
Respecting temporal constraints in virtualised services∗

Tommaso Cucinotta, Gaetano Anastasi
Scuola Superiore Sant’Anna

Pisa, Italy
{t.cucinotta,g.anastasi}@sssup.it

Luca Abeni
DISI - University of Trento

Trento, Italy
luca.abeni@unitn.it

Abstract

This paper reports some experiences in providing ser-
vice guarantees to real-time (RT) applications running in a
Virtual Machine (VM), showing how proper scheduling is a
necessary condition for a predictable execution. In particu-
lar, resource reservation techniques allow to cope with some
of the overhead and unpredictabilities experienced when ex-
ecuting multiple VMs on the same host.

1 Introduction

The high availability of high-speed Internet connections
at affordable rates and the widespread usage of mobile de-
vices are driving the world of Information and Communica-
tions Technologies (ICTs) towards a new era of distributed
computing, where more and more of the resources needed
by a user are provided remotely. In order to account for
this shift in resource provisioning, new paradigms of soft-
ware design and development are needed. New business
models are emerging, where resource providers may give
on-line access to not only storage, but also computation and
communication resources, while service providers may use
them to offer sophisticated composable high-level services
or even ready-to-use distributed applications to end users.

A promising approach for building complex distributed
applications is constituted by Service Oriented Architec-
tures (SOAs), which are software infrastructures that al-
low for the composition of loosely coupled, distributed ser-
vices in a location-independent manner. Recently, SOAs
are taking advantage of the rediscover of virtualisation [9],
a technology that allows resource providers to sell virtual
resources, that may be allocated to the available physical re-
sources, so as to scale down costs due to their management
over a large customers base. Also, particularly interesting

∗The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/ICT/2008)
under grant agreement n.214777, in the context of the IRMOS Project.

in this context is the possibility to share the same physi-
cal resources (computing nodes and links) across multiple
Virtual Machine (VMs) concurrently running, in a seamless
manner for the applications running within.

Unfortunately, whenever multiple VMs are hosted on the
same node, the temporal interferences among them become
hardly controllable, and the QoS experienced by the hosted
applications may exhibit uncontrollable fluctuations.

This is very undesirable in the context of SOAs, where
there is an increasing interest in enriching the SLA estab-
lished between resource providers and consumers with such
attributes as QoS constraints, that are essential for deploy-
ment of professional services with guaranteed levels of ser-
vice and/or high interactivity levels, and penalties for the
provider if such constraints are not respected.

Contributions of the paper This paper shows how mech-
anisms designed according to the theory of hierarchical
real-time systems may be used in order to greatly enhance
predictability of the temporal behaviour of virtualised soft-
ware components. The paper provides a minor improve-
ment over existing schedulability test for hierarchical real-
time systems. Then, experimental results are presented in
which resource reservation scheduling techniques are ap-
plied for the purpose of guaranteeing temporal isolation of
multiple virtual machines (KVM1) within a Linux host OS.

2 Related Work

The need for real-time support within SOAs is witnessed
by the RTSOA paradigm recently appeared [22, 15], and
by the increasing interest in real-time service provisioning
within the Grid community [8], just to mention a few. Un-
fortunately, most of the works in these directions the issue
of how to do not consider time-shared nor virtualised nodes.
Dinda et al. [9] proposed the use of time-shared systems,
but their work did not address the issues concerned with

1Kernel-based Virtual Machine:http://kvm.qumranet.com.

1

low-level real-time scheduling algorithms. Steps in this di-
rection have been moved by Almeida et al. [3], who ap-
plied real-time scheduling theory to the problem of guaran-
teeing temporal guarantees to distributed applications built
as a network of composable services. However, their work
addressed the distribution issue, while this paper focuseson
node-level mechanisms that guarantee correct scheduling of
concurrent RT services within the same physical host.

The latter problem has been attacked in some previous
work, but the level of determinism needed to run real-time
applications inside a VM has not been reached yet.

For example, Xen [4] uses an EDF-based reservation
mechanism (called S-EDF) to enforce temporal isolation
between the different VMs. However, the S-EDF sched-
uler lacks a solid theoretical foundation, and is not guaran-
teed to work correctly in presence of dynamic activations
and deactivations. As a result, it seems to have problems
in controlling the amount of CPU allocated to the various
domains. In fact, in [11], it is shown that the Xen sched-
uler is not able to properly control CPU allocations for I/O
intensive operations.

Other problems related to VM scheduling have been in-
vestigated in PlanetLab [17], a distributed testbed using
VMs to increase scalability. PlanetLab [5] tries to address
this problem by combining a proportional share scheduler
with a mechanism that limits the maximum amount of time
available for each VM. However, additional experiments [6]
show that the scheduler used in PlanetLab is not able to fully
isolate the temporal behaviours of the various VMs, and the
authors propose to implement hard reservations.

If virtual machines are scheduled using proper real-time
algorithms, the system can be modelled as a hierarchy of
schedulers, and its real-time performance can be evaluated
by using hierarchical scheduling analysis techniques. For
example, Saewong and Rajkumar extended the so called
resource reservation(see Section 4) to support hierarchi-
cal reservations [19]. Shin and Lee proposed a different
approach based on a compositional real-time scheduling
framework [20], where the timing requirements of complex
real-time components are analysed in isolation and sub-
sumed into an abstract specification calledinterface, then
combined to check schedulability of the overall system.

Mok and others [16, 10] presented a general method-
ology for hierarchical partitioning of a computational re-
source, where schedulers may be composed at arbitrary
nesting levels. Specifically, they associate to each resource
partition acharacteristic functionthat identifies, for each
time window of a given duration, the minimum time that the
processor is allocated to the partition. On the other hand,
Lipari and Bini [13] addressed the problem of how to op-
timally tune the scheduling parameters for a partition, in
order to fulfil the demand of contained real-time task sets.
The latter techniques will be applied in Section 4 to anal-

yse the schedulability of real-time tasks running in a VM,
and to compute suitable scheduling parameters at the root
scheduling level.

3 Problem presentation

In this paper, the termvirtualisation refers to the abil-
ity, for a computing machine (referred to as thehost), to
emulate the behaviour of one or multiple computing ma-
chines (theguests), in such a way that any software capable
of running on the host may also seamlessly run within the
emulated machine.

A host is modelled as a set of guest VMs{V Mk : k =
a, b, . . .} scheduled by aglobal scheduler2. All the tasks
τk
i ∈ T k are scheduled by alocal schedulerrunning in

V Mk. Such a scheduling system is denoted from here on
by the X/Y notation, where X denotes the root scheduling
strategy, while Y denotes the local scheduling strategy.

Each VMV Mk is modelled as a real-time system com-
posed by a setT k of real-time tasks, withT k = {τk

i :
i = 1, 2, . . .}. Each task is a sequence of jobsJk

i,j , char-
acterised by an arrival timerk

i,j , an execution timeck
i,j , a

finishing timefk
i,j and an absolute deadlinedk

i,j . For the
sake of simplicity, only periodic RT tasks3 τk

i = (Ck
i , T k

i)
are considered, with Worst Case Execution Time (WCET)
Ck

i = maxj{c
k
i,j} anddk

i,j = rk
i,j+1 = rk

i,j + T k
i .

If the X/Y scheduling system is not properly designed,
the temporal behaviour of the guest is hardly predictable.
For example, consider the periodic task setT = {τ1 =
(30ms, 150ms), τ2 = (50ms, 200ms)}: on real hardware,
real-time scheduling theory guarantees that, if tasks are
scheduled with fixed priorities assigned according to Rate
Monotonic (RM) [14], then all the deadlines are respected.
This has been verified by runningT k on a real PC (with ex-
ecution times forced as equal as possible to the mentioned
WCET values). The left side of Figure 1 shows the Cumu-
lative Distribution Function (CDF)C(x) = P{ρi < x} of
the response timesρi,j = fi,j − ri,j of the two tasks, show-
ing thatC(x) arrives to1 before the deadline of the task,
hence all the deadlines are respected.

When the same task setT is run inside a VM (in this
example, KVM [12] on Linux has been used, as described
in the following), most of the deadlines are easily missed,
as shown in the right side of Figure 1. Such a behaviour
occurs every time a general-purpose scheduler is used to
schedule concurrent VMs, because of the unpredictability
of the temporal interferences that each VM experiences due

2The global scheduler may either be implemented in a host OS so to
perform inter-VM scheduling (e.g., the KVM [12] approach),or it may be
implemented in the virtualisation layer (i.e., the Xen approach).

3Note that the techniques and results described in this papercan be
extended to sporadic real-time tasks, and to tasks with relative deadline
different from the period.

2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 30000 40000 50000 60000 70000 80000 90000

P
{r

es
po

ns
e

tim
e

<
 t}

time t (us)

task 1
task 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000

P
{r

es
po

ns
e

tim
e

<
 t}

time t (us)

task 1
task 2

Figure 1. CDF of the response times of tasks in T executed on real hardware (left) and KVM (right).

to the behaviour of the other VMs on the same physical host.
In the example in Figure 1, the two VMs were scheduled
by using the standard completely fair scheduler currently
present in the Linux kernel.

4 Scheduling

The just exposed problem may be faced with by adopt-
ing an appropriate soft real-time scheduling strategy among
the VMs running in the host. A first approach could be
to schedule the various VMs with fixed real-time priori-
ties. However, this solution can be problematic, because if
a higher priority VM consumes more than expected, it can
stall the lower priority VMs.

An alternative approach is based onresource reserva-
tions, which allow to reserve a hardware resource (the CPU,
in this case) to a task forQ time units (a.k.a.,reservation
budget) in every window ofP time units (a.k.a.,reserva-
tion period). Hard [18] reservations guarantee that no more
thanQ time units everyP are allocated to the task, whilst
soft reservations do not pose this restriction.

Although this abstraction can be very effective for serv-
ing real-time virtual machines, it is important that the reser-
vation mechanism be designed so as to correctly cope with
aperiodic activations. Most of the reservation techniques
previously used to schedule VMs exhibit the same be-
haviour of a Deferrable Server [21] (also the CPU throt-
tling mechanism available in the Linux kernel exhibits such
behaviour), which is well-known for the restrictions that it
imposes on the schedulability of tasks that activate and de-
activate dynamically [2]. Moreover,hard reservations are
more appropriate for scheduling VMs: in fact, most of the
hierarchical scheduling analysis for reservation-based sys-
tems is based on the assumption that a reservation provides
exactlyQ time units everyT time units, and using a hard
reservation algorithm is the easiest way to enforce this re-
quirement.

For these reasons, this paper focuses on a variant of the
CBS algorithm [1], which has a strong theoretical founda-
tion in the area of real-time scheduling, and can easily cope
with aperiodic arrivals. Actually, ahard reservation be-
haviour variant of the CBS has been used, as implemented

by the same authors in the AQuoSA framework [7] for the
Linux kernel. This mechanism has been used for providing
temporal isolation among concurrently running VMs, while
gathering the experimental data reported in Section 5.

With proper real-time scheduling algorithms at the guest
and in the host, it is possible to apply well-known schedula-
bility techniques to the analyse the system, as shown next.

Fixed Priority (FP) inter-VM scheduling If the global
scheduler is a fixed priority scheduler (so, the hierarchy is
FP/FP) giving priority toV Ma over V M b, to V M b over
V M c, etc. . . , then every task ofT a has priority over all the
tasks ofT b, T c, etc. . . . As a result, the system behaves as if
the tasks from all VMs are globally scheduled through FP,
but with an equivalent global priority assignment that may
generally differ from the optimum Rate Monotonic (RM)
one. This means, from a real-time schedulability perspec-
tive, that the overall system utilisation for real-time tasks,
respecting schedulability, will be lower, and response times
will be higher, than if a global RM assignment were used.

For example, ifV Ma has priority overV M b, thenτa
i

has priority overτ b
j even ifT a

i > T b
j .

In such case, response timesRk
i of the tasksτk

i may be
computed by solving the well-known implicit equations:

Rk
i = Ck

i +
∑

j<i

⌈

Rk
i

T k
j

⌉

Ck
j +

∑

h<k

∑

∀j

⌈

Rk
i

Th
j

⌉

Ch
j . (1)

Then, schedulability of the task set is verified by check-
ing that the obtained response times are below the assigned
relative deadlines.

Reservation-Based inter-VM scheduling If a CBS/FP
hierarchy is used andV Mk is scheduled through a reser-
vation RSV k = (Qk, P k), then the response timeRk

i

only depends onRSV k and on the higher priority tasks
τk
j : j < i contained inT k.

This kind of systems can be analysed by using the tech-
nique shown in [13], based on the extension of well-known
results for schedulability analysis of non-hierarchical sys-
tems. For fixed priority scheduling of tasks inside a VM

3

V Mk served by a reservationRSV k = (Qk, P k), schedu-
lability is guaranteed if and only if:

∀i∃t ∈ Pk : Ck
i +

∑

j<i

⌈

t

T k
j

⌉

Ck
j ≤ Zk(t), (2)

where tasks are ordered by decreasing priority,Zk(t) is a
characteristic functionindicating the amount of time ded-
icated to the VM by the root scheduler, andPk is a set of
appropriatescheduling points.

This paper also proves that checking Condition (2) with
the original sets of scheduling pointsPk as described
in [13], constitutes only asufficientcondition for schedula-
bility of the tasks inside the VM, but unfortunately it is not
necessary, as claimed in the original paper. In fact, generat-
ing 100000 task sets randomly, and verifying schedulability
for all points up to each task deadline, it has been found
that1189 task sets were actually schedulable, but only1009
passed the test as presented in [13]. Therefore, nearly 16%
of the task sets would have been rejected by the test, but
they are actually schedulable.

The reason for which this happens is that the test has
been adapted from a prior test that was relying on a perfectly
linear shape for theZk(t) function, but in the adaptation
made in [13] the slope changes of theZk(t) have not been
considered. Therefore, it is proposed that the technique be
fixed by adding toPk also the points of slope change of
Zk(t) before the deadline of the task being checked.

The test in Equation 2 with the enriched setsPk as just
described should constitute again a necessary and sufficient
condition for schedulability of the task set. In fact, in the
example above, the modified test managed to successfully
identify all of the schedulable task sets. However, a formal
proof is reserved for future work.

Comparison of the approaches To compare the schedu-
lability of the different scheduling hierarchies, a large num-
ber of systems composed by multiple VMs has been ran-
domly generated (every VMV Mk contains a randomly
generated task setT k) and their schedulability has been
checked by using the analysis techniques described above.
The schedulability for CBS/FP has been tested by using
Equation 2 to compute the set of reservationsRSV k =
(Qk, P k) that allow to properly serve each VMV Mk, and
by checking if

∑

k Qk/P k ≤ 1.
The results of this experiment indicate that88.4% of the

generated systems are schedulable with CBS/FP, and only
72% of them are schedulable with FP/FP.

5 Experimental Results

The approach presented in the previous sections has been
tested by first verifying that it allows to respect temporal

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20000 30000 40000 50000 60000 70000 80000 90000

P
{r

es
po

ns
e

tim
e

<
 t}

time t (us)

task 1
task 2

Figure 2. CDF of the response times on V Ma

when the host is unloaded.

constraints, and then evaluating how it allows to control the
performance in a SOA environment.

Respecting Temporal Constraints Some randomly gen-
erated task sets have been run in some VMs (executing
in parallel), and the results expected from the theoretical
analysis have been compared with these experimental re-
sults. Here it is reported an example with a simplified sys-
tem (composed only by two task sets) that has been de-
signed to be easily understandable. The example system
is composed by two sets of periodic tasksT a = {τa

1 =
(30ms, 150ms), τa

2 = (50ms, 200ms)} andT b = {τ b
1 =

(30ms, 120ms), τ b
2 = (40ms, 240ms)} scheduled in two

KVM guestsV Ma andV M b. To simplify the analysis, all
the tasks have offset equal to0 (that is, ra

1,1 = ra
2,1 and

rb
1,1 = rb

2,1). The tasks are scheduled with fixed priori-
ties (assigned according to RM) inside their VMs (using the
SCHED FIFO scheduling policy).

Figure 2 shows the CDF of the response timesρi,j for
the two tasks running inV Ma when the host is unloaded.
The worst case response times for the two tasks are about
Ra

1 = 31ms and Ra
2 = 81ms (the unexpected increase

of 1ms in the response times is due to the accuracy of the
timers in the host and in the guest); hence, all the deadlines
are respected (for the sake of brevity, the same figure for
V M b is omitted, but it shows similar results).

However (as already shown in Section 3), if a VM is
not properly scheduled then the real-time tasks running in
it can easily miss their deadlines: in fact, when the two
virtual machines are simultaneously executed on the same
host, the real-time tasks are not able to respect their dead-
line, as shown in Figure 3. Scheduling each VM through
hard CBS servers allows to solve this problem: for exam-
ple, whenV Ma is scheduled through a CBSRSV a =
(28ms, 50ms)4 and V M b is scheduled through a CBS
RSV b = (52ms, 120ms), all the tasks are able to re-
spect all their deadlines. This happens even if the two VMs

4A schedulability analysis of the schedulers hierarchy allows to see
that a(27ms, 50ms) reservation would be sufficient forV Ma, but the
reserved time has been increased to take in account the virtualisation over-
head, and the execution of KVM code.

4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000

P
{r

es
po

ns
e

tim
e

<
 t}

time t (us)

task 1
task 2

Figure 3. CDF of the response times on V Ma

when it is scheduled together with V M b.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000

P
{r

es
po

ns
e

tim
e

<
 t}

time t (us)

task 1
task 2

Figure 4. CDF of the response times on V Ma

with a (28, 50) reservation when it is sched-
uled together with V M b.

are executed concurrently, as shown in Figure 4 (the figure
shows the CDF forV Ma, but similar results can be ob-
tained forV M b too).

Controlling the Performance Being able to provide ac-
curate estimations of the response times is very important
in a SOA environment, which is moving away from the old
best-effort Internet model. In fact, a service provider hasto
take QoS into account, for example in order to meet busi-
ness policies or because QoS guarantees are required by
consumers. Hence, the proposed approach has been eval-
uated in a typical SOA scenario, with multiple web servers
executed in different VMs. These experiments use two VMs
V Ma andV M b running an Apache 2 web server and some
CGI scripts for rotating large images (a computation inten-
sive task). Two kinds of requests are performed by using the
Apache ‘ab’ program:req1 (consisting in the rotation of a
1000x1000 image by an angleα = 20°) and req2 (con-
sisting in the rotation of a2000x2000 image by an angle
α = 20°).

To reproduce a realistic scenario, each VM has been
put through a different workload, obtained by varying the
number of concurrent clients. In particular,V Ma has been
tested in serving10 concurrent clients andV M b has been
tested in serving20 concurrent clients. Half of the clients
of each VM performed10 requests for thereq1 service, and
the other half performed10 requests for thereq2 service.

When each VM is executed alone on the host,V Ma has
an average service time of0.768s and a maximum service
time of 7.7s, with a standard deviation of1.547s. The ser-
vice time forV M b has an average of1.603s, a maximum
value of14.114s, and a standard deviation of2.754s (the
90% confidence interval is5.4% of the average value). All
these values increase in an almost unpredictable way when
the two VMs are executed simultaneously on the same host:
the service times forV Ma have an average of1.564s, a
maximum of13.253s, and a standard deviation of2.434s
while the service times forV M b have an average of2.416s,
a maximum of23.056s, and a standard deviation of4.409s
(in this case, the90% confidence intervals are about6.9%
of the average values).

This experiment shows that the behaviour of each VM is
affected by the interference from the other VM: as a result,
average and maximum response times increase in a remark-
able way. The standard deviations also increase, indicating
that fluctuations from average values are large and frequent.
As a result, it is not possible to control the response times
for the hosted virtualised services.

This problem can be avoided by attaching each VM to a
hard reservation, in order to provide temporal isolation be-
tween different VMs. This has been verified by measuring
the response times whenV Ma is served by a(3ms, 10ms)
hard CBS andV M b is served by a(6ms, 10ms) hard CBS
(the server parameters have been selected to achieve short
response times inside each VM while setting the utilisation
according to the request pattern). With this setup, the re-
sponse times forV Ma have an average of4.602s, a max-
imum of 5.990s, and a standard deviation of0.470s while
the service times forV M b have an average of3.881s, a
maximum of6.793s, and a standard deviation of0.977s (in
this case, the90% confidence intervals are about1.42% of
the average values).

Note that average response times are increased respect
to the previous example, but maximum response times are
drastically reduced (running a larger set of experiments, the
maximum values are decreased from20% to 45% of the
previous values). Standard deviation values are also very
low, indicating that response times do not deviate too much
from average values: as a result, in this case response times
can be estimated with a higher degree of accuracy.

When using reservations to serve a VM, it is also pos-
sible to apply more flexible policies in resource provision-
ing. For example, it is possible to give more importance
to requests towardsV M b by increasing the amount of
time reserved to it and decreasing the amount of time re-
served toV Ma (for instance, by assigning a reservation
(2ms, 10ms) to V Ma and a reservation(7ms, 10ms) to
V M b). Some experiments (omitted because of space con-
straints) showed that this mechanism is effective in control-
ling the relative QoSs of the various VMs. For example,

5

Figure 5. Response times varying Q

Figure 5 shows how the average response times ofV Ma

change at varying assignments of the maximum budgetQa,
keeping the reservation period constant.

6 Conclusions and Future Work

This paper presented how techniques designed according
to hierarchical real-time theory may be effectively applied
to the problem of providing proper service-level guarantees
to virtualised software components. A few alternatives in
the types of schedulers to adopt have been discussed, and
hard resource reservations have been proved to be effective
for the considered problem, by experimental evaluations.

The presented work will possibly shed some light on
how to build low-level mechanisms for temporal isolation
of VMs, in the emerging and challenging research area of
RT support for SOAs.

In the future, the authors intend to evaluate the impact of
virtualised I/O on the temporal behaviour of the running ser-
vices. Preliminary experiments (that cannot be reported due
to the lack of space) show that para-virtualisation of the net-
working adaptors (as provided e.g., by thevirtio KVM
capability) provides not only a reduction in the processing
overhead associated to intensive I/O traffic to/from VMs,
but also a dramatic reduction in its fluctuations, improving
generally predictability and analysability of the system.

Furthermore, the virtualisation mechanism used in this
paper (based on KVM) will be compared with more
lightweight approaches (such as OS-level virtualisation),
and the effect of emulating multiple resources (CPU, net-
work, disk) will be better investigated.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in
hard real-time systems. InProc. IEEE Real-Time Systems Symposium,
Madrid, Spain, 1998.

[2] L. Abeni and G. Lipari. Implementing resource reservations in linux.
In RTLW, Boston (MA), Dec. 2002.

[3] L. Almeida et al. Solutions for supporting composition of service-
based rt applications. InProceedings of the11th IEEE Symposium
on Object Oriented Real-Time Distributed Computing, pages 42–49,
Washington, DC, USA, 2008.

[4] P. Barham, et al. R. Neugebar, I. Pratt, and A. Warfield. Xenand the
art of virtualization. InSOSP, 2003.

[5] A. Bavier et al. OS support for planetary-scale services. In NSDI
Design and Implementation (NSDI), March 2004.

[6] A. Bavier, others In VINI veritas: Realistic and controlled network
experimentation. InSIGCOMM, 2006.

[7] T. Cucinotta et al. AQuoSA – adaptive quality of service architecture.
Software – Practice and Experience, 39(1):1–31, 2009.

[8] A. Cuzzocrea. Towards RT data transformation services over grids. In
Proceedings of the32nd Annual IEEE Internat. Computer Software
and Applic. Conf., pages 1143–1149, 2008.

[9] P. A. Dinda et al. Resource virtualization renaissance.Computer,
38(5):28–31, May 2005.

[10] X. Feng and A. K. Mok. A model of hierarchical real-time virtual
resources. InProc.23rd IEEE Real-Time Systems Symposium, 2002.

[11] T. Freeman, I. T. Foster, et al. Division of labor: Tools for growing
and scaling grids. InICSOC, pages 40–51, 2006.

[12] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the
linux virtual machine monitor. volume Proc. of the Linux Symposium,
Ottawa, Ontario, Canada, 2007.

[13] G. Lipari and E. Bini. A methodology for designing hierarchical
scheduling systems.Journal of Embedded Computing, 1(2), 2004.

[14] C. L. Liu and J. W. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment.Journal of the Association
for Computing Machinery, 20(1):46–61, Jan. 1973.

[15] C. McGregor and J. M. Eklund. RT SOAs to support remote critical
care: Trends and challenges. InCOMPSAC ’08: Proceedings of the
2008 32nd Annual IEEE International Computer Software and Appli-
cations Conference, pages 1199–1204, Washington, DC, USA, 2008.

[16] A. K. Mok and X. A. Feng. Towards compositionality in real-time
resource partitioning based on regularity bounds. InProceedings of
the 22nd IEEE Real-Time Systems Symposium, 2001.

[17] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for
introducing disruptive technology into the internet. InProceedings of
the 1st ACM Work on Hot Topics in Networks, October 2002.

[18] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. ResourceKer-
nels: A Resource-Centric Approach to Real-Time and Multimedia
Systems. InProc. Conf. on Multimedia Comp. and Netw., 1998.

[19] S. Saewong, R. Rajkumar, J. P. Lehoczky, and M. H. Klein. Analysis
of hierarchical fixed-priority scheduling. InProceedings of the IEEE
Euromicro Conference on Real-Time Systems, June 2002.

[20] I. Shin and I. Lee. Compositional real-time scheduling framework. In
Proceedings of the25th IEEE International Real-Time Systems Sym-
posium, pages 57–67, December 2004.

[21] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server
algorithm for enhanced aperiodic responsiveness in hard-real-time en-
vironments.IEEE Transactions on Computers, 4(1), January 1995.

[22] W. Tsai, Y.-H. Lee, Z. Cao, Y. Chen, and B. Xiao. RTSOA: Real-time
service-oriented architecture.Service-Oriented System Engineering,
IEEE International Workshop on, 0:49–56, 2006.

6

