtime is
Dynamic Power Management (DPM), integrated even in today’s simplest
embedded systems in the form of Dynamic Voltage and Frequency Scaling
(DVFS) and clock gating. Through DPM, different processing elements or
computing islands can be independently turned off or slowed down based
on the phase of the running workload. However, to exploit the full poten-
tial of the available power knobs, the software stack must also be able to
perform intelligent adaptations based on power measurements. Providing
such information at the level of the OS kernel, for instance, allows the task
scheduler to perform power-aware decisions as to the assignment of comput-
ing resources to the running processes [5]. This is essential for applications
characterized by real-time constraints running on embedded systems, due to
critical misprediction penalties and thermal concerns [5, 6, 7].

For such full-stack, energy-aware dynamic adaptations to be effective,
however, accurate, fine-grained, and responsive online power measurements,
with negligible overhead on normal system operation, are required to close the
control loop [8, 9]. An intuitive solution relies on analog power sensors. How-
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ever, as discussed in Section 2.1, they unfortunately pose significant challenges
in many practical scenarios [10]. As an alternative to direct power sensing,
analytical and data-driven power models have been extensively researched to
obtain power measurements better suited for dynamic, online adaptations of
hardware and software. It is well-known that the Performance Monitoring
Counter (PMC) activity effectively correlates to power consumption [11],
enabling accurate, data-driven power modeling for responsive and fine-grained
power gauging [8]. However, the complexity of selecting appropriate PMCs
with an understanding of the underlying hardware architecture, coupled with
the modeling challenges of DVFS, complicates their broader applicability in
heterogeneous parallel systems with limited resources and constraining time
requirements.

This paper introduces a PMC-based approach to power consumption
estimation for modern, DVFS-enabled, heterogeneous systems, extending our
previous work on the topic [12]. We devise a low-overhead statistical model
for the power consumption of an embedded computing system composed of
a host CPU and additional specialized hardware acceleration sub-systems
exposing activity counters, a common practice in today’s mobile and embed-
ded platforms [13]. We decompose the system into its smaller, more easily
approachable sub-systems, and build a lightweight Lookup Table (LUT) of
simple power models, independently modeling every sub-system in each DVFS
state. The modeling simplicity of the LUT seeks to match or outperform
more complex approaches to power estimation, achieving an advantageous
trade-off between estimation accuracy and evaluation overhead, together with
fine granularity and high responsiveness.

As a second key contribution, we propose Runmeter, an architecture-
agnostic integration strategy of the model within the Linux kernel that
automatizes the collection of PMC samples and the online evaluation of
the power model in a lightweight and responsive fashion. The approach is
demonstrated with a modern, heterogeneous, DVFS-enabled target platform,
the NVIDIA Jetson AGX Xavier board. Considering its CPU and GPU sub-
systems, our combined, system-level power model achieves an instantaneous
power Mean Absolute Percentage Error (MAPE) of 7.5% and an overall
energy estimation error of 1.3%. On this platform, the online implementation
in Linux exhibits a worst-case overhead of 0.7%, enabling the deployment of
aggressive closed-loop power management strategies.

The rest of this paper is organized as follows. Section 2 frames our
contributions into the context of its related work, providing background
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knowledge and justifications for the approach described in this paper. Section 3
describes our statistical power modeling approach as a generalization of [12],
while Section 4 illustrates the architecture of our novel power monitoring
framework integrated within the Linux kernel. Finally, Section 5 describes the
evaluation of our power model through offline validation and online evaluation.

2. Background & Related Work

[14, 15, 16] present a comprehensive survey of different power modeling
approaches and runtime power monitors in the field of embedded and mobile
devices. In the following, we mainly focus on the research works related
to PMC-based power modeling and online, model-based power monitoring,
comparing them with our solution. We summarize the key characteristics in
Table 1, providing a comparison with our approach.

2.1. Analog Power Measurement
For power-aware dynamic adaptations to be possible, online power gauging

is a requirement. To effectively leverage techniques such as DPM and power-
aware task scheduling, the online power gauging must possess the following
properties:

1. accuracy , in terms of time resolution and sensitivity, to properly feed
the power control loop;

2. responsiveness, to promptly reflect the hardware activity profile and
provide stable feedback for the control loop;

3. fine granularity , in terms of introspection into the power consumption
of individual hardware sub-systems (i.e., decomposability) and task-level
power budgeting.

Several off-the-shelf system-on-a-chip (SoC) platforms come equipped with
built-in power sensors, although not integrated on the same die of the SoC
due to technological reasons. Hence, they can rarely provide the level of
introspection of individual hardware sub-systems. For the same reason, off-
chip parasitics pollute their measurements with longer transients, impacting
the responsiveness of their measurements [17]. Their latency is further affected
by the communication channel with the host, usually implemented by a
serial protocol such as I2C, which does not match the speed of the digital

4



domain. Additionally, due to their physical size and deployment costs, analog
gauges often suffer from limited scalability in large-scale or densely integrated
systems [10].

Although unsuitable for reliable, power-driven actuation policies, built-in
analog sensors do not require external equipment for current and voltage mea-
surements, and they can be programmatically and reliably driven. Therefore,
they prove useful to build accurate, fine-grained, and responsive PMC-based
power models through the approach showcased in Section 3. This is demon-
strated in Section 5.4.

2.2. PMC-Based Power Modeling
PMC-based statistical power models have been a hot research topic for

the last 20 years, spanning all computing domains from embedded computing
devices at the edge to data centers in the cloud. Being typically accessible via
memory-mapped registers, PMCs are cheap to use, and their readings are fast
and reliable. As part of the digital domain, PMC activity promptly reflects
the current state of the hardware resources, exposing desirable responsiveness
properties. PMCs also provide a high degree of introspection into individual
hardware sub-systems [18], resulting in highly decomposable PMC-based
power models [8].

However, power estimation through PMCs raises several challenges. Mod-
ern computer architectures, even in the embedded domain, expose hundreds
of countable performance events [19, 20]. Hence, the parameter selection for
a robust statistical power model often requires considerable knowledge of
the underlying hardware. Growing parallelism and heterogeneity, together
with the frequent lack of open documentation, further amplify the challenge.
A careful choice of the model parameters is necessary for several additional
factors: first, Performance Monitor Units (PMUs) can simultaneously track
only a limited number or combinations of performance counters [21, 20, 22].
Second, the amount of model predictors directly impacts evaluation over-
head, which must be small for practical actuation strategies and minimal
interference with the system’s regular operation and time constraints. DVFS
determines an additional layer of modeling complexity, as hardware behavior
at varying frequencies has to be considered. To the best of our knowledge,
the approach we propose in Sections 3 and 4 is the first one to holistically
address all the mentioned challenges.
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Table 1: Comparison between representative works in the literature of PMC-based power
modeling. Note that accuracy metrics, such as the power MAPE, are platform- and
application-dependent. Due to differences in the experimental set-ups, we report the
MAPE to indicate whether each approach delivers the required accuracy for the target
application, rather than as a comparison across different methodologies.

Heterogeneity
Generality

Automation
M

in
architectural

knowledge
Lightweight

model
DVFS

support
Decomposability

Runtime

monitoring
Power M

APE

Walker et al.
(2016) [23]

CPU
only

ARM
cores

✓✓✓ ××× ✓✓✓ ✓✓✓ ××× ××× 3-4%

Yoon et al.
(2017) [13]

✓✓✓ Android ≈≈≈ ≈≈≈ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ 5.1%

Wang et al.
(2019) [24]

iGPU
only

××× ××× ××× ✓✓✓ ××× ××× ××× 3%

Mammeri et
al. (2019) [25]

✓✓✓ mobile ≈≈≈ ≈≈≈ ××× ××× ××× ××× 4.5%

Tarafdar et
al. (2023) [26]

××× data
centers ? ××× ✓✓✓ ? ××× ✓✓✓ 4.7%

This work ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

CPU

3-4.4%

GPU

6-8%

2.2.1. Bottom-up and top-down modeling
Bertran et al. [27] identify two families of PMC-based power models,

depending on their construction: bottom-up and top-down. Bottom-up ap-
proaches rely on extensive knowledge of the underlying architecture to estimate
the power consumption of individual hardware sub-systems. Although the pi-
oneering works of this field fall into this category [18, 8], their results highlight
the limited applicability of bottom-up power models, which are closely tied to
a reference architecture. Recent research further confirms this limitation [28].

Top-down approaches target simple, low-overhead, and more generally
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applicable models, often black-boxing the platform internals. Over the years,
this approach has been refined from the usage of few, manually selected
PMCs [11] to the employment of more elaborate procedures for PMC selection
and support for parallel [29, 30] and heterogeneous [31] platforms. However,
no past research investigates a combination of accurate and low-overhead
models addressing DVFS without requiring expert architectural knowledge.

In the context of CPU power modeling specifically targeting mobile and
embedded platforms, Walker et al. [23] employ a systematic technique for
PMC selection and train power models for the ARM A7 and A15 embedded
processors. However, only one trained weight is used to estimate the power
consumption at any DVFS state. As no information on the employed DVFS
states is available, it is not possible to assess whether such a modeling choice
can avoid large inaccuracies due to the limited number of parameters.

Yoon et al. [13] propose a power model for mobile SoCs solely based on the
utilization metrics provided by the Android kernel, which abstracts the model
deployment from the specific architecture. However, to construct the model,
the authors individually characterize each sub-system by leveraging in-depth
architectural knowledge. Moreover, the single utilization parameter often
fails to grasp the different phases of the running workload, which results in a
larger estimation error with workloads showing higher variability. Yoon et al.
also implement an online monitor deploying their power model, which reports
an overhead of up to 4.5% of CPU time at a 1Hz sampling frequency. In
comparison, Runmeter achieves up to 0.7% overhead with a sampling period
of 10Hz.

Top-down power modeling approaches are also applied to GPUs. Wang et
al. [24] analyze the power consumption of an AMD Integrated GPU, carefully
studying its architecture and selecting the best PMCs to build a linear power
model. While they achieve a MAPE below 3%, the model is manually fine-
tuned for a single system, requiring its expert architectural knowledge, and
DVFS is not taken into account. Recent works also resort to deep learning
for creating accurate black-box power models: Mammeri et al. [25] train an
Artificial Neural Network (ANN) with several manually chosen CPU and
GPU PMCs, achieving a MAPE of 4.5%. However, neural networks generally
require a number of multiply-accumulate operations two orders of magnitude
higher than for a linear model, representing a non-negligible runtime overhead.
Potentially long training time, risk of overfitting, deployment challenges, and
lack of decomposability are additional drawbacks of this approach.

Tarafdar et al. [26] also propose several power modeling techniques based
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on multi-variable linear regression, Support Vector Regression, and ANN.
While their approach is statistically sound, they conceive it as a solution
for data centers. Therefore, no fine-grained power information about the
computing platform is made available. Moreover, the model parameter
selection happens a priori and is not correlated to the modeled platform.
Their best power model, which features an evaluation overhead in the order of
the microseconds, shows an average power estimation error of at most 4.7%.

2.2.2. Contributions
Our proposed model shares its decomposability and responsiveness with

bottom-up approaches but resorts to top-down modeling for individual sub-
systems: we trade a lower per-component introspection for a systematic
modeling procedure requiring very little architectural knowledge and minimal
human intervention. In addition, we carefully address the platform hetero-
geneity and DVFS capabilities by introducing a LUT-based approach that
employs individual, low-overhead linear models for each sub-system and for
each DVFS state. With the aim to enable real-time, in-kernel power estima-
tion on embedded and edge systems, simplicity, determinism, and overhead
are critical. While techniques such as quantized deep learning could address
inference overhead, they open up challenges in training, deployment, and
reproducibility in constrained OS environments. On the other hand, the
simplicity of linear models makes them particularly suitable for deployment
in embedded systems, possibly with real-time constraints, and as part of an
Operating System (OS) kernel, thanks to their low overhead when evaluated
at runtime.

2.3. Online Model-based Power Monitoring
Various tools have been proposed for online, model-based estimation of

power consumption through PMC sampling. Commonly, runtime monitoring
is implemented by simply sampling the PMCs with a fixed periodicity [32, 33].

One of the most popular open-source tools for online PMC sampling is
PMCTrack, developed by Saez et al. [34]. PMCTrack can monitor per-system,
per-CPU, and per-process PMCs directly within the Linux kernel. However,
targeting general-purpose use cases, many aspects of its implementation are
not suited for real-time tasks, that pose different requirements from those
of SCHED_OTHER tasks. As an example, PMCTrack may delay the generation
of a PMC sample related to a task until it is scheduled for execution by
the task scheduler. Such a delay is detrimental to the responsiveness of a
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power-monitoring tool. Other tools based on PMCTrack modify its source to
generate samples at every context switch, albeit their target use-case again
differs from that of real-time tasks [35], making them unsuitable for our study.

On the other hand, with Runmeter, we provide a responsive and reliable
mechanism to monitor the evolution of PMCs in use cases that include real-
time tasks. As discussed in Section 4, we achieve this by implementing a
moving sampling window for PMC collection, featuring fully configurable
time resolution and sensitivity. This results in responsive power readings
that do not sacrifice estimation accuracy, which depends on the configurable
window size [33]. By deploying our low-overhead power models in Runmeter,
we allow the collection of online accurate power measurements with minimal
overhead and sub-system-level introspection at the granularity of individual
tasks.

3. Data-Driven Power Modeling

This section describes our automated, data-driven approach to the training
of a DVFS-aware, low-overhead power estimation model for heterogeneous,
embedded platforms. Given a generic target platform composed of one or
multiple sub-systems, we provide a systematic approach to its characterization
(i.e., model parameter selection) based on extensive profiling of the exposed
PMCs, rather than on microarchitectural details. This results in an accurate,
responsive, and low-overhead power model for the entire platform and its
individual sub-systems, at the desired operating frequencies.

3.1. The systematic, data-driven methodology
For the purpose of this section, we consider a generic computing platform

composed of a set D of individual sub-systems d. Each sub-system d has
a set Fd of possible DVFS states, each one characterized by an operating
frequency fd. We define D∗ ⊆ D as the subset of sub-systems that we target
for power modeling. Furthermore, for each d ∈ D∗, we define F ∗

d ⊆ Fd as the
subset of d’s DVFS states that we consider. Both D∗ and F ∗

d are user-defined
parameters that might vary based on the use-case. For each sub-system d,
up to Nd distinct performance events can be tracked at the same time, i.e., d
features Nd PMCs. In the following, we refer to an individual performance
event exposed by the sub-system d and tracked by its i-th PMC as xi, with
i = 1 .. Nd. The set Xd,fd of all xi of a sub-system d, operating at fd, represents
the set of input independent variables, or the predictors, of our models.
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We propose a methodology to heuristically select the best Xd,fd set for
each sub-system/frequency in terms of overhead and accuracy, subsequently
training its related weights Wd,fd . The individually generated power models
Pd(Xd,fd ,Wd,fd) are simple, linear models that we compose into a Lookup
Table (LUT), effectively grasping the different platform behaviors at varying
operating frequencies.

LUT [d, fd] = Pd(Xd,fd ,Wd,fd) for d ∈ D∗, fd ∈ F ∗
d (1)

The overall system power consumption Ptot is computed by reduction sum
of the LUT along the sub-system dimension d, after fixing a fd for each
sub-system.

Ptot =
∑
d∈D∗

LUT [d, fd] =
∑
d∈D∗

Pd(Xd,fd ,Wd,fd) (2)

The power consumption of a digital system has a non-linear dependency
on its operating voltage and frequency. Our LUT-based approach allows us
to break it down into the individual contributions of each sub-system, lin-
earizing their power models. This greatly simplifies the model generation and
evaluation, which favors its deployment within embedded, real-time systems
and its applicability to different platforms [13]. However, our decomposition
is based on the assumption of independence among power consumption of
different sub-systems. Such an assumption is justified by the limited accuracy
increase of the non-linear model at the cost of a much higher overhead [36].

3.2. Analytical Model Building & Benchmarks Selection
As a first step toward the construction of a system-level LUT, we associate

the generic sub-systems d with the expression Pd of a power model based on
generic performance event information (Figure 1, 1 ). Thanks to the LUT-
based approach, the frequency fd is factored out. Therefore, the individual
power models are reduced to linear combinations of the PMC samples and
the trained weights.

Pd(Xd,fd ,Wd,fd) = Ld +

Ni∑
i=1

( 1

T
· xi

)
· wi (3)

for d ∈ D∗, fd ∈ F ∗
d and Ld

wi
∈ Wd,fd , xi ∈ Xd,fd

The weight Ld is used to capture the constant component of the power
consumption, i.e., the leakage, while the PMC-dependent terms vary based on
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Figure 1: Scheme of the proposed data-driven, automatic power modeling approach for
DVFS-enabled heterogeneous platforms.

the hardware activity, modeling the dynamic power. The factor 1/T normalizes
the raw PMC samples xi with respect to the sampling period T of the dataset
traces: training the model on PMC rates rather than absolute values addresses
sampling jitter and simplifies time-rescaling for model evaluation at arbitrary
time resolutions.

The model generation is also based on the careful choice of a representative
set of workloads for the platform (Figure 1, 2 ). In the first place, complete
coverage of all targeted sub-systems is required to address the platform
heterogeneity fully. Secondly, for each sub-system, the workloads should be
diverse enough to induce a broad range of behaviors for a dataset-independent
result. The selected benchmarks are employed to build a dataset for platform
characterization, model training, and model validation, containing the activity
traces of the workloads, i.e., the PMC samples.

3.3. Platform Characterization
Given the Pd mathematical model for each sub-system d, we define platform

characterization the process of model parameter selection (Figure 1, 4 ). In
other words, with the platform characterization, we define the set Xd,fd of
performance events, which will be used to model the dynamic power of each
sub-system d at each frequency fd.

Individually for each sub-system d and frequency fd, we perform a one-time
correlation analysis between all of its local PMCs and the sub-system power
consumption, looking for the Xd,fd that achieves the most convenient trade-off
in terms of model accuracy and estimation overhead under the constraints
imposed by the PMU limitations. Note that different frequencies of the same
sub-system d might be assigned with different PMCs, which effectively models
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DVFS with simpler, linear models. This characterization process is meant
as an automatic, data-driven alternative to methodologies requiring expert
microarchitectural knowledge, such as manual PMC selection and analytical
power modeling [37]. Given the sub-system d, its characterization involves
the following steps:

1. for each DVFS state fd ∈ F ∗
d , we profile all performance events exposed

by d while tracing d’s power (Figure 1, 5 ); as time-correlated PMC
and power measures are only required for post-mortem traces, simple
synchronization techniques can be used depending on the nature of the
power sensor [31, 23];

2. we normalize the PMC samples with respect to the sampling periods to
overcome sampling jitter;

3. we compute a Linear Least Squares (LLS) regression of each event’s
activity trace over its related power measurements, for each fd; we
discard events with a p-value above 0.05 as not reliable for a linear
correlation;

4. individually for each fd, we sort the remaining events by their Pearson
Correlation Coefficient and select the best-scoring ones that can be
profiled simultaneously (Figure 1, 7 and 8 ).

To compose Xd,fd , it is usually enough to select the desired number of
best-scoring performance events. A higher number of model parameters,
within the limit of overfitting, usually corresponds to higher model accuracy,
but also larger evaluation latency. The optimal number of PMCs with respect
to model accuracy can be defined by iteratively considering the estimation
error results from the model evaluation step (Figure 1, 11 ). On the other
hand, this step has to consider the limitations of the platform’s PMU, which
come in two forms:

• PMUs have a limited number of PMCs to track events. For example,
typical embedded ARM CPUs feature up to four or six individual coun-
ters, that can be mapped to freely selectable or fixed performance events.
High-performance CPUs, like the Hisilicon Kunpeng 920 processor, can
track up to twelve events per core domain [21].

• some performance events are mutually exclusive, i.e., incompatible.
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Incompatible events can be tracked in a time-sharing fashion through counter
multiplexing. However, such an approach increases tracking overhead and
introduces interpolation errors, decreasing estimation accuracy [21]. Targeting
low-overhead, real-time model estimation, we opt for a lower-complexity
solution that avoids PMC multiplexing. To this end, we devise a PMU-
aware heuristic identifying the subset of compatible counters that provide the
highest power estimation accuracy while complying with PMU constraints
(Figure 1, 11 ) [12].

3.4. Training, Validation, and System-level Model
With the sets of counters Xd,fd defined during platform characterization,

we compose the LUT of Equation (1) by individually training the linear
power model Pd(Xd,fd ,Wd,fd) of each sub-system d ∈ D∗ for each fd ∈ F ∗

d

(Figure 1, 9 ). The output of each training step is a set of weights Wd,fd

(Figure 1, 10 ). To train each individual Pd(Xd,fd ,Wd,fd), we perform a
Non-Negative Least Squares (NNLS) linear regression of the PMCs rates
over the power measurements, obtaining the set of non-negative weights
Wd,fd . Compared to unconstrained LLS, non-negative weights are physically
meaningful and prove to be robust to multicollinearity, which makes our simple
models less prone to overfitting. We subsequently validate each individual
Pd(Xd,fd ,Wd,fd).

After individual training and validation, we combine all the individual
sub-system models (Figure 1, 10 ) into the system-level power model (Fig-
ure 1, 12 ) defined by Equation (2). Under the reasonable assumption of
power consumption independence among sub-systems [36], such an approach
relieves us from profiling all possible combinations of sub-systems’ frequen-
cies. This simplifies and accelerates the platform characterization, ultimately
generating a simple linear model that is more robust to overfitting, accurate,
lightweight, and decomposable.

The complete model can finally be used online (Figure 1, 13 ) to monitor
the instantaneous power consumption of the entire system and its sub-systems.
To do so, it is enough to keep the weights Wd,fd available at runtime for each
(d, fd) combination of interest. Due to our modeling methodology, this has a
negligible memory footprint. After acquiring the PMC samples for the set of
model parameters Xd,fd , the power model can be efficiently evaluated with
the small number of multiply-accumulate operations required by its linear
expression. Our proposed framework for the online deployment of our power
model is the object of the next section.
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4. Online Monitoring and Kernel Support

The target of our work is to enable power awareness in crucial function-
alities, such as task scheduling and resource allocation, when running with
real-time applications on resource-constrained devices. The modeling ap-
proach discussed in Section 3 results in a complete system-level power model
that can provide accurate and introspective power estimates with minimal
overhead. An online monitoring framework that integrates the proposed
model is also essential to our target. For this, we propose Runmeter, an
online monitoring framework integrated in the Linux kernel1.

Runmeter supports the runtime estimation of system- and task-level
metrics, including power and energy consumption, through PMC tracking.
As such, it provides the infrastructure to flexibly collect PMC samples with
minimal overhead and evaluate the model presented in Section 3, exposing its
estimates to the Linux scheduler. The modular design of Runmeter abstracts
its implementation from the specifics of the hardware architecture. Only
a minimal subset of its components must be re-implemented to support
different target platforms, sub-systems, and tracked metrics. As a case study,
we leverage the framework to implement support for online power estimation
and monitoring of the CPU sub-system.

4.1. Runmeter Kernel Module
Once loaded into the kernel, the Runmeter Kernel Module hooks to

strategic callbacks to trace and collect running statistics on a selection of
the available PMCs, according to the result of the platform characterization
(Section 3.3). Since a different set of counters XCPU,fCPU can be selected
to model the evolution of the platform depending on the DVFS state fCPU,
the module selects the correct PMCs to track according to the model LUT
(Equation (1)). The module also subscribes to the CPU frequency governor
(CPUFreq) to be notified of each change of frequency so that it can dynamically
reconfigure the set of tracked PMCs for each CPU core. When tracking is
enabled, the kernel module generates a new PMC sample on each CPU core
whenever one of the following events occurs:

• a context switch, in which case a new sample is always generated, or

1 Runmeter Framework is an open source project; its homepage is at https://gitlab.
retis.santannapisa.it/ampere/runmeter. Here, users can find all the necessary tools
to build and deploy the framework on supported platforms.
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• a user-configurable number of scheduler ticks since the last sample was
produced on that core.

The first trigger allows Runmeter to collect PMC statistic on a per-task basis
and derive power estimates with task-level granularity. The second trigger,
on the other hand, provides an upper bound to the inter-arrival time between
two consecutive PMC samples. This guarantees that tasks hogging the CPU
do not interfere with the monitoring. Since this bound is expressed in terms
of scheduler ticks, its granularity depends on the CONFIG_HZ Linux kernel
option. The dependence on scheduler ticks also prevents unwanted activation
of Runmeter during deep idle states.

Proper selection of this upper bound is key to ensuring the desired re-
sponsiveness when monitoring CPU counters. The basic PMC sampling
mechanism provides the accumulated value of the event counter since its
last reading. In this case, a small sampling period negatively impacts the
information collected by the PMCs: since each sample is tied to a single task,
it is difficult to derive any meaningful data about the overall platform status
from it. On the other hand, with a large sampling period, the read-out value
is updated less frequently, which is detrimental for actuation policies requiring
high responsiveness [33].

As a trade-off, we devise a moving-window approach that decouples the
PMC sampling period from their observation window. The moving window
allows us to obtain PMC statistics accumulated over an arbitrarily long
window and updated at an arbitrarily fine time granularity. To implement the
moving-window approach, we instantiate a window buffer for each PMC. Each
buffer stores a user-configurable number of the most recent PMC samples.
The value of each PMC over the whole window is tracked by summing up
all samples in the buffer. This information is updated each time the window
moves forward (i.e., a new sample is available). We refer to this value as
synthetic PMC sample. Such a moving buffer also serves the purpose of
aggregating the per-task PMC samples to obtain core-level metrics.

Consuming synthetic samples provides more meaningful PMC data for the
metrics to be estimated. This comes at the cost of the additional processing
of each PMC’s window. However, as shown in Section 5, this additional
processing introduces negligible overhead in practice. Moreover, the aggrega-
tion of samples at the core level is required regardless of the moving-window
mechanism, making the relative cost of this step minimal.
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4.2. In-Kernel CPU Power Model
Synthetic PMC samples provide visibility over a time defined by the

window size, but are updated at a rate defined by the PMC sampling period.
Components like an online CPU power (or energy) monitor are required to
re-evaluate their estimates at each update of the synthetic samples. A high
degree of responsiveness in the monitoring, useful for robust actuation, can
be achieved when the model evaluation time can keep up with the stream of
synthetic samples.

The model we present in Section 3 retains high accuracy despite its low
computational complexity, which empowers it to actually keep up with the
stream of samples. As a case study, we deploy it in the Linux kernel through
the infrastructure provided by the Runmeter Framework. The CPU power
monitor in Runmeter implements, for each CPU DVFS state, the following
model, extending Equation (3) to support multiple CPU cores:

PCPU = LCPU +

#cores∑
i=1

NCPU∑
j=1

( 1

T ′ · xij

)
· wij︸ ︷︷ ︸

=
1

T ′

#cores∑
i=1

NCPU∑
j=1

xij · wij

(4)

The weights LCPU and wij are fractional values, but the usage of floating-point
arithmetic within the Linux kernel is problematic and expensive. For this
reason, we use fixed-point arithmetic to implement the in-kernel power model,
supported by the negligible loss of dynamic range and precision that we
evaluate in Section 5.4.

The factor 1/T ′ normalizes the value of each synthetic sample with respect
to the width of the user-configured observation window T ′. T ′ might indeed
differ from the sampling period T of the model training dataset (Equation (3)).
Thanks to the linearity of our models, we can perform the normalization by
factoring out 1/T ′ and operating only one multiplication after the summation.
This achieves arbitrary time-rescaling of the model with negligible overhead.

4.3. Runmeter and PMCTrack
Runmeter Framework’s kernel components are based on the implemen-

tation of PMCTrack [34], albeit some fundamental differences branch away
from the original implementation due to the specific requirements of our use
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case. This section clarifies the similarities and the key differences between
the two tools, motivating our design choice.

Runmeter’s current implementation exploits a kernel patch to insert
callbacks to its PMC sampling mechanism, detailed in Section 4.1. We
implement the rest of the Runmeter Framework as a dynamically loadable
kernel module that hooks to such entry points. The Runmeter Kernel Patch
is equivalent to the one provided by PMCTrack. PMCTrack additionally
provides a mechanism to dynamically inject entry points for the kernel module
without a kernel patch [38]. Such a mechanism is based on dynamic ftrace,
which, from Linux kernel v5.9 on, provides a stable interface to inject the
hooks required by PMCTrack. As reported in Section 5, our target platform
relies on the Linux kernel v4.9, which therefore requires a patch to support
the Runmeter kernel module. Nevertheless, Runmeter can seamlessly leverage
the very same mechanism for a patch-less implementation with more recent
kernel versions.

On the other hand, PMCTrack and Runmeter Framework substantially
differ in their respective kernel modules. PMCTrack’s users can register
monitoring modules as consumers of PMCTrack-managed PMC samples [34].
However, PMCTrack’s limited tracing modes prevent us from implementing
Runmeter as a monitoring module for PMCTrack. In particular, PMCTrack
implements three different tracing modes: 1. an event-based mode, that gener-
ates PMC samples when one of the counters reaches a configured threshold,
and 2. two different variants of a timer-based mode, called time-based sampling
(TBS), that generate samples periodically. Due to the use case targeted by
Runmeter, in this work we focus on a timer-based sampling approach.

The first TBS mode provided by PMCTrack is per-task tracing. Per-
task tracing generates new PMC samples periodically, based on a callback
executed by the scheduler tick (as in Runmeter), or when tasks are selected
for execution, rather than switched out. In the latter case, the PMC sample
generation is delayed until the task is selected again. Furthermore, each
traced task has to be configured individually, which makes it challenging to
trace all the tasks running on the system. While this enables PMCTrack to
profile different performance events for each task, it represents a drawback
for Runmeter, whose event selection is dictated exclusively by the operating
frequency. This limitation is common to many tracing tools [35]. Runmeter,
on the other hand, targets a rapid swap among different sets of PMCs
whenever the operating frequency changes, to align to the power model’s
LUT (Equation (1)) determined during the platform characterization without
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looping through all the individually traced tasks.
PMCTrack also implements a system-wide TBS mode, where a kernel

timer dictates the sampling of PMCs on a per-core basis [34]. This mode
provides a predictable sampling period suitable for real-time power estimation,
but it generates PMC samples on a per-core basis. This prevents monitoring
modules from collecting task-level metrics. In contrast, Runmeter’s hybrid
sampling strategy generates PMC samples on a per-task basis, subsequently
aggregating them into per-core samples, granting a predictable periodicity
in the PMC collection. Furthermore, being driven by scheduler ticks rather
than a kernel timer, Runmeter periodic activation would not wake up a core
in a deep idle state, polluting power measurements, as opposed to PMCTrack
system-wide TBS mode.

Motivated by our requirements, we leverage PMCTrack’s abstraction of
the low-level PMC sampling and execution hooks while re-implementing
the PMC collection and delivery to consumers, tailoring it to our specific
requirements.

5. Evaluation

In this section, we evaluate the holistic power modeling approach discussed
in Section 3, and its in-kernel implementation within the Runmeter online
monitoring framework described in Section 4.

5.1. Experimental methodology
The target platform for our experiments is an NVIDIA Jetson AGX Xavier,

powered by the Xavier SoC [19]. It is a highly parallel and heterogeneous
SoC provided with an 8-core 64-bit ARMv8.2 CPU, a 512-core NVIDIA
Volta GPU, and several additional accelerators for deep-learning, computer
vision, and video encoding/decoding. With many DVFS states available
for its sub-systems, this platform represents a challenging state-of-the-art
target to validate our approach. In particular, the single CPU island on the
platform can be clocked at 29 different discrete frequencies between 115MHz
and 2.3GHz, while the GPU has 14 available DVFS states between 115MHz
and 1.4GHz. For the evaluation of our power modeling approach, we target
the CPU and GPU sub-systems,

D∗ = {CPU, GPU}
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considering the following DVFS states:

F ∗
CPU = {730MHz, 1.2GHz, 2.3GHz}

F ∗
GPU = FGPU = {all 14 from 115MHz to 1.4 GHz}

To build the input dataset, we profile several workloads based on the consid-
erations of Section 3.2. For the CPU, we employ the OpenMP benchmarks
from the Rodinia 3.1 heterogeneous benchmark suite [39] in several multi-
thread configurations, in addition to further synthetic benchmarks targeting
static stress test of common compute- and memory-bound patterns, such
as memcpy [12]. For the GPU, we employ the CUDA benchmarks from Ro-
dinia. To average out possible interference in our measurements, such as
unpredictable OS activity, each workload is profiled 3 times.

PMC samples are acquired in a continuous, periodical mode with a sam-
pling period of 100ms. During each sampling period, power measures of
the CPU and GPU sub-systems are also acquired from the INA3221 built-in
power monitors [40]. This grants the time correlation needed for an effective
correlation analysis and training [41]. We find that collecting more than one
sample per 100ms does not capture any additional information due to the
electrical inertia of the built-in current sensors.

As discussed in Section 2, typically, built-in power monitors are not
robust tools for online, power-aware actuation policies. This is mainly due to
their speed, coarse granularity, and low resolution, which for the Xavier is
limited to about 200mW. However, they are helpful for building datasets to
achieve higher introspection, time granularity, and responsiveness enabled by
PMC-based power models, as proved in Section 5.

5.2. Offline Platform Characterization and Modeling
This section discusses the result of the power model generation (Section 3)

of the individual CPU and GPU sub-systems for the NVIDIA Jetson AGX
Xavier case study.

5.2.1. Sub-system Characterization
For the CPU sub-system, the results of the platform characterization sug-

gest that the power consumption of the cores is highly correlated, depending
on the selected DVFS state, with the number of cycles during which the cores
are not power-gated, the number of retired instructions, the floating point
activity, and various cache-related events. The ARM PMU always exposes
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the CPU active cycle counter. For the remaining power model parameters,
we consider the three best counters for each frequency, as the maximum
allowed by the PMU. From our experiments, all selected performance events
are compatible with each other.

For the GPU sub-system, our results expose multiple incompatibilities
among the performance events that best correlate with the power profile.
To be able to simultaneously track the best model parameters at runtime,
we adopt the PMU-aware heuristic described in Section 3.3, to identify the
viable set of compatible performance events. We conclude that events related
to L2 cache utilization and warp execution best correlate with the power
consumption of the GPU. Additionally, through the validation step, we find
that a number of eight PMCs per frequency is the optimal trade-off between
model evaluation time and the power estimate accuracy.

5.2.2. Sub-system Modeling and Validation
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Figure 2: Instantaneous power estimate over the validation set for the system-level power
model (on the left) and its breakdown into the individual sub-system estimates (on the
right), with fCPU = 1.2GHz, fGPU = 830MHz.

For the CPU, we adopt a NNLS regression to individually train a linear
model based on Equation (1) for each frequency. We employ four independent
variables per core, i.e., the three configurable PMCs for each frequency and
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the cycle counter. Out of our input dataset, we use a random selection of
70% of the total data for training and the remaining 30% for validation. In
terms of instantaneous power accuracy, the model achieves a Mean Absolute
Percentage Error (MAPE) between 3% and 4.4% based on the frequency, with
a standard deviation of approximately 5%. When employed to estimate the
energy over the entire validation set, our model achieves a maximum error of
4%, delivering an equal or higher accuracy as reported by the previous state-of-
the-art work. It shall be noted that direct comparisons on the same hardware
would require adapting and updating the previous works to the platform
targeted by our experiments. These adaptations could determine accuracy
degradations, whose attribution to limitations of the original methodologies
could be debatable. On the other hand, as stated in Table 1, comparing
the results achieved on the original targets serves as an indication that the
proposed automatic and data-driven methodology delivers results within the
expected level of accuracy for relevant applications, e.g., power-aware task
scheduling.

For the GPU, we likewise train the Equation (1) for each of the 14 GPU
frequencies with a NNLS linear regression. We use a 70% and 30% ratio for the
training and validation set. Comparing the instantaneous power consumption
estimation with the data measured on the real platform, we obtain a MAPE
between 6% and 8%, depending on the frequency. The standard deviation
over all frequencies is approximately 8%. The maximum energy estimation
error over the full validation set is 5.5% over all frequencies, with an average
of 2.2%.

5.3. Combined Model Evaluation
After building, training, and validating the CPU and GPU power models

individually, we combine them to obtain a system-level power model for every
possible combination of fCPU ∈ F ∗

CPU and fGPU ∈ F ∗
GPU, corresponding to the

LUT of Equation (1). Figure 2 shows how our decomposable power model can
effectively track the instantaneous power consumption of the system over time.
The achieved instantaneous power MAPE of the final, combined model has an
average of 8.6% over all CPU and GPU frequency combinations. Regarding
energy, the model reaches an average estimation error of 2.5 %.

Our results highlight that the estimation error of the combined model is
higher when fCPU and fGPU diverge from each other. In particular, when
fGPU is very low compared to fCPU , the CPU may stall waiting for the
offloaded computation. Our power model is not capable of capturing such
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behavior, which depends on the interaction among different sub-systems, due
to our assumption of sub-system independence (cf. Section 3). On the other
hand, a real use case where such a scenario occurs is highly unlikely due to
its inefficiency. As a consequence, restricting our evaluation to real scenarios,
our assumption of sub-system independence is still valid: by considering only
reasonably close CPU and GPU frequencies, in particular fGPU > 600MHz,
we report an instantaneous power MAPE of 7.5% and energy estimation error
of 1.3%, with a maximum of 3.1%.

This accuracy must be interpreted relative to the precision of our INA3221
reference sensor, which itself has a power resolution of 200mW (around 3% of
the measurements in our experiments) [40]. Beyond these quantitative results,
it is important to acknowledge further practical sources of uncertainty that
inherently limit the achievable accuracy of PMC-based models, along with
possible mitigations. Because we train our models directly on the target device,
fabrication-time process variations and normal supply-voltage fluctuations
are inherently captured. Likewise, temperature-dependent leakage is reflected
in our dataset, and we observe negligible drift across the temperature swings
imposed during the intensive platform characterization and model training.
Finally, longer-term aging effects, which develop over months or years, can be
corrected via periodic retraining using our lightweight, automatic approach
without requiring a full recharacterization.

5.4. CPU Power Monitoring with Runmeter
To evaluate our online monitoring framework, Runmeter, we integrate it

into the kernel of the Linux distribution running on the NVIDIA Jetson AGX
Xavier. Then, through Runmeter, we implement the power monitor discussed
in Section 4 with support for the CPU sub-system, collecting PMC samples
with 10Hz sampling period. In all experiments, the target platform uses a
patched version of the NVIDIA Jetson Linux kernel that includes the entry
points for the Runmeter module. The most recent version of said kernel at
the time of our evaluation is v4.9.2532.

In this section, we discuss the impact of the fixed-point implementation
of our power model, which is necessary for the in-kernel implementation.
Subsequently, we validate the power estimations resulting from the online
monitoring and evaluate its overhead.

2https://gitlab.retis.santannapisa.it/ampere/runmeter/kernel-jetson
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5.4.1. Fixed-point Approximation Error
In this section, we evaluate the approximation error introduced by our

fixed-point implementation of the power model described in Section 4, nec-
essary to integrate it as part of a Linux kernel module. For the fixed-point
implementation, we use 64-bit integers, assigning the 29 less significant bits
to the fractional part. To analyze the approximation error, we collect the
data published by the Runmeter Kernel Module and feed them to a user-
space C++ checker procedure. The checker evaluates the model through the
floating-point and the fixed-point implementations, measuring the deviation.
For this evaluation, we use the same validation set discussed in Section 5.2.

Figure 3 shows the distribution of such a deviation. From our extensive
evaluation, the maximum absolute approximation error is about 17mW; the
mean error, however, is only of about 0.17mW. The maximum percentage
error is always below 0.8% of the power consumption estimated using floating-
point arithmetic, with a mean error of about 0.015%. Given the negligible
magnitude of the error introduced by the fixed-point implementation, we
conclude that this approximation does not impact the accuracy of the model
in any meaningful way.

5.4.2. Online Power Estimation Accuracy
Employing the fixed-point implementation of the CPU power model vali-

dated in the previous section, we integrate the power monitor in the Runmeter
Framework. We then log the online estimates computed at runtime by the
power model to later perform post-mortem analysis. Therefore, differently
from what analyzed so far, the power estimates reported in this section are
computed directly at runtime as soon as new PMC samples are available. The
profiled workloads are the same as the validation set discussed in Section 5.2.

Figure 4 shows the Absolute Percentage Error (APE) distribution of the
energy estimation provided by the in-kernel model when compared against
the value collected from the onboard analog sensor. The maximum APE
registered over all our experiments is around 29%, the error at 90th percentile
is around 20.8%, and the MAPE is around 9%.

According to our experiments, the majority of the estimation error ac-
counted for during such an evaluation is to be attributed to very specific time
frames when the phase of the workload abruptly changes. Such behavior is
visible in the example CPU power profiles depicted in Figure 5. On sharp
changes in the system activity, inducing rapid switches in the power consump-
tion, the power estimated by the PMC-based power model has faster rising and
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Figure 3: Distribution of approximation error between floating-point and fixed-point
implementations of the CPU power model. The distribution is shown in terms of both
absolute power approximation error and percentage error.
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Figure 4: Distribution of the APE of the online energy estimates over the duration of each
benchmark.

falling edges than the power measured by the analog sensor. This is especially
visible at higher CPU frequencies, where the inertia of the analog current
sensors has an increasingly worse impact on the latency of the measurements.
On the other hand, PMCs are embedded in the digital domain, and their
values instantly reflect the dynamic behavior of the monitored workloads.
Nevertheless, our power modeling approach makes use of the onboard power
sensor to build the input dataset for training and validation. While this
makes the procedure automatic, easier, and less error-prone, it creates an
unavoidable discrepancy between our estimates and the ground truth during
transients, related to the high responsiveness of the PMC-based model.

The problem emerges, then, of how to assess the reliability of our power
estimates during transients if the model has been trained with a built-in
analog sensor. As a solution, during the training phase, we deliberately bias
the training set toward workloads with more stable activity: this means that
the power model is trained, on average, with power values matching the actual

24



10 20 30 40 50 600

0.5

1.0

1.5

2.0

Time [s]

P
o
w

e
r 

[m
W

] Measured CPU

Estimated CPU

(a) 730MHz

10 20 30 400

1

2

3

Time [s]

P
o
w

e
r 

[m
W

] Measured CPU

Estimated CPU

(b) 1.2GHz

5 10 15 200

5

10

15

Time [s]

P
o
w

e
r 

[m
W

] Measured CPU

Estimated CPU

(c) 2.3GHz

Figure 5: Comparison of the instantaneous CPU power consumption measurement provided
by the onboard INA3221 sensor and the estimation computed at runtime by the in-kernel
power model. Each plot represents the same sequential execution of several workloads over
time at different frequencies.

consumption of the platform. Thanks to the linearity of the power models,
such a solution decouples the trained weights from the low sensibility and
time granularity of the input power data used for training. Once trained, the
power model can scale and interpolate those values according to the PMC
samples collected at runtime, providing faster power estimation and higher
responsiveness.

5.4.3. Monitoring Overhead
Runmeter is integrated with callbacks triggered at specific times during

the Linux kernel execution. This imposes a certain processing overhead mainly
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due to PMC data collection and manipulation, including model estimation.
To measure it, we profile the execution of the Runmeter Kernel Module
callbacks. We perform these measurements in various working conditions,
ranging from an “idle” state to the execution of multiple parallel applications
from the set of benchmarks described in [12]. We use the same frequencies
employed for the CPU model evaluation.

The maximum overhead is reported when many applications execute
concurrently on the system, as the number of invocations of Runmeter’s
callbacks increases with the number of context switches performed by the
system. In the worst-case condition of intense context switching, the time
spent executing all of the framework’s callbacks never exceeds 7ms per second
(i.e., 0.7% overhead). Moreover, the execution of all framework’s callbacks
significantly speeds up when increasing the CPU frequency, reducing to less
than 2ms per second in the worst case (0.2% overhead) when operating at
2.3GHz. In idle conditions, the overhead of the framework at 2.3GHz is
always less than 0.4ms per second (0.04%).

6. Conclusions and Future Work

With this work, we propose a systematic, data-driven approach to DVFS-
aware statistical power modeling of heterogeneous computing systems, whose
implementation is decoupled from the target platform’s microarchitectural
details. We individually model each sub-system through its local PMCs,
autonomously selecting the best ones to represent its power consumption.
The sub-system models are later composed in a LUT-based system-level
power model, able to grasp the complex behaviors of DVFS-enabled hardware
using simple, linear expressions. This approach achieves a novel combination
of automated model construction, low-overhead evaluation, high accuracy,
responsiveness, and decomposability, proving itself suitable for real-time
applications running on mobile and embedded systems.

To demonstrate the applicability of our power model, we propose Run-
meter, a flexible framework for PMC monitoring and power model evaluation
from within the Linux kernel. Runmeter is a substantial improvement over
existing mechanisms based on PMC tracking, as it focuses on minimizing the
response time between PMC observation and model evaluation, enhancing
the responsiveness of power estimates with negligible overhead.

The validation of our power modeling approach on the state-of-the-art
NVIDIA Jetson AGX Xavier embedded platform results in power and energy
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estimation accuracies aligned with or higher than reported by previous state-
of-the-art work. By integrating Runmeter in the Linux kernel of the same
platform, we also prove the viability of our modeling and monitoring approach
for online power tracking, a key prerequisite to implementing robust power-
aware control loops in DPM and power-aware task scheduling.

While our methodology is designed to be independent of microarchitectural
details, future work will explore its validation across multiple hardware
platforms to further reinforce its general applicability. The automatically
identified PMC set can also serve the development of an initial model, which
can subsequently be refined with expert architectural knowledge when tighter
accuracy constraints are required for a given application. Exploring different
target platforms will also serve to demonstrate additional capabilities of our
power models, such as leveraging deep idle states. These states are indeed
unlikely to be reached in a platform with a single CPU frequency island,
such as the AGX Xavier. Additionally, while our approach achieves excellent
results without resorting to counter multiplexing, optimized event grouping
techniques can enable more flexible parameter selection, potentially resulting
in more accurate models [21]. However, time-sharing inherently introduces
PMC tracking overhead and interpolation errors, requiring a careful trade-off
assessment, particularly in real-time applications.

As far as our contribution to the Linux kernel is concerned, our results
pave the way to bring the benefits of our modeling approach to the Linux
real-time task scheduler SCHED_DEADLINE and the CPU frequency governor
through the Runmeter framework. This aims to improve the effectiveness and
correctness of energy-aware real-time task scheduling within Linux. Further
directions of work also include going beyond the estimation of the current
hardware status through predictive models. As of now, the Linux kernel
contains very simple linear models for estimating the power consumed at each
frequency, which are used to make decisions when selecting the appropriate
operating frequency for the CPU. Models based on online PMC data, like that
collected by Runmeter, may prove to be more effective from an energy-saving
perspective while maintaining a very low overhead.
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