
Efficient Virtualisation of Real-Time Activities
Luca Abeni

Dipartimento di Scienza e Ingegneria dell’Informazione
University of Trento, Trento, Italy

luca.abeni@disi.unitn.it

Tommaso Cucinotta
ReTis Lab

Scuola Sup. S. Anna, Pisa, Italy
cucinotta@sssup.it

Abstract—Reservation-based scheduling has been proved to be
an effective solution for serving virtual machines when some
kind of real-time guarantees are required. However, the virtu-
alisation mechanism and the algorithm used for implementing
CPU reservations might have a large impact on the guarantees
provided to tasks running inside the VMs. This paper presents an
experimental evaluation of some different solutions, showing the
different trade-offs and the advantages of using more advanced
scheduling algorithms.

I. I NTRODUCTION

In the last few years, one of the most remarkable trends
in computer science has been the move towards virtual en-
vironments, in which traditional applications do not directly
run on bare hardware, but execute inside Virtual Machines
(VMs). This allows to host multiple Operating Systems (OSs)
or applications (the guests) on the same physical machine (the
host) to better exploit its processing power.

With the recent improvements in virtualisation technologies,
even running real-time activities inside VMs is beginning to
become possible [1], [2], [3]. Of course, since such activi-
ties are characterised by temporal constraints that shouldbe
respected (often expressed in the form of deadlines), spe-
cial care is needed to achieve predictable performance when
scheduling the VMs. Such a predictability in VM executions
can be achieved by modelling the execution of multiple VMs
containing real-time tasks as an instance of thehierarchical
schedulingproblem, which has been extensively studied in
real-time literature [4], [5], [6], [7], [8]: real-time tasks are
scheduled according to a two-level hierarchy, where the host
kernel scheduler (scheduling the various VMs) acts as aglobal
scheduler(also calledroot scheduler), and the guest kernels’
schedulers (running inside the VMs) act aslocal (or second-
level) schedulers(also calledleaf schedulers).

Reservation-based schedulers are often used as root sched-
ulers, because they can be easily modelled using the periodic
resource allocation model [7]. This paper presents additional
experiences with reservation-based scheduling of VMs, show-
ing how the scheduling algorithm used to implement CPU
reservations can affect the system performance, if combined
with proper VM implementations. In particular, if it is pos-
sible to ensure that the execution time reserved to a VM is
consumed only by the real-time tasks running in the guest
(and not by the guest kernel, or by the VM code), then it
is possible to take advantage of some particular scheduling
algorithms such as the Constant Bandwidth Server (CBS) [9].

II. BACKGROUND AND DEFINITIONS

The host can be modelled as a set{VM1 . . . V Mk} of
VMs, with each VMVMk composed by a set ofNk real-
time tasks:VMk = {τki : i = 1, . . . Nk}. Each real-time task
τki is a stream of jobsJk

i,j , with job Jk
i,j arriving (becoming

ready for execution) at timerki,j , executing for a timecki,j , and
finishing at timefk

i,j . Jobs are also characterised by absolute
deadlinesdki,j , which are respected iffk

i,j ≤ dki,j . In general,
dki,j = fk

i,j +Dk
i (Dk

i is the relative deadline of taskτki), and
if rki,j+1 = rki,j+P k

i thenτki is said to be periodic with period
P k
i .
As previously mentioned, the global scheduler is in charge

of selecting the VM to be executed (so, the global sched-
uler schedules the VMs{VMk}). In some previous works,
reservation-based algorithms have been proposed for the
global scheduler, because this class of scheduling algorithms
allows to easily isolate the performance of each single VM.
Informally speaking, a reservation-based scheduler allows one
to allocate to each VMVMk a computation budgetQk in
every reservation periodT k. In this way, the schedulability
of the real-time tasks{τki } executing inVMk only depends
on {τki }, Qk, andT k and does not depend on the other VMs
running in the host (this is also known astemporal isolation
property).

The particular reservation algorithm used in this work as a
global scheduler is the Constant Bandwidth Server (CBS) [9],
which implements CPU reservations building on the top of an
Earliest Deadline First (EDF) scheduler. When a VMVMk

is served, the amount of CPU time consumed by the tasks
executing inside it is accounted by decreasing a variableqk

called budget, and VMs are scheduled based onscheduling
deadlinesdk assigned by the CBS (the VM having the earliest
scheduling deadline is scheduled).

When VMk is started,qk and dk are initialised to0.
When a jobJk

i,j arrives at timerki,j , VMk becomes ready for
execution, and the CBS has to assign a scheduling deadline to
it: if rki,j ≤ dk − qk

Qk T
k (the CBS is said to beactive), then

the latest scheduling deadlinedk (and the latest budgetqk)
can be used; ifrki,j > dk− qk

Qk T
k (the CBS is said to beidle),

a new scheduling deadlinedk = rki,j + T k is generated and
the budgetqk is replenished toQk.

When qk arrives to0, the CBS servingVMk is said to
be depleted, and according to the original CBS algorithm
the budgetqk is immediately replenished toQk and the

Tk

Qk

sbf (t)
k

k k− Q)2(T

t

kq

τ k

Figure 1. Worst-case arrival pattern for a periodic allocation model, showing
the server budget, the task execution, and the supply bound function.

scheduling deadline is postponed todk+T k (so,VMk can be
immediately scheduled). As an alternative, the budget willbe
replenished and the deadline will be postponed (as above) only
at time dk. Until such a time,VMk is not schedulable (so,
tasksτki hosted insideVMk cannot execute untildk). This
is known ashard reservation behaviour[10]. When using
the CBS to schedule concurrent VMs, the hard behaviour
is preferred, because it simplifies the schedulability analysis.
Hence, this paper will only consider the hard CBS algorithm.

When using a hard CBS, if
∑

k
Qk

Tk ≤ 1 (global schedu-
lability condition) thenVMk is guaranteed to execute for
Qk time units everyT k. Hence, the local schedulability of
tasks {τki } can be checked by using time-demand analysis
and assuming the so called periodic resource allocation model
with the worst-case arrival pattern.

In particular, the worst-case arrival pattern for taskτki (i.e.,
the arrival pattern that maximises the response time forτki)
happens when the arrival timerki,j of a a jobJk

i,j of such a
task coincides with the CBS depletion time (this means thatqk

becomes0 at timerki,j). In this case,Jk
i,j can have to wait for

a time2(T k−Qk) before being able to execute (see Figure 1).
Considering this worst case situation, it is possible to

define thesupply bound functionsbfk(t) for VM VMk,
indicating the minimum amount of execution time thatVMk

is guaranteed to receive in the time interval(rki,j , r
k
i,j + t). By

looking at Figure 1 it is possible to notice thatsbfk(t) has a
large “hole” of size2(T k−Qk) at the beginning. The function
is formally described by the following equation:

sbfk(t) =

⌊

t− (T k −Qk)

T k

⌋

Qk+

+max{0, t− 2(T k −Qk)−

⌊

t− (T k −Qk)

T k

⌋

T k} (1)

The local schedulability ofVMk can then be tested by
checking if each taskτki is schedulable, and such a check
can be performed by comparingsbfk(t) with the demanded
time for τki . For example, in case of fixed priority scheduling
inside the guest and periodic real-time tasks, the demanded
time for taskτki in time interval(rki,j , r

k
i,j + t) is smaller than

Ck
i +

∑

P (τk

h
)>P (τk

i
)

⌈

t
Tk

h

⌉

Ch whereCk
i = maxj{c

k
i,j} is the

Worst Case Execution Time (WCET) of taskτki . Note that this
analysis is very pessimistic because of the large “hole” of size
2(T k −Qk) at the beginning of the supply bound function.

III. U SING KVM AS V IRTUALISATION MECHANISM

The pessimism in traditional hierarchical scheduling anal-
ysis (highlighted in Section II) can be reduced in some
particular situations. For example, if all the real-time tasks
executing inVMk are periodic, and have offset equal to0
then it is possible to take advantage of the CBS properties to
reduce the pessimism in the analysis. This is possible due to
a property of the hard CBS algorithm:

Lemma 1:When scheduling taskτi with a hard CBS, ifτki
is ready for execution at timet, thendk −T k ≤ t < dk [10].

Based on the previous property, it is possible to prove the
following theorem:

Theorem 2:If the hard CBS algorithm is used for schedul-
ing VMk and all the real-time tasks inVMk are released
simultaneously (∀i, rki,0 = rk0) and all the tasks periods are
integer multiples ofT k (∀i, P k

i %T k = 0), then the maximum
time t0 for which ∀t < t0, sbf

k(t) = 0 is T k −Qk (and not
2(T k −Qk) as in the original analysis).

Proof: Sincesbfk(t) represents the minimum execution
time received byVMk in an interval(rki,j , r

k
i,j + t), t0 can

be larger thanT k − Qk only if a job Jk
i,j arrives when the

budgetqk is 0 (hence, it must wait untildk to replenish the
budget; then, an additional delayT k −Qk can be added due
to interference from higher priority CBSs). Hence, to prove
that t0 ≤ T k − Qk it is sufficient to prove that when a new
job Jk

i,j arrives,dk is always equal torki,j + T k (this implies
that qk = Qk).

If Jk
i,j arrives when the CBS is idle, thendk = rki,j + T k

by definition.
If, instead,Jk

i,j arrives when the CBS is active, thendk −
T k ≤ rki,j < dk (see Lemma 1). Moreover,dk is equal to
rki,j0+zT k, wherez is an integer number andrki,j0 is the arrival
time of the latest job arrived when the CBS was idle. Since
P k
i %T k = 0, rki,j = rk0 + nT k andrki,j0 = rk0 +mT k, with n

andm integer numbers. Hence,dk−rki,j = rki,j0+zT k−rki,j =
rk0 + mT k + zT k − (rk0 + nT k) = (m + z − n)T k is an
integer multiple ofT k. Combiningdk − T k ≤ rki,j < dk and
dk − rki,j = (m+ z−n)T k ⇒ dk − (m+ z−n)T k = rki,j the
only possible result isdk = rki,j + T k.

Note that Theorem 2 is only valid if the hard CBS algorithm
is used for VM scheduling (it relies on the fact that a CBS
assigns scheduling deadlines asrki,j + T k when the server is
idle), and when the reservation budget is consumed only by
the real-time tasksτki running inside the VM. In particular, if
the reservation budget is consumed by the host kernel, or by
the VM code (to emulate the various hardware devices), or by
non real-time tasks running inside the VM, then the property
cannot be applied and the more pessimistic analysis must be
used.

The hierarchical scheduling approach described above has
been first tested on a full system emulator, that emulates all
the hardware details of a real machine. The CPU can be

virtualised by using the KVM technology1, which uses a Linux
kernel module for safely executing the guest code on the host
CPU (without having to simulate all the CPU instruction).
Implementing the virtual hardware devices is more complex,
and requires to emulate in software the behaviour of each
device.

Recent versions of the QEMU emulator2 integrate KVM
technology (the final goal of the developers is to integrate the
whole KVM codebase in QEMU). For the first set of exper-
iments presented in this paper, QEMU with KVM enabled
(referred as QEMU/KVM) has been used. QEMU is based on
a multithreaded architecture, using a pool of threads to emulate
POSIX asynchronous Input/Output (AIO). In addition, the
main QEMU thread is responsible for emulating the hardware
devices, and an additional thread is created for each virtual
CPU (this is called VCPU thread). All the code of the tasks
running in the guest is executed inside the VCPU threads
(remember that thanks to the KVM kernel module the guest
code can be directly executed in the host).

In order to apply the previously described hierarchical
scheduling analysis to a KVM-based VM, the CPU reservation
should be attached to the VCPU thread, not to all the threads
of the VM. However, in order to control the I/O performance
of the VM it might be useful to attach additional CPU
reservations to the other QEMU/KVM threads, similarly to
what is done in the cooperative scheduling approach [11].

A simple test from [2] (based on two applicationsΓ1 =
{(30, 150), (50, 200)} and Γ2 = {(30, 120), (40, 240)}) is
reported as an example (see the original paper for all the
details). All the experiments presented in this paper use the
CBS implementation provided by the Irmos kernel [12] to
schedule the VMs, and the Debian stable distribution installed
in all the VMs.

When using hierarchical scheduling and CBS [9] as a root
scheduler, by applying Theorem 2 it can be seen thatΓ1 can
respect its temporal constraints if it is scheduled througha
serverCBS1 = (27, 50), and Γ2 can respect its temporal
constraints if it is scheduled throughCBS2 = (50, 120).
Hence, if the overhead of the VMs and of the guest kernel
is not considered, the two applications can correctly respect
their temporal constraints when executed in two virtual ma-
chines VM1 and VM2 served byCBS1 = (27, 50) and
CBS2 = (50, 120). In fact, the original paper shows that
when running the tasks in two KVM instances scheduled by
two CBSsCBS′1 = (28, 50) and CBS′2 = (52, 120) all
the deadlines are respected (the maximum budgets have been
slightly increased toQ′1 = 28ms andQ′2 = 52ms to account
for the overheads caused by KVM and by the host kernel).

The original experiments were performed using an old
version of KVM and the CBS scheduler provided by AQu-
oSA [13]. When repeating them with a recent version of
QEMU/KVM, it was possible to notice that the execution
of the VM code now consumes a larger and less pre-

1http://www.linux-kvm.org
2http://www.qemu.org

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40000 60000 80000 100000 120000 140000 160000 180000 200000

P
{f

 -
 r

 <
=

 t}

t (us)

Task 2 Task 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

P
{f

 -
 r

 <
=

 t}

t (us)

Task 2 Task 1

Figure 2. CDFs of the response times of tasks inVM
1 andVM

2 when
using correctly dimensioned CBSs, with some non real-time background load.

dictable amount of time (this is probably due to the fact
that QEMU/KVM now provides a larger set of features and
emulates more complex hardware devices). As a result, the
probability distributions of the response times had some long
tails causing some sporadic deadline violations. This problem
can be solved by scheduling only the relevant QEMU/KVM
thread (the VCPU thread) through CBS, as explained above:
the latest version of QEMU/KVM allows to execute the guest
code in a dedicated thread, and if only such a VCPU thread
is attached to the CBS then the VM code cannot consume the
CBS budget and the VM execution returns to be predictable.
When doing this, the response times of the tasks resulted to
be similar to the expected ones (the overhead caused by the
guest kernel and by the VM code did not affect the results too
much).

However, Theorem 2 (which has been used for dimension-
ing the two reservations) cannot be applied if the VMs contain
non real-time tasks that consume the reservations budgets.
Hence, whenVM1 and VM2 host some background (non
real-time) tasks consuming the server’s budget, the real-time
performance of the VMs are out of control. For example,
Figure 2 shows the Cumulative Distribution Functions (CDFs)
of the response timesfi,j − ri,j of the 4 tasks when a CPU
hungry non real-time task is executed in background in the
VMs. Note that the presence of non real-time tasks in the
VM is influencing the predictability of the real-time tasks
execution.

IV. CONTAINER-BASED V IRTUALISATION

The KVM technology used in [2] and Section III emulates
real hardware (CPU and I/O devices), based on the real
resources provided by the host. In this way, KVM can run
an arbitrary guest operating systems without modifications
because the code running inside the VM is not aware of the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000

P
{f

 -
 r

 <
=

 t}

t (us)

Task 2 Task 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000

P
{f

 -
 r

 <
=

 t}

t (us)

Task 2 Task 1

Figure 3. CDFs of the response times of tasks inVM
1 andVM

2 when
executed in LXC VMs using correctly dimensioned CBSs with background
load. The two VMs are executed simultaneously

fact that it is not running on real hardware.
On the other hand, the OS-level virtualisation aims at

virtualising the OS kernel, and not the whole real hard-
ware (whereas KVM provides hardware virtualisation). This
approach is designed to provide the required isolation and
security between different VMs by using one single OS kernel
(the host kernel) and by virtualising the services it provides.
In this way, it is possible to run multiple distributions based
on the same OS kernel (or multiple applications) on the same
server (of course, every application or OS distribution will
be isolated from the others, having the impression to be the
only one running on the kernel). Such an isolation can be
implemented by isolating the various kernel resources inside
containers, and associating each VM to a container. This
approach is also known as container-based virtualisation.

When using container-based virtualisation, the host kernel
is responsible for scheduling all of the tasks contained in
the various VMs, hence it can directly know if a guest is
executing a real-time task (using the POSIXSCHED_FIFO
or SCHED_RR policy) or not. As a result, it is quite easy
to schedule only real-time tasks through the CBS serving the
VM.

All the experiments presented in the previous section have
been repeated using a VM based on the standard container-
based virtualisation technology which is integrated in the
Linux kernel, LXC3. The same Irmos kernel and the same
Debian stable installation used in the previous experiments
has been used4. When using LXC, the response times resulted
to be perfectly deterministic even in presence of a100% CPU
load (non real-time tasks were not able to affect the response

3http://lxc.sf.net
4The disk images used for QEMU have been mounted using a loop device

and used for the LXC root filesystem.

times of real-time tasks). Even when running multiple VMs
concurrently with some other tasks scheduled through the CBS
algorithm, the response times are under control as shown in
Figure 3 (obviously, this is true until the global schedulability
condition

∑

k Q
k/T k ≤ 1 is respected). By comparing this

figure with Figure 2 it is immediately possible to notice the
improvements achieved by using LXC and the CBS algorithm.

V. CONCLUSIONS

This paper presented some experiments with real-time tasks
running in virtual machines scheduled through a reservation-
based algorithm. The results show that the VM technology and
the scheduling algorithm can affect the real-time performance
of the guests. In particular, if the CBS algorithm is used
together with a container-based virtual machine (such as LXC)
then it can be possible to use a less pessimistic analysis to
dimension the VM scheduling parameters. As a future work,
the CBS analysis provided in Section III will be extended
and improved, and alternative virtualisation technologies will
be tested. Moreover, experiments will be performed in order
to control the I/O performance by attaching the QEMU I/O
threads to additional reservations.

REFERENCES

[1] J. Kiszka, “Towards linux as a real-time hypervisor,” inProceedings of
the Eleventh Real-Time Linux Workshop, Dresden, Germany, September
2009.

[2] T. Cucinotta, G. Anastasi, and L. Abeni, “Respecting temporal con-
straints in virtualised services,” inProceedings of the2nd IEEE In-
ternational Workshop on Real-Time Service-Oriented Architecture and
Applications (RTSOAA 2009), Seattle, Washington, July 2009.

[3] S. Xi, J. Wilson, C. Lu, and C. Gil, “Rt-xen: Towards real-time
hierarchical scheduling in xen,” inProceedings of the ACM International
Conference on Embedded Software (EMSOFT), Taipei, Taiwan, October
2011.

[4] A. K. Mok and X. A. Feng, “Towards compositionality in real-time
resource partitioning based on regularity bounds,” inProceedings of the
22nd IEEE Real-Time Systems Symposium, 2001.

[5] A. K. Mok, X. A. Feng, and D. Chen, “Resource partition forreal-
time systems,” inProceedings of the Seventh Real-Time Technology and
Applications Symposium, 2001.

[6] G. Lipari and E. Bini, “A methodology for designing hierarchical
scheduling systems,”Journal of Embedded Computing, vol. 1, no. 2,
2004.

[7] I. Shih and I. Lee, “Periodic resource model for compositional real-time
guarantees,” inProc. 24th Real-Time Systems Symposium, 2003.

[8] I. Shin and I. Lee, “Compositional real-time scheduling framework,”
in Proceedings of the25th IEEE International Real-Time Systems
Symposium, December 2004, pp. 57–67.

[9] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” inProceedings of the IEEE Real-Time Systems
Symposium, Madrid, Spain, December 1998.

[10] L. Abeni, L. Palopoli, C. Scordino, and G. Lipari, “Resource reservations
for general purpose applications,”IEEE Transactions on Industrial
Informatics, 2009.

[11] S. Saewong and R. R. Rajkumar, “Cooperative scheduling of multiple
resources,” inProceedings of the 20th IEEE Real-Time Systems Sympo-
sium (RTSS99). Phoenix, AZ: IEEE, 1999, pp. 90–101.

[12] F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari, “Hierarchical
multiprocessor CPU reservations for the linux kernel,” inProceedings
of the5th International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT 2009), Dublin, Ireland,
June 2009.

[13] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari, “AQuoSA — adap-
tive quality of service architecture,”Software – Practice and Experience,
vol. 39, no. 1, pp. 1–31, 2009.

