
Admission Control for Elastic Cloud Services

Kleopatra Konstanteli∗
kkonst@mail.ntua.gr

Tommaso Cucinotta§

tommaso.cucinotta@alcatel-lucent.com

Konstantinos Psychas∗
el06600@mail.ntua.gr

Theodora Varvarigou∗
dora@telecom.ntua.gr

∗School of Electrical and Computer Engineering, National
Technical University of Athens, Greece

§Bell Laboratories, Alcatel Lucent, Dublin, Ireland (formerly
at Real-Time Systems Laboratory, Scuola Superiore
Sant’Anna, Pisa, Italy)

Abstract—This paper presents an admission control test for
deciding whether or not it is worth to admit a set of services
into a Cloud, and in case of acceptance, obtain the optimum
allocation for each of the components that comprise the services.
In the proposed model, the focus is on hosting elastic services
the resource requirements of which may dynamically grow and
shrink, depending on the dynamically varying number of users
and patterns of requests. In finding the optimum allocation, the
presented admission control test uses an optimization model,
which incorporates business rules in terms of trust, eco-efficiency
and cost, and also takes into account affinity rules the components
that comprise the service may have. The problem is modeled
on the General Algebraic Modeling System (GAMS) and solved
under realistic provider’s settings that demonstrate the efficiency
of the proposed method.

Index Terms—admission control; elasticity; cloud computing;
optimum allocation;

I. INTRODUCTION

Nowadays, more and more distributed applications are being
provided in the Cloud as a composition of virtualized services.
For example, in an IaaS, each service is deployed as a set
of virtualized components, i.e. Virtual Machines (VMs), that
are activated according to their workflow pattern each time a
request arrives from the end users. The use of virtualization
techniques allows for the seamless allocation of each compo-
nent of the distributed service inside the Cloud. It also makes
easier the process of horizontal elasticity, i.e. adding/removing
extra duplicate VMs for each component during runtime to
maintain a certain level of performance for the overall service
when there are variations in the workload.

At admission control time, and in order to provide strong
performance guarantees, the Infrastructure Provider (IP) must
consider not only the basic computational and networking
requirements but also the extra ones that may be needed to
be added at runtime, defined as elastic requirements. In many
cases, the elastic requirements may be quite large compared
to the basic ones. For example, given a service with a high
variation in the number of users, the number of VMs that
may be required to be added at runtime may be many times
multiple of the number of the basic ones. Therefore the amount
of elastic requirements plays a significant role in the total
requirements and therefore in the cost of hosting the service,
and the IP has a strong interest in investigating the possibility

of reducing the resources that need to be booked for elasticity
reasons when accepting the service. At the same time, such
an approach may increase the possibility of deviating from
the agreed quality of service (QoS) level, i.e. the required
availability of the resources, and the imposed penalties may
as well outgain the advantages of this approach.

Apart from the resource requirements, when allocating a
set of services within a Cloud, this problem needs to be
solved by optimizing proper metrics that express the goodness
of the found allocation. Clearly, from the IP’s perspective,
such metrics are significant for the cost of each allocation
solution. However, apart from the cost, nowadays an IP’s
business policy may include other factors such as the risk of
collaborating with a given Service Provider (SP), as well as
other factors that relate to the Cloud resources, such as how
eco-efficient a given host is as compared to the others [2].
For example, given a profit-driven IP, in some cases it may be
more lucrative to admit a highly profitable service even under
the risk of jeopardizing existing less profitable ones. Likewise,
given a very conservative IP and two services competing for
the same resources, the less profitable service of the two may
be accepted in the Cloud, if it is sufficiently less risky than
the other one.

The approach proposed in this paper focuses on elasticity
and tackles the problem of optimum allocation of distributed
services on virtualized resources by incorporating a prob-
abilistic approach in terms of availability guarantees. The
proposed optimization model relies on the actual probabilities
of requiring extra computational and networking capacity for
the services, which are incorporated into the admission control
test, allowing to reduce the physical resources that are required
for elasticity reasons. The resulting model constitutes a proba-
bilistic admission control test that also allows for proper trade-
offs among business level objectives in terms of trust, eco-
efficiency and cost, depending on their relative significance as
considered by the IP. The output of the optimization problem
includes the allocation pattern, i.e. the selected hosts and
subnets for hosting the services, and the computational and
networking capacity (both basic and elastic) that is allocated
on them for each component of the accepted services.

It should be noted that in the preliminary short version
of this work [10], the formulated problem considered only
the computing requirements of the services, whereas in this
paper, the networking requirements are also modeled inside
the admission control problem. Furthermore, the model in
this paper has been extended to incorporate the level of trust
between the IP and the SP as well as the eco-efficiency of
the physical hosts inside its multi-objective function and the
results have been extended to demonstrate the effect of these



factors in the overall admission control process. Lastly, the
presented model allows for partial acceptance of the services
and possible federation with other Cloud providers, and takes
into account the affinity rules the services may have when
allocating them onto the available hosts and subnets.

This paper is organised as follows. Section II gives an
overview of the related work, followed by the description of
the problem under study in Section III. The formulation of the
probabilistic admission control problem is described in detail
in Section IV, whereas Section V presents an evaluation of
the performance of this model and an indicative case study
that validates the efficiency of the proposed approach. Finally,
conclusions are drawn in Section VI.

II. RELATED WORK

Several works that address the problem of optimal allocation
of services in Cloud systems have appeared in the recent
years [3][17]. In [14], the authors examine this problem
in a multi-provider hybrid Cloud setting against deadline-
constrained applications. To this direction a mixed integer
optimization problem is formulated with the objective to
minimize the cost of outsourcing tasks from data centers to
external Clouds, while maximizing the internal utilization of
the data centers. Mazzucco et al. [12], addressed the problem
of optimal allocation for maximizing the revenues of Cloud
providers by minimizing the amount of consumed electricity.
In [4], a resource allocation problem is formulated in which
later tasks can reuse resources released by earlier tasks, and
an approximation algorithm that can yield close to optimum
solutions in polynomial time is presented. In all these works,
the objectives are profit-driven, whereas in this paper, the
presented optimization model combines a more complete set
of parameters both on the SP and the IP side, such as the
trustworthiness of the SP that owns the service and the eco-
efficiency of the IP’s resources.

A probabilistic aspect to the allocation of distributed ser-
vices can be found in [15]. In prior work of ours [9], the
problem of optimum allocation of real-time workflows with
probabilistic deadline and availability guarantees was tackled.
In that work the main focus was on the probabilistic framework
allowing the provider to overbook resources in the various
time frames of each advance reservation request, knowing the
probabilities of actual usage/activation of those services by
the users. In the present paper, instead, the focus is on the
problem of hosting elastic services the workload requirements
of which may dynamically grow and shrink, as depending on
the dynamically varying patterns of requests submitted by a
dynamically varying number of users.

A way to estimate the probability that an end-to-end dead-
line is respected for a given composition of services is the one
to build probabilistic models for the performance achieved by
a composition of distributed services. For example, Zheng et
al. [16], among others, investigated on mathematical models to
compute the probability density function of the response-time
of service compositions under various compositional patterns.
However, in the present paper we consider elastic services

as our primary concern, and the probabilistic composition
of services is dealt with by recurring to the probabilistic
framework detailed in Section IV-E.

III. PROBLEM DESCRIPTION

In the context of the problem under study, largely inspired
by the OPTIMIS [8] and S(o)OS1 European Projects, an IP is
a business entity that owns a set of physical hosts with po-
tentially heterogeneous characteristics in terms of processing
speed, architecture, and underlying network capabilities, and
establishes SLAs with SPs for hosting distributed services over
a period of time. Each service is composed of components that
are horizontally scalable, i.e. they are capable of distributing
their own work over a number of VMs which can be deployed
on different cores, processors, hosts and subnets.

The IP books in advance a set of physical resources for
hosting the virtualized components that comprise the service,
i.e. the VMs that encapsulate them. Each different type of
component is characterized by specific computing and net-
working requirements, in terms of an abstract single-valued
performance metric, as explained in detail in Section III-A.
According to the expected usage of the service, the SP is
allowed to specify a lower and an upper limit to the com-
puting and networking requirements of each component, that
correspond to the basic and elastic resources that may be
needed during runtime. At the first activation of the service,
only the basic resources are participating in the execution.
During runtime and according to workload fluctuations and
the policies in place, elastic VMs may be added. However,
their capacity requirements cannot exceed the limit defined in
the SLA.

A. Performance Model
In this work, it is assumed that the computing and network-

ing capabilities of each physical host, as well as those of the
services, may be expressed in terms of a single performance
metric. For example, across a set of hosts with similar capa-
bilities in terms of the Instruction-Set Architecture (ISA) of
the CPUs, the computing capabilities may be approximated in
terms of instructions per second that each host can process,
accounting for the different clock speeds and number of CPUs
and cores available in each one of them. For example, a host
with a single 1 GHz CPU would have a computing capability
of 109, while a quad-core 3 GHz host would have a computing
capability of 12 · 109. Similarly, we would roughly say that
a service under given operating performance conditions (i.e.
exhibited response-time within the desired range, under a
workload following the expected pattern) might require 3 ·109

instructions per second. This would imply that the service
should be hosted either replicated over 3 of the mentioned
single-CPU machines, or simply as a single instance occupying
one of the CPUs of the mentioned quad-core system.

Alternatively, the performance metric might be defined in
terms of the performance achieved by a given benchmark (e.g.

1More information is available at: http://www.soos-project.eu/ and http:
//www.optimis-project.eu/.



LINPACK2 or others) that is relevant for the kind of applica-
tions that may potentially be hosted. Actually, a more precise
performance model could consider a vector of metrics, e.g., as
coming out of a number of heterogeneous benchmarks (e.g.
linear algebra, graphics, integer and floating-point operations,
etc.). However, in the present work, a single metric is used for
the sake of simplicity, and its values are supposed to vary in
a range of positive real numbers.

As implied by the just mentioned example, we assume an
ideal model of scalability for software, in which:
• each service can be arbitrarily decomposed in a number

of possibly imbalanced replicas, running over possibly
heterogeneous hosts; this is possible thanks to virtualiza-
tion technologies by which more and more VMs hosting
replicas of a service can be instantiated;

• the whole performance of a service is given by the sum
of the performance of the decomposed replicas.

Note that both assumptions may be easily verified in typical
Cloud computing services in which the horizontal scalability
is needed to deal with a high number of users potentially
accessing the services. In such a case, the multitude of replicas
each service instantiates serves requests on behalf of different
(groups of) users. Each replica can thus operate essentially
in isolation from the others, thus the service falls under
the model of loosely coupled (or embarrassingly) parallel
software. However, as a future extension of this work, the
performance model may be extended to consider workload and
synchronization overheads by integrating methodologies such
as [5]. Furthermore, we assume that the additional potential
overheads due to the interference between VMs possibly being
hosted on the same hosts are already accounted in the abstract
resource requirements of the service. This seems reasonable
in this context as we deal with horizontally scalable services
that can span across various physical nodes, when needed (as
opposed to many small services that can be consolidated on
the same host). However, investigations on how to extend the
model with a more informed inter-VM interference overhead
model are reserved for future work. Note also that the impact
of the inter-VM interferences on their temporal behavior can
be kept under control using proper soft real-time schedulers
at the hypervisor level [7].

B. Resources Topology

The resources of the provider may be generally considered
as an interconnection of (potentially heterogeneous) networks
that interconnect (potentially heterogeneous) computing nodes.
For example, various LANs enclosing multi-processor comput-
ing nodes are interconnected by means of one or more WANs.
To this direction, the network topology is characterized by the
following elements:
• A set of computing nodes, or hosts: H = {1, . . . , NH} .

Each host j ∈ H is characterized by an available
computing capacity Uj ∈ R+, which expresses the value

2More information is available at: http://www.netlib.org/linpack/.

of a given system-wide reference performance metrics
(see also Section III-A).

• A set of available subnets: N = {1, . . . , NN } . Each
subnet n ∈ N is characterized by a maximum aggregate
bandwidth Wn ∈ R+, expressed in terms of bytes/s.

• The network topology information, specifying what hosts
Hn ⊂ H are connected to each subnet n ∈ N .

C. Services Notation
The following notation is used to refer to services:
• Set of service instances (referred to simply as services

from here on): S = {1, . . . , NS} .
• Each service s ∈ S is a workflow of m(s) components

(encapsulated inside VMs): Ss ! {1, . . . ,ms} , denoted
also as (ξs

1, . . . , ξ
s
ms) .

Each component ξs
i ∈ Ss is characterized by the following

parameters:
• Minimum basic computing capacity θs

i and network ca-
pacity bs

i that ξs
i needs to perform its basic functionality

on the hosts of a given subnet;
• Maximum extra computing capacity Θs

i and network
capacity Bs

i , also called elastic requirements, that ξs
i may

properly exploit;

D. Service Level Agreement Model
As already described in Section III, the IP establishes SLAs

with the SPs for hosting their services over a period of time.
The SLA for a given service s ∈ S carries the following
parameters:
• The description of the service workflow Ss, which must

be complemented by the computing requirements of each
component ξs

i : θs
i , Θs

i , bs
i , and Bs

i .
• A minimum probability φs that the required resources are

actually available when the request arrives, namely that
there are sufficient computing and network resources for
the activation of the VMs when needed.

• Gain Gs for the IP in case the service is accepted.
• Penalty P s for the IP if the service fails to meet its QoS

restrictions.
Furthermore, it is assumed that the IP owns or is able to obtain
access to tools that enable him to acquire knowledge about the
following two factors that help in the assessment process of
admitting or not a service:
• Trust T s: this factor is a metric of how trustworthy the

SP that owns the specific service is.
• Eco-efficiency Ej : this factor is a metric of how eco-

efficient a given host j is.
Both these factors have a positive meaning (i.e. the higher
their value, the more positive their effect is), and as explained
in detail in Section IV-F, they are incorporated in the overall
objective of the IP.

IV. PROBLEM FORMULATION

Using the definitions in Section III, the problem under study
may now be formalized.



A. Unknown Variables
First of all, let us introduce the unknown variables to be

computed. These are:
• The allocated (both basic and elastic) computing capacity

for the components on the hosts: ∀s ∈ S, ∀i ∈ Ss,
∀j ∈ H, xs

i, j ∈ R+. If a component ξs
i is not given any

computing capacity on a given host j, then xs
i, j = 0. The

accepted elastic computing capacity for each component
is

∑
j∈H xs

i, j − θs
i .

• The allocated (both basic and elastic) network bandwidth
for the components on the subnets: ∀s ∈ S, ∀i ∈
Ss,∀n ∈ N , ys

i, n ∈ R+, if ξs
i is deployed on some host

j ∈ Hn. The accepted elastic network capacity for each
component is

∑
n∈N ys

i, n − bs
i .

Note that the actual decomposition of each component ξs
i into

VMs to be deployed on the various hosts where xs
i, j > 0

is a lower-level detail that is not needed to be addressed in
the formulated allocation problem. Once a set of services is
accepted to be deployed on a host, then and only then the exact
decomposition of the overall host computing capacity Uj will
need to be detailed, in terms of the capacity of each processor
or core. At that time also the whole computing power allocated
to each of the deployed services xs

i, j will need to be detailed
in terms of computing power to be allocated for the various
VMs that, as a whole, will serve users requests on behalf of
users from the considered host.

In order to allow the possibility of rejecting one or more ser-
vices that are being examined at the same time, we introduce
into the problem formulation the derivative Boolean variables{
zs
i,n

}
with a value of 1 if the component i ∈ Ss is admitted

on subnet n and 0 otherwise. These can be put in relationship
with the xs

i, j variables through the following constraints:
8
>><

>>:

P
j∈Hn

xs
i,j − θs

i ≥ K(zs
i, n − 1)P

j∈Hn
xs

i,j ≤ Kzs
i, n

ys
i, n − bs

i ≥ K(zs
i, n − 1)

ys
i, n ≤ Kzs

i, n

∀i ∈ S(s), ∀n ∈ N (1)

where K is a sufficiently large constant. The above in-
equalities constrain the service component allocation variables{
xs

i, j , ys
i, n

}
to give enough computing capacity and network

bandwidth on the hosts of subnet n for the basic requirements
of the component {θs

i , bs
i} with zs

i, n = 1, or alternatively they
force them to be 0 with zs

i, n = 0. Indeed, when zs
i, n = 1, the

first and the third inequality ensure that
∑

j∈Hn
xs

i,j ≥ θs
i , and

ys
i, n ≥ bs

i , whereas the second and fourth inequalities impose
no constraint on the values of

{
xs

i, j , ys
i, n

}
since K is a suffi-

ciently large constant. On the other hand, when zs
i, n = 0, the

first and the third inequalities impose no constraint, whereas
the second and fourth become

∑
j∈Hn

xs
i,j ≤ 0, and ys

i, n ≤ 0.
Given that xs

i, j , y
s
i, n ∈ R+, this forces

{
xs

i, j , ys
i, n

}
to become

zero, thus the component is not given any computing and
networking share on any of the available resources.

B. Partial admittance and federation
In case a service cannot be fully allocated in the underlying

Cloud, the IP may want to consider the option of federating

with other IPs, before rejecting the service, given that such an
option is allowed by the SP. To accommodate this requirement,
we introduce a set of variables that derive from the basic un-
known variables that were introduced in the previous section,
and are used in the formulation of the problem later on. These
are:
• The Boolean variable xs

i : xs
i =

∨
n∈N zs

i, n, that
becomes 1 when the component is allocated at least on
one of the available subnets, or 0 otherwise.

• The Boolean variable xs : xs =
∏

i∈S(s) xs
i , that signals

whether a service as a whole is accepted or not. Thus,
if at least one of the components cannot be allocated on
any of the available subnets, then xs = 0.

• The partial admittance of a service can be expressed by
the variable x′s: x′s =

P
i∈Ss xs

i

ms , where ms is the num-
ber of components that comprise service s. Therefore,
x′s = 1 means full admittance of service s, whereas for
example x′s = 0.5 means that half of the components
that comprise s have been admitted.

C. Allocation Constraints
The allocation constraints for the problem are summarized

as follows.
• The overall allocated computing capacity for each com-

ponent ξs
i should not exceed the limit defined by its basic

plus elastic computing capacity:

∀s ∈ S, ∀i ∈ Ss,
X

j∈H

xs
i, j ≤ θs

i + Θs
i . (2)

• The additional load imposed on each host cannot over-
come their residual available computing capacity:

∀j ∈ H,
X

s∈S

X

i∈S(s)

xs
i, j ≤ Uj . (3)

• The overall allocated network capacity on the subnets for
each component ξs

i should not exceed the limit defined
by its basic plus elastic network capacity:

∀s ∈ S, ∀i ∈ Ss,
X

n∈N

ys
i, n ≤ bs

i + Bs
i . (4)

• The additional load imposed on each subnet cannot
overcome their residual available bandwidth capacity:

∀n ∈ N ,
X

s ∈ S

X

i∈Ss

ys
i, n ≤ Wn. (5)

D. Affinity rules
Apart from the basic allocation constraints as introduced

in the previous section, different types of services and com-
ponents, may require special treatment when it comes to their
deployment. To this direction, an extra basic set of conditional
affinity constraints can be added to the allocation problem
depending on the specific requirements of the components
and/or the services as a whole.
• A component must be allocated in the same subnet:

the instances of the component must be deployed within
the same subnet, which also implies that federation is not



allowed. This can be achieved by adding the following
constraint : ∑

n∈N
zs
i, n = xs

i . (6)

• A component must be allocated in the same physical
node: the instances of the component must be allocated
on the same physical node. To achieve this, we add the
following constraint:

∑

j∈H
hs

i, j = xs
i , (7)

where hs
i, j is a Boolean variable that becomes 1 if host

j is used in the allocation of component i.
• The service cannot be federated: this means none of

its components can be federated. To this direction the
following constraint is added to the problem:

x′s = xs. (8)

• The service must be deployed in the same subnet: all
the instances of all the components of the service must
be deployed in the same subnet. Works in conjunction
with Eq. 6 on component level, with the addition of the
following constraint:

∑

n∈N
δs
n = xs, (9)

where δs
n is a Boolean variable that becomes 1 if subnet

n is used in the allocation of the service s.
• The service must be deployed in the same physical

node: all the instances of all components of the service
must be deployed in the same physical node. Works in
conjunction with Eq. 7 on component level, with the
addition of the following constraint:

∑

j∈H
hs

j = xs, (10)

where hs
j is a Boolean variable that becomes 1 if host j

is used in the allocation of service s.
The Boolean variables hs

i, j , δs
nand hs

j are derivative variables
that can be computed by forming logical constraints around the
basic variables of the problem. For example, the hs

j Boolean
variable that states whether or not the host j ∈ H is used in any
possible allocation, can be encoded using the x(s)

i, j variables as
follows:

 P
i∈Ss xs

i, j ≥ Uj

`
hs

j − 1
´

+ εP
i∈Ss xs

i, j ≤ Uj · hs
j

, ∀j ∈ H (11)

where ε is a sufficiently small constant and Uj the available
computing capacity of the host j (see Section III-B). This
pair of inequalities, given that xs

i, j are non-negative variables,
constrains the sum of the xs

i, j variables pertaining to host j
to be all 0 with hs

j = 0, or to hold a strictly positive value
with hs

j = 1. The ε value may be also used to impose the
minimum workload for which it is worth turning on a host, or

otherwise it is preferred not to use it (independently of other
cost metrics possibly in place). The Boolean variables hs

i, j ,
and δs

n are calculated in a similar manner.

E. Probabilistic Elasticity
In this section we propose a probabilistic approach to the

problem of allocating extra resources for elasticity reasons.
The basis of this approach lies in the existence of prediction
models that are able to forecast resource usages based on
historical monitoring data. Indeed, there are several works
to this direction in the literature, such as [11], that produce
statistical information in the form of probability distributions
of the actual resource requirements experienced at run-time by
a service in a virtualized environment by monitoring previous
runs of the service. Therefore, given that this statistical knowl-
edge is known, then it can be leveraged inside the problem to
tune the allocation in such a way that the service can run
flawlessly with at least a minimum probability φs, which is
the minimum probability that there will be sufficient resources
for the activation of the VMs when needed as expressed in the
SLA (see Section III-D).

To this end, it is assumed that the IP has knowledge
about the probability that a given component may use a
computing capacity up to xi and a network capacity up to
yi. This can be formally described by the joint cumulative
distribution function Fs

i (xi, yi) = P [Xs
i ≤ xi, Y s

i ≤ yi] of
the real-valued random variables Xs

i and Y s
i representing the

computational and network capacity that a component i may
require at runtime. In order to deal simultaneously with all the
components that comprise the service, this can be generalized
for Xs

i , Y s
i , ∀i ∈ {1, . . . ,ms}: Fs(x1, .., xms,y1, .., yms),

where ms is the number of the components of service s.
Then, in order for a service s to be admitted into the system,

instead of reserving resources for the maximum amount of
elasticity requirements deterministically, it is sufficient to
guarantee that the probability for s to find enough available
computing power and network bandwidth when actually re-
quired, denoted from this point on as Φs, will be higher than
or equal to φs:

Φs ≥ φs. (12)

The insertion of the constraint as shown above allows to
reduce the resources that need to be booked for elasticity
reasons when accepting the service, by exploiting statistical
information, as demonstrated in Section V-B. It should be
noted that, if φs = 1, then the deterministic case is obtained
as a particular case of the probabilistic one, i.e. the model will
operate deterministically if the client asks for 100% guarantees
in the SLA.

A simplification of Eq. 12 may be obtained if the distribu-
tions Fs

i are independent, i.e.: Fs(x1, .., xms,y1, .., yms) =∏
i∈Ss Fs

i (xi, yi), and by further assuming that there is a
linear dependence between the computing and networking
requirements yi : yi = axi + b. In such a case, the probability
Φs becomes:

Φs =
Q

i∈Ss P
ˆ
Xi < min(xi,

yi
a − b)

˜

=
Q

i∈Ss Fs
i (min(xi,

yi
a − b)).

(13)



In order to allow partial admittance of a service and possible
federation with another IP, the above can be rewritten as
follows:

Φs =
Y

i∈Ss

1−
h
1− Fs

i (min(xi,
yi

a
− b))

i
· xs

i , (14)

where xs
i is the Boolean variable that becomes 1 when the

component i is allocated (see Section IV-B).

F. Objective Function
The formalized admission control problem needs to be

solved by optimizing proper metrics that express the goodness
of the found allocation. As already explained, the maximum
required capacity, including the elastic capacity, may be quite
large compared to the basic requirements for the service,
thus the elastic capacity plays a significant role in the total
requirements and the cost for hosting the service. Clearly,
from a provider perspective, a metric for the goodness of
an allocation solution may be significant, because of the
additional costs possibly needed to admit the new services.
In order to formalize this, let us introduce the extra cost of
ζj associated with turning on an unused host j ∈ Hoff ⊂ H.
Then, a simple term to consider in the objective function is
the total additional cost C associated with turning on unused
hosts:

C =
∑

j∈Hoff

hj · ζj . (15)

Furthermore, it is in the IP’s best interest to extend the
optimization goal so that other available host-level information
is considered, such as the eco-efficiency of the hosts Ej

(see Section III-D). To this direction, the overall objective is
complemented by the term E that expresses the eco-efficiency
score of the hosts that are used to form the allocation pattern:

E =
∑

j∈H
hj · Ej . (16)

In the overall assessment process, apart from host-specific
factors, the IP may want to consider also factors related to the
SPs that own the services, like Trust T s (see Section III-D).
The same reasoning may easily be applied to any other
host-level or SP-level information that is available and of
importance to the IP.

Additionally, the probabilistic framework as introduced in
Section IV-E implies that with a maximum probability of
Φs ! 1− Φs, an admitted service is not expected to find the
needed extra resources available, leading to the necessity to
pay the penalty P s back to the customer. Therefore, for each
service that is partially admitted into the system (x′s ≤ 1,
see Section IV-B), the expected penalty due to SLA violations
Ps = ΦsP s, should be subtracted from the immediate gain
Gs.

By taking into account all the different objectives mentioned
above, we finally obtain the following multi-objective func-
tion:

max
P

s∈S x′s(wGGs − wPPs + wT T s)− wCC + wEE, (17)

Figure 1. CPU times for computing the optimal solution using BARON.

where wG , wP , wT , wC , and wE are used as weights for con-
figuring the relative importance of the different factors in the
multi-objective function and for adapting the heterogeneous
quantities in the sum. By changing the values of these weights,
the IP can customize the overall service acceptance policy
according to its needs. For example, a profit-driven policy
would be expressed by setting the values of the weights wE
and wT equal to zero. In this way, the trust and eco-efficiency
aspect of the solution will not be taken into account during
the optimization process, and the optimal solution in this case
will be the cheapest one. Different acceptance policies can be
applied by configuring these weights as demonstrated in detail
in the results presented in Section V-B.

V. EVALUATION

The problem formalized in the previous section falls within
the class of Mixed-Integer Non-Linear Programming (MINLP)
optimization problems. It was modeled on the General Alge-
braic Modeling System (GAMS) [1], a high-level modeling
system for mathematical programming of complex, large scale
optimization problems. For solving the problem, we used the
Branch and Reduce Optimization Navigator (BARON) [13],
which is a computational system for solving non-convex
MINLP optimization problems to global optimality. All results
presented in the analysis that follows have been obtained using
BARON with GAMS v23.7 on AMD FX™ Six-Core 3.32
GHz processor with 8 GB of RAM.

A. Performance evaluation
In what follows, we present a performance evaluation of

the optimization model discussed in the previous section.
To this direction, different model profiles were generated
for different number of services, components and subnets.
The requirements of the components and the capacity of the
subnets were generated so that they have constant values.

The BARON solver that, as mentioned earlier yields the
optimal resource allocation, was then used to solve the GAMS
models and the running times for each model profile were
noted. Several runs were repeated and the average performance
was computed across these repeated experiments to increase
the accuracy of the results.

Figure 1 plots the CPU time consumed by BARON to
find the optimal solution for each of the examined problems
of different sizes. The number of hosts to be considered as



Table I
UNUSED HOSTS AND SERVICES CHARACTERISTICS

j ∈ H ζj Ej n ∈ N
j1 − j10 1 1 n1

j11 − j20 10 10 n2

S s1 s2

Gs 300 500
Ps 30 50
φs 0.7 0.8
T s 50 10

candidates for allocation is plotted along the x-axis reaching a
maximum of 200, whereas the CPU time consumed is plotted
along the y-axis. In order to stress the problem, the services
had no conditional deployment constraint and all the hosts
were unused and of the same computing capacity. The three
lines that are plotted correspond to three different indicative
profiles of the model. For example, profile(4,2,10) corresponds
to a model that considers 4 services with 2 components each
on 10 underlying subnets respectively.

As it can be seen, the number of services has a more nega-
tive effect on the solution times as compared to the number of
the components that comprise the services. Interestingly, the
results also indicate that increasing the number of subnets to
which the hosts belong to, reduces the time that is needed to
compute the optimal solution. Although the consumed times
vary due to the inherent non-convexity of the problem, the
results prove that the problem is tractable, and indicate that
the cost of an accurate solution may be considered acceptable
even for medium-sized problems. For larger-sized problems,
a heuristic method for yielding a near-optimal solution at a
fraction of the cost of the optimal solution is being developed,
following approaches similar to [6].

B. Case study
In this section, we highlight the way the flexibility that

is introduced by the probabilistic framework, as described
in Section IV-E, is regulated by the weights of the different
factors in the multi-objective function, and the way changing
these weights results in different solution patterns in terms of
the cost, the allocated capacity, the hosts to be used, etc. To this
direction, we consider an indicative case study of 2 different
subnets {n1, n2} of the same capacity (100 Mb/s). Each
subnet interconnects 10 unused hosts of the same capacity but
with different usage costs ζj and eco-efficiency scores Ej , as
shown in Table I. For simplicity reasons, the CPU cores of the
hosts are considered to be homogeneous, i.e. having the same
ISA, speed and capabilities, and a capacity of Uj = 2.0 GHz.
Therefore the total computing capacity of the available hosts
is 40 GHz.

Under these settings, we consider 2 services {s1, s2} re-
questing admission with the parameters shown in Table I. Both
services consist of 2 components {ξs

i }, that have the same
basic and elastic computing and network capacity require-
ments: θs

i = 1GHz, Θs
i = 9GHz, and bs

i = 100 bytes/s,
Bs

i = 1Mb/s. Therefore the maximum elastic computing and
network capacity that can be accepted for each service is 18
GHz and 2 Mb/s respectively. For simplicity and without loss
of generality, we consider that the probability distributions

Table II
INDICATIVE CASES UNDER EXAMINATION

Case wG wC wP wE wT
I 1.667 1.667 1.667 0 0
II 1.5 1.5 2 0 0
III 0.5 0.5 4 0 0
IV 0.5 0.1 4 0.4 0
V 2 1 0 0 2
VI 1 1 0 0 3

of the components capacity requirements xi are independent
and uniformly distributed in the interval [θs

i , θs
i + Θs

i ], and
that there is a linear dependence with the network capacity
requirements. Then, the probability Φs is given by Eq. .13. The
values of the parameter φs, which is the minimum probability
that the required elastic capacity will be actually available
when needed, are less than 1 (see Table I), and are kept fixed
for all cases under examination. Lastly, we consider that the
services must be deployed in the same Cloud, i.e. none of their
components can be considered as candidates for federation in
case of partial acceptance.

Six indicative cases are examined with each of them having
different IP acceptance policies as expressed by the different
values of the five weights that are involved in the objective
function (see Table II. The sum of the five weights is equal
to 5 in all cases, and BARON was used to solve the GAMS
models that correspond to these cases. The obtained solutions
are summarized in Table III.

In Case I, the only non-zero weights are wG , wC , and
wP whereas the rest of the weights are set to 0, denoting a
profit-driven IP. According to the BARON output, the optimal
solution distributes the instances of two services on 18 hosts
(2 remain unoccupied), whereas the elastic requirements that
are being accepted, are compressed to the minimum allowed
by the probabilistic constraint of Eq. 12, with service s2 being
granted a larger amount since φs2 > φs1 (see Table III, Case I).
Furthermore, the two hosts that remain unoccupied belong to
subnet n2, which interconnects hosts of higher cost compared
to the ones that belong to subnet n1.

For Case II, in which the weight wP is increased, meaning
that the IP wants to degrease the risk of paying penalties to
the clients and become more sensitive in terms of the QoS
that is offered, the optimal allocation pattern now includes
one of the two hosts that were kept unoccupied in the previous
case, which is now turned on for hosting more elastic capacity.
Further increasing wP as in Case III, leads to the acceptance
of the maximum amount of elastic requirements and all the
hosts being turned on (see Table III, Cases II and III).

The following case, Case IV, is similar to the first one with
the only difference being that the eco-efficiency weight wE ,
which was set to zero previously, is now increased compared
to the cost weight wC . Therefore, the eco-efficiency of the
available hosts is now taken into consideration during the
optimization process. Interestingly, the optimal allocation pat-
tern now involves turning on more hosts in subnet n2 instead
of n1, and the overall eco-score of the allocation pattern is



Table III
COMPARISON OF DIFFERENT CASES

Case I II III IV V VI

Accepted services s1 s2 s1 s2 s1 s2 s1 s2 s2 s1

Involved hosts 18 19 20 18 10 10
Elastic capacity 15 16 16 18 18 18 15 16 10 10

Gain-Cost G − C 710 700 690 692 490 290
Eco-efficiency E 90 100 110 108 50 50

Expected penalty P 18.4 5.7 0 18.4 0 0
Trust T 60 60 60 60 10 50

Solution time (secs) 4.656 7.211 6.776 10.456 2.034 2.734

increased, whereas the gain is decreased (see Table III, Case
IV). This is due to the fact that the hosts of subnet n2 although
more expensive and equivalent to the ones of n1 in terms
of computing power, they are characterized by a higher eco-
efficiency score.

The effect of SP related factors in the optimization process
becomes evident in the last 2 cases under examination (Case
V and VI) in which the only non-zero weights are the ones
related to the gain of admitting a service wG , wC and the
trust wT . In order to create a competing situation between
the 2 services that request admittance, the maximum elastic
requirements for each component which were set to Θs

i = 9 in
the previous cases, are increased to 10, and the values of the
probability that the resources for elasticity will be available
are now set to 1 (φs1 = φs2 = 1). Now, the overall capacity
requirements of the services become 42 GHz, exceeding the
available capacity of the hosts, which will lead to one of
the services being rejected under deterministic admission and
given that partial admittance, i.e. federation, is not allowed. For
Case V, in which wG= wT , the service that is being admitted
is s2, whereas s1 which is the less profitable of the two, is
rejected. By setting wT = 3 (Case VI), the trustworthiness
of the SPs outweighs the gain of the services, leading to the
acceptance of s1 even though it is the less profitable of the two
services. It should be noted that the values of the presented
weights were chosen to highlight the shift in the optimization
objective and that for the in-between values of the weights,
the solutions remained unchanged (not shown due to space
constraints).

VI. CONCLUSIONS

This paper presented a probabilistic approach to the problem
of optimum allocation of services on virtualized physical
resources, when horizontal elasticity is required. The formu-
lated optimization model constitutes a probabilistic admission
control test. It exploits statistical knowledge about the elastic
workload requirements of horizontally scalable services for
reducing the correspondingly booked resources. The proposed
model also allows for proper trade-offs among business level
objectives such as trust, and eco-efficiency, and also takes into
account extra affinity constraints the services might have. In
order to provide a strong assessment of the effectiveness of
the proposed technique, the problem was modeled on GAMS
and solved under realistic provider’s settings. Future work is

focused on developing a heuristic method for reducing the
computation time for solving the presented problem.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7 under grant agreement n.257115 OPTIMIS –
Optimized Infrastructure Services and n.248465 S(o)OS –
Service-oriented Operating Systems.

REFERENCES

[1] General Algebraic Modeling system (GAMS). GAMS Development
Corporation. Available at http://www.gams.com/.

[2] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing. Future Generation Computer Systems, May 2011.

[3] Jing Bi, Zhiliang Zhu, Ruixiong Tian, and Qingbo Wang. Dynamic pro-
visioning modeling for virtualized multi-tier applications in cloud data
center. In Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pages 370 –377, july 2010.

[4] F. Chang, J. Ren, and R. Viswanathan. Optimal resource allocation in
clouds. In Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pages 418 –425, july 2010.

[5] T. Cucinotta. Optimum scalability point for parallelisable real-time com-
ponents. In Proceedings of the International Workshop on Synthesis and
Optimization Methods for Real-time and Embedded Systems (SOMRES
2011), Vienna, Austria, November 2011.

[6] T. Cucinotta and G. Anastasi. A heuristic for optimum allocation of
real-time service workflows. In Proceedings of the IEEE International
Conference on Service-Oriented Computing and Applications (SOCA),
Irvine, USA, December 2011.

[7] Cucinotta et al. Virtualised e-learning on the irmos real-time
cloud. Service Oriented Computing and Applications, pages 1–16.
10.1007/s11761-011-0089-4.

[8] Ferrer et al. OPTIMIS: A holistic approach to cloud service provision-
ing. Future Generation Computer Systems, 28(1):66 – 77, 2012.

[9] K. Konstanteli, T. Cucinotta, and T. Varvarigou. Optimum allocation
of distributed service workflows with probabilistic real-time guarantees.
Springer Service Oriented Computing and Applications, 4(4):229–243,
10 2010.

[10] K. Konstanteli, T. Cucinotta, and T. Varvarigou. Probabilistic admission
control for elastic cloud computing. In Proceedings of the IEEE Inter-
national Conference on Service-Oriented Computing and Applications
(SOCA), Irvine, USA, December 2011.

[11] S. Mallick. Virtualization based cloud capacity prediction. In High
Performance Computing and Simulation (HPCS), 2011 International
Conference on, pages 849 –852, july 2011.

[12] M. Mazzucco, D. Dyachuk, and R. Deters. Maximizing cloud providers’
revenues via energy aware allocation policies. In Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on, pages 131 –
138, july 2010.

[13] N. V. Sahinidis. Global optimization and constraint satisfaction: The
branch-and-reduce approach. C. Bliek, C. Jermann, and A. Neumaier
(eds.), Lecture Notes in Computer Science, Springer, Berlin, 2861:1–16,
2003.

[14] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove. Cost-optimal
scheduling in hybrid iaas clouds for deadline constrained workloads. In
Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference
on, pages 228 –235, july 2010.

[15] Zhenzhong Zhang, Haiyan Wang, Limin Xiao, and Li Ruan. A statistical
based resource allocation scheme in cloud. In Cloud and Service
Computing (CSC), 2011 International Conference on, pages 266 –273,
dec. 2011.

[16] H. Zheng, J. Yang, and W. Zhao. QoS probability distribution estimation
for web services and service compositions. In IEEE International
Conference on Service-Oriented Computing and Applications (SOCA),
pages 1 –8, December 2010.

[17] Qian Zhu and Gagan Agrawal. Resource provisioning with budget
constraints for adaptive applications in cloud environments. IEEE
Transactions on Services Computing, 99(PrePrints), 2011.


