
Allocation and Control of Computing Resources for
Real-time Virtual Network Functions

Mauro Marinoni, Tommaso Cucinotta
and Luca Abeni

Scuola Superiore Sant’Anna
Pisa, Italy

Email: {name.surname}@santannapisa.it

Carlo Vitucci

Ericsson
Stockholm, Sweden

Email: carlo.vitucci@ericsson.com

Abstract—Upcoming 5G mobile networks strongly rely on
Software-Defined Networking and Network Function Virtualiza-
tion that allow exploiting the flexibility in resource allocation
provided by the underlying virtualized infrastructures. These
paradigms often employ platform abstractions designed for cloud
applications which have not to deal with the stringent timing
constraints characterizing virtualized network functions. On
the other hand, various techniques exist to provide advanced,
predictable scheduling of multiple run-time environments, e.g.,
containers, within virtualized hosts. In order to let high-level
resource management layers take advantage of these techniques,
this paper proposes to extend network service descriptors and
the Virtualization Infrastructure Manager. This enables Network
Function Virtualization orchestrators to deploy components ex-
ploiting real-time processor scheduling at the hypervisor or host
OS level, for enhanced stability of the provided performance.

Keywords–MANO; TOSCA; NFV descriptors; OpenStack, LXC,
Sched Deadline; Linux kernel; Real-Time scheduling.

I. INTRODUCTION

The 5G system architecture has been introduced to provide
new services more tailored to specific user needs and Quality
of Service (QoS) requirements. These features will allow Telco
operators to develop new business cases, able to overcome the
current uncertainties that risk compromising their business. In
the context of 5G functions, some fundamental requirements
have been recognized as of utmost importance for upcoming
telecommunication systems [1]:

• the ability to support a wide range of services [2];
• an efficient handling and allocation of resources,

through a run-time monitoring and control of re-
sources usage and deployed services;

• the run-time control of the Quality of Service (QoS),
including throughput and operational deadlines, so as
to comply with a possible Service Level Agreement
(SLA).

A feature that is gaining attention in this context is the one of
resource slicing, the capability of providing strong isolation
in resources access, allowing for a precise control of the
interferences among different functions/services.

It seems widely recognized that recently proposed Net-
work Function Virtualization (NFV) infrastructures, leveraging
on principles of flexible and fully automated infrastructure

Figure 1. 5G network management proposed by the NGMN Alliance.

management typical of cloud environments, enriched with
Software-Defined Networking (SDN) techniques employing
fully automated and dynamic management and reconfiguration
of the network, constitutes the ideal fit for handling the com-
plex requirements of the envisioned upcoming 5G scenarios.

To deploy end-to-end SDN-NFV solutions, there is an
increasing interest in the use of edge micro-servers. These
allow for the provisioning of a virtual, elastic infrastructure
that can readily be adapted to time-varying workload patterns.
On top of them, network functions can be instantiated and
elastically made to grow and shrink, as needed, in a completely
automated way, leveraging high-level SDN/NFV function or-
chestration coupled with appropriate monitoring capabilities.
Possible exploitation of these features is the 5G network
management approach proposed in [3] by the Next Generation
Mobile Networks (NGMN) Alliance as shown in Figure 1. It
presents an architecture that exploits the structural separation
of hardware and software, and the programmability offered by
SDN-NFV to support multiple use cases, value creation, and
business models.

A. Problem presentation
An efficient management of the underlying physical in-

frastructure, able to achieve high saturation levels and energy
efficiency, calls for time-sharing of the available physical
resources (e.g., available CPUs, network links, data stores)
across a number of deployed functions, exploiting the unlikely
occurrence of synchronous workload peaks for a multitude of

functions, often from different vendors/operators, that are co-
located on the same physical elements. Increasing the level
of sharing of the physical infrastructure introduces unpre-
dictable behavior in the hosted virtualized functions, where
the virtualized infrastructures carved upon the physical one
suffer from one major drawback: the impossibility to keep a
stable processing/networking performance, due to the several
unpredictable interferences among co-located functions.

Therefore, an uprising trend in NFV infrastructure man-
agement, is the one to employ, within the physical NFV
infrastructure, proper mechanisms for resource slicing, pre-
venting applications to interfere with each other applying
strong isolation in resources access and use [4]–[6]. In this
context, it is noteworthy to mention that traditional ways to
control the stability of the performance exposed by a shared
infrastructure, and specifically a cloud infrastructure, include:

1) employing elasticity loops able to adapt dynamically
the provisioned virtual infrastructure size to the dy-
namically changing workload;

2) dedicating individual physical resources to individual
virtual resources, e.g., employing a 1-to-1 mapping
among virtual cores of the virtualized infrastructure to
physical cores of the underlying physical machines;

3) dedicating individual physical machines to individual
virtual resources and/or virtual functions, like in a
bare-metal provisioning model, where a single func-
tion or service is deployed onto a whole physical ma-
chine, either encapsulated within a virtual machine,
or an OS container, or directly deployed on the bare
hardware.

The above mentioned point 1) has the drawback that, albeit
on average it is possible to control the provisioned virtual
infrastructure capability to match the workload requirements,
occasional, unpredictable spikes in a function workload, as
well as interfering workloads form other co-hosted/co-located
functions, make the instantaneous performance of individual
virtualized resources (e.g., single VM/container) highly unsta-
ble. The resulting effects can be processing queues temporarily
filling up with adverse consequences on the overall end-to-end
latency of the realized function/service chain. To avoid such
problems, it is possible to couple the technique with the use
of dedicated physical cores, as mentioned in point 2) above,
where interferences due to time-sharing of multiple functions
over the same CPUs are avoided. Still, in a multi-core server
as usually used in these contexts, temporal interferences can
occur among virtual functions deployed onto different physical
cores, as due to their sharing of, and temporary saturation
of, such resources as the available memory in the Last Level
Cache (LLC), the available transfer bandwidth between the
CPUs/LLC and the memory banks in the platform, the avail-
able bandwidth on shared network adapters, etc. Therefore,
it is sometimes necessary to recur to the use of dedicated
whole physical machines, as from point 3) above, to ensure
predictable performance of the hosted services.

Unfortunately, employment of the techniques in points
2) and 3) above lead to lower the level of sharing of the
infrastructure, decreasing the potential economical advantage
arising from the adoption of a flexible on-demand provisioning
model, corresponding to a use of the underlying infrastructure
that becomes more and more inefficient and power hungry.

R
R
C

P
D
C
P

R
L
C

M
A
C

R
F

P
H
Y

LTE Stack

CU DU

Figure 2. Intra-PHY split (Option 7-1) and placement of the corresponding
NFV functions.

In this paper, the point is made that recent advances in
scheduling technologies from the realm of soft real-time sys-
tems can nowadays be deployed on general-purpose operating
systems and hypervisors, allowing for the provisioning of real-
time virtualized processing infrastructures whose performance
can be controlled at a fine granularity level (see Section III-A).
Therefore, it is critical to expose such capabilities at the highest
level of the NFV infrastructure management stack, as described
by Cucinotta et al. [7]. This approach will improve isolation
and predictability of deployed VNFs, with more efficient use
of resources and management of the VNF functions more
independent of the underlying infrastructure allocation.

B. Paper organization

The rest of this paper is organized as follows. Section II
describes the Radio Access Networks scenario and outlines
how computational resources are handled by NFV orchestra-
tors. Section III describes how to exploit innovative scheduling
algorithms to provide CPU reservations across co-hosted Linux
containers and presents a proposal regarding the integration of
CPU reservations in high-level NFV descriptors. Section IV
concludes the paper.

II. BACKGROUND

A. Virtualized Radio Access Network

A typical NFV application scenario is the Virtualized
Radio Access Network (VRAN), a paradigm that tries to shift
computational elements within the networking stack of the
access network away from the radio head(s), deploying them
in edge micro-server infrastructures. Such a paradigm is also
aligned with the increasing need for reducing power consump-
tion in VRAN deployments, which is strongly depending on
the radio access network [8], through a wise redistribution
of the processing functions. This has the potential to bring
tremendous power savings.

This redistribution needs rediscussion of the overall ar-
chitecture of the network stack, and the optimal split of its
components across the hardware elements. The evolved NodeB
(eNB) can be divided into two elements: the Central Unit (CU)
with a centralized deployed and the Distributed Unit (DU)
positioned near the antenna. Regarding the LTE stack, a set
of possible functional split solutions are conceivable and still
under discussion [9]. Among them, a promising one is the
IntraPHY split called Option 7-1 that allows deploying on the
DU only the Radio Frequency and part of the Physical layer,
while assigning the remaining part of the stack to the CU,
as shown in Figure 2. When performing such allocations, it
is crucial to consider the timing constraints like the stringent

one (4ms) imposed on the acknowledgment of packets by the
Hybrid ARQ (HARQ) [10] protocol.

The problem of storage and network slicing and isolation
has been thoroughly addressed in the literature, primarily
driven by data center optimization. For example, Giannone
et al. [11] studied the impact of virtualization on the latency
in the fronthaul connecting CU and DU for the scenario pre-
sented in Figure 2 implemented using OpenAirInterface [12].
Garikipati et al. [13] proposed a new scheduling policy to
be applied within a single VNF of a VRAN, but their work
deals with dedicated physical resources and the integration
with VMs/containers is left as future work. Instead, slicing
and temporal isolation at the CPU access level are not yet
suitable for RAN purposes and requirements, and the manage-
ment and orchestration of available SDN-NFV solutions apply
simple partitioning strategies only. In this paper, a proposal
is presented to bridge the gap between low-level mechanisms
for real-time scheduling of VNFs and high-level orchestration
layers of a SDN-NFV stack.

Other approaches for dealing with QoS attributes in
TOSCA specification can be found, e.g., [14]; however, a
comprehensive literature review is out of the scope of this
paper.

B. NFV Orchestration
Since NFV involves a consistent number of virtualized

resources, its handling demands a significant effort concerning
software management, that is named orchestration. Orches-
tration oversees the required resources from the underlying
physical platform for the NFV services. Telco operators apply
NFV orchestration to promptly deploy services and Virtual
Network Functions (VNFs), exploiting cloud software on
COTS hardware platforms.

To address this needs, the European Telecommunications
Standards Institute (ETSI) has defined the Network Functions
Virtualization MANagement and Orchestration (NFV-MANO)
architecture. Inside the MANO architecture is possible to
see three main functional blocks: the Virtual Network Func-
tion Manager (VNFM), the Virtual Infrastructure Manager
(VIM), and the Network Functions Virtualization Orchestrator
(NFVO).

The VNFM is in charge of managing the lifecycle of VNFs
from creation to termination, dealing with scaling up/down of
resources, and handling faults, monitoring, and security.

The VIM manages the NFV Infrastructure (NFVI), includ-
ing physical resources (e.g., server, storage), virtual resources
(e.g., Virtual Machines) and software resources (e.g., hypervi-
sor). In the NFV architecture is possible to have several NFVI,
each one handled by a VIM, which is in charge creating/-
maintaining/removing VMs, maintaining knowledge on VMs
allocation to physical resources, monitoring performance and
fault management of all resources in the infrastructure.

NFVO deals with the challenges connected with the man-
agement of resources and services in the NFV architecture.
It coordinates, authorizes, acquires and discharges NFVI re-
sources within one or more PoPs, interfacing with the VIM
instead of directly handling NFVI resources. NFVO intercon-
nects independent VNF functions to provide a coherent end
to end service by directly coordinating with the correspond-
ing VNFMs, to avoid talking to every single VNF. Service
Orchestration maintains the topology of the service instances.

The TOSCA NFV profile defines a precise NFV data
model, allowing to catch in a template all the requirements
concerning deployment and operational behaviors. These VNF
descriptors are collected in a catalog to make them available
for selection, and each one includes three kinds of components
(called nodes) that are Virtual Deployment Units (VDU),
Connection Points (CP), and Virtual Links (VL). In particular:

• a Virtual Deployment Unit describes the features of
a virtualized container (e.g., virtual CPUs, memory,
disks);

• a Virtual Link is a logical connection between VDUs
that are deployed dynamically on top of the physical
infrastructure. It represents the logical entity to pro-
vide connectivity among VNFs;

• Connection Points model how Virtual Links connect
to Virtual Network Functions and represent the virtual
and/or physical interfaces of the VNFs.

Every node can be characterized by type, capabilities, at-
tributes, properties, and requirements, as defined in [15]. When
OpenStack [16] is used as Virtual Infrastructure Manager, the
descriptor of each VDU node is used to generate a Heat
Orchestration Template (HOT) file. The HOT file is supplied to
the OpenStack compute service, Nova [17], to express a VNF
requirements on the needed virtualized computing platform.

III. PROPOSED APPROACH

In what follows, we describe our proposal to employ real-
time deadline-based scheduling to temporally isolate VNF in a
NFV infrastructure. We highlight the advantages of real-time
scheduling for VNFs, and describe how we plan to extend
high-level MANO descriptors to support the new scheduling
capabilities at the hypervisor layer.

A. CPU reservations for NFV
As presented in Section I, the virtualization of network

functions has stringent requirements regarding CPU slicing.
In particular, some decoding and demodulation activities that
are virtualized by executing them in software (possibly in a
VM or a container) must complete within a well-specified time
(e.g., the Hybrid ARQ timeout for the acknowledgeof MAC
packets), otherwise the connection risks to be interrupted.

Moreover, some of those virtualized functions might be
computationally intensive, and risk to starve other services
and functions if not properly handled. It is therefore important
to properly schedule the virtualized functions and services so
that each (virtualized) software component is provided with
predictable and well-specified QoS (expressed as the proba-
bility to respect a max response-time), and cannot consume
more than a given fraction of CPU time. While many modern
operating systems provide some way to comply with the
second requirement (for example, the Linux kernel provides a
throttling mechanism), satisfying the first requirement is more
difficult, and requires a more theoretically-funded approach.
For example, CPU reservations [18] can be used, for which
stochastic analysis can be applied to ensure that each compo-
nent respects its timing requirements [19]. A reservation-based
scheduler generally associates 2 scheduling parameters Q and
P to each task, and guarantees that the task is allowed to
execute for Q time units every P . Q is generally known as
maximum budget, or runtime, and P is generally known as

reservation period. While these techniques were traditionally
implemented in research projects [20]–[22] and not supported
by commonly used OSs, the mainline Linux kernel scheduler
includes SCHED_DEADLINE [23] today, a CPU reservation
mechanism based on EDF [24] [25].

B. Real-time scheduling of single-threaded NFV components
The SCHED_DEADLINE scheduling policy has been

shown to be able to provide stable and predictable performance
for a number of use-cases [26], including single-threaded
NFV functions [19] [27]. For example, whenever submitting a
Poissonian traffic to a packet processing server, it is possible
to have a precise control on the QoS experienced by the
processed packets, when scheduling the processing server
under a SCHED_DEADLINE policy. Indeed, the latter allows
for granting a budget Q every period of P time units to
the functions, regardless of other possible workload deployed
onto the same system and specific CPU. Indeed, it has been
shown [19] that, under said scheduling parameters, and within
reasonable ranges for the choice of the period P (which do
not impose an excessive rate of context switches within the
platform), a M/M/1 processing function with average arrival
rate λ and average processing rate µ behaves approximatively
like an equivalent M/M/1 queue with a server having a
processing rate µ̃ reduced to a fraction Q/P of the original
one: µ̃ = Q

P µ. This can be shown by observing the response-
times distribution and statistics of such an M/M/1 system.

For example, we ran an experiment on a Freescale
LS2085A RDB (ARM8) board, with 8 cores running at
1.8GHz and 16GB of RAM, equipped with a Yocto Linux
distribution with a Linux kernel 4.1.8. We deployed a synthetic
Poisson workload with parameters mimicking the typical strict
requirements of a LTE processing function, where an aggre-
gated input traffic with average rate of 15000pkt/s was spread
across 8 worker threads, resulting in an input rate at each server
queue of λ = 15000/8 = 1875pkt/s. We tuned our synthetic
processing function for an average rate of µ = 5300pkt/s
(sequential processing rate obtained by the single server in
isolation on a dedicated CPU). In this scenario, we expected
a response-time 99th percentile below 2ms. The latter timing
requirement maps in a natural way into the period P to be
used for the scheduling reservation, while the budget Q can be
decided in function of the expected input workload and desired
output QoS. Running a set of experiments with varying budget
Q above the minimum stability threshold Q/P ≥ λ/µ '
35.4%, we get output response-time distributions whose main
statistics are summarized in Figure 3, where the statistics of
interest for the scenario are the higher-order percentiles, such
as the p99.

Theoretical results [19] in this case lead to an (approxi-
mated) exponential distribution of the response-times with a
cumulative distribution function (CDF) FR(·) of:

FR(t) = 1− e
−
(

Q
P
µ−λ
)
t
, (1)

where, imposing the condition to respect a percentile of φ
below the R∗ threshold, gives us:

Q

P
≥

1

µ

[
λ−

ln(1− φ)

R∗

]
. (2)

For example, for φ = 0.99 and R∗ = 2ms, we get
Q/P ≥ 78.8%, coherently with the obtained experimental

 0.1

 1

 10

 100

 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
 (

m
s
)

Q/P

Experimental response-time statistics (P=2ms)

p99
p90
avg

R
*
=2ms

Figure 3. Various statistics on the experimental response-time distribution of
a processing M/M/1 system scheduled using SCHED_DEADLINE.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

p
ro

b
a
b
ili

ty

response time (ms)

Task 1
Task 2
Task 3

Figure 4. CDF of the response times for three real-time tasks scheduled in a
properly dimensioned CPU reservation.

results in Figure 3, where we can see that the 2ms response-
time percentile requirement is indeed met for Q/P ≥ 0.8.

C. Real-time scheduling of multi-threaded NFV components
If NFV software components are executed in a KVM-based

virtual machine [28], then it is possible to directly schedule
the KVM vCPU threads with the SCHED_DEADLINE policy;
however, to reduce the virtualization overhead people often
tend to use container-based solutions (also known as “OS
virtualization”), such as lxc [29] on Linux. In this case, the
SCHED_DEADLINE policy cannot be directly used, because
the same CPU reservation must be used to schedule multiple
tasks (all the processes and threads in the container). Hence,
a hierarchical extension for SCHED_DEADLINE has been de-
veloped, allowing to create two-levels scheduling hierarchies:

• at the root level, a CPU reservation (implemented as
a SCHED_DEADLINE scheduling entities) schedules
the various containers (basically, lxc VMs);

• at the second level (inside the container), a fixed prior-
ity scheduler (based on SCHED_FIFO or SCHED_RR)
schedules the real-time tasks inside the container.

This solution allows to assign a runtime Q and a period P
to a set of tasks scheduled with fixed priorities, guaranteeing
that the tasks will never consume a fraction of the CPU time
larger than Q/P , but also allowing to provide performance
guarantees to the tasks. Such guarantees can be provided by
using hierarchical real-time analysis [30].

As an example, three periodic real-time tasks
(15ms, 70ms), (33ms, 150ms) and (27ms, 250ms) (where
(Ci, Pi) indicates a task with execution time Ci and period
Pi) have been scheduled with fixed priorities (assigned
according to Rate Monotonic [24]) inside an lxc container.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

p
ro

b
a
b
ili

ty

response time (ms)

Task 1
Task 2
Task 3

Figure 5. CDF of the response times for three real-time tasks scheduled in a
smaller CPU reservation.

When the container is associated to a runtime Q = 10ms
and a period P = 100ms and one single CPU core, the
container does not consume more than 10% of the core
time, showing that the implemented scheduling algorithm
provides temporal protection (even if the three tasks require
15/70 + 33/150 + 27/250 = 54.23% of the CPU time).
When the runtime and the period are changed according to
hierarchical real-time analysis so that the three tasks have
response times smaller than their periods, the measured
response times are distributed as indicated in Figure 4. As
it can be noticed, all the temporal constraints (response time
smaller than period) are respected, consistently with the
theory; hence the scheduler works correctly.

The implemented algorithm supports multiple CPUs / cores
and allows to provide performance guarantee to software
modules scheduled with a global fixed priority algorithm [31].
It uses the Linux “control groups” software interface, and is
hence usable to serve lxc-based VMs. Basically, the configura-
tion for an lxc VM is extended with two additional attributes
indicating the runtime Q and the period P assigned to the
real-time tasks running inside the VM. These two low-level
parameters are exported to Nova, and OpenStack has to be
modified to properly map high-level descriptions into them. A
first step in this direction is represented by RT-OpenStack [32],
but more work is still needed.

It is also important to properly dimension the two pa-
rameters Q and P : while hierarchical schedulability analysis
provides the theory needed to exactly control all the response
times, this kind of analysis can result in an over-allocation
of system resources and a more relaxed approach can be
used as shown in Section III-B. For example, returning to
the previous example the runtime and period dimensioned
according to hierarchical scheduling analysis are Q = 10ms
and P = 15ms; if the runtime assigned to the lxc container is
decreased to Q = 9ms, then the distribution of the response
times changes as shown in Figure 5. This is consistent with
the fact that a runtime Q = 9ms does not guarantee that all
the response times of all the tasks are smaller than the period,
but shows how changing the scheduling parameters allow to
control the response times.

D. MANO descriptors and real-time reservations
Standard MANO descriptors from the TOSCA spec-

ification allow one to specify processing requirements
of a VDU to be deployed, in the form of properties
within the nfv_compute descriptor, which is of type
tosca.datatypes.compute_properties. This type

topology_template:
node_templates:
VDU1:
type: tosca.nodes.nfv.VDU.Tacker
capabilities:

nfv_compute:
properties:
disk_size: 10 GB
mem_size: 2048 MB
num_cpus: 2
cpu_allocation:

cpu_policy: reservation
cpu_runtime: 60 ms
cpu_period: 100 ms

Figure 6. Proposed VDU template

allows for the specification of such properties as num_cpus,
mem_size, cpu_allocation. The latter is a map allowing
the specification of:

• socket_count, core_count, thread_count:
additional details on the desired topology of the
needed computational elements;

• cpu_affinity: differentiates between virtual cores
pinned down onto dedicated physical cores, or left free
to migrate among shared physical cores;

• thread_allocation: specifies how to map virtual
cores onto hyper-threads of the underlying physical
host.

We are working on extending the cpu_allocation
map of type tosca...CPUAllocation, adding additional
properties that allow for the specification of our scheduling
parameters, namely a cpu_runtime and a cpu_period,
used to instantiate a resource reservation within the underlying
hypervisor (or host OS, in the case of Linux+KVM) scheduler.

A sample VDU template showing our proposed syntax is
visible in Figure 6, where we are requiring the use of an
underlying container with 2 cores, scheduled under a real-time
reservation of 60ms every 100ms.

In case heterogeneous processing physical machines are
available within the infrastructure, we plan to use a processing
requirement specification (the runtime value) in terms of some
generic architecture-independent unit, for example expressed
in terms of CPU capacity [33], a metric used in the Linux
kernel scheduler in the context of heterogeneous platforms,
e.g., big.LITTLETM ones.

An implementation of the proposed mechanism, based
on Tacker with an OpenStack binding as VIM, exploiting
our hierarchical variant of the SCHED DEADLINE real-time
scheduler for Linux, is under way at the moment.

IV. CONCLUSIONS

The current standard for NFV orchestrators manifests lim-
itations in the context of the challenging scenarios posed
by VRAN. This paper has shown that the level of detail
in describing computational resources is not sufficient to
efficiently allocate them while providing strong real-time pro-
cessing guarantees. To address this issue, an extension to the
NFV descriptor has been proposed to exploit experimental

reservation capabilities available in a hypervisor CPU sched-
uler. This solution enables the seamless integration of current
infrastructures with dedicated nodes able to deal with timing
requirements of specific NFV components.

ACKNOWLEDGMENT

This work was partially funded by Ericsson and has been
partially supported by the RETINA Eurostars Project E10171.

REFERENCES

[1] C. Vitucci and A. Larsson, “Flexible 5G Edge Server for Multi Industry
Service Network,” International Journal on Advances in Networks and
Services, vol. 10, no. 3-4, 2017, pp. 55–65, ISSN: 1942-2644.

[2] ITU-R, “IMT vision - framework and overall objectives of the future
of IMT for 2020 and beyond,” International Telecommunication Union,
Recommendation I.2083-0, September 2015.

[3] NGMN Alliance, “NGMN 5G White Paper,” Tech. Rep., February 2015.
[4] R. Ravindran, A. Chakraborti, S. O. Amin, A. Azgin, and G. Wang,

“5G-ICN: Delivering ICN Services over 5G Using Network Slicing,”
Comm. Mag., vol. 55, no. 5, May 2017, pp. 101–107.

[5] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
Slicing in 5G: Survey and Challenges,” IEEE Communications Maga-
zine, vol. 55, no. 5, May 2017, pp. 94–100.

[6] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network Slicing for 5G with SDN/NFV:
Concepts, Architectures, and Challenges,” IEEE Communications Mag-
azine, vol. 55, no. 5, May 2017, pp. 80–87.

[7] T. Cucinotta, L. Abeni, M. Marinoni, and C. Vitucci, “The importance of
being OS-aware in performance aspects of Cloud Computing research,”
in Proceedings of the 8th International Conference on Cloud Computing
and Services Science, March 2018, pp. 626–633.

[8] SCTE, “SCTE analysis of available Energy 2020 partic-
ipating MSO data,” Brochure, 2016. [Online]. Available:
http://www.telespazio.it/docs/brodoc/GCC eng.pdf

[9] “3rd Generation Partnership Project; Technical Specification Group
Radio Access Network; Study on New Radio Access Technology; Radio
Access Architecture and Interfaces (Release 14) – 3GPP TR 38.801
V1.0.0,” 3GPP Organizational Partners, Tech. Rep., December 2016.

[10] “3rd Generation Partnership Project; Transport requirement for CU-
DU functional splits options; R3-161813 (document for discussion),”
in 3GPP TSG RAN WG3 Meeting 93, August 2016.

[11] F. Giannone, H. Gupta, D. Manicone, K. Kondepu, A. Franklin, P. Cas-
toldi, and L. Valcarenghi, “Impact of RAN Virtualization on Fronthaul
Latency Budget: An Experimental Evaluation,” in Proceedings of the
Workshop on 5G Test-Beds and Trials Learnings from implementing
5G (5G-Testbed), December 2017, pp. 1–5.

[12] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet, “OpenAirInterface: A Flexible Platform for 5G Research,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 5, October 2014, pp.
33–38.

[13] K. C. Garikipati, K. Fawaz, and K. G. Shin, “Rt-opex: Flexible
scheduling for cloud-ran processing,” in Proceedings of the 12th In-
ternational on Conference on Emerging Networking EXperiments and
Technologies, ser. CoNEXT ’16. New York, NY, USA: ACM, 2016,
pp. 267–280.

[14] A. Brogi and J. Soldani, Matching Cloud Services with TOSCA.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 218–232.

[15] OASIS, “TOSCA Simple Profile for Network Functions Virtualization
(NFV) Version 1.0,” Tech. Rep., May 2017. [Online].
Available: http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/csd04/tosca-
nfv-v1.0-csd04.pdf

[16] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “OpenStack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, October 2012, pp. 38–42.

[17] “Nova,” visited on March 12, 2018. [Online]. Available:
https://www.openstack.org/software/releases/ocata/components/nova

[18] C. W. Mercer, S. Savage, and H. Tokuda, “Processor Capacity Reserves:
Operating Systems Support for Multimedia Applications,” in Proceed-
ings of the IEEE International Conference on Multimedia Computing
and Systems, May 1994, pp. 90–99.

[19] T. Cucinotta, M. Marinoni, A. Melani, A. Parri, and C. Vitucci,
“Temporal Isolation Among LTE/5G Network Functions by Real-time
Scheduling,” in Proceedings of the 7th International Conference on
Cloud Computing and Services Science, April 2017, pp. 368–375.

[20] S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: Towards real-time
hypervisor scheduling in Xen,” in 2011 Proceedings of the Ninth ACM
International Conference on Embedded Software (EMSOFT), October
2011, pp. 39–48.

[21] T. Cucinotta, G. Anastasi, and L. Abeni, “Respecting Temporal Con-
straints in Virtualised Services,” in 33rd Annual IEEE International
Computer Software and Applications Conference, vol. 2, July 2009,
pp. 73–78.

[22] F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari, “Hierarchical
Multiprocessor CPU Reservations for the Linux Kernel,” in Proceedings
of the 5th International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT 2009), June 2009, pp. 1–
8.

[23] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline scheduling
in the Linux kernel,” Software: Practice and Experience, vol. 46, no. 6,
2016, pp. 821–839.

[24] C. L. Liu and J. Layland, “Scheduling alghorithms for multiprogram-
ming in a hard real-time environment,” Journal of the ACM, vol. 20,
no. 1, January 1973.

[25] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” in Proceedings of the IEEE Real-Time Systems
Symposium, Madrid, Spain, December 1998, pp. 4–13.

[26] J. Lelli, D. Faggioli, T. Cucinotta, and G. Lipari, “An experimental
comparison of different real-time schedulers on multicore systems,”
Journal of System Software, vol. 85, no. 10, Oct. 2012, pp. 2405–2416.

[27] C. Vitucci, J. Lelli, A. Parri, and M. Marinoni, “A Linux-based
Virtualized Solution Providing Computing Quality of Service to SDN-
NFV Telecommunication Applications,” in Proceedings of the 16th Real
Time Linux Workshop (RTLWS 2014), Dusseldorf, Germany, October
2014, pp. 1–9.

[28] “Kernel-based Virtual Machine (KVM),” visited on March 12, 2018.
[Online]. Available: http://www.linux-kvm.org

[29] “Linux Containers (lxc),” visited on March 12, 2018. [Online].
Available: http://www.linuxcontainers.org/lxc

[30] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-emptive
scheduling,” in 26th IEEE International Real-Time Systems Symposium
(RTSS’05), December 2005, pp. 10 pp.–398.

[31] E. Bini, M. Bertogna, and S. Baruah, “Virtual multiprocessor platforms:
Specification and use,” in 2009 30th IEEE Real-Time Systems Sympo-
sium, December 2009, pp. 437–446.

[32] S. Xi, C. Li, C. Lu, C. D. Gill, M. Xu, L. T. X. Phan, I. Lee, and
O. Sokolsky, “RT-Open Stack: CPU Resource Management for Real-
Time Cloud Computing,” in 2015 IEEE 8th International Conference
on Cloud Computing, June 2015, pp. 179–186.

[33] M. Rasmussen, “Energy cost model for energy-aware scheduling.”
[Online]. Available: https://lkml.org/lkml/2015/7/7/754

