
1

Characterization and analysis of pipelined
applications on the Intel SCC

Tommaso Cucinotta,Vivek Subramanian
Real-Time Systems(ReTiS) Lab

Scuola Superiore Sant’Anna
Pisa, Italy.

cucinotta@sssup.it, vivek@retis.sssup.it

Abstract—Many-core computing platforms can be used to
parallelize computations by dividing the data to be processed into
smaller chunks and processing them simultaneously on different
cores. One possible approach in such parallelization is to set up
a pipeline such that each smaller chunk of data passes in turn
through all the processors involved. In this paper we examine
some approaches to set up such a pipeline on the Intel SCC. We
use a combination of the message passing and the shared memory
capability of the SCC hardware through the interfaces provided
by the RCCE library for our implementation. We build a model
to analyze and compare the performance of such pipelines by
measuring the total time for computation. This model is used to
illustrate the effects of type of memory scheme used, ordering of
cores in the pipeline and caching.

Index Terms—pipeline, real-time streaming, message passing,
shared memory, SCC

I. INTRODUCTION

THE parallelization of a computing task is a well-studied
problem. There are several approaches and methods to

achieve parallelization depending on the nature of the com-
puting task. One of them is the pipeline approach that may
be applicable in situations where input data may be divided
into smaller fragments, each of which must have a certain
set of operations carried out in a specified order. This is
particularly effective whenever the data to be processed is
available progressively, for example, in multimedia streaming
applications, where pipelining the application results in a
higher sustainable throughput.

In several instances the current operation to be carried
out on a certain fragment is not dependent on either the
result of the previous or the subsequent fragment. Also, the
computing task maybe divided to be carried out at different
processing elements. As an example; an audio-processing
application that processes an input audio file for streaming,
or DES encoding of an input file. The operations carried out
at each processing element could be different (e.g the audio-
processing application, where a different filter is used each
time) or identical (e.g the cryptographic application). Setting
up a pipeline for processing such tasks serves to reduce the
amount of computing that a single processing element needs
to perform before switching to the next data chunk, thus
increasing the possible throughput, or reducing the computing
requirements on a single processing element.

There are several factors that affect the performance of a
pipeline such as the latency in memory accesses and the over-

heads involved in moving data between processing elements.
If the processing elements communicate over an interconnect
network, then simultaneous use of the network, by more than
one processing elements results in contention for bandwidth
which affects the performance of the pipeline.

In this work, we introduce a set of variables and equations
to describe the pipeline. We use experimental implementations
to help validate these models of the pipeline. The aim of these
experiments is to have a method to build models of the various
building blocks of the pipeline and of the pipeline itself.
These may then be used to gauge the expected performance
of pipeline and this, in turn, be used to guide the process of
actual implementation and deployment that leads to gains in
throughput and processing times.

II. RELATED WORK

The availability of the fast message passing buffers on the
SCC allow for using these for inter-core communications.
The RCCE library [2] provides a framework to implement
message-passing on the SCC, however a number of authors
addressed the problem of efficient inter-core communications
on the SCC. For example, Rotta [8] presents design options
for message passing protocols and discusses them. Villa et
al.[11][11]study the efficiency and scalability of barrier syn-
chronization in NoC-based many-core systems. The NoC-
based architecture of the SCC that uses the mesh-network to
access the off-chip RAM presents challenges introduced by
this additional latency. Verstraaten et al. [4] presents methods
to implement memory copy mechanisms aimed at increasing
the throughput. Abts et al.[1]explores issues in placement
of memory-controllers and the effect on latency. Petrot et
al.[6]present a software-based solution for cache coherency
and memory consistency in NoC-based multiprocessors. Prell
and Rauber [7] address methods for achieving task parallelism
on the Intel SCC using runtime task schedulers. Kierstscher
et al. [10] present the effects of MPI applications having
knowledge of the topology, while Tol et al. [3] discuss the
mapping of a distributed implementation of the S-Net on the
SCC. Bo et al.[9]discusses the optimization of data-parallel
operations in the context of many-core platforms. Papagiannis
and Nikoloppoulos [5] examines bottlenecks in scalability of
the MapReduce algorithm and presents an implementation of
the same for the SCC.

2

III. PRELIMINARIES

A. Modeling memory access

Consider the Intel SCC which uses a tile-based architecture
with a mesh NoC that connects the tiles and the memory
controllers. Each tile has two cores, their caches and a small
local memory (the local memory buffer or the message passing
buffer).Each core on the SCC is assigned space in the message
passing buffer (MPB). The RCCE library uses this buffer to
implement message passing between the cores.

Let mpb(i, b) denote the time taken by a core i to write b
bytes of data into its own MPB. Let coord(i) be the coordi-
nates of the tile that contains core i, such that coord(i).x and
coord(i).y indicate, respectively, the x-coordinate and the y-
coordinate. Let dist(i, j) denote the routing distance between
elements i and j. Note that, the elements may be either cores
or memory-controllers. As the SCC uses dimension-ordered
routing, we may write dist(i, j)as:

dist(i, j) = |coord(i).x− coord(j).x|+
|coord(i).y − coord(j).y| (1)

If the data rate of the links of the NoC are denoted by µ,
then the time taken to transfer b bytes from i to j can be
expressed as tt:

tt(i, j, b) =
dist(i, j) · b

µ
(2)

The above expression assumes that only a single transfer is
happening over the set of links. We assume this simplistic way
to model the memory access and further assume that it would
be an upper bound on the time it takes to access memory in
the worst scenario in this simple case. This might not always
be the situation and there may be more than one core using
the same links of the NoC. In this case, the effective data rate
may be lower (see VII).

Define a function mem(i) similar to coord(i), but instead
of indicating the coordinates of i, mem(i), indicates the coor-
dinates of the memory controller that has the private memory
of i. Similarly define shmem(i) to indicate the coordinates
of the memory controller that has the shared memory that i is
using.

B. Modeling message passing

The RCCE library provides synchronous blocking send()
and receive() interfaces for transferring messages between
cores. The send() method accepts the rank of the core that
is the destination and the receive() method accepts the rank
of the core that it expects to receive a message from. These
calls have to be matched - for every send executed to j from
i, j must execute a matching receive from i.

RCCE implements this mechanism such that the sending
core writes the message from its private memory to the MPB,
and signals the destination core. The destination core reads
the message from the source’s MPB (via the lookup table
entries) and stores into its own private memory. Thus, a send
and receive operation consists of one off-chip memory read

Figure 1. Representation of the pipeline

by the source, one write by the source to its own MPB, one
read of the source’s MPB by the destination and one write to
the off-chip memory by the destination. For a message of size
b bytes, we may write this time taken as tm:

tm(i, j, b) = tt(i,mem(i), b) +

mpb(i, b) +

tt(i, j, b) + (3)
tt(j,mem(j), b)

IV. PIPELINE

The pipeline that we consider has several stages through
which each chunk of data must be processed. For the purpose
of this study, we have kept the operation performed at each
stage to be identical. Also, a single core is mapped to exactly
one stage in the pipeline. Each stage in the pipeline does the
following:

• receive a single chunk of data from the previous stage
• perform the operation on that chunk
• send the chunk to the next stage in the pipeline

Since we use the RCCE library for message passing and
synchronization, the send and receive steps are synchronous.
Thus, all the cores are almost simultaneously doing one of the
three steps described above. The first and the last stages of
the pipeline are slightly different from the other intermediate
stages - the first stage instead of receiving a chunk, reads
a chunk from the input buffer and, the last stage instead of
sending a chunk forward, writes to an output buffer. Figure 1
shows a representation of the pipeline.

The pipeline has a set of parameters associated with it:
• D is the total size of data (in bytes) to be processed by

the pipeline.
• C is the size of each chunk (in bytes)
• N = D/C is the number of chunks
• m is the number of stages in the pipeline
• Z is the size of a token
• tc(i, b) is the time take to compute b bytes at stage i -

each compute step is a read from memory (private or
shared), process and write to memory(private or shared).

3

• T pipeline(D,C,m)denotes the time taken by a pipeline
with m stages to process D bytes of input in chunks of
C bytes.

We have implemented the pipeline using two of the memory
types available on the Intel SCC. The following subsections
describe each of these approaches.

A. Private memory

The private memory of a core is visible and accessible only
to that core. In the implementation of the pipeline using private
memory all the buffers that each stage uses are allocated in the
private memory using the standard malloc(). The chunks are
sent from one stage to the next using the send() and receive()
methods of the RCCE library. Denote the time taken to process
the nth chunk of size C bytes at stage i by tp(i, C), as:

tp(i, C) = tm(i− 1, i, C) +

tc(i, C) + (4)
tm(i, i+ 1, C)

For the pipeline to proceed, one chunk at a time must be
processed and placed in the output buffer. For this to happen,
m − 1 messages have to be sent (or received) and since the
messaging is synchronous we need to consider only either the
time for sending or receiving - the time spent sending in at
stage i − 1 will be equal to the time spent in receiving at i.
When the chunk from the last stage is placed in the output
buffer, exactly one more new chunk may be admitted at the
first stage. Thus, the maximum time spent at each step of the
pipeline in processing is the time taken by the stage that has
the maximum tc(i, C). That is, if the pipeline were to be stalled
- some stage is in the processing step, while the stages before
this stalled stage are waiting to send and the ones after the
stalled stage are waiting to receive - then the pipeline would
progress only when the stalled stage finishes processing and
sends the chunk on to the next stage. In the time that this stage
took to process the current chunk, all the other stages would
have processed exactly only one chunk. Hence, we may write
the time taken for pipeline to complete as:

T pipeline(D,C,m) = N ·

[
m−1∑
i=1

tm(i, i+ 1, C)

]
+

(N +m) ·max {tc(i, C)}mi=1 (5)

≤ N · (m− 1) ·max {tm(i, i+ 1, C)}m−1
i=1 +

(N +m) ·max {tc(i, C)}mi=1 (6)

B. Shared memory

The SCC provides a shared memory area that can be
accessed by all cores on the platform. We use this shared
memory as one of the ways to implement the pipeline. In this
case,the first core allocates the space in shared memory for
the buffers and sends the offset from the start of the shared
memory region to the other cores. One of the buffers that is

created in the shared memory is a queue. Access to each slot
in the queue is managed using tokens (denoted a Z) which
the first stage initially generates. A stage may only access the
slot to which it holds the token. The first stage reads data
in chunks from the input buffer into the slots of the queue
and the last stage reads out data from the queue into the
output buffer. Unlike in the previous method where the entire
chunk was transferred over the NoC, here only the token is
transferred from stage to stage. Due to the synchronous nature
of communication, the number of slots in the queue has an
upper bound equal to m− 1.

tp(i, C) = tm(i− 1, i, Z) +

tc(i, C) +

tm(i, i+ 1, Z) (7)

As reasoned for the private memory case, in this imple-
mentation as well a similar reasoning can be applied. The
differences are that since the queue is of a circular nature
(due to a ring created by the passing of tokens among the
stages), the number of messages at each step of the pipeline
is m (the last stage sends the token to the first stage). Also,
the stages move along the queue of chunks as opposed to the
chunks moving from one stage to another.

T pipeline(D,C,m) = N ·

[
m−1∑
i=1

tm(i, i+ 1, Z)

]
+

N · tm(m, 1, Z) + (8)
(N +m) ·max {tc(i, C)}mi=1

≤ N ·m ·max
{
tm(i, i+ 1, Z)m−1

i=1 , tm(m, 1, Z)
}
+

(N +m) ·max {tc(i, C)}mi=1 (9)

1) Uncached and cached shared memory: Shared memory
on the Intel SCC can be made uncached - bypasses both the
L1 and L2 cache, or cached - cached in both L1 and L2, by
setting the relevant bits appropriately for the corresponding
page table entries. RCCE provides a mechanism to achieve
this at the time of compiling the library. The uncached and
the cached shared memory is exposed, respectively, through
the /dev/rckncm and /dev/rckdcm devices. Depending on how
the library was compiled the shared memory is mapped to one
of these devices. The RCCE interfaces to handle this memory
does not change significantly.

Although, using the cached shared memory has the ad-
vantage of reducing the number of memory accesses during
computation, it currently comes with the overhead of having to
flush the entire cache on the core to ensure consistency of the
shared memory. A core must flush caches before begining to
read from shared memory and must flush after modifying data
in shared memory. As a result, the number of flush operations
is proportional to the number of chunks that the input data is
split into times the number of cores participating.

4

C. Effects of ordering of cores

The trival method to order cores would be in order of their
physical core ID. Though on the average, the distance between
tiles is about as small as it can get, the distance is quite large at
certain points (for instance, from core 11 to core 12 and from
core 23 to core 24). Some advantage could be gained if the
ordering of cores and mapping of pipeline stages were done
in such a manner so as to keep the routing distances as small
as possible. One possible method is to start at some corner
(say tile (0, 0)) and then move in the direction of increasing
x-coordinate values, then step up to the next y-coordinate, and
move in the direction of decreasing x-coordinate, and follow
this method till the last core. The gains from following such
reordering is only significant if the time spent in message
passing itself is comparable to the time spent in processing,
and further if the differnce in latency in messaging cores with
different routing distances itself is significantly appreciable.
Nevertheless, some small gains are to be expected by reducing
the routing distances between stages of the pipeline.

V. EXPERIMENTAL RESULTS

All experiments were performed on the SCC with 32GB of
off-chip memory. The SCC system was configured with the
cores running at 533Mhz, the mesh at 800Mhz and the DDR
at 800Mhz. The RCCE library was compiled with the non-
gory interfaces and without the power-management options
enabled. The -DSHMADD flag was enabled to for increasing
the size of the available shared memory. The LUT entries
corresponding to the shared memory were re-arranged such
that the first 15 entries pointed to shared memory on the
memory bank connected to tile (0,0), the next 15 to the bank
connected to (5,0), the next 15 to the bank connected to (0,2)
and the last 15 to the bank connected to (5,3). The processing
done on each core was a placeholder operation that simply
incremented the value read in the input by 1 and wrote it back.
The applications on the core were run at real-time priority by
using SCHED_FIFO with a priority of 20.This section presents
sample results from the experiments we have performed on the
described setup.

Figure 2 plots the time taken to access (read and write)
4MB of shared memory from each of the cores against the
distance (in terms of dimension-ordered routing) of the core
from the memory controller. We see that the latency varies
almost linearly with increasing distance with respect to each
of the four controllers.

Figure 3 and Figure 4 are for the private memory based
implementation. We expect the time to process the input to be
linearly dependent on the size from (6). The bumps in Figure 2
are at C = 16KB are possibly due to interference from the
L1 cache - since we would expect the previous chunk’s data
(and marked ‘dirty’) to be residing in the cache when the
current chunk is being processed, thus accesses to the current
chunk’s data would cause evictions in the cache resulting in a
write-back of the evicted data into memory.

Figure 5 and Figure 6 are using an uncached shared memory
based model. As expected, there is a linear increase of total
processing times but is independent of chunk sizes, since every

Figure 2. Read and write access times to shared memory for 4MB

Figure 3. D vs T pipeline(D,C,m) with m = 48 for a private-memory
implementation and a trivial ordering of core by ascending physical ID

Figure 4. C vs T pipeline(D,C,m) with m = 48 for a private-memory
implementation and a trivial ordering of core by ascending physical ID

5

Figure 5. D vs T pipeline(D,C,m) with m = 48 for a uncached shared
memory implementation and a trivial ordering of core by ascending physical
ID

Figure 6. C vs T pipeline(D,C,m) with m = 48 for a uncached shared
memory implementation and a trivial ordering of core by ascending physical
ID

access is from the off-chip memory. Also, in Figure 6 we see
that the total time for processing doubles with doubling of
input data size.

Figure 7 and Figure 8 refer to the cached shared memory
based model. Here the nature of the plot is due to the additional
time taken in explicity flushing caches before reading from
shared memory to prevent reading stale data from the cache
and after writing to shared memory to ensure changes are
flushed from the cache to the memory. The flushing causes
the entire cache to be flushed. For every chunk that a core
processes, two flush operations are needed, hence, doubling
the chunk size (hence, halving the number of chunks) halves
the number of cache flushes needed.

Figure 9 and Figure 10 compare the performance of the three
approches. The current limitation in the cache flushing causes
the cached shared memory implementation to be somewhat
worse than the private memory implementation for smaller
chunk sizes, due to a large number of flushing operations.
But, for larger chunk size it performs better.

We compared the times for two orderings of the cores which
are:

1) A trival ordering in order of physical ID of cores -
0,1,2,3,4,....,45,46,47.

2) A reduced inter-core distance or-
dering denoted by min-routing -

Figure 7. D vs T pipeline(D,C,m) with m = 48 for a cached shared
memory implementation and a trivial ordering of core by ascending physical
ID

Figure 8. C vs T pipeline(D,C,m) with m = 48 for a cached shared
memory implementation and a trivial ordering of core by ascending physical
ID

0,1,2,...,9,10,11,23,22,21,...,14,13,12,24,25,26,...,33,34,
35,47,46,45,...,38,37,36

Table I lists the comparison of total processing time for the
three memory models based on the ordering of cores and
with C = 256KB. Though there are gains, the effect is
most noticeable in the case of the cached shared memory
implementation.

Figure 9. C vs T pipeline(D,C,m) with m = 48 and D = 4MB -
comparison

6

Figure 10. D vs T pipeline(D,C,m) with m = 48and C = 16KB -
comparison

D(MB) T pipeline(D, 256KB, 48)(sec)

Trivial ordering Min-routing ordering

Private memory
1 3.678 3.670
2 4.155 4.151
4 5.128 5.117
8 7.060 7.054

Shared uncached memory
1 6.635 6.553
2 12.200 12.118
4 24.031 23.948
8 47.693 47.611

Shared cached memory
1 0.920 0.868
2 1.256 1.143
4 2.252 2.042
8 4.745 4.313

Table I
COMPARISON OF TOTAL PROCESSING TIMES AGAINST ORDERING AND

MEMORY-MODEL

VI. CONCLUSIONS

From our experiments we concluded that in deploying
pipelined applications factors of memory access latencies need
to be accounted for improving the performance of computa-
tion. Further, it will help in improving performance by running
data-intensive stages on cores that are closer to memory.

The ordering of the cores also shows effect on the total
computation time. Ordering of the stages that such that stages
that have a bulk of inter-stage communication requirements
on cores that are close will lead to better computation times.
In this work, in our experimental pipeline the communication
pattern between stages is near-identical and quite predictable.

The simplistic assumptions we have used for memory and
communication give us some estimation as to the performance
of the pipeline, these need to be generalized further to improve
the capabilities (See VII).

Though using messaging to transfer data between stages of
the pipeline performs better than the shared memory (cached)
approach, a finer method of just flushing only modified lo-
cations from the cache to the memory will greatly improve
performance.

VII. FUTURE WORK

In the future we plan to investigate methods to dynamically
map stages of a pipeline to cores based on constraints such
as the maximum acceptable end-to-end delay or latency of
the application. We will also measure how using the on-die
TCP/IP communication affects the performance. Further we
will explore the effect of the degree of parallelization of stages
in the pipeline and methods to incorporate this factor into how
stages are mapped onto cores.

In this work we assume a very simple model of the memory
access, we plan to consider cases with concurrent accesses
by different cores and the load this imposes on the NoC to
be able to be more accurate in estimating performance. Also,
the communication pattern between stages currently is near-
identical and quite predictable. This is usually not the case in
a general deployment and we will explore ways to model such
general cases. This will enable us to create a more realistic
model which will help further in the task of dynamic mapping
of stages to cores.

VIII. ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme under grant agreements n.248465, in the context of
the S(o)OS Projects.

REFERENCES

[1] Dennis Abts, Natalie D. Enright Jerger, John Kim, Dan Gibson, and
Mikko H. Lipasti. Achieving predictable performance through better
memory controller placement in many-core cmps. In Proceedings of the
36th annual international symposium on Computer architecture. ACM,
2009.

[2] Tim Mattson and Rob van der Wijngaart. RCCE: a Small Library for
Many-Core Communication. Intel Corporation.

[3] Michiel Van Tol Roy Bakker Merijn Verstraaten, Clemens Grelck and
Chris Jesshope. Mapping Distributed S-Net on the 48-core Intel SCC
processor. In 3rd Many-core Applications Research Community (MARC)
Symposium, 2011.

[4] Merijn Verstraaten Clemens Grelck Michiel W. Van Tol, Roy Bakker
and Chris R. Jesshope. Efficient Memory Copy Operations on the 48-
core Intel SCC Processor. In 3rd Many-core Applications Research
Community (MARC) Symposium, 2011.

[5] Anastasios Papagiannis and Dimitrios S. Nikolopoulos. Scalable Run-
time Support for Data-Intensive Applications on the Single-Chip Cloud
Computer. In 3rd Many-core Applications Research Community (MARC)
Symposium, 2011.

[6] F. Petrot, A. Greiner, and P. Gomez. On cache coherency and memory
consistency issues in noc based shared memory multiprocessor soc
architectures. In Digital System Design: Architectures, Methods and
Tools, 2006. DSD 2006. 9th EUROMICRO Conference on, 2006.

[7] Andreas Prell and Thomas Rauber. Task Parallelism on the SCC. In
3rd Many-core Applications Research Community (MARC) Symposium,
2011.

[8] Randolf Rotta. On Efficient Message Passing on the Intel SCC. In
3rd Many-core Applications Research Community (MARC) Symposium,
2011.

[9] Byoungro So, Anwar M. Ghuloum, and Youfeng Wu. Optimizing data
parallel operations on many-core platforms. Intel Corporation.

[10] Simon Kiertscher Steffen Christgau and Bettina Schnor. The Benefit
of Topology-Awareness of MPI Applications on the Intel SCC. In
3rd Many-core Applications Research Community (MARC) Symposium,
2011.

[11] Oreste Villa, Gianluca Palermo, and Cristina Silvano. Efficiency and
scalability of barrier synchronization on noc based many-core architec-
tures. In Proceedings of the 2008 international conference on Compilers,
architectures and synthesis for embedded systems. ACM, 2008.

