DistWalk: a Distributed Workload Emulator

Remo Andreoli
Sant’Anna School of Advanded Studies, Pisa, Italy

remo.andreoli@santannapisa.it

Abstract—This paper introduces DistWalk, a flexible, dis-
tributed, scalable, and open-source toolkit designed to emulate
compute, network, and storage workloads across a networked
infrastructure, and measure the resulting end-to-end latency.
DistWalk provides fine-grained control over the workload be-
havior, which consists of a graph-like sequence of operations
spanning multiple servers, It supports several communication
protocols and traffic patterns, and enables the customization of
several factors, such as the duration and parallelism of compute-
intensive operations, and the I/O data access and synchronization
mode, among others. The proposed toolkit may be used to exper-
iment with a variety of deployment models, from bare-metal to
virtualized or containerized environments, e.g., using Cloud/Edge
infrastructures, OpenStack, Kubernetes, or other orchestrators,
allowing for experimental comparisons of the achievable latency
across a wide range of system-level configurations.

Index Terms—Cloud Computing, Distributed System, Bench-
marking.

I. INTRODUCTION

Nowadays, many modern IT services are delivered as dis-
tributed software deployed across clusters or large-scale cloud
infrastructures, offering exceptional scalability, reliability, and
flexibility to handle diverse workload conditions. When de-
signing a distributed or Cloud-native software service, it is
useful to assess the expected achievable performance early in
the design stage, when the implementation may not be (com-
pletely) available yet. This is particularly critical for interactive
and time-sensitive applications, where the experienced end-to-
end latency is heavily influenced by design choices such as
the parallelism degree within the application, the placement
of its components over a Cloud/Edge infrastructure, the load-
balancing strategy for distributing the workload, and the tuning
and configuration of the machines, software stack, and kernel,
or other system-level parameters [1]. This requires a deep
understanding of the bottommost layers of the software stack,
along with knowledge of the appropriate low-level tunables to
fully exploit the potential of the underlying infrastructure.

It is commonplace to resort to experimental approaches
to estimate the performance implications of various design,
deployment and tuning options for upcoming software. This
may be conveniently performed by using computational, net-
working and disk I/O microbenchmarks. However, these tools
usually test a single component or aspect of a distributed
system (e.g., the computational, disk I/O, or networking
performance of a single component, link, or communication
path). As a result, they provide limited insight into how a
distributed application with geo-dislocated components might

Tommaso Cucinotta
Sant’Anna School of Advanded Studies, Pisa, Italy

tommaso.cucinotta@santannapisa.it

perform under certain conditions. As discussed in Section II,
we are still lacking a comprehensive tool for Cloud developers
to: i) explore several low-level optimization opportunities
in the design space and deployment environment; and ii)
verify experimentally the impact of these design choices, and
associated tunables, on the end-to-end performance that might
be expected by the final software.

A. Contributions

This paper presents DistWalk, a versatile, easy-to-use, and
open-source toolkit that allows for fine-grained emulation of
various workloads, traffic, and access patterns. The toolkit is
publicly available on GitHub', under a GPLv3 license. Dist-
Walk focuses on assessing timing behaviors, with an emphasis
on end-to-end latency implications within a geo-dislocated
infrastructure. With a command-line interface, DistWalk can
deploy, on real systems (i.e., physical hosts, virtual machines,
containers, clusters, etc.), a workload specified in terms of
a graph-like sequence of data-driven operations spanning
across multiple nodes, triggered by a wide range of available
traffic patterns. The individual components of DistWalk can
exercise on the underlying system CPU-intensive operations
with diverse parallelism, multi-threading, and scheduling con-
figurations, as well as I/O-intensive operations with different
data access and synchronization modes, and communicate with
each other using different protocols and payload sizes. The
tool has been developed in the C programming language on
the Linux Operating System (OS), exploiting mostly POSIX
APIs, alongside some Linux-specific APIs to enhance perfor-
mance and scalability when possible (as typical in nowadays
industrial-grade Cloud services).

In Section IV, we demonstrate how DistWalk can be used
to explore various aspects of system performance and bench-
marking from the perspective of a user who has complete
control over both the underlying hardware and the low-level
details of the software to be deployed.

II. RELATED WORKS

Benchmarking is the preferred method for assessing a
system performance, as witnessed by the plethora of con-
tributions in the field. This approach uses real systems to
deploy real or synthetic workloads. This section provides a
brief overview of related contributions on benchmarking for
large-scale distributed systems, comparing them to our tool.

Thttps://github.com/tomcucinotta/distwalk

https://github.com/tomcucinotta/distwalk

An interesting open-source tool is st ress-ng, designed to
stress various components of a computing system in several
possible ways. It can stress computational capabilities of the
physical CPU, cache, and the whole memory hierarchy, the
I/O subsystem, various features of the OS kernel, from page
swapping to inter-process communications through pipes or
local networking, to high-frequency timers, and others. Due
to its nature, stress-ng aims at saturating the physical
resources of a single system. In contrast, our proposal emulates
certain distributed workload conditions in a typical production
environment, and focuses on measuring end-to-end latencies.
These workloads are generally far from the resource saturation
use case, and include scenarios such as web-based and service-
oriented architectures, database or NoSQL data store systems,
interactive distributed applications, and more.

TailBench [12] is a benchmarking suite for latency-critical
applications. It aggregates a series of representative applica-
tions to harness tail-latency behaviors, including a search en-
gine, an in-memory key-value store, and a speech recognition
system, to name a few. TailBench employs a traffic shaper, a
request queue, and statistic collector to control and aggregate
the timing characteristics of a request stream. However, the
focus is on single-tier applications, making it less relevant for
nowadays Cloud services.

Similarly, DeahStarBench [8] is a suite of demo applications
used to study hardware and software performance implications
of microservice architectures. It provides six use cases that
represent typical Cloud services: a social network, a media
service, an e-commerce website, a secure banking system,
and an IoT service for coordination control of drone swarms.
The suite is built using popular open-source applications, such
as NGINX for load-balancing, MongoDB for persistence, and
HTTP requests for communications.

ServerlessBench [22] is an open-source benchmark for
studying the performance of several commercial and open-
source serverless platforms. The focus is on communication
performance, start-up latency, resource efficiency, and perfor-
mance isolation of co-located serverless functions.

uBench [6] is an open-source tool capable of deploying,
via Kubernetes and Docker containers, a set of microservices,
according to a configurable execution model and service mesh
describing how these microservices call each other to serve
HTTP requests. It includes several Python components that
can: generate the Kubernetes files needed to configure the
desired microservice mesh and handle the communications
among them; configure microservices to impose on the un-
derlying hardware the desired resource-intensive workload,
combining a “portfolio” of Python functions, that can be
activated based on stochastic distributions or trace files. At
a glance, puBench seems to have similar objectives to our
DistWalk proposal. However, its focus is clearly on Kubernetes
deployments, rather than on the efficiency of execution of the
deployed microservices. These, being based on the Python
programming language, fall short in terms of applicability
in low-latency or high-throughput scenarios. On the other
hand, DistWalk is written in C and it is designed to provide

a flexible, yet efficient tool to experiment with low-latency
and performance-critical scenarios, thanks to its capability to
customize a number of low-level characteristics of the software
stack, as explained in Section III.

Yahoo! Cloud Serving Benchmark (YCSB [5]) is a well-
known toolkit that has been extensively used to evaluate
and compare the performance of NoSQL data stores in the
literature [2], [7], [20]. It comprises a set of workloads that
can be customized in terms of proportion of read, update, and
insert operations, request distribution across the key space,
and number of pre-inserted records, to name a few. YCSB has
a quite focused scope, being a tool designed specifically to
submit traffic to a number of different data stores.

Fogify [21] is an open-source emulation framework de-
signed for the deployment of microservices in Docker contain-
ers, mimicking the conditions of a Cloud/Fog heterogeneous
infrastructure. It exploits Docker Swarm to deploy containers
in a local distributed infrastructure, providing them with
restricted memory, processing and networking capabilities,
leveraging on the ability of the Linux kernel to partition
the available RAM and configure CPU shares for individual
containers through cgroups, and configure traffic shapers
exploiting gdisc. This way, a powerful multi-core server may
be configured through Fogify to emulate a geo-distributed
set-up having both powerful Cloud nodes, and restricted-
resources Fog nodes. Fogify might be considered as a possible
complement to our workload emulator, i.e., one might deploy
workloads emulated with DistWalk across a Fogify infras-
tructure to evaluate and compare experimentally a number of
Cloud/Fog heterogeneous and geo-dislocated deployments.

ScaleBench [11] is an interesting tool aiming at assessing
experimentally the horizontal scalability limits of nowadays
Cloud infrastructures. However, the tool has quite a focused
objective and scope of applicability: it is implemented as a
Java benchmark with a fixed, albeit elastic, topology, exploit-
ing a RabbitMQ instance for workload distribution across
workers, and a MySQL instance for gathering the results.
Instead, our DistWalk is a more general tool that can be
used for modeling distributed applications with flexible service
graph topologies, and gathering their expected performance
from real deployment scenarios and configurations.

In conclusion, most related works address only specific,
high-level aspects of system performance: some target the
performance implications of particular software architectures,
such as microservice-based applications [6], [8] and program-
ming models [9]; others evaluate the transaction processing
power of database systems [5] or target the evolution of the
Cloud Computing paradigm, such as serverless platforms [22].
None of them tackle the benchmarking challenge in distributed
systems from a low-level perspective that encompasses both
the infrastructure and the software stack.

Differently from these approaches, DistWalk is a benchmark
aiming at emulating the non-functional part of a prospec-
tive application design. It does not include a pre-configured
collection of software services, as done in the TailBench
and DeathStarBench projects discussed above. Instead, in

Socket
Multiplexing
(Poll Mode)

Pending
M Worker Threads FORWARD Queue

Storage Thread fd

. Volatile
. Memory
@k Pending
STORE Queue -
Persistent

Memory

Fig. 1: Architecture of a DistWalk node: each component
offers a high degree of configurability.

i

Sockets

Operation Sequence

Timing Buffers
start
elapsed
CLIENT
Sender & Receiver Threads

1]

Fig. 2: Architecture of a DistWalk client.

DistWalk, the user has full control over the components that
are deployed in a distributed infrastructure, the resources they
consume, the topology of the interactions among them, and the
pattern of the traffic hitting the system. Therefore, it allows
to study the latency implications of large-scale deployments
from a low-level perspective.

III. DISTWALK

DistWalk is an open-source distributed workload emulator,
capable of measuring the end-to-end latency impact of given
resource consumption distributed workload patterns, provid-
ing a wide range of low-level options to mimic common
designs and operating conditions. Its main features are: i) a
highly scalable architecture featuring asynchronous, socket-
based communications; ii) low-level tunables for fine-grained
control over the workload behaviors (i.e., data access pattern,
compute processing duration, etc.) and server configuration
details (i.e., communication model, data synchronization, etc);
iii) ready-to-use executables that can be integrated, in part
or its entirety, within or alongside other third-party toolkits;
and iv) a platform-agnostic tool that can be deployed on-
premise, on small-scale clusters, or on cloud platforms, using
any orchestrator (OpenStack, Kubernetes, or others).

A. Architecture and Design

DistWalk follows a client-server architecture. The simplest
scenario involves a client that defines a sequence of operations,
and a server (referred to as a node in DistWalk) that executes
them. The sequence is encapsulated in a network packet and

sent to the node as a request multiple times, following a
traffic pattern defined by an initial request rate and a series
of rate ramp-ups. For each request, the server performs the
user-defined operations, then it sends a response to the client.
The client awaits for responses to all requests, optionally up to
a maximum timeout, before displaying the measured round-
trip latencies, a.k.a., response time, for each request. More
interesting scenarios involve multiple nodes and a client sub-
mitting workloads structured as graph-alike topology that span
across multiple nodes. For each request, the server performs
its associated operations, and then forwards the remaining
payload to the next server(s). Once the payload is fully
exhausted, a response is routed back to the client, retracing
the communication path in reverse. Finally, the use of multiple
clients enables submitting multiple workloads concurrently on
top of the same underlying infrastructure.

The client and node components are multi-threaded C pro-
grams with no dependencies on external libraries. This design
ensures that DistWalk is a high-performance, highly scalable,
plug-and-play toolkit. Both components are controlled via the
command line using a versatile syntax. The DistWalk node
is a networked server designed to be reused across several
client workload runs. Figure 1 depicts the major features of
the node architecture: i) the ability to choose between different
connection accept policies (called “accept modes” in Dist-
Walk) and multiplexing mechanisms (called “poll modes”); ii)
a pool of threads to handle the user-defined operations, both
synchronously and asynchronously; and iii) a dedicated thread
for interacting with persistent memory. Section III-B provides
an in-depth description of each customization aspect within
the node. Figure 2 illustrates the client architecture, featuring
pairs of sender and receiver threads to interact with the nodes.
This two-thread architecture has the advantage of keeping
the request submission period/rate as stable and precise as
possible. Further details on the customization aspects of the
client are provided in Section III-C.

A DistWalk node supports the following operations:
coMpUTE: Emulate a CPU-bound operation by keeping the
serving thread busy on a loop for a user-specified amount of
time, optionally sampled from a probability distribution, such
as Uniform, Exponential and Gamma, among others.
LOAD/STORE: Emulate an I/O-bound operation by loading
from or storing to a storage device using the read(),
write () low-level primitives. The user defines the amount
of random bytes to be read or written, with an optional offset.
Both parameters can be optionally sampled from probability
distributions. The ability to specify an offset allows for emu-
lating either sequential or random access I/O request patterns
using the 1seek () primitive. For the store operation, the client
can also mimic common syncing behaviors with the fsync ()
primitive: per-request synchronization, no synchronization, or
periodic synchronization. The latter option is typically em-
ployed by NoSQL data stores such as MongoDB.

FORWARD: Emulate a Remote Procedure Call (RPC) to a
different node by sending a message with a user-specified
payload size, and expecting a response back, with another user-

Y

i
K

A

Client Compute Node Storage Node

Fig. 3: A simple chain topology emulated using a DistWalk
client and two nodes.

Compute Node 1

apoN abeiois

Client

Compute Node N

Fig. 4: A load-balanced deployment consisting of N+1 Dist-
Walk nodes. It may be used to emulate a web server.

specified payload size. This is DistWalk’s essential feature that
allows emulating a distributed workload. Moreover, a client
can request a node to forward (optionally different) sequences
of commands to multiple nodes, and wait for all or a subset
of responses, before moving on with its “local” sequence
of operations. This can be used to emulate the behavior of
quorum-based consensus protocols, such as PAXOS [14] and
RAFT [18], which are the building blocks for replication
in NoSQL data stores to avoid inconsistencies in the data
copies [10], [23]. As for the previous operations, payload sizes
can optionally be sampled from a probability distribution.
Client requests may contain an arbitrary sequence of these
operations, with varying parameters and sequence length, in
order to mimic a realistic distributed workload. A DistWalk
deployment is highly customizable on both the node and client
sides via command line or trace files. In summary, the user
has full control over many system-level aspects, such as the
location of the components, the sequence of operations to be
performed, the payload size of the communications, and so on.
With an intuitive client syntax, DistWalk can emulate simple
service chains as in Figure 3, or more complex scenarios
mimicking the architecture of today’s web servers (such as
Figure 4). The next subsections provide a description of the
various parameters used to fine-tune low-level details spanning
multiple domains (i.e., networking, computation, and storage).

B. Node Customization

The DistWalk node is the core contribution, encapsulating
all the functionality required to emulate compute, storage, and
network activities within a physical or virtual host. The node
computational behavior is configured specifying:

o the number of worker threads;
o the CPU scheduling policy for worker threads;

o the thread-to-core pinning options.

The use of multiple worker threads enables the analysis of
the multi-core capabilities of the underlying host. A worker
thread manages communication with one or more clients and
executes the requested operations. Storage-related activities
are dispatched to a dedicated storage thread to ensure that
worker threads are not blocked on disk I/O, and that disk
operations with large payloads are serialized so to make
I/O more efficient. Client connections are monitored via a
select (), poll () or epoll () loop, depending on the con-
figured poll mode. DistWalk exposes a tunable to customize
the CPU scheduling policy for worker threads: nice levels
for the default (SCHED_OTHER) scheduler, and a priority for
the real-time scheduling policies (SCHED_RR or SCHED_FIFO),
all available on POSIX-compliant systems. DistWalk also
supports the reservation parameters of the Linux-specific
SCHED_DEADLINE [16] scheduler. Finally, the core pinning
options enable the measurement of the performance impact of
system partitioning and NUMA-awareness, which is a critical
consideration in large-scale Cloud and HPC environments.
The storage behavior is customized specifying:

« the path of the storage file for reading and writing data;

« the maximum size of the storage file;

« the optional use of direct disk access;

« the optional periodic interval, in milliseconds, for syn-
chronizing the written data to persistent storage.

The storage file location determines which device to use,
allowing to investigate performance of different storage solu-
tions. The maximum size causes the file pointer to wrap around
and lseek () back to the beginning, if a write operation
exceeds this limit. This is useful to analyze performance impli-
cations of rotational devices, where seek times and rotational
latency can significantly impact I/O performance.

Direct disk access, which is enabled by opening a file with
the 0_DIRECT flag, bypasses the read/write OS caches. This
ensures that I/O operations are done directly to/from user-
space buffers without copies. DistWalk handles the block-
aligning constraints that come with direct I/O operations. How-
ever, notice that there is no guarantee that written data will be
stored on non-volatile memory. It is the data synchronization
mode specified by the client message that requests a flush of all
changes into persistent storage. In practice, this is performed
by the storage thread using the fsync () system call.

Finally, the node networking behavior is tuned specifying:

« the bind address and port, and communication protocol;

¢ the maximum number of pending TCP connections,
which is configured through the 1isten () system call;

« the accept mode for incoming connections;

o the poll mode for I/O monitoring;

« the optional use of the TCP_NODELAY socket option.

DistWalk supports TCP- and UDP-based communications. For
TCP, incoming connections can be accepted in 3 ways: the
parent accept mode has a single thread accepting connections
using the accept () syscall, that are handed over to one of the
worker threads. Albeit being quite popular, this choice intro-

duces additional context switches on connection establishment.
These can be avoided using the shared and child accept
modes. The former simply exploits the ability of multiple
threads to accept connections directly from the same bound
socket. This shares the same queue of incoming connections
in the kernel, which might have scalability drawbacks on large
multi-cores. The child accept mode mitigates this issue by
letting worker nodes independently bind, listen, and accept
connections from the same IP and port, using dedicated bind
sockets, setting the REUSE_PORT socket option available on
Linux. This results in the worker threads using separate incom-
ing connection queues, which provides enhanced scalability
on large multi-core servers. Finally, TCP_NODELAY allows to
disable the Nagle’s algorithm [17] (deferring the transmission
of small packets), that might hurt low-latency, interactive
applications due to the introduced extra-delay.

In summary, a DistWalk node enables the exploration of a
multitude of configuration parameters for a server application,
from a low-level perspective.

C. Client Customization

The DistWalk client contains the parsing logic responsi-
ble for formatting messages, and the logic for submitting
requests at a user-defined period/rate. It also handles receiving
responses and measuring the end-to-end latency. The client
offers numerous auxiliary parameters to further customize
the operations that constitute the emulated workload. General
parameters affect the whole client set-up, and are normally
specified just once on the command line. Operation-specific
parameters define and fine-tune individual operations, so they
can be specified multiple times.

Examples of general parameters are the following:

o number of sender-receiver thread pairs used for submit-

ting requests;

o number of per-pair requests to submit to the node(s);

« number of per-pair sessions to be established;

« initial request rate/period, and subsequent ramp-ups;

« disable the Nagle’s algorithm [17], as for the node;

« enable spin-waiting in the client sender thread.

The emulated client workload consists of a number of sender-
receiver thread pairs submitting a specified number of requests
to the node(s), with the specified inter-arrival period or rate.
This allows a single client process to use multiple commu-
nication channels to the node(s), where different thread pairs
can act either synchronously, causing bursts, or in a staggered
way. Each client sender thread can further divide its specified
number of requests across multiple consecutive sessions, by
closing the connection to the node and re-establishing it during
the run. This feature is useful for analyzing load-balancing
techniques when using the TCP protocol, at different levels of
abstraction: i) node-level, by leveraging the “parent” accept
mode within the DistWalk node, described in Section III-B;
and ii) application-level, by placing a load balancer in front
of a pool of DistWalk nodes.

The request rate parameter is one of the most versatile
features of DistWalk in order to define workload patterns and

capture the dynamics of a real-world scenario. Given a starting
rate, a DistWalk client can precisely characterize subsequent
rate ramp-ups in terms of the number of ramp-up steps, step
duration, and delta increment/decrement at each step. These
ramp-up details can be loaded from a trace file. Notice that
this option allows the generation of mixed ramp-ups and ramp-
downs to precisely characterize the desired traffic pattern.

By default, client sender threads sleep between a request
and the next one to respect precisely the current rate or
period, using a clock_nanosleep () with an absolute time.
Alternatively, a sender thread can also be configured to busy-
wait between requests: this gives the ability to generate higher
throughput values, saving context switch overheads, at the cost
of having each sender thread occupying a full CPU.

The client supports these operation-specific options:

o Duration of a COMPUTE operation, in microseconds;

o Number of bytes to be read or written for LOAD and

STORE operations, respectively;

o The storage offset for reading or writing data;

o Data synchronization policy for a write operation;

o Packet payload size for the node reply;

o Packet payload size for the send request.

The storage offset parameter is used to emulate random or
sequential access patterns, while the synchronization policy
determines whether the node should immediately flush the
written data to disk. When combined, these two parameters
enable the emulation of various access patterns and allow for
the study of different performance implications related to data
synchronization. The send and reply payload size parameters
enable to stress the network.

Finally, the DistWalk client features a special PSKIP oper-
ation for the probabilistic execution of arbitrary segments of
a DistWalk command. In particular, it is used to instruct the
serving node to skip certain operations within the sequence,
with a specified probability: for instance, this may be useful
for emulating different disk read/write ratios, as in YCSB [5];
Another example is that of a web server that looks up within
a cache of recent query results before actually querying a
database system (if the cache misses). This can be modeled
in DistWalk as the probability of skipping a FORWARD to
the node acting as the database system, using the envisioned
cache hit rate as skip probability.

Many of the arguments to the above-described options (e.g.,
inter-request period, request or reply size, compute duration,
storage transfer size, etc...) can be specified both as fixed
values, or as samples drawn from a probability distribution,
as a term drawn from an arithmetic or geometric sequence,
or even as a value read from a specified column of a CSV
trace file. The available probability distributions include uni-
form, exponential, Gaussian, and Gamma distributions, with
customizable parameters. These have been implemented in
DistWalk using exclusively the drand48_r () function. The
argument specification can include an optional min and/or
max constraint, causing a rescaling of the distribution within
the specified range. The ability to explicitly seed the random
number generator and to read samples from trace files ensures

reproducible runs. The command-line interface allows for
automated script-based deployments of several clients, and
aggregation of their outputs.

In summary, the DistWalk client enables the exploration of
various parameters to closely mimic a realistic workload and
its dynamic behavior.

IV. EXPERIMENTAL EVALUATION OF THE PERFORMANCE
IMPACT OF DESIGN CHOICES

This section shows how DistWalk can be used to study
the latency implications of various choices in a distributed
system design. We do not aim to provide a complete analysis,
evaluation, or comparison of specific system configurations,
nor to advocate a particular optimization choice, such as which
load balancing technique, resource management policy, or
disk access strategy is best suited for a given workload. For
simplicity, we will focus on the computing and storage aspects,
while keeping the network component at default settings and
utilizing basic TCP communications with SO_NODELAY. All
the artifacts (i.e., Ansible playbooks, shell scripts, Docker
images and Kubernetes deployment files) used to produce the
results are available within the main GitHub repository of
DistWalk, and can be used to evaluate your infrastructure in
a plug-and-play manner. Moreover, the results presented in
this paper can be partially reproduced using the companion
repository available on Zenodo?.

The first subsections focus on simple experiments showing
how to evaluate low-level performance aspects of a single,
server-grade computer system. Next, the full potential of
DistWalk is shown on a distributed environment composed
of consumer-grade personal computers, exploring common
aspects of a distributed system, such as load balancing tech-
niques. Lastly, we show how it is possible to emulate realistic
behaviors, showcasing an emulation of the popular Apache
HTTP web server. Each machine has turbo-boosting, deep idle
states disabled, and CPU frequency locked to the maximum
value recommended by the vendor. Unless stated otherwise,
each DistWalk component is deployed on a dedicated physical
machine. Most of the results are presented as boxplots with
whiskers set to the 1st and 99th percentile, and a red “x”
marker denoting the average latency.

A. Single System: Ramp-up Testing

In this subsection, we demonstrate how to stress test a
single node by using the ramp-up parameters of DistWalk. The
request rate parameter “-r” allows to specify a fixed value,
or an arithmetic sequence “aseq” or a geometric sequence
“gseq”, which are defined by a starting rate “min”, a finishing
rate “max”, and an incremental (or multiplicative) increase (or
decrease) “step”; alternatively, a probability distribution is also
supported, to be used to draw rate samples from.

The goal is to determine the system’s robustness, under
different configurations, beyond the limits of normal operating
conditions. Only a few benchmarking tools offer traffic ramp-
up configuration parameters as granular as those of DistWalk.

2See: https://zenodo.org/records/14923780

Figure 5 depicts several ramp-ups generated from a single-
core client, using an arithmetic sequence, with the following
command line:

—-—to addr:port -C 10ms -n 1000
-r aseq:min=2,max=100,<step> --rss 1

= 1500 — Ramp-up step
2

£ 4

a 1000 — 6

c

& 500 — 8

8 / — 10

0 -

x x x x x x x — 12
0 5 10 15 20 25 30 14

Timeline (s)

Fig. 5: Timeline plot of ramp-up loads generated using arith-
metic sequences.

which requests a COMPUTE operation (“-C”) of duration 10ms,
repeated 1000 times. The “addr:port” parameter value refers to
the IP address and port to which the targeted DistWalk node
is bound, and “-rss” defines the duration of a rate step, in
seconds. The experiment highlights the point-in-time when the
node reaches its computational bottleneck, if any, for several
rate step variations.

B. Single System: HDD vs SSD

In this subsection, we analyze the storage performance of a
single node, evaluating the latency of random writes performed
on a hard disk drive (HDD) and a solid-state drive (SSD). The
workload consists of a single STORE operation of 10 kilobytes,
repeated 500 times. The advantage of SSDs over HDDs from
a performance standpoint is well known, due to the absence
of mechanical spinning disks, which allows for significantly
faster data access and transfer speed. Each write operation
accesses the storage device at random locations spanning over
32 gigabytes, sampled from a uniform distribution. On the
command line, the DistWalk client is launched as follows (for
brevity, we omitted the node address and port):

—--store-offset unif:min=0,max=32g
-S 10k, <sync|nosync|psync> -n 500

where “sync”, “nosync” and “psync” are the three available
data store synchronization policies (as described in Sec-
tion III-A). Figure 6 showcases a series of experiments using
different store rates. The first group of boxplots (orange
color), in both Figure 6a and Figure 6b, illustrates the write
latency when no data synchronization is manually enforced,
meaning that a write operation is immediately acknowledged.
As expected, there is no noticeable latency difference between
SSDs and HDDs, however, a real application with this design
would be unable to guarantee that the data is flushed to the
storage device in the event of a system crash or reboot.

The second group of boxplots (green color) illustrates the
write latency with periodic data synchronization set to 100ms
(default value for MongoDB). In Figure 6a, it is evident
that a subset of write operations are delayed by the data

https://zenodo.org/records/14923780

synchronization procedure, as indicated by the two hot spots
at the 25th and 75th percentiles, an average latency of 15ms,
and 20ms of standard deviation. This behavior also affects
SSD performance, though as outliers.

The last group of boxplots (blue color) shows the latency
when fsync()ing each write operation to the disk before
acknowledging the client, as typical in high-reliability data
replication scenarios. The HDD shows a significant increase
in latency, especially at higher rates. The standard deviation
is significantly higher, reaching as high as 5s, due to the
continuous random offset repositioning causing the requests
to pile-up. As expected, the write latency is affected by the
synchronization choice much more on HDDs than on SSDs.

Simple experiments like these can be useful to determine
how the choice of a storage device type, as well as the data
access and synchronization pattern, are expected to affect the
end-to-end latency of a distributed service being developed.

100004 Policy
] nosync
I 1000_? — DSYNC
= q m—SyNC
Z 100=
9 E =) °
2]
L 104
© e
| §
13
01l ¥ +* =+ E 3
16 32 64 128
Write/s
(a) HDD

10.0 °

1.0 H

Latency (ms)

0.1

16 32 64 128
Write/s
(b) SSD

Fig. 6: Response times (Y axis) obtained with random writes,
at various write request rates (X axis).

C. Single System: Impact of Thread-to-Core Pinning

Core pinning is one of the popular design choices that are
available when customizing the deployment of a distributed
multi-threaded application. Leaving the threads free to migrate
is certainly the easiest setup, as it does not require specific
interactions with the OS nor special configurations. However,
it may result in the OS deciding to migrate the threads, im-
pacting the resulting end-to-end latency. This may be avoided
by pinning individual threads to physical cores, via special
interactions with the OS, or some special directives in the

configuration of a service, to fix the affinity mask of each
thread set to a specific physical core.

This subsection shows the benefits of core pinning using a
DistWalk node with 16 threads, serving 160K requests split
among 100 sessions, fired in batches of 16 requests every
10ms from a 16-threads client from the same 1Gbps LAN.
Both client and server machines are dual-socket, equipped with
2 Xeon(R) CPU E5-2640 v4 running at 2.40GHz, 25MB of
L3 cache and 125GB of RAM. Each system has 20 physical

cores, of which only 16 cores are utilized.
The DistWalk command-line instructions are:

node: --nt=16 -c 2-18 -a parent
client: --nt=16 -C Ims -p 10k -n 10000 --ns 100
10 p T
[affinity
7 no affinit,
é y
>
g
5
el vy
1 1 I

3000 3200 3400 3600 3800 4000

Timeline (ms)

Fig. 7: Excerpt of the response times (Y axis) obtained with
worker threads pinned to physical cores (purple dots) vs left
free to migrate (green dots).

Figure 7 shows an excerpt of the data from the experiment,
where we can see that the latencies experienced with core
pinning (purple dots) are more stable and do not suffer from
transients with higher values as in the case without core
pinning (green dots). These happen quite often throughout
the trace, particularly on session re-establishment, when a
client thread closes the current session, and establishes a
new TCP/IP connection, causing additional migrations of the
worker threads. This results in an overall latency with an
average of 1.5ms and a standard deviation of 2.2ms, achieved
with core pinning, versus a latency with an average of 1.9ms
and a deviation of 4.2ms, achieved without core pinning.
The responsibility of thread migrations on these results is
confirmed by reading the individual per-thread migration coun-
ters from /proc/.../sched at the end of the experiment,
reporting 15 migrations only for the pinned set-up (1 migration
per thread, needed when setting the affinity of the thread),
versus 4601 migrations for the default configuration.

D. Single System: Impact of Poll/Accept Modes & DistWalk
Overheads

In a variant of the above experiment run on the same
machines, we launched the DistWalk node with 16 threads
and core pinning enabled, in either of the 3 available accept
modes: parent, shared and child (see Section III). The client
has also been configured with 16 threads, each submitting
100 single-request sessions with a processing time of 1ms,
every 10ms. We obtained 17ms+19ms of end-to-end latency
in child mode, slightly worse than 18ms + 24ms in shared
mode, and much worse than 34ms & 22ms in parent mode.

This highlights the inherent limitations of the commonly used
parent approach, with many threads.

To assess the impact on latency of different poll modes,
we conducted another experiment using a node with a single
worker thread. A client submits requests with a processing
time of 0 ms, using a varying number of threads (from 1 to
100), each operating at a fixed request rate of 100:

--nt=1 -c 2
—--nt=<nthread> -C Oms -r 100 -n 1k

node:
client:

The node is configured with varying poll and accept modes
(excluding the “shared” accept mode, which works similarly
to the “child” mode in this scenario). Figure 8 shows that
the epoll modes (cyan data points) bring stable performance,
whilst the more portable select and poll modes suffer from
increased latencies as the number of connected sessions grows.

(accept-mode=marker; poll-mode=color)

290

T T T T T T T T

parent/select F—x—

parent/poll F—x—

parent/epoll Fx—

child/select —o—
child/poll F—o—

child/epoll —o—i n"’
I[’XI[
L

280 -
270 -
260 -
250

x— —
o o——1

e —

Heoro—l

240

—
o o—

Latency (ps)

T T | an e
=il gl g i i I]
220 - : g
@B B roorroor [T o1r 1110
210 |- L L ¥t ¥yoryo¥rory Iy
200 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Number of Client Threads

Fig. 8: Response time median (marker on Y axis) and 1st/3rd
quartiles (lines) obtained with different combinations of poll
and accept modes, at varying number of client threads (X axis).

The results from the single-threaded client experiment (first
cluster of data points) can be used to infer the overhead
introduced by DistWalk in the emulated distributed scenarios.
By subtracting the ping latency of about 116us from the
latency of 230 4+ 10us, we obtain a per-request overhead of
114 £ 10us.

E. Distributed System: Virtualization Overhead

Studying the overhead introduced by virtualization tech-
nologies, in terms of response latency is of utmost importance
in emerging use-cases such as real-time virtualized applica-
tions. This subsection showcases how DistWalk can be used
to emulate a workload across different orchestration platforms
to analyze the virtualization overheads. These experiments use
identical x86-64 machines, equipped with a i15-4590S CPU
running at 3.00 GHz, 6MB L3 cache, and 16GB of RAM,
and interconnected via a wifi router.

For the sake of simplicity, the experiments use two nodes
and one client; the latter is not virtualized to emulate the clas-
sic ingress traffic of virtualized infrastructures. The emulated
workload consists of a COMPUTE operation on the first node,
a FORWARD, and COMPUTE operation on the second one. The
sequence is then executed 100 times with a processing duration
of 100ms (on both nodes) and a rate of 10 requests/second to

avoid congesting the deployment. The command line instruc-
tions for the client are the following:

—-—to nodel -C 100ms -F node2 -C 100ms -n 100 -r 10

Virtualization Overhead

Percentile
o
[9,]
o

Platform
—— Kubernetes
Bare Metal

25 50 75 100 125 150 175
Latency (ms)

Fig. 9: Empirical CDF plots of the end-to-end response times
obtained with a bare-metal versus Kubernetes deployment.

Figure 9 shows a plot of the Cumulative Density Function
(CDF) of the latency comparing a bare-metal with a Ku-
bernetes deployment. As expected, the Kubernetes latency
distribution maintains a similar shape but it is shifted to
the right and it has a higher variance, indicating degraded
performance (the average latency is increased by 19ms, and
the 99th percentile by 78ms).

F. Distributed System: Data Redundancy

Distributed databases are the most popular services offered
by Cloud providers. A key property of these systems is data
replication, which involves copying data across multiple sites
to eliminate single points of failure and increase availability.
Redundancy introduces the well-known challenges of main-
taining consistency across replicas and the trade-off between
consistency and availability of the CAP theorem [3]. Full
consistency introduces high latencies, as it requires waiting for
all nodes to replicate a data change. To address this, modern
distributed databases offer various consistency models [19],
generally defined by the number of replicas required to ac-
knowledge a write operation.

In this subsection, we use DistWalk to study the latency
implication of these consistency options. Figure 10 illustrates
the experiment outcome over a deployment consisting of 4
nodes and a client. One of the nodes acts as a “gateway”,
spreading and gathering the forwarded requests on behalf of
the user. The remaining ones perform the actual workload.
This is the same sort of replication deployment used in
MongoDB. The operation sequence consists of a FORWARD
to 3 nodes followed by a sequential STORE operation of 10
kilobytes, instantly flushed on disk. The workload is then
defined as 30 requests sent at a constant rate of 5 requests
per second. The client command is:

—-—to node0 -F nodel,node2,node3, <num_ack>
-S 10k,sync -r 5 —-n 30

where “nack” is the consistency level, or the number of
acknowledgments, which is defined as the number of nodes
the gateway has to wait before replying to the client. Each
boxplot corresponds to a consistency level: the first group of

boxplots showcases a scenario under normal operating con-
ditions, meaning the disk I/O is not oversaturated. Therefore,
the latency difference is mainly due to network delays and the
gathering overhead. The second group of boxplots showcases a
scenario where one node is experiencing disk oversaturation,
induced using the fio I/O tester tool. As expected, weaker
consistency delivers an average latency comparable to the
one observed under normal conditions (aside from negligible
variations due to experimental error), whereas waiting for all
the nodes results in a substantial performance hit, leading to
a x 168 increase in latency.

3-Node Deployment

| Deployment State ===
m 10000 I nostress
é 3 stress
B‘ 1000
S [¢}
I ®
S 100} é
= 'L ==
1 2 3 1 2 3
Num. of Acks

Fig. 10: Observed latency when FORWARDiIng multiple STORE
operations with varying acknowledgement levels.

G. Distributed System: Load Balancing

A key feature to achieve scalability is load balanc-
ing [4], which helps prevent any single server from over-
loading/underloading, thus enhancing performance, utilization,
reliability, and availability. In this subsection, we use DistWalk
to study latency implications of load balancing techniques by
routing traffic to a cluster of nodes. As a side-effect, we also
demonstrate DistWalk’s composability by using a number of
nodes in conjuction with IPVS, a layer 4 (i.e., connection-
level) load balancer within the Linux kernel. Figure 11 ex-
plores 3 simple load balancing policies [13], Round-Robin
(RR), Least-Connection (LC), and Shortest Expected Delay
(SED), using a heterogeneous workload. More specifically, 4
clients emulate a latency-sensitive workload of 400 COMPUTE
operations triggered at a constant rate of 50 requests per
second. The compute duration is sampled from a uniform
probability distribution ranging from 1ms to 10ms. The
command for a latency-sensitive client is:

--to 1b -C unif:min=1k,max=10k -r 50 -n 400 --ns 5

Each group of boxplots corresponds to a different cluster
size. As expected, RR performs considerably worse on smaller
clusters on average, since distributing the requests equally
amongst the available nodes is not ideal for heterogeneous
workloads. SED performs well in every scenario since it se-
lects the node with the shortest delay. However, the percentiles
all show similar behaviors, as expected, because they are
generally preferable for equally-performant nodes, which is
not the case here due to the “noisy” client workload.

Load-Balanced N-Node Deployment

10000 4 Policy
T == RR
mm LC
B SED
% 1000
£
g =
(@)
c
3 1004
(]
8 L
10
+ + +
2 3 ! 5

Num. of Nodes

Fig. 11: Latency experienced by 4 latency-sensitive clients
with noise from busy client.

H. Emulating an Apache Web Server with DistWalk

The Apache web server is a robust and flexible tool
that offers three multi-processing modules (MPMs) to con-
figure the pool of workers and determine how to dis-
patch HTTP requests: mpm_prefork, mpm_worker, and
mpm_event. mpm_prefork uses a pool of processes, while
the latter uses a pool of threads.

This subsection demonstrate how to emulate the timing
behavior of an Apache web server using DistWalk. As a
byproduct, the subsection also illustrates how to properly
analyze a real workload, and translate it into DistWalk’s terms
for easy reproducibility. To achieve our goal, we analyzed a
single-instance Apache deployment with 3 processes/threads,
serving the default “Hello World” webpage. We used Apache
Benchmark and tcpdump to gather comprehensive informa-
tion on its compute, storage, and network activities over
5000 GET requests. From this data, we crafted the following
commands (explained below):

where “Ib” is the hostname where the load balancer is in-
stantiated, and “ns” is the number of session re-connects.
Client sessions are frequently closed and re-opened after 5
transmitted packets to allow for load balancing; Otherwise,
the client’s packets would always be routed to the same node.
A fifth client emulates a saturating workload performing long-
running computations in the range of 1s to 5s, and at a lower
rate of 5 requests per second. The corresponding command
for the noisy client is:

-—to lb -C unif:min=1m,max=5m -r 1 -n 15 --ns 5

node:
client:

--nt 3 -—am parent
—--load-offset 0 -L 10918

-C 1000 --ps 76 —--rs 11192
-r 85 —n 5000 --ns 5000

i) the LOAD operation of ~10.9 kilobytes emulates the retrieval
of the webpage from disk; ii) the load offset resets the
file seek back to the beginning, emulating the file lookup;
iii) the COMPUTE operation emulates the HTTP overhead, as
DistWalk does not natively support this protocol (yet); iv)
“ps” configures the send packet size, set to 76 bytes to match
the payload size of a GET request from Apache Benchmark,

100.0-
2 75.0+
g 50.01 Our Tool
5 —— Apache, mpm=prefork
& 25.01 —— Apache, mpm=worker
—— Apache, mpm=event
0.0+

10? 102 103
Latency (ms)
Fig. 12: Empirical CDF latency plot comparing the Apache
web server and DistWalk’s emulated counterpart.

as measured via tcpdump; v) “rs” is the reply packet size,
accounting for the size of the webpage as well; vi) accept mode
“parent” emulates the Apache’s worker pool, since socket are
handed off to threads in a similar way; and finally vii) the
submitted traffic consists of 5000 requests.

Figure 12 validates the effectiveness of DistWalk in em-
ulating Apache. DistWalk closely mirrors represent Apache’s
latency outputs, matching almost to the microsecond. The only
discrepancy is in the worst-case latency, which appears to be
400ms less compared to Apache. In conclusion, we presented
a reproducible methodology for using DistWalk to emulate the
workload and latency of a simple web server.

V. CONCLUSIONS AND FUTURE WORKS

This paper introduces DistWalk, an open-source workload
emulator for distributed systems. Thanks to its key fea-
tures, DistWalk is capable of assessing the end-to-end timing
behavior of complex applications and services consuming
CPU, disk, and network resources across a geographically
distributed infrastructure. Its versatility stems from the high
configurability of its core components, the DistWalk client
and node, and the ability to emulate graph-like interactions
through an intuitive command-line interface. Moreover, Dist-
Walk integrates seamlessly with existing tools such as load
balancers, and orchestration platforms, without the need for
ad-hoc configurations or third-party dependencies.

Regarding future works, the possible directions are many-
fold. On the network side, we are planning to add support
for additional networking options, protocols and primitives,
including: security in data exchanges using TLS/SSL, enabling
authenticated and encrypted communications; kernel bypass
techniques like DPDK, that allow for offloading packet pro-
cessing from the OS kernel to user-space processes, useful
for emulating ultra-low latency and high-performance services,
for which absolute performance is of utmost importance;
richer networking topologies supporting fork/join points in
addition to RPCs; and request exchanges through the HTTP(S)
protocol to better emulate typical web servers and Service-
Oriented Architecture (SOA) [15] traffic. Lastly, we plan to
extend the current set of supported computational operations
to expand the simplicity of the current approach, offering
a richer set of building blocks for emulating more realistic
distributed service patterns. For instance, we plan to introduce
a variety of memory and computational stressors by integrating

stress—ng to offer a broader variety of memory-intensive and
CPU-intensive stress scenarios.

REFERENCES

[1] R. Andreoli, R. Mini, P. Skarin, H. Gustafsson, J. Harmatos, L. Abeni,
and T. Cucinotta. A multi-domain survey on time-criticality in cloud
computing. /[EEE Transactions on Services Computing, page 1-19, 2025.

[2] Remo Andreoli, Tommaso Cucinotta, and Daniel Bristot De Oliveira.
Priority-Driven Differentiated Performance for NoSQL Database-as-a-
Service. IEEE Transactions on Cloud Computing, 11(4):3469-3482,
2023.

[3] Eric A Brewer. Towards robust distributed systems. In PODC, volume 7,
pages 343—477. Portland, OR, 2000.

[4] Timothy C. K. Chou and Jacob A. Abraham. Load balancing in
distributed systems. IEEE Transactions on Software Engineering,
(4):401-412, 1982.

[5] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
1st ACM symposium on Cloud computing, pages 143—154, 2010.

[6] Andrea Detti, Ludovico Funari, and Luca Petrucci. pbench: An open-
source factory of benchmark microservice applications. IEEE Transac-
tions on Parallel and Distributed Systems, 34(3):968-980, 2023.

[71 Hua Fan, Aditya Ramaraju, Marlon McKenzie, Wojciech Golab, and
Bernard Wong. Understanding the causes of consistency anomalies in
apache cassandra. VLDB Endowment, 8(7):810-813, February 2015.

[8] Yu Gan et al. An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems. In 24th
International Conference on Architectural Support for Programming
Languages and Operating Systems, page 3—18, New York, 2019. ACM.

[9] Sascha Hunold and Alexandra Carpen-Amarie. Reproducible MPI
Benchmarking is Still Not as Easy as You Think. IEEE Transactions
on Parallel and Distributed Systems, 27(12):3617-3630, 2016.

[10] Joseph Idziorek, Alex Keyes, Colin Lazier, Somu Perianayagam, Prithvi
Ramanathan, James Christopher Sorenson III, Doug Terry, and Akshat
Vig. Distributed transactions at scale in amazon DynamoDB. In USENIX
Annual Technical Conference, pages 705-717, Boston, MA, July 2023.

[11] Qingye Jiang, Young Choon Lee, and Albert Y. Zomaya. The limit of
horizontal scaling in public clouds. ACM Transactions on Modeling and
Performance Evaluation of Computing Systems, 5(1), February 2020.

[12] Harshad Kasture and Daniel Sanchez. Tailbench: a benchmark suite
and evaluation methodology for latency-critical applications. In IEEE
International Symposium on Workload Characterization, pages 1-10,
2016.

[13] Pawan Kumar and Rakesh Kumar. Issues and challenges of load
balancing techniques in cloud computing: A survey. ACM computing
surveys (CSUR), 51(6):1-35, 2019.

[14] Leslie Lamport. The part-time parliament.
Computer Systems, 16(2):133-169, May 1998.

[15] Kathryn B Laskey and Kenneth Laskey. Service oriented architecture.
Wiley Interd. Reviews: Computational Statistics, 1(1):101-105, 2009.

[16] Juri Lelli et al. Deadline scheduling in the Linux kernel. Software:
Practice and Experience, 46(6):821-839, 2016.

[17] John Nagle. Congestion control in IP/TCP internetworks. ACM
SIGCOMM Computer Communication Review, 14(4):11-17, 1984.

[18] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In USENIX ATC, pages 305-319, 2014.

[19] William Schultz, Tess Avitabile, and Alyson Cabral. Tunable consistency
in mongodb. VLDB Endowment, 12(12):2071-2081, August 2019.

[20] Nadia Ben Seghier and Okba Kazar. Performance benchmarking and
comparison of NoSQL databases: Redis vs mongodb vs Cassandra
using YCSB tool. In International Conference on Recent Advances
in Mathematics and Informatics, pages 1-6. IEEE, 2021.

[21] Moysis Symeonides, Zacharias Georgiou, Demetris Trihinas, George
Pallis, and Marios D. Dikaiakos. Fogify: A Fog Computing Emulation
Framework. In IEEE/ACM Symposium on Edge Computing, pages 42—
54, 11 2020.

[22] Tianyi Yu et al. Characterizing serverless platforms with serverless-
bench. In 771th ACM Symposium on Cloud Computing, page 3044, NY,
2020.

[23] Siyuan Zhou and Shuai Mu. Fault-Tolerant replication with Pull-Based
consensus in MongoDB. In /8th USENIX Symposium on Networked
Systems Design and Implementation, pages 687-703, April 2021.

ACM Transactions on

	Introduction
	Contributions

	Related Works
	DistWalk
	Architecture and Design
	Node Customization
	Client Customization

	Experimental Evaluation of the Performance Impact of Design Choices
	Single System: Ramp-up Testing
	Single System: HDD vs SSD
	Single System: Impact of Thread-to-Core Pinning
	Single System: Impact of Poll/Accept Modes & DistWalk Overheads
	Distributed System: Virtualization Overhead
	Distributed System: Data Redundancy
	Distributed System: Load Balancing
	Emulating an Apache Web Server with DistWalk

	Conclusions and Future Works
	References

