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Abstract—In this paper we present an architecture design
for supporting real time computing on Linux. This architecture
focuses on improving the usability of real time capabilities for
applications by providing a unified Application Programming
Interface. Applications can therefore use it without having to
know exactly what the underlying scheduling algorithm is. Still,
the real-time computing capabilities of the platform may be
exploited to the maximum extent.

The main aim of the paper is to gather feedback from the
community about the design and directions for development.

I. INTRODUCTION

General-Purpose Operating Systems are being increasingly

considered for realizing complex embedded, time-sensitive

and distributed systems. Example application domains are

constituted by multimedia applications, digital A/V processing

systems, interactive distributed collaboration systems, real-

time control applications with timing constraints that are not

excessively strict, etc. The wide variety of libraries, tools,

middle-ware and applications available nowadays on a GPOS

like Linux, as well as the rich set of supported multimedia

peripherals including acquisition and playback devices and

memory cards, and the wide variety of supported networking

devices and protocols, make it the ideal development envi-

ronment for these types of systems. However, these soft real-

time applications pose challenging requirements the Operating

System in terms of the ability to provide proper guarantees on

the timely execution of the hosted processes.

Focusing on Linux, there have been significant advances

in the last few years in terms of the capabilities required

for precise timing of applications. From the years of the

2.4 kernel series, where kernel code was not preemptable,

the current kernel supports fully preemptable kernel sections.

The High Resolution Timers subsystem, now integrated into

the mainline kernel, allows for a nanosecond-precision time

accounting and posting of timers. The increased usage of ad-

vanced synchronization primitives such as Read-Copy-Update

optimizes the access to shared data structures across multiple

cores and processors on SMP systems. The kernel has an

almost complete support for the POSIX real-time extensions

concerning management of clocks, timers, signals and process

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme FP7 under grant
agreement n. 214777 “IRMOS—Interactive Realtime Multimedia Applica-
tions on Service Oriented Infrastructures”.

scheduling policies. The PREEMPT_RT 1 project of the kernel

re-engineers the interrupt management subsystem. The inter-

rupt handlers run in dedicated real-time kernel threads with

the actual kernel logic which runs in interrupt context limiting

itself to just waking up the appropriate handler thread. This

dramatically improves the responsiveness of the Operating

System to external events, at a cost of a slight decrease

in overall system throughput. Finally, the current real-time

throttling2 mechanism and its integration within the cgroup

framework allows for a minimum degree of temporal isolation

across concurrently running real-time tasks or groups of tasks.

However, the very last aspect is somewhat still incomplete,

at least in the official mainline kernel version. Despite the

growing need for a proper mechanism enabling temporal

isolation, to provide scheduling guarantees to concurrently

running real time tasks in the system, the kernel still lacks

it. The set of applications mentioned earlier as well as the

multimedia application domain would greatly benefit by task

scheduling mechanisms at the kernel level with precise real-

time guarantees. For example, with priority-based scheduling

as mandated by POSIX and implemented in the kernel a high-

priority task may indefinitely delay lower-priority ones, hinder-

ing the possibility to provide proper guarantees to individual

real-time tasks. While this may not constitute a problem for

simple embedded real-time system where nearly everything is

under control of the designer, for more complex systems the

lack of a proper temporal encapsulation support by the kernel

is an important issue. The POSIX Sporadic Server scheduling

policy would address such issues, but unfortunately it is not

yet implemented in the mainline Linux kernel (even though

there exists a patch [1] supporting it). The real-time throttling

mechanism mentioned earlier partially mitigates such a lack

of feature providing the possibility to associate groups of tasks

with certain scheduling guarantees. However, the granularity

over the time period these guarantees are provided is solely

system-wide (and it defaults to 1 second). Also, the current

code base, being based on the cgroup interface, is oriented

towards static configuration of the scheduling parameters,

rather than a much more dynamic exploitation of it as it would

be required, for example, by multimedia and adaptive real-time

1More information is available at:
https://rt.wiki.kernel.org/index.php/Main Page.

2http://www.mjmwired.net/kernel/Documentation/scheduler/sched-rt-
group.txt



applications.

A. Paper Contributions

In this paper, a software architecture, designed with the

purpose of supporting real-time computing on the Linux Oper-

ating System, has been described. A multitude of projects fo-

cussing on enriching Linux with proper real-time task schedul-

ing policies already exist (see Section II for an overview). In

this paper the discussion builds over the experience gained

while participating in some of these projects, yet what is

proposed is something quite different. The focus is on the

requirements posed by complex real-time and multimedia

applications, the proper level of abstraction which needs to

be exposed at the Application/OS interface as well as the

minimum set of core functionality needed for the purpose

of building higher level complex and possibly distributed

infrastructures for real-time systems.

B. Paper Structure

This paper is organized as follows. In Section II we

overview related work in the literature, focusing on archi-

tectures and APIs for real-time scheduling. In Section III

we sketch out a set of requirements posed by real-time and

multimedia applications on scheduling services provided by

the OS. In Section IV, we present our architecture design

aiming to fulfill those requirements. Finally, in Section V we

present directions for future work and draw conclusions.

II. RELATED WORK

In this section, related work in the area of real-time support

for general-purpose operating systems (GPOS) is presented.

Various modifications of GPOSes have appeared in the lit-

erature for supporting real-time scheduling policies at the

kernel-level, for various types of resources. Various GPOS

kernels exist that are compliant with the POSIX real-time

extensions [2]. However, most of the implementations limit

themselves to Fixed-Priority scheduling, sometimes with the

addition of high-resolution timers and the Priority Inheritance

protocol [3] for avoiding Priority Inversion. Also, one key

feature which is usually not implemented is the temporal isola-

tion property [4], such as provided by the Sporadic Server [1]

scheduling policy. Without such a mechanism, a higher priority

task runs undisturbed until it blocks, independently of the

computation time that may have been considered at system

analysis/design time. This results in the potential disruption

of the guarantees offered to lower priority tasks. Therefore,

such approaches are suitable for the traditional hard real-time

settings where everything running into the system has been

thoroughly checked, if not formally proved.

For real-time scheduling of the CPU, hard real-time mod-

ifications to the Linux kernel have been proposed, like RT-

Linux3, proposed by Yodaiken et al. [5] and RTAI4, proposed

by Mantegazza et al. [6] or Xenomai5, by Gerum et al. [7].

3More information is available at http://www.rtlinuxfree.com.
4More information is available at http://www.rtai.org.
5More information available at http://www.xenomai.org

In these approaches, a real-time micro-kernel layer is added

between the real hardware and the Linux OS, which runs as

the background/idle activity whenever there are no hard real-

time tasks active in the system. This allows for respecting

the very tight timing constraints (microsecond-level) typical

of industrial automation and robotic applications. However,

(hard) real-time applications usually need to be written in a

special way, for example they are typically required to be

written as kernel modules. Therefore, these hardly constitute

solutions suitable for the large class of multimedia and inter-

active applications, which would greatly benefit from real-time

scheduling policies.

In order to overcome these limitations, other approaches

targeted explicitly soft real-time applications, by adding a real-

time scheduling policy as an extension to a GPOS kernel

itself, typically comprising a temporal isolation mechanism.

Such an approach allows for the coexistence of soft real-time

and best-effort applications, all within a GPOS kernel with

potentially long non-preemptive sections, what leads to the

impossibility to provide hard real-time guarantees. However,

for soft real-time applications like multimedia ones, that

approaches allowed for great enhancements achieved on the

side of the predictability in the temporal behavior exhibited

by applications, which resulted in significant improvements

in the QoS experienced by users. An overview of these

approaches has been carried out by Gopalan in 2001 [8].

Just to mention a few, remarkable works are the ones for

adding resource reservations [9] to Microsoft Windows NT

by Jones [10] (Rialto/NT), and the ones by Rajkumar et al. in

the Linux/RK project[11], a modification to the Linux kernel

inspired by prior work of the same authors on RT-Mach.

More recently, Rajkumar et al. proposed Distributed Resource

Kernels [12], an extension of Linux/RK adding support for

distributed real-time applications directly inside the kernel,

for improved efficiency. Linux/RK is geared towards a model

of non-modifications to applications, therefore the benefits it

can carry are somewhat limited. An effort on portability of a

real-time scheduler across various Operating Systems (from

Microsoft, Unix and Linux families), is constituted by the

DSRT scheduler6 by Nahrstedt et al. [13] and the GRACE [14]

series of architectures.

Also, soft real-time schedulers for Linux have been inves-

tigated and implemented in the context of various European

Projects like the CBS [15] implementation on Linux developed

during the OCERA Project7, and its subsequent evolution,

the AQuoSA [16] scheduler for Linux, developed during

6More information is available at: http://cairo.cs.uiuc.edu/software/DSRT-2/
dsrt-2.html.

7Open Components for Embedded Real-time Applications (OCERA), Eu-
ropean Project n.IST-2001-35102. More information is available at: http:
//www.ocera.org.
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the FRESCOR Project8. More recently, the IRMOS Project9

is also investigating on the use of real-time scheduling on

high-performance Linux machines, with a strong focus on

virtualized distributed real-time applications. In the context of

IRMOS, the most recent real-time extensions to the Linux

scheduler have been proposed: Faggioli et al. proposed a

POSIX compliant implementation [1] of the FP-based Spo-

radic Server algorithm; Checconi et al. designed a novel

hierarchical hybrid scheduling framework [17], based on a

combination of partitioned EDF and global FP, designed so

as to fit as much as possible (and impact as less as possible)

in the current real-time scheduling class code base. A similar

work is being done in the context of the ACTORS Project10,

but with a focus on single-threaded applications scheduled by

global EDF on embedded multi-core systems [18]. Finally, the

LITMUS-RT Project11 is noteworthy to mention as it embeds

an implementation on Linux of the Pfair [19] algorithm,

which is theoretically optimum for multi-processor systems,

along with other EDF-based scheduling algorithms for multi-

processors (both partitioned and global).

Also, prior works exist that integrate real-time scheduling

of heterogeneous resources and an architecture for their man-

agement for real-time applications, like the one by Stankovic

et al. [20], or Hola QoS [21] by Valls et al. The latter is

an architecture specifically tied to the needs of consumer

electronics embedded multimedia systems, providing flexible

resource management and adaptability. The Eclipse/BSD [22]

Project integrates real-time scheduling of CPU, network and

disk access, and exposes to applications a file-system based

user-space interface. More recently, Gopalan et al. [23] pro-

posed MURALS, a distributed real-time architecture built

upon TimeSys Linux12, supporting real-time applications with

end-to-end constraints making use of distributed heteroge-

neous resources, such as disks, CPUs and network links.

The architecture embeds a global admission control scheme

that takes into account the entire dependency graph of the

application. The above mentioned Nahrstedt research group

also worked on QualMan [24], a distributed real-time resource

allocation architecture supporting also network, disk and mem-

ory allocation, with prototype implementation on the Solaris

OS.

Other approaches exist for higher-level QoS control

for time-sensitive applications, such as TAO [25], Real-

Time CORBA [26], Quality Objects (QuO) [27, 28], and

HiDRA [29]. These constitute higher-level middle-ware com-

8Framework for Real-Time Embedded Systems based on Contracts (FRES-
COR), European Project n.FP6/2005/IST/5-034026. More information is avail-
able at: http://www.frescor.org.

9Interactive Real-Time Multimedia Applications on Service-Oriented In-
frastructures, European Project FP7-214777. More information is available at
http://www.irmosproject.eu.

10Adaptivity and Control of Resources in Embedded Systems, European
Project n.216586. More information is available at http://www.actors-project.
eu

11Linux Testbed for Multiprocessor Scheduling in Real-Time Systems
(LITMUSRT ). More information is available at http://www.cs.unc.edu/
∼anderson/litmus-rt.

12More information at https://linuxlink.timesys.com.

ponents that may represent valuable approaches to be built on

top of the architecture described in this paper.

III. REQUIREMENTS

In this section we sketch out the fundamental requirements

over which the architecture and the Application Programming

Interface (API) for exposing the real-time scheduling function-

ality is built.

This discussion draws heavily from the requirements anal-

ysis documents from the FIRST, OCERA and the FRESCOR

European Projects. Among these, the D-RA2 FRESCOR de-

liverable [30] is the most recent and relevant study. It is

noteworthy to mention that the FRESCOR architecture has

been designed with such a multitude of challenging goals as:

• support for multiple heterogeneous resources (CPU, disk,

network, memory);

• support for transactional negotiation of groups of reser-

vations, both at a single-node level, and in a distributed

network;

• support for both hard and soft real-time systems;

• support for complex synchronization protocols for access-

ing shared resources;

• portability of the architecture and applications using it

among heterogeneous operating systems, ranging from

a hard real-time OS like Marte OS to a soft General-

Purpose one like Linux;

• support for adaptive reservations and application-level

QoS control

• support for QoS power-aware optimization of the system

configuration.

On the other hand, in this paper we focus on a much

smaller set of requirements, which we believe constitute a

fundamental core that enables the possibility to build all other

CPU reservation functionality mentioned above by means

of higher-level software components. In fact, in the context

of FRESCOR, it was possible to implement the extremely

complex FRSH API [31] on Linux on top of the much simpler

AQuoSA API13. Still, this API was missing fundamental

features, such as support for multi-core systems and power

management, which we address in this paper. Also we focus on

exploiting increasingly available soft real-time enhancements

in task scheduling on the Linux kernel. We also focus on how

exactly to expose this functionality to the application by the

means of a library and a software architecture which is planned

to be implemented as detailed in Section IV.

The set of core requirements that we identified has been

split into the following main categories:

• core requirements deal with the basic capability of re-

serving some amount of the available computing power

to an application, in a sufficiently abstract way, so that

application developers do not have to deal with how the

system exactly provides guarantees;

• adaptive scheduling requirements deal with the possibil-

ity of realize feedback-scheduling loops for adapting the

13More information is available at http://aquosa.sourceforge.net.

3



allocation to the dynamic workload of the application, as

needed by multimedia applications;

• robustness and security requirements deal with the ability

of the OS to maintain stability and correct operation of

the OS despite possible malicious applications trying to

subvert the OS functionality exploiting the new real-time

scheduling capabilities;

• power management requirements deal with the possibility

to coupling power management logic with the available

real-time features, provided that a proper coordination

exists between them;

• monitoring requirements deal with the possibility to

monitor the current state of the system with respect

to the existing real-time applications and availability of

resources.

• hierarchical scheduling requirements deal with the capa-

bility to handle nested groups of tasks, and to possibly

associate a scheduler at each level or intermediate node

of the hierarchy.

Now the individual requirements are described in more detail.

A. Core Requirements

K.1. The ability to submit a CPU reservation request inde-

pendent of the scheduling algorithm being used by the

kernel.

K.2. The ability to specify the minimum scheduling guaran-

tees to be provided by the kernel, in terms of at least the

following parameters (specification of the parameters is

optional, unless explicitly stated otherwise):

a) A budget Q and a period P which is mandatory.

This provides a guarantee of (at least) Q time units

every P time units.

b) A relative deadline D (defaults to the same value

as the period P ). This provides a guarantee that

the reservation will be granted Q time units within

the first D time units, for every period of P time

units.

c) A maximum tolerance δ for the schedule precision

i.e., the kernel is needed to actually grant to the

reservation only Q + / − δ every specified period

P .

d) Unambiguous specification of the reference clock

for P 14

K.3. The ability to attach and detach a single flow of exe-

cution (single-threaded process or single thread) to/from

the CPU reservation.

K.4. The ability to specify the degree of parallelism for the

requested resource reservation.

K.5. The ability to query the system for available optional

capabilities.

K.6. The ability to write multi-threaded applications that

concurrently use the envisioned scheduling functionality.

K.7. The ability to specify a default reservation for resources

14Such as the MONOTONIC or REALTIME clock implementations on Linux.

available to POSIX real-time tasks and/or to non real-

time tasks.

B. Adaptive Scheduling

A.1. The ability to dynamically change the reservation budget

Q and/or period P while the attached task is running,

without disrupting the scheduling guarantees for the

other admitted tasks.

A.2. In case of required changes to both the budget and the

period, a way to change them atomically is needed.

A.3. The ability to dynamically request a desired budget Qd

(possibly higher than Q), which may be assigned by the

system if enough resources are available. However, the

system may be free to assign any budget in the range
[

Q, Qd
]

, because only the originally reserved budget Q
should be subject to admission control.

A.4. The ability to query, for each period, the actually as-

signed budget, if the system supports specification of a

desired budget.

A.5. The ability to query, during each period, the residual

available budget.

C. Hierarchical Real-Time Scheduling

H.1. Optionally, the ability to attach additional threads to a

resource reservation; in such cases:

a) the default scheduling policy adopted among tasks

belonging to the same reservation should be clearly

stated;

b) optionally, it should be configurable.

H.2. The possibility to manage nested resource reservations.

D. Robustness and Security Requirements

S.1. The ability to allow unprivileged users to exploit real

time capabilities provided by the system.

S.2. Ability to configure per-user and per-group quotas

S.3. The ability consider the requested budget Q as a hard

limit, in such a way that no more than that can be

granted, unless explicitly requested.

S.4. The ability to define the lifetime of a resource reserva-

tion. This includes cases where a task dies prematurely

as well.

S.5. The provision of an Access Control Model to restrict

access to resource reservations.

E. Power Management Requirements

P.1. Power Management logic should be aware of the strict

timing requirements of the running real-time tasks:

a) Allow the specification of the reference CPU fre-

quency which the budget Q specified in K.2a refers

to, or implicitly refer to the current frequency.

b) Allow the specification of individual budgets for

available CPU frequencies.

c) Possible exploitation of the knowledge about future

wake-up times of real-time tasks so as to improve

overall power saving.
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Figure 1: Proposed Architecture

F. Monitoring Requirements

M.1. The availability of a per-reservation counter for budget

overruns.

M.2. The availability of a per-reservation counter for deadline

misses.

M.3. The possibility to list all reservations active in the

system, to inspect their parameters and the attached tasks

(e.g., the AQuoSA system monitor).

M.4. The possibility to query the system about the overall

residual capacity.

IV. ARCHITECTURAL DESCRIPTION

Figure 1 illustrates the main components of a possible

implementation of the proposed framework. As can be seen,

the key portion of the entire architecture is the central decision

authority, the RTS Daemon.

The RTS API, described in Section IV-A, is the primary

means an application has of communicating its real-time

requirements to the framework. These requirements are then

passed to the RTS Daemon, which in turn communicates

requirements to the various plugins as needed.

It is possible for different scheduling models to run at the

same time. The daemon shall prioritize between the different

algorithms, and depending on the algorithm, admit the task to

the appropriate model.

It is also possible for different adaptive approaches to exist

while setting up the resource reservations. Similar to the case

of the scheduling plugins, the daemon priorities and selects

the appropriate model for the task.

Finally since the framework is power aware, any power

management component must be RTS aware. The framework

must have the ability to prevent some of the actions of the

power management component, depending on the require-

ments of the application in the system In particular, CPU

frequency and voltage scaling will affect the budget of the

reservations, while at the same time, since the daemon has

the knowledge of the periods of the applications, it is possible

for it to provide some suggestions on whether the CPU should

go into a deep idle state.

The following Sections give further details for each com-

ponent.

A. Real-Time Scheduling API

Applications communicate with the framework through a

well defined interface which is implemented as a shared library

and linked with the application binary.

In order to request real-time scheduling guarantees to the

system, an application needs to provide a set of parameters

by means of the opaque rts_params type. Each one of the

parameters enumerated in Section III may be set and retrieved

by means of proper getters and setters, for example:

• rts_set_param(rts_params *p, enum

PARAM, void *value);

• rts_get_param(rts_params *p, enum

PARAM, void *value);

The reservation request is submitted to the framework by

means of the function rts_create_rsv()

For the most frequently used parameters helpers such as

rts_set_period(), rts_get_budget() are available.

The functions comprising this API can grouped in the

following categories:

1) General Functions:

• Capability querying functions, such as

rts_cap_query(enum CAP), to discover

if a specific capability of the framework is

available in the current configuration.

• Algorithm specific functions, for setting additional

parameters specific for a particular scheduling al-

gorithm in order to optimize its performance.

2) Per-reservation Functions:

• Functions providing reservation setup such

as configuring, creating and destroying

a reservation. rts_set_param(),

rts_get_params() (as described above),

rts_create_rsv(rts_params *p),

rts_destroy_rsv(rts_params *p);

• Reservation inquiry and modification functions,

query and modify the actual reservation parameters.

rts_get_rsv_params(rts_params *p),

rts_set_rsv_params(rts_params *p);

• Reservation attachment functions, which

associate a thread to a reservation.

rts_attach_thread(tid t, rts_params

*p);

All the parameters specified as mandatory in section III must

be setup for a reservation before trying create it. In addition,

the application are free to specify the optional parameters.

Figure 2 shows a simple example using the proposed API.

B. Real-Time Scheduling Daemon

The RTS API acts as a gateway between the application

and the RTS Daemon, which is the central decision authority

of the framework. It is this component which is aware of the

system state and interacts with the kernel, mapping application

5



1 vo id RT task ( vo id )

2 {
3 /∗ P ar ame te r s f o r r e s e r v i n g CPU ∗ /

4 r t s p a r a m s p ;

5 /∗ I d e n t i f i e r o f t h e r e s e r v a t i o n , i f a c c e p t e d ∗ /

6 r t s r s v r s v i d ;

7

8 i f ( ! r t s c a p q u e r y (RTS CAP BUDGET ) )

9 e x i t e r r ( ” n o t i o n of budge t u n s u p p o r t e d ! ” ) ;

10

11 i f ( ! r t s c a p q u e r y (RTS CAP REMAINING BUDGET ) )

12 e x i t e r r ( ” r e m a i n i n g budge t r e t r i e v a l u n s u p p o r t e d ! ” ) ;

13

14 r t s p a r a m s i n i t (&p ) ;

15

16 /∗ 40 m i l l i s e c o n d s p e r i o d ∗ /

17 r t s s e t p e r i o d (&p , 4 0 0 0 0 ) ;

18 /∗ 25 m i l l i s e c o n d s budge t ∗ /

19 r t s s e t b u d g e t (&p , 2 5 0 0 0 ) ;

20

21 i f ( r t s c r e a t e r s v (&p , &r s v i d ) != RTS GUARANTEED)

22 e x i t e r r ( ” can ’ t g e t p r o p e r s c h e d u l i n g g u a r a n t e e s ! ” ) ;

23

24 r t s r s v a t t a c h t h r e a d (&p , g e t t i d ( ) ) ;

25

26 /∗ params n o t needed anymore ∗ /

27 r t s p a r a m s c l e a n u p(&p ) ;

28

29 whi le ( ! computa t ion ended ( ) ) {
30 i n t rmng budget ;

31

32 compute ( ) ;

33 r t s r s v g e t r e m a i n i n g b u d g e t ( r s v i d , &rmng budget ) ;

34 i f ( rmng budget > 15000)

35 c o m p u t e o p t i o n a l ( ) ;

36

37 w a i t n e x t a c t i v a t i o n ( ) ;

38 }
39 r t s r s v d e s t r o y ( r s v i d ) ;

40

41 e x i t ( EXIT SUCCESS ) ;

42 }

Figure 2: Example C code using the library

requirements to actual parameters of the available scheduling

algorithm(s) and issuing actual system calls.

The internal structure of the RTS Daemon takes advantage

of a modular, plugin-based architecture. Each scheduling plu-

gin needs to provide some of the functionality envisioned in

the application-level API. Among these, the most remarkable

functions are:

1) Real-Time Scheduler Support: Each module supports a

precise real-time scheduling algorithm available in the

underlying kernel, for example Fixed Priority, Sporadic

Server, EDF, etc.

2) Capability Matching: Each module is able to check

whether or not it can handle all of the parameters

explicitly set in a reservation request by the application

through the API;

3) Admission Control: Each module checks whether the

scheduling guarantees requested by applications can be

provided or not; this may be done by either simple or

complex tests based on the precise knowledge of the

underlying scheduling algorithm;

4) Support for Adaptive Reservations: Each module may

support the requirements about adaptive reservations,

and in such case it is responsible for properly managing

overload conditions arising from independent reserva-

tions willing to get unfeasible desired budget figures;

5) Spare Capacity Distribution: Each module may embed a

policy for the redistribution of available system capacity

amongst active reservations, whenever the overall re-

quested resources do not saturate the available resources.

The admission test process inside the daemon may query

multiple plug-ins in some predetermined order, until it finds

one that perfectly matches requirements of the application.

Also, in case no plugin is able to admit the application request,

we allow for the possibility that a plugin that may partially

support the requested requirements provides a positive answer.

Therefore, we foresee three possible results as the outcome

of a rts_create_rsv() call, to be communicated back to

the application:

• RTS_GUARANTEED, if all of the application require-

ments can be satisfied;

• RTS_NO_GUARANTEES, if only some but not all of

the requirements can be guaranteed, and the application

allowed this possibility when setting up the parameters;

• RTS_REJECTED, if it is not possible to admit the

application.

The intermediate return code is provided to give the ap-

plication an opportunity to relax some of its requirements so

that it can be accepted in the system as opposed to retrying

continously.

C. Scheduling Plugin

In this section we describe the plugins that are among the

most representative and important we are willing to support

with the described architecture.

a) EDF Plugin: The EDF scheduling algorithm is well-

known to be optimum for single-processor systems[32]. There-

fore, given its availability at least in the partitioned flavor for

recent Linux kernels [17, 18], we want to develop a plugin

supporting this policy. In this case, the admission test may be

as simple as utilization-based, or it may become more complex

and based on demand-bound function techniques. The latter

ones become particularly useful when specified deadlines are

different from periods, because a utilization-based bound may

be overly pessimistic in such cases.

b) Sporadic Server Plugin: The Sporadic Server algo-

rithm can be used to enforce a CPU reservation in the Q
over P form. However, the Sporadic Server implementation

available for Linux [1] follows the POSIX specifications, and

requires the server parameters to be mapped to the ones

exposed by the kernel interface. In particular, the daemon

needs to manage the priorities at which tasks are executed. As

it is well-known, it is convenient to enforce a Rate Monotonic

ordering of the tasks submitting reservation requests. Note that

this may imply the need for changing the priorities of all of

the running reservations, in order to host a new reservation

request.

Concerning admission control, it is possible to use well-

known analysis techniques for real-time FP systems, ranging
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from simple utilization bound, to the hyperbolic bound, to the

more complex tests based on Response-Time Analysis.

One of the capabilities that is not supported by the POSIX

standard is the enforcement of the hard limit on the granted

reservation, due to the low priority. This information needs to

be made available via capability querying. The plugin may for

example assign a default low priority (e.g., the lowest one) as

the low priority to be specified in the POSIX interface. Finally,

as per the POSIX standard, Sporadic Server does not support

attaching more than one Linux task to each reservation.

c) Fixed Priority Plugin: As a border-line real-time

scheduler, we proposed an API that may be able to exploit an

underlying POSIX Fixed priority real-time scheduler, which is

the most common scheduling algorithm available on Linux and

on other General-Purpose Operating Systems. This algorithm

cannot handle of course temporal encapsulation nor admission

control, so this information needs to be made available to

applications through the capability querying interface, in case

no other real-time schedulers are available on the system.

Also, this is the typical case when the kernel may perform

real-time scheduling of the reservations, but perhaps it can-

not fulfill entirely the set of specified requirements, so the

RTS_NO_GUARANTEES return code is used. One of the

burden that the direct use of the POSIX API imposes when

using FP scheduling, is the management of the priorities.

For example, multimedia applications (e.g., sound daemons

and CD recording software) use to launch themselves at a

statically configured priority. However, it is well-known that

the optimum priority assignment for periodic tasks is the Rate

Monotonic [32] one. These applications may more effectively

exploit FP scheduling by declaring their activation period

through the rts API, and leave the rts daemon decide what

is the best priority assignment considering the overall set of

reservations active in the system.

V. FUTURE WORK AND CONCLUSION

We have presented an architecture allowing applications to

exploit real-time CPU scheduling capabilities available in the

Linux kernel, both the ones of the mainline kernel and the ones

that may be available applying a set of recently appeared well-

engineered patches. The paper focused on the requirements

and issues that drove the design of such an architecture,

and on the abstraction level needed in an API offering such

capabilities to applications.

We have to point out that the recent advances in the

support for real-time tasks in Linux have not been paired

with an increase in the usability of that support. For example,

a cgroup based interface cannot easily be leveraged by

application programmers. We feel that this is a major issue,

and even knowing that no perfect interface exists, and that

the journey we started is a long one, we hope this paper will

constitute the basis of a discussion leading to a more usable

(and used) real-time ”experience” for both Linux programmers

and users.

To reach our goal—designing a practical interface between

application programmers and the real-time capabilities of

Linux—we would like to begin interacting with the community

and to gather feedback from the potential users of the architec-

ture we are proposing. Both the requirements and the interface

would benefit from being expanded and refined through the

experience coming from application programmers and from

the community in general. This constitutes the ultimate goal

of the present paper: opening up a fruitful discussion that

hopefully may refine the design while we proceed with the

actual implementation of the proposed solution.
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