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Message from the General Chairs

A number of challenges to achieve temporal predictability are faced by distributed applications
given the complexity and scale of the current and upcoming domains. Approaches to enhance
the traditional scheduling-centered focus of real-time research are needed since it is no longer
possible to work solely on the assumptions of highly predictable execution platforms.

The germ of the first edition of the REACTION workshop initiated in 2012 was the idea of
providing a forum for presenting novel contributions to merge real-time with the new
computing paradigms and emerging applications that are intensive in the use of distribution.

In this second edition of REACTION 2013, we persist in our aim to bring together researchers
from the real-time and the distributed systems communities to cross fertilize and provide fresh,
novel, and (why not!) risky approaches that may open the road to new efficient solutions. We
move on with our exploratory approach aiming at attracting the presentation and discussion of
ideas of researchers working on distributed real-time systems for the next-generation
applications. Contributions on both practical and theoretical aspects applied to the integration of
real-time support in the new computation paradigms and emerging applications emphasizing
aspects of real-time support for flexibility and system dynamics have been attracted.

The General Chairs of REACTION 2013 would like to thank all authors, contributors, and
reviewers. They have shown that there is a real interest for the idea that we had in mind since
the first edition. Also, we would like to thank the members of the Programme Committee for
their support and help in making this event a reality. We would also like to thank Scuola
Superiore Sant'Anna for their support in hosting the REACTION'13 website. Last but not least,
we want to thank the RTSS Organizing Committee with special mention to the Workshops Chair
for his outstanding support.

The REACTION 2013 General Chairs

Marisol GARCIA VALLS and Tommaso CUCINOTTA

REACTION 2013
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Keynote talk

Adaptive Resource Allocation in the Cloud
Srikanth Kandula, Microsoft Research, Redmond, USA

Carefully allocating resources can improve throughput, lower latency and offer more predictable
service. In this talk, I will present three recent examples and point out future directions.

With SWAN, we show that given responsive networks and responsive applications adapting who
gets to send how much, when, and along which network paths can improve network utilization
without losing out on business priorities. We show how SWAN can be incorporated into the
wide-area network of enterprises that have a global datacenter footprint. With Kwiken, we show
how to improve the tail latency of datacenter services which are built as workflows over many
components by appropriately allocating additional resources across the various stages in the
workflow. Interestingly, we also cast incompleteness (i.e., returning partial results) as a resource
and show that small amounts of incompleteness can improve latency by a lot. Finally, with RoPE,
we show how execution plans for jobs in big data clusters can improve given additional
information about properties of the user code, data and how the code and data interact. We also
describe a system that extracts such properties at scale.

Biography

Srikanth Kandula is a Researcher at Microsoft Research. His research interests span many aspects
of networked systems including datacenters, network management, diagnosis, applied statistical
inference and security. He has published over 15 papers in top-tier venues such as SIGCOMM,
NSDI, MobiSys and SIGMOD. He is a winner of the NSDI best student paper award (2005).
Many of his research artefacts have been widely adopted in Windows and Microsoft's cloud
infrastructure. He obtained his Ph. D. from the Massachusetts Institute of Technology (2008).
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Experimental Evaluation of the Real-Time Performance of Publish-Subscribe
Middlewares

Tizar Rizano, Luca Abeni, Luigi Palopoli
Dipartimento di Scienza e Ingegneria dell’ Informazione
University of Trento, Trento, Italy
tizar.rizano @unitn.it, luca.abeni@unitn.it, luigi.palopoli@unitn.it

Abstract—The integration of the complex network of mod-
ules composing a modern distributed embedded systems calls
for a middleware solution striking a good tradeoff between
conflicting needs such as: modularity, architecture indepen-
dence, re-use, easy access to the limited hardware resources
and ability to respect real-time constraints. Several middleware
architectures proposed in the last years offer reliable and easy
to use abstractions and intuitive publish-subscribe mechanism
that can simplify system development to a good degree. How-
ever, a complete compliance with the different requirements
of assistive robotics application (first and foremost real-time
constraints) remains to be investigated. This paper evaluates
the performance of these solutions in terms of latency and
scalability.

I. INTRODUCTION

The recent developments in sensing and battery technolo-
gies and in embedded computing devices are creating the
premises for the development of low cost robotic applica-
tions for a consumer market. The ever-increasing presence
of robot vacuum cleaners in our homes, of robotic toys
amusing our children, of robotic drones shooting impressive
pictures from surprising points of view are witnesses of a
clear market trend. At the forefront of this movement are
robots created to assist older adults or people with different
disabilities. One of the basic needs that can effectively be
addressed by assistive robots is personal mobility.

These embedded systems integrate several modules and
rely on different types of sensors that convey information
on the surrounding environment. For example, they can use
video sensors to detect moving objects or obstacles, or can
use gyroscopes encoders, 3D cameras and RFID readers for
localisation purposes. The same level of complexity is on the
software architecture, that can include modules for video-
analysis, mission planning, short term planning and control.
All these services might interact with other components such
as a geo spatial database that stores relevant information
about the environment (in this case, the geo spatial database
maintains a consistent description of the environment, where
each model inserts additional information layers).

The integration of this complex network of modules
calls for a middleware solution striking a good tradeoff
between conflicting needs such as: modularity, architecture
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independence, re-use, easy access to the limited hardware
resources and real-time constraints.

Several middleware architectures proposed in the last
years offer reliable and easy to use abstractions and intuitive
publish-subscribe mechanism that can simplify the devel-
opment of complex robotic applications to a good degree.
Examples are OpenDDS!, which implements a standard
proposed by the Object Management Group[1], ZeroMQ [2],
which implements a publish-subscribe paradigm to support
concurrent programming over socket connections using a
publish-subscribe paradigm and is freely available?, and
ORTE [3], which implements a publish-subscribe mecha-
nism over a real-time Ethernet connection (in particular, it
is compliant with the RTPS - Real-Time Publish-Subscribe
- protocol).

The three mentioned solutions have different reasons of
interest: OpenDDS builds on top of the decennial experience
made by the CORBA community and offers powerful ab-
stractions, ZeroMQ is extremely lightweight and potentially
interesting for its easy adaptation to embedded architectures,
and ORTE is a product has been developed for a special care
for its real-time performance.

Based on some previous experience [4], this paper eval-
uates the performance of the three middlewares in terms
of latency, scalability, and communication throughput. This
comparison will be used as a cornerstone for the devel-
opment of a reliable software architecture for the DALi
cognitive walker (cWalker), an embedded device designed
to assist adults with non-severe cognitive abilities in the
navigation of complex and crowded environments (e.g., an
airport or a mall), which challenge the sense of direction and
generate anxiety. However, this work is not limited to the
cWalker, but is aimed at increasing the diffusion of real-time
middlewares in a large class of robotic applications.

The rest of the paper is organised as follow. Section II
offers a high level overview of the case study. Section III,
shortly describes the three middleware analysed in the paper
and compares their features. Section IV, reports the experi-
mental results on the performance comparison between the

Uhttp://www.opendds.org
Zhttp://www.zeromg.org
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Figure 1. Simplified functional scheme of the DALi cWalker.

three different alternatives. Finally, Section V, presents some
conclusions and a short discussion of future work directions.

II. CASE-STUDY

An important motivational example for this work has
been offered to us by a cooperative European project >
coordinated by the University of Trento. The objective of
the project is the development of a robotic assistant to help
older adults with emerging cognitive impairments navigate
large and challenging environments (e.g., a shopping mall,
or an airport). Because the main focus of the project is
to compensate for cognitive deficiencies, the assistant is
called cWalker (cognitive walker). A simplified scheme of
the most important functionalities of the cWalker is shown
in Figure 1. The cWalker prompts the user for a sequence
of target points in the environment that he/she wants to visit
through a visual interface. The Long Term Planner finds the
most convenient path using the map of the environment and
the real-time information on the state of the place, which
is acquired querying remote sensors (e.g., the surveillance
cameras). When the users starts to move, the walker guides
her/him along the path using electro-actuated brakes [5],
haptic interfaces and audio/video interfaces. The guidance
requires a real-time localisation system which tracks the
position of the cWalker while it moves. Along the way,
the cWalker localises the user in the environment, detects
anomalies and the motion of people in the surroundings and
plans deviation from the planned path when required (e.g.,
to avoid accidents or such behaviours as could violate the
social rules). These tasks are performed by a Short-Term
planner.

A description of the different functionalities is beyond
the goals of the present paper, and can be found in previous
work [4].

3hitp://www.ict-dali.eu
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ITI. PUBLISH-SUBSCRIBE MIDDLEWARES

The functional architecture described in Figure 1 suggests
the following considerations:

1) Many of the components are re-usable across a wide
family of applications and systems (e.g., the localisa-
tion module and the people tracker);

2) The computational demand and the physical con-
straints call for a distributed hardware implementation,
in which the functionalities could be deployed in dif-
ferent nodes in different implementations or operating
conditions (e.g., in response to a system failure);

3) The different components require varied expertise; the
resulting development team is large and heteroge-
neous.

These requirements can be fulfilled by adopting a middle-
ware infrastructure that implements publish-subscribe func-
tionalities. Moreover, this solution simplifies the develop-
ment and testing of the various modules, by permitting to
decouple their development.

Figure 2 shows a possible implementation scheme for the
communication between some of the modules. As an exam-
ple, the people tracker publishes a sequence of positions and
velocity of the people within the reach of the sensors with a
periodicity of 100ms and this topic is subscribed to by the
short term planner. The localisation module publishes a new
position of the cWalker every 10ms and this information
is used by various subscribers (at least those shown in
the figure). Similarly in the graph one can read the topics
published and subscribed to by other modules.

Since the cWalker modules are characterised by some
real-time constraints (as shown in the previous example), the
middleware implementing the publish-subscribe mechanism
needs to be predictable and has to provide reasonable upper



bounds for the communication latencies without compromis-
ing the throughput. Hence, the middleware has to be explic-
itly designed to support real-time communications. While
the idea of real-time publish-subscribe communication is not
new [6], a systematic comparison of multiple open-source
alternatives is still missing.

The Object Management Group (OMG) published various
standards regarding real-time data exchange based on a
publish-subscribe protocol. In particular, the Data Distribu-
tion Service (DDS) standard defines a service for distributing
application data between tasks (in distributed applications),
and the Real-Time Publish-Subscribe (RTPS) standard de-
fines an application-level protocol based on UDP/IP, which
can be used for the real-time communications required by
DDS.

The DDS specification defines both an application level
interface for a service implementing the publish-subscribe
functionalities (in real-time systems) and an additional layer
that allows distributed data to be shared between applications
based on DDS. The first interface (Data-Centric Publish-
Subscribe - DCPS) is in charge of efficiently delivering the
proper information to the proper recipients (according the
publish-subscribe) and introduces a global data space to be
used by applications for exchanging data.

The second part of the standard (Data-Local Reconstruc-
tion Layer - DLRL) is a higher level software layer based
on DCPS and uses it to construct local object models on top
of the global data space.

DDS does not specify a specific “wire protocol” to be
used for data exchange and control, hence different DDS
implementations can use different (and incompatible) pro-
tocols, being them TCP-based, UDP-based, or something
different (for example, 2 modules running on the same node
can communicate through shared memory to improve the
performance).

RTPS is a possible wire protocol to be used by DDS
(technically speaking, it is an application-level protocol,
generally based on UDP). The RTPS protocol has been
designed focusing on real-time requirements, hence it allows
to trade the reliability of message delivery for low latencies.
As aresult, it often implements real-time communications on
top of unreliable and connectionless transport protocols such
as UDP (although TCP can also be used - see OpenDDS
below). The protocol supports publication and subscription
timing parameters and properties to allow some performance
vs reliability trade-offs.

When using DDS, a publisher and a subscriber commu-
nicate by writing/reading data identified by two parameters:
topic and type: the topic is a label that identifies each data
flow while the type describes the data format.

To provide good real-time performance (and to properly
scale, without having the communication latency affected by
the number of publishers or subscribers), DDS and RTPS
do not rely on an active service that receives messages from
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the publishers and forwards them to the proper subscribers.
Instead, peer-to-peer connections between each publisher
and the interested subscribers are created, based on a naming
service that can be provided by some dedicated daemon.

Finally, DDS provides automatic data serialisation through
an Interface Definition Language (IDL) compiler, so that
components running on different architectures can easily
interoperate and communicate (notice, however, that this
feature is not strictly needed in the DALIi context, since the
distributed architecture is based on uniform nodes).

One of the goals of this evaluation is to quantify the
overhead (if any) introduced by the various DDS and RTPS
abstractions, in order to understand their costs and their ben-
efits. Hence, three different middlewares (ranging from one
that is fully compliant with DDS to one that is not compliant
with any standard) have been considered: OpenDDS, ORTE,
and ZeroMQ.

OpenDDS is fully compliant with the DDS standard
forces to use the IDL compiler to serialise the data to be
exchanged. ORTE is less flexible, but still implements the
RTPS protocol (and is explicitly focused on respecting real-
time constraints). Finally, ZeroMQ is not compliant with any
specific standard, does not provide a naming service, but
relies on simplicity to provide good performance. Hence,
comparing the three middlewares allows to evaluate the
cost and the benefits of the various features described in
the standards and to estimate the overhead that the various
features and abstractions might introduce. In more details:

OpenDDS

is an implementation of DDS v1.2 using RTPS
as a “wire protocol” (according to the DDS-RTPS
standard v2.1). Both UDP and TCP can be used as
a transport protocol below RTPS. It is implemented
using the C++ language and is based on CORBA
(using ACE/TAO) for the naming and discovery
service and for serialising the data (through the
TAO IDL). This allows OpenDDS to provide cross
platform portability and to easily implement the
DCPS layer;
ORTE (the Open Real-Time Ethernet)
is a lighter implementation of the RTPS protocol
which does not rely on external software and di-
rectly implement RTPS using UDP sockets. Seriali-
sation can be performed directly by the application.
It is implemented using the C language;
ZeroMQ

is an open source based messaging library imple-
mented in C++ providing support for the publish-
subscribe communication paradigm over TCP. Se-
rialisation is not considered. It is not compliant
with any standard, and does not provide any kind
of naming service (which is then application’s
responsibility). It exports an object-oriented API
with bindings for various languages e.g. C, C++,



python and Java.

IV. PERFORMANCE EVALUATION

The three middlewares have been compared by evaluating
their performance in terms of both worst case and average
real-time latencies.

This evaluation has been performed by using some test
programs implementing publish-subscribe communication,
and using a setup similar to the one described in Figure 2.

Since the specific middleware that will be used in the
DALi walker has not been decided yet (but only the needed
features have been identified), an abstraction layer providing
the needed publish-subscribe functionalities has been devel-
oped. Such an abstraction layer exports a simplified API
that allow to create publishers and subscribers, publish and
receive topics, and perform all the operations needed by the
various DALi modules.

In particular, the abstraction layer is written in C++ and
its API is composed by:

o A class modelling global data space abstraction, where
data is published and received by the subscribers;

o A class modelling a Publisher. This class can be instan-
tiated once a global data space has been defined, and
can publish a topic on such a data space;

¢ A class modelling a Subscriber. Similarly to the pub-
lisher class, this class can be instantiated only once
a global data space has been defined, and receives
messages concerning a specified topic from such a data
space.

The global data space class only provide a constructor,
a destructor, and two methods to create a Publisher or
a Subscriber. When creating a Publisher, it is possible to
specify a name for the topic it publishes; the Publisher class
then provides a publish () method that allows to send
messages for this topic. When creating a Subscriber, it is
possible to specify the name of the topic to subscribe to; the
Subscriber class then provides a register_callback ()
method that allows to specify a callback to be invoked when
a message for the specified topic is received.

The C++ classes then hide all of the implementation
details (and the middleware API), allowing to write code
using the publish-subscribe paradigm without relying on a
specific middleware. The abstraction layer currently supports
the three middlewares considered in this paper, but extending
it to other middlewares based on the publish-subscribe
paradigm should be simple.

Some preliminary experiments measured the performance
of the middleware without considering the effects of the
network (by running the experiments on a single node) and
revealed that ORTE seems to perform slightly better than the
other middlewares when only few subscribers are active, but
ZeroMQ scales better [4]. In any case, on an Intel i7 CPU
running at 2.8GHz the worst-case measured latency was
smaller than 1ms, for all the middlewares.
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In this paper, the experiments have been performed using
a setup that is more similar to the DALi hardware and
software architecture. First of all, the embedded boards that
will probably be used in the DALi cWalker (pandaboards®*,
based on an OMAP4460 - powered by an ARM core running
at 1Ghz) have been used. Moreover, the experiments are
performed on two identical pandaboards connected via fast
ethernet switch (100 Mbps); hence, network effects have
been accounted for in the experiments. The two boards run
Ubuntu 12.04 with the 3.2.0 Linux kernel.

A first set of experiments, still based on the simple test
programs used in the previous paper, compare the real-
time performance of the three middlewares by measuring
the latency between the generation of a message (from the
publisher) and its arrival to the subscribers - this will be
referred as “publish-subscribe latency”. With respect to the
previous experiments, the ones reported here are based on
the pandaboard setup described above. First, some “single
node” experiments (similar to the previous ones) have been
run, and then the measurement have been repeated with
the publisher running on one board and the subscribers
running on the other one. As in the previous experiments, the
middleware abstraction layer has been used to easily repeat
the same tests with different middlewares.

The publisher is implemented as a single-threaded process
scheduled with SCHED_FIFO and the maximum real-time
priority. Each subscriber (maximum 4 subscribers) is also a
high priority (SCHED_FIFO, maximum real-time priority)
process. However, the process is multi-threaded, since all of
the tested middlewares create at least two threads for each
subscribers: main thread and the subscriber listener thread.
For OpenDDS, there is an extra thread that run its ORB and
several threads for non-CORBA transport 10. OpenDDS and
ORTE are configured to use UDP as their transport protocol.
However, ZeroMQ is configured to use TCP since UDP is
not officially supported.

Figure 3 reports the results (worst-case and average la-
tencies as a function of the number of subscribers) obtained
when running publisher and subscribers on the same node.
Respect to the results obtained on the x86-based PC, the
worst-case latencies are about 10 times larger, and the ORTE
behaviour is slightly worse than the ZeroMQ one (in the
previous experiments, ORTE behaved better than ZeroMQ
for small numbers of subscribers, but ZeroMQ scaled better).

Figure 4 reports the results of the same experiment exe-
cuted in a distributed environment (publisher and subscribers
on 2 different nodes). It is immediately possible to notice
that the latencies increase even more, and only ZeroMQ
stays below 10 ms in both average and worst case latencies
for all the numbers of subscribers. Again, confirming the
result obtained in [4] ORTE performs well with a limited
number of subscribers while ZeroMQ scales better than the

“http://www.pandaboard.org
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Figure 4. Multi node Publisher/Subscriber latency as a function of the
number of subscribers.

other middlewares even in the distributed scenario.

Finally, Figure 5 reports the latencies as a function of
the message size, showing that the average latencies of all
middlewares scale well with message size up to 1000 bytes.

After running the first experiments with a simplified test
application, a more realistic test case based on Figure 2 has
been used to compare the three middlewares. The test is
composed by 8 processes emulating the 8 software modules
that will run on the cWalker: the People Tracker (PT), the
Localization module (LOC), the Heat Maps (HM), the Short
Term Planner (STP), the Long Term Planner (LTP), the
Brakes Control (BC), the Haptics Control (HC) and the
Audio Visual Interface (AVI). All the modules are modelled
as periodic real-time tasks running with the periods indicated
in Figure 2, subscribing to some topics, and eventually
producing messages at each activation.

Each task/software module is statically assigned to a
pandaboard, and different ways to distribute the tasks have
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Mapping | protocol max avg stdev
ZeroMQ 1740 523.41 183.68
1 ORTE 7599 712.39 260.39
OpenDDS | 6135 2016.79 | 470.46
ZeroMQ 6752 2368.42 | 427.55
2 ORTE 10170 | 4563.44 | 832.93
OpenDDS | 11268 | 4952.68 | 680.27
ZeroMQ 7851 3720.68 | 680.27
3 ORTE 11940 | 5092.19 | 410.39
OpenDDS | 11482 | 6179.72 | 295.92
Table I

LATENCY IN MICROSECONDS

been tested. In particular, the results obtained with three
different mappings of modules to embedded boards will be
reported:

« Mapping 1: All modules run on pandaboard 1

o Mapping 2: The AVI, HM, and LTP modules run on
pandaboard 1 while BC, HC, PT, LOC, and STP run
on pandaboard 2

« Mapping 3: The AVI module runs on pandaboard 1
while all the other modules (BC, HC, PT, LOC, STP,
HM, and LTP) run on pandaboard 2.

The worst-case and average latencies measured the output
of the AVI module are reported in Table I. This set of
experiments show the effect of distributed processes on the
performance of the middlewares. The average latencies of
all middlewares stay below the minimum period of the
modules (10 ms). However, the worst case latencies of
all middlewares except ZeroMQ are above the minimum
period.

V. CONCLUSIONS

This paper presents the performance evaluation of three
open-source publish-subscriber middlewares. The evalua-
tion focuses on their real-time performance, to identify
the solution that best suits the needs of modern robotic



applications based on distributed embedded architectures.
The experimental setup was designed taking inspiration from
an existing robotic application.

Based on the result of the experiments, ZeroMQ is shown
as the most suitable middleware for DALi application.
Although the average latencies of both ORTE and OpenDDS
are below the minimum period required by DALi applica-
tion, their worst case latencies is above it. However, Their
latencies remain below 7 ms for 99% of the time.

The goals of future investigations are manifold. One of the
most important is to extend the analysis to other middleware
solutions explicitly developed for robot applications such as
ROS [7] and OROCOS [8].
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Towards the integration of data-centric distribution technology
into partitioned embedded systems

Héctor Pérez
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Abstract—This work proposes an architecture to enable the use
of data-centric real-time distribution middleware in partitioned
embedded systems based on a hypervisor. Partitioning is a
technique that provides strong temporal and spatial isolation,
thus allowing mixed-criticality applications to be executed in
the same hardware. The proposed architecture not only enables
transparent communication among partitions, but it also
facilitates the interconnection between partitioned and non-
partitioned systems through distribution middleware.
Preliminary results show that hypervisor technology provides
low overhead and a reasonable trade-off between temporal
isolation and performance.

Keywords—distributed systems; middleware; hypervisor; DDS;
real-time systems.

I. INTRODUCTION!

Partitioning is a widespread technique that enables the
execution of multiple applications in the same hardware
platform with strong temporal and space isolation, thus
allowing the coexistence of mixed-criticality applications,
which fulfils their different requirements (i.e. integrity,
security, timing, etc.). Although partitioned systems were
initially conceived for safety-critical contexts and do not
traditionally contemplate the use of distribution middleware
because of its complexity, this technique is becoming more
and more popular and it is starting to be applied in a
heterogeneous set of emerging applications [1].

The use of middleware technology can provide a set of
services that may be of interest for partitioned systems, such
as location transparency, abstraction of network services,
communication management or interoperability. As part of
modern model-driven software development techniques, it
also may help to resolve key challenges in the development
and validation of distributed systems [2] [3]. Over the last
years, the Data Distribution Service for Real-Time Systems
(DDS) standard [4] has been attracting an increasing interest
within the industry due to its flexibility and decoupling
capabilities, along with a rich set of Quality of Service (QoS)
parameters. These features make this standard suitable for
the development of distributed systems with real-time
requirements [S][6].

1. This work has been funded in part by the Spanish Government and
FEDER funds under grant number TIN2011-28567-C03-02 (HIPARTES).
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Our concern is to enable partitioned systems to take
advantage of common real-time distribution middleware in
several scenarios where a high level of criticality is not
required. Under these conditions, important design
objectives for partitioned systems include software reuse or
interoperability between partitioned and non-partitioned
systems. Both objectives can be fulfilled by integrating
distribution middleware into partitioned systems as shown in
[7], which presents an early experience dealing with RT-
CORBA [8] and Ada DSA [9] standards. Furthermore, there
is an initial attempt to extend DDS with a safety-critical
profile [10][11] suitable for partitioned systems such as
those defined by ARINC-653 (Avionics Application
Standard Software Interface) [12], which proposes this
standard as a suitable candidate to interconnect the next-
generation of partitioned distributed real-time systems.

Therefore, this paper proposes a system architecture that
integrates the use of distribution middleware based on the
DDS standard within XtratuM [13], which is an ARINC-
653-like hypervisor especially designed for real-time
embedded systems. Additionally, a prototype has been
developed in order to provide a performance analysis that
estimates the overhead incurred when using the proposed
architecture. The trade-off between performance and
temporal/spatial isolation capabilities is also analysed.

To the best of our knowledge, few research papers have
dealt with the merging of DDS and virtualization technology.
For instance, the authors in [14] use DDS to interconnect
virtual ~ resources on  heterogeneous  hypervisors.
Furthermore, the impact of using DDS in a general-purpose
virtualized scenario is addressed in [15]. However, our work
differs from these in the target systems, as XtratuM is
specially designed to be used in scenarios with hard real-
time requirements, in which safety-critical features can be
also considered.

This document is organized as follows. Section II
introduces the basic characteristics of XtratuM and the DDS
standard. The architecture for integrating DDS middleware
with XtratuM is proposed in Section III. Section IV
describes a potential application as a proof of concept, while
Section V evaluates the performance of the proposed
architecture. Finally, Section VI draws the conclusions.
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II. BACKGROUND

A Overview of DDS

The Data Distribution Service (DDS) standard defines a
data-centric distribution middleware that supports the
development of distributed real-time systems [16] by
including a wide set of configurable parameters to provide
different degrees of QoS. The standard is based on the
publisher-subscriber paradigm, where publishers and
subscribers communication entities respectively write
(produce) and read (consume) data. All the communication
entities that share compatible QoS parameters may be
grouped in participants of a domain, and only entities
belonging to the same domain can communicate.

To enable the communication among entities, publishers
require to declare their intent to publish a specific ropic (i.e.
the data type to share), while subscribers require to register
their interest in receiving particular topics. The example in
Figure 1 illustrates a distributed system which consists of
three participants in a single domain and two topics. Both
topics have a single publisher in charge of generating new
data samples. However, successive updates for topic # 1 will
only be received by one subscriber, whereas new samples for
topic # 2 will be received by two subscribers.

B Overview of XtratuM

XtratuM [13] is an open source hypervisor with
capabilities to meet real-time and integrity requirements.
Although it does not follow a specific standard, its design
follows the philosophy of the ARINC-653 avionics standard
[12]. This specification defines the interface of a partition-
based operating system that allows multiple applications to
execute in the same hardware platform, while maintaining
time and space isolation. The general architecture of a
system using XtratuM is shown in Figure 2, where the term
partition represents one or several applications executing
over a bare machine or an operating system. Each partition is
allocated one or several dedicated time windows during
which it may execute and thus multiple partitions can be
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Fig. 2 XtratuM architecture

concurrently executed on the same core module (a hardware
platform with one or more processors or cores). Among the
facilities provided by XtratuM are the virtualization of the
basic resources of the system (clocks, timers, memory,
interrupts, etc.) and specific communication services.

Two different and complementary communication
services are defined in XtratuM: the ARINC-like
communication ports [12] or the XMIO communication
service based on Virtio [17]. The former was designed to
enable communication in high-integrity systems (e.g.,
systems with static workload and pre-configured
communication links), while the latter is aimed at non-
critical software systems with some kind of timing
requirements.

In XtratuM, the control and management of devices is left
to partitions. To this end, XtratuM provides a configuration
service to access the I/O ports, which must be configured at
compilation time. I/O ports can belong to only one partition,
which means that specific I/O partitions should be created
when more than one partition needs to access a particular
device. Furthermore, I/O partitions are responsible for
implementing the device drivers so devices shared among
several partitions should be managed in a special way, as
described in the next section.

III. SYSTEM ARCHITECTURE

This section aims to explore the possible architectures that
enable the use of data-centric distribution middleware in
partitioned systems in which a hypervisor is used to manage
the hardware. To guarantee the interoperability among non-
critical open subsystems, our proposal will rely on the DDS
distribution standard and the XMIO communication service.
The analysis for more restrictive scenarios, which may
require the use of the ARINC-like communication services
and/or a reduced set of the DDS features, is left for future
work.

As XtratuM does not implement drivers at the hypervisor
level, sharing a device such as a network interface card
(NIC) among multiple partitions should focus on handling
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Fig. 3 Proposed architecture for integrating DDS with XtratuM

the contention in order not to compromise both space and
time isolation capabilities. A common strategy is the use of
an I/O partition that has exclusive access to the network card.
Under this approach, the I/O partition is responsible for
redirecting messages from the remaining partitions within
the same core module to the communications network. To
this end, two design strategies could be followed:

® Designing an 1/O partition exclusively aimed at
forwarding messages. In this case, messages are opaque
to the I/O partition, and they would be routed through
statically established connections. Therefore, each
partition should know the destination of each
communication link beforehand, which may not be
suitable for open systems with variable workload.

® Considering the use of DDS middleware in the I/O
partition. Thus, data-centric middleware will be
responsible for performing routing transparently (e.g.,
based on topics). In this case, messages are not opaque
and can be processed by the I/O partition. Moreover, this
option may enable the use of different domains for inter-
and intra-communication in core modules, as they may
need to maintain certain information contained within.

Hence, each partition should implement data-centric
middleware in order to provide distribution facilities such as
location transparency, interoperability or connection
management, and to facilitate data routing in the case of the
I/O partition.

Figure 3 shows a system with three core modules
following the proposed architecture for integrating data-
centric middleware with a partitioned system using XtratuM.
Communications between partitions, belonging or not to the
same core module, are performed via DDS. As can be seen
in the figure, each core module provides: (1) a virtual
network (V-NETWORK) to enable the communication
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among partitions within the core module, which denotes a
DDS domain; (2) a virtual network card (V-NIC) for each
partition; and (3) an I/O partition, with exclusive access to
the network card, which is responsible for routing the
messages received by the underlying communication
network, and which is part of another DDS domain. In this
case, we have defined three communication links that
interconnect partitions: link #1 defines one-to-many
communications (i.e., one publisher and several subscribers);
link #2 defines one-to-one communications within the same
core module; and link #3 defines one-to-one
communications between different core modules.

IV. USAGE SCENARIO: VIDEO-SURVEILLANCE SYSTEMS

This section describes a video-surveillance system as a
proof of concept in which the use of the proposed
architecture can be advantageous. Built-in video-
surveillance applications will probably become common in
the near future, for example in vehicles for recording
unexpected situations (accidents, thefts, etc.). A key feature
for this kind of systems resides in the reliability of the
recording application, as it must keep recording data
continuously, so it can benefit from strong isolation
capabilities and can be executed together with other
applications. In our example, a distributed application with
multiple display monitors may request video captures from
the recording application. The architecture for the proposed
system is depicted in Figure 4 and it is composed of:

® One core module with two partitions: the
Video_Recorder partition which is responsible for
obtaining data from the attached video cameras and
serving the requested video captures to other partitions,
and the Routing_Service partition which is in charge of
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routing the data from/to other core modules spread
across the distributed systems.

® A variable number N of core modules that may request
the current live video stream or a previous recording (i.e.
the monitoring subsystem). These nodes or core module
may or may not be partitioned systems.

The use of DDS enables the interoperability among the
video recorder and the monitoring subsystems, regardless of
whether they are partitioned or not. Furthermore, it also
enables the interconnection among the partitions within the
same core module (e.g., Video_Recorder  and
Routing_Service partitions). The Routing_Service partition
also relies on DDS to control the information that flows in
and out of the core module by providing data distribution
between domains. Finally, third-party applications can be
easily integrated into the system without compromising the
security and data integrity of the Video_Recorder partition,
as they are isolated in terms of space and time.

V. PERFORMANCE METRICS

This section aims to obtain preliminary performance
metrics and assess the interoperability capabilities of using
data-centric middleware in partitioned systems by simulating
the video-surveillance scenario described in the previous
section. In this evaluation, the distributed application
consists of two nodes: the video recorder partitioned
subsystem and one monitoring non-partitioned subsystem.
The hardware platform consists of two single core 2.8 GHz
nodes connected through an isolated Gigabit switch in which
internal traffic has been disabled (for instance, network
packets coming from the Spanning Tree or ARP protocols).
We have adapted and integrated in a software platform: RTI
Connext DDS! as distribution middleware, a fully pre-
emptive Linux kernel 2.6.30.5 as the operating system and
XtratuM as the hypervisor. Furthermore, a DDS add-on
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included in the RTI toolsuite! has been used to implement
the routing service.

In the case of partitioned systems, the optimal
configuration of partitions to maximize the processor’s
utilization is not a trivial problem, and it is even harder with
inter-partitions dependencies. Thus, an I/O partition should
be executed with sufficient regularity to fulfil the I/O
requirements of other partitions. In our example, it is
expected that the execution time of middleware operations
will be similar to the ones associated with the routing
operations, as both rely on DDS middleware. Hence, the
video-surveillance application has been configured to have a
dedicated time window of 800us for the Routing_Service,
and 700us for the Video_Recorder partition, resulting in a
scheduling plan repeated every 1,500us.

The test will measure the execution time of a remote
operation that publishes the requested video frames. We
measure the operation carried out from the time when the
request of a video capture is made until the image is
returned. This operation is executed 10,000 times, and the
average, maximum, and minimum times are estimated,
together with the standard deviation and the 99th percentile
(i.e., the value below which 99 percent of the measurements
are found). To avoid additional overheads in the
measurements, the test is executed without requiring
network fragmentation (i.e., the payload is bounded to 1
kilobyte). The performance analysis includes two case-
studies.

The first case study, which is called the overhead test,
aims to estimate the overhead added by XtratuM when it is
used as hypervisor. Three scenarios have been defined for
this case study:

1. RTI-DDS toolsuite is available at http://www.rti.com
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® Network, which estimates the temporal cost of using the
network (transmitting and receiving a message of 1
kilobyte) by implementing the test over UDP in
isolation.

® Traditional DDS, which measures the performance of
the video-surveillance application using DDS over two
non-partitioned nodes.

e Single DDS Partition, which measures the performance
of the video-surveillance application when the node
under analysis is partitioned with XtratuM. In this case,
the core module only holds one partition that executes
the application and has exclusive access to the network
device. Therefore, this scenario estimates the overhead
of using XtratuM.

The second case-study (performance test) evaluates the
performance of the proposed system architecture, that is,
with one partition dedicated to the I/O operations. To
perform a fairer comparison, this case is contrasted with the
traditional distributed application in which a routing service
has been added. Therefore, two scenarios have been defined:

® Traditional DDS with Routing, which measures the
performance of the video-surveillance application using
DDS over two non-partitioned nodes. One of the nodes
also executes a routing application to enable the
communication between domains.

® Partitioned DDS with Routing, which measures the
performance of the video-surveillance application when
the proposed partitioned architecture is applied to one
node. In this case, the core module holds two partitions:
(1) the Video_Recorder partition, and (2) the
Routing_Service partition to enable the communication
between domains.

The results of the analysis for the overhead test are shown
in Table 1. As can be observed, the DDS example adds a
minimum overhead to the network test which makes it
suitable for developing our approach, as it requires a
lightweight middleware implementation in each partition.
Likewise, the maximum overhead of using the distributed
application on top of XtratuM is less than 60ps. Taking these
metrics into account, it is shown that using hypervisor
technology with data-centric middleware is highly efficient.

Table 1: Measurements of response times for the overhead test (in

usecs)
MIN AvG MAX STD PER99
NETWORK 154 206 262 20 249
TRADITIONAL DDS 218 286 415 29 383
SINGLE DDS PARTITION 262 331 467 28 409

REACTION 2013

Table 2 shows the results of the measurements taken for
the performance test, in which the proposed system
architecture adds complexity by integrating a routing service
into the distributed application. As shown in Table 2, the
distributed operation for the DDS with routing scenario takes
a maximum of 1,632us, while this value is 4,157us for the
partitioned system. This variation in performance depends
on the nature of the partitioned systems and their time
window configuration (e.g., a network message received
during the execution of the Video_Recorder partition has to
wait until the next time window corresponding to the
Routing_Service partition). In our example, we use a time
window configuration that allows Linux partitions to be
executed properly, as the optimization of time windows for
this particular application is beyond the scope of this paper.
In any case, the increase in the response times corresponds to
a reasonable number of measurements for less critical
applications (see the 99th percentile).

Table 2: Measurements of response times for the performance
test (in psecs)

MIN AvG MaAXx STD PER99

TRADITIONAL DDS WITH 662 764 1632 36 876
ROUTING

PARTITIONED DDS WITH 1028 1858 4157 539 3346
ROUTING

To complete the study, an additional test has been carried
out to evaluate the impact of the proposed architecture with
different workloads. Figure 5 depicts the results obtained for
the same experiment but using different image sizes.
Similarly to the results obtained in Table 1 and Table 2, it is
shown that the hypervisor adds a minimum overhead to the
traditional DDS scenario regardless of the payload, and the
maximum response times are appreciably higher for the
partitioned system due to the inherent effect produced by the
temporal partitioning. As a consequence of these results, a
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multiprocessor approach that allows, for example, one core
to be dedicated to communications, which could avoid the
extra delays inherent to the time window configuration. This
approach is planned for future work.

VI. CONCLUSIONS AND FUTURE WORK

An increasingly important trend in many domains, such as
the automotive, energy distribution or industrial control
ones, is support for mixed-criticality applications within the
same hardware platform. In this kind of applications, there is
also a need to address the integration with the underlying
communication subsystem. The proposed integration of
DDS data-centric middleware into partitioned systems
provides important benefits such as (1) the transparent
invocation of services allocated in partitions, independently
of whether they are in the same processor (or core) or in
different ones; (2) the abstraction of network services which
allows the application code to be simplified while
maintaining it independent from the communication
subsystem; and (3) interoperability between partitioned and
non-partitioned systems, or between two or more
heterogeneous partitions, e.g., with different levels of
criticality or using different data representations (e.g.,
endianness).

As a consequence of the response times obtained in the
performance analysis, it can be observed that the overhead of
using data-centric middleware together with a partitioned
system could be reasonable for a wide range of applications
with soft real-time requirements. However, a significant
improvement is expected when using the hypervisor
technology adapted to multiprocessor systems, as it may
partially mitigate the delays associated with the
configuration of time windows. Anyway, it has been shown
that this configuration is not a trivial problem and it
represents a key step in the design of distributed applications
with a partitioned architecture.

Although this integration can facilitate the use of
partitioned systems with DDS, further investigation is
required to fully determine which features of the standard
can be applied, i.e., the applicability of some QoS
configurations. Furthermore, it could be interesting to
explore other approaches such as the use of the ARINC-like
communication services for the incoming safety-critical
profile of DDS.
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Abstract—Virtualization technologies typically introduce ad-
ditional overhead that is specially challenging for specific domains
such as real-time systems. One of the sources of overhead are
the additional software layers that provide parallel execution
environments which reduce the effective performance given by
the infrastructure. This work identifies the factors to be analysed
by a benchmark for performance evaluation of a virtualized
middleware. It provides the set of benchmark tests that evaluate
empirically the overhead and stability on a trendy communication
middleware, DDS (Data Distribution System for Real-Time),
which enables message transmissions via publisher-subscriber
(P/S) interactions. Two different implementations, RTI and
OpenSplice, have been analysed over a general purpose virtual
machine monitor to evaluate their behavior on a client-server
application. Obtained results have provided initial execution clues
on the performance that a virtualized communication middleware
like DDS can exhibit.

I. INTRODUCTION

Communications middleware and virtualization technolo-
gies have been two main contributions to the development
and maintainability of software systems. On the one hand,
middleware brings in the capacity to abstract the low level
details of the networking protocols and the associated specifics
of the physical platforms (e.g. endianness, frame structure,
and packaging, among others). This augments the productivity
of systems development by easing the programmability and
debugging. More recently, virtualization technologies have
promoted a new technological trend that has fast penetrated
different domains due to the benefits that it brings about: a)
speed up of the customized system development and deploy-
ment to specific platforms; b) server consolidation and the
subsequent savings on energy, etc. ; ¢) reducing maintenance
and deployment costs and d) data availability any time and
anywhere.

Communication middleware and virtualization technology
originated for general purpose distributed applications, so
initially in a different perspective from that of real-time
environments where determinism is a key target. As science
evolves and new applications are envisioned and engineered,
real-time applications have progressively approached middle-
ware and virtualization technologies, facing the problem of
temporal predictability. The traditional focus of real-time and
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middleware has been significantly different. Networked real-
time systems traditionally have focused on eliminating (or
minimizing) the sources of unpredictability by direct program-
ming of tasks in the real-time operating system or directly
in the hardware platform itself and using controlled medium
access protocols to develop real-time networks. Middleware
has typically been implemented for distributed systems over
non collision-free networks, and using software engineering
techniques that introduce additional software layers aiming
at easing programmability and interoperability. As a conse-
quence, communications middleware has appeared as a black
box, containing extra code that is difficult to analyse with
sufficient level of detail and guarantees as required by some
real-time applications.

Over the past decade, the OMG’s DDS standard [1] (Data
Distribution Service for Real-Time Systems) has appeared
with considerable success for distributed soft real-time appli-
cations. DDS provides an asynchronous interoperability via
a publish-subscribe paradigm that is data-centric. One of the
success factors of DDS is that it provides quality of service
(QoS) communication by means of specifying a collection of
diverse QoS parameters. There are different realizations of the
DDS standard that achieve different behaviors, mainly with
respect to performance and to the specific set of implemented
QoS parameters. In general, the level of temporal guarantees
provided by different implementations varies depending on
different factors such as the physical deployment, application
type, and middleware communication paradigm and fine-
tuning. There are not many public independent studies about
the performance achieved by the different implementations.

The performance of middleware can be essential for de-
termining if a specific real-time application can be migrated
to the cloud. This requires to analyse the timely behavior of
the middleware implementation and extract conclusions about
the suitability for specific physical deployments (i.e., software,
hardware, and network structure) and application types (e.g.
data intensive, sporadic short messages, etc.). Also, traditional
virtualization techniques can be a source of overhead and even
nondeterminism. Virtualization technology comes at the cost
of, in general, being more prone to suffering variations in per-
formance compared to bare machine execution, in general. The
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latter needs to be studied for the specific deployments since
technological developments, such as multicore systems, are
introducing new interesting properties derived from execution
on dedicated cores. In a previous work [3] [2], we have per-
formed an exploratory analysis of the performance evaluation
on virtualized environments extracting preliminary results. In
this paper, we deepen into the analysis of DDS in a virtu-
alized deployment, providing a benchmark for the analysis,
conducting further experiments, and elaborating conclusions
as comparison between the two most popular implementations.
We explore the overhead of virtualization in distributed DDS
communication stacks by black box benchmarking (with no
code fine-tuning), and we reason about the causes of virtual-
ization costs, communication latencies, communication jitter,
and execution nondeterminism.

The paper is structured as follows. Section 2 describes
related work. Section 3 presents the potential drawbacks of the
virtualization technology for timely behavior, and it describes
the benchmark elaborated for the experiments or specific
tests that have been carried out. In section 4, the proposed
virtual data-distribution scenario is defined (two main DDS
implementations running on VirtualBox) as well as the used
evaluation forms, i.e. processor and network intensive sce-
narios. Section 5 reports the evaluation results discussing the
minimum, maximum, and average response-times in different
setups. Finally, section 6 outlines the main conclusions and
future work.

II. RELATED WORK

Virtualization technology for cloud computing, such as
hypervisors and/or virtual machine monitors, can challenge
the temporal properties of soft real-time applications due to the
possible introduction of higher latencies and communication
jitter. Still, the deadlines for the soft real-time domain may
be respected (or tolerably lost) by the new high performance
cloud computing platforms that provide very efficient network-
ing by using specific technology as InfiniBand [4].

Predictable hypervisors exist that achieve temporal and
spatial isolation such as the academic initiatives of [26] [21],
among others in the industrial domain', for real-time domains.
In the hard real-time domain, predictability offered by real-
time hypervisors is obtained at the cost of having to recompile
the execution environment. This is not desired for the case of
soft real-time applications and mainstream domains that are
likely to be interested in using existing binaries, and they may
even suffer run-time migration.

There are a few studies and analysis of the performance
of both, virtualization technology and virtualized environ-
ments with varying quality results. Diverse applications have
been used as payload to evaluate virtualization performance.
These can refer to low-level services [10], function-specific
applications (e.g. MapReduce [19] [16], storage solutions
[20]), and middleware systems [18]. Some works report [17]
significant delays due to the virtualization layer in contexts

I'WindRiver Hypervisor, WMWare ESX, etc.
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where applications are in execution within virtual machines.
In contrast, other empty scenarios (i.e., without applications
or virtual machines) report that the execution is similar to the
results obtained on the physical platform [24] [25].

For this purpose, other virtualization technologies exist that
do not offer temporal isolation but statistical guarantees with
the advantage of allowing functional additions at run-time.?

The different implementations of DDS were not originally
designed for virtualized environments. As a result, they can
exhibit a significant different behavior either in a virtualized
or in a bare machine with operating system. There are some
previous experiences of using DDS in a virtual context offering
good average communication times, such as the one reported
in the iLAND reference implementation [6] [15] that uses
a bi-dimensional QoS model [14] that can be mapped to
DDS QoS properties. Possible sources of this behavior are the
efficient resource management policies at node level inspired
on [12] using QoS resource brokers such as [9]; timeliness
was preserved even in the event of system reconfigurations that
required real-time service composition [13] [32]. However, no
benchmarking was performed in this context and only average
times were reported.

Mainstream and traditional individual parallel applications
or benchmarks have been applied to evaluating the perfor-
mance of virtual machines. Benchmarks are being modified to
adequately model the operation of virtual machines such as
the industry benchmarks VMark [11], vConsolidate [10], and
SPEC committee [22] that are virtualization benchmarks that
can be used for consistent and repeatable server performance
analysis. There are interesting studies applying vConsolidate
in specific VM performance modeling such as [27]. Released
two weeks prior to the submission of this work, [22] simulates
a world-wide company with an IT infrastructure with varied
requests that enables specifying deadlines for service requests
(from few to hundreds of ms, and supports multiple run con-
figuration for analysing bottlenecks at multiple layers (from
hardware to application layer).

The execution of communication middleware in a virtual
environment is not supported by a specific benchmark. Conse-
quently, we have identified a set of specific tests for devising
the behavior of the system to identify possible bottlenecks,
reasoning about the possible sources of the problems.

III. BENCHMARKING VIRTUALIZED MIDDLEWARE

The behavior of the system is analysed in terms of usage of
physical resources, stability of the execution, and load of the
servers is considered as an initial step to analyse the system.
Considered resources are: Processor, network bandwidth, and
memory consumption. The stability is measured by analysing
the behavior of specific communications in the presence of
interference and without interference. Different load levels for
the servers are also experimented by executing operations that
require various resource usage levels, from light weight to

2Popular virtualization technologies that provide applications execution
environments include Citrix Xen, VMWare, KVM [19], Oracle VirtualBox,
SPLPAR, MS Virtual Server and Solaris Container [23].
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heavy operations. Other interesting measures are derived such
as throughput (i.e., number of requests per unit of time), and
latencies.

A. Potential performance drawbacks in the virtualization

The execution risks of a virtualized communication mid-
dleware are the following:

e Overhead of the virtualization. Virtual machines are in-
terfered by the execution of other VMs. This may affect
the use of visible shared resources (e.g. the same physical
core or memory capacity) and invisible shared resources
(e.g., cache space, memory bandwidth, etc.). These can
be visible or invisible depending on the implementation
of the host operating system and virtualization monitor.

¢ Overhead of the communication middleware abstractions.
A virtualization infrastructure adds extra costs in the
response time of distributed applications since requests
traverse the software layers; requests may be queued
at different levels. This overhead affects main statistical
metrics (i.e. minimum, average, and maximum response
times), increasing jitter and overhead. That refers to the
cost of serializing and deserializing parameters sent in
different communications. Notice that part of this serial-
ization cost may be alleviated using virtual machines that
run similar virtualized operating systems and hardware
infrastructures.

o Coexistence issues. Other particular inefficiencies
stemmed from the integration of two different
software stacks: the virtualization software and complex
middleware. Depending on the particular middleware-
virtualizer combination, different inefficiencies may
appear (e.g. unnecessary copies from virtualized buffers
to middleware buffers).

B. Benchmark description

In order to produce a meaningful set of tests for virtual-
ized middleware, a benchmark should take into account the
following key aspects:

o Application nature. Different types of applications exhibit
distinct performance patterns that are, mainly, of two
types: (i) network intensive applications and (i) CPU in-
tensive applications. Network-intensive applications make
heavy use of I/O operations and peripheral actions, and
their processor computations are minimum as compared
to the network I/O activity. CPU intensive are dedicated
to intra-node activity rather than in communication or
information exchange.

o Middleware communication paradigm. The supported in-
teraction paradigms of the middleware (e.g. its publish-
subscribe (P/S), synchronous remote invocations, etc.)
influence its internal implementation and synchronization
aspects which directly affects the performance of the re-
mote execution and, as a result, also influence virtualized
environments. Other influencing aspects to be taken into
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account are the marshalling (and unmarshalling) tech-
niques which typically represent a considerable source
of overhead in middleware infrastructures.

o Virtualization software characteristics. The type of vir-
tual machine monitor (VMM) or hypervisor and the
virtualization technique, and guarantees (either real-time
or statistical) over the temporal and spatial isolation of
virtual machines influence the performance of the system.

Next section illustrates a practical evaluation via a specific
set of tests that consider the above mentioned concepts in a
general scenario: i) a client-server application, which is ii)
running on DDS, which iii) is virtualized using VirtualBox
over Linux. This soft real-time scenario has been chosen
because it reduces development and deployment costs (i.e. the
time require to develop a virtualized application). Real-time
virtualizers would produce better performance results, requir-
ing additional resources (CPU, or additional infrastructure)
too.

IV. ANALYSIS OF DDS EXECUTING IN VIRTUAL MACHINES

This section describes the set of tests carried out in a
client-server application installed on a DDS infrastructure.
Such applications are typical of many distributed systems and
require the server to block, waiting for a response from the
client. In essence, the benchmarked application carries out the
following operations:

o The client sends information packed in an array that is
transferred to a server node. Internally, the communica-
tion with the server is carried out using a DDS topic.

o Then, the server which is another node running DDS,
reads the data, processes the data, and sends back a
response to the client node. In the specific implementation
of the test, this action is supported with a different DDS
topic that sends data back to the client.

o After receiving the information, the client to server com-
munications stops so the client-server interaction ends.

A. Experimental setting

The physical deployment comprises two machines, one
acting as a server and another as a client (see Table I). Both
machines are connected via a local isolated Switched Ethernet
network that connects to Linux nodes. Client and server
run in a Ubuntu Linux 12.04 virtualized (with Virtualbox)
image that communicates via one of two alternative DDS
implementations: The first is the OpenSplice 5.5 DDS, and
the second is the professional RTI 5.0 implementation.

Since the hosting operating system, the virtualization soft-
ware and the virtualized operating systems are non real-
time infrastructures, the tests carried out focus on average
performance that may be suitable in some best-effort real-time
applications. A worst-case scenario requires to use a real-time
virtualizer and real-time operating system, which are not the
focus of this evaluation scenario.

In this particular, the following evaluation goals were
pursued:
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TABLE 1
HARDWARE AND SOFTWARE STACK USED IN THE EVALUATION

[ HW/SW TItem | Description ]
Server machine: CPU Core2Duo E4500 @2.2 Ghz
Server machine: Memory | 6 Gigabyes
Client machine: CPU Core2 6320 @1.86 Ghz
Client machine: memory 3 Gigabyes

Network 100 Mbps switched Ethernet
Hosting OS Ubuntu 12.04
Virtualization software Virtualbox 4.2
Hosted OS Ubuntu 12.04

First DDS middleware:
Second DDS middleware
Small size data sets:
Medium size data sets:
Processing time at server:

OSPL Community v5.5.1
RTI Connext Professional 5.0
64 bytes

512 bytes

From 0 to 100 us

o To measure the absolute performance of client-server
applications from different DDS middleware vendors.

o To evaluate the overhead introduced by the virtualiza-
tion infrastructure in different DDS implementations. To
assess the differences in costs introduced by the virtual-
ization process.

o To evaluate the impact of different virtualized DDS
middleware implementations from the point of view of
a real-time application (considering different deadlines).

o To determine the absolute overhead introduced by the
DDS infrastructure when compared against an ideal in-
frastructure. The ideal infrastructure refers to a minimum
distributed system based on ICMP messages that do not
pay serialization/deserialization costs.

B. Results and analysis

The first experiment refers to the time required for the
whole client-server interaction under different setups. The
different setups refer to the following choices:

o The experiment is executing (¢) inside the virtual machine
or (i7) in the host with no VM intermediation.

o The experiment is running (¢) on an ideal ICMP scenario,
(i) on OSPL or on (ii) RTI stacks.

o In the experiment the data sent to the server has to be
processed. The processing at the server ranges from O to
100 ps.

The obtained results (see Figure 1) show the expected
performance patterns. In all cases, the execution costs increase
with the amount of data sent to the server. They also increase
as they are virtualized, i.e. the costs in the non virtualized
environment are less than in the virtualized one, ranging from
800us to few milliseconds with medium size data sets.

A remarkable result is the gap between the ideal middle-
ware setting (represented in the evaluation with ICMP) and
DDS. It is due to the multiple abstractions that are supported
by the DDS programming model, mainly due to serialization
overhead, and to the use of topics and multiple I/O buffers,
that manifest (i.e., are paid for) in the ICMP stack.
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Fig. 1. Absolute end-to-end response time results with server and without

server processing time

Figure 2 complements the previous results with informa-
tion on the extra cost paid by the virtualization process. For
the given scenarios, the extra cost ranges from a minimum
of 120% to a maximum of almost 300%. In practical terms,
the virtualized application has reductions in performance that
may leave the available utilization in almost 25% of the time
consumed in a non virtualized environment equivalent. Notice
that this time is, to some extent, the maximum penalty; this
could be alleviated by using optimized virtualizers that take
into account the host infrastructure. The virtualizer used in this
experiment does not take advantage of this feature to improve
performance.

It is also remarkable that the virtualization may require
up to 50% of the total available time for small response
time applications (i.e., applications with a 10ms deadline).
This cost is reduced to less than 5% (i.e. a more moderated
and admissible penalty) when deadlines are in the 100ms
range. As operational deadlines increase, this margin reduces
to 1% for applications with deadlines that are in the range of
milliseconds.

The last set of experiments refers to the overhead in-
troduced by a middleware like DDS. Different middleware
implementations introduce an overhead when they compare
against an idealized communication middleware that do not
require to perform general application serialization, copying
data from different multilevel buffer, nor other middleware-
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Fig. 2. Virtualization overhead main results with and without server process-
ing time

level overhead. As in the previous cases, the evaluation has
been carried out in small (see Figure 3) and medium (see
Figure 4) data sizes.

The following are remarkable outcomes:

o In most cases, the overhead introduced by the stacks
represents an important amount of the available time.
This extra overhead takes into account the amount of time
required for serialization and deserialization processes.

o For the given virtualization scenarios (and under the
described evaluation conditions), the use of OSPL sup-
port outperforms an RTI equivalent stack. In average
performance terms, the virtualized RTI requires and 50%
amount of CPU time to offer an OSPL-equivalent perfor-
mance.

« Lastly, it should be noticed that for both implementations,
the overhead of the virtualization dominates over the
overhead introduced by the middleware abstraction. In
all tests (see Figure 3 and Figure 4), the cost of the
middleware abstraction is typically 30% of the total time,
while the the cost of the virtualization may represent
72% of the total time. In practice, this effect is shown
in the graphs with the two virtualized DDS-middlewares
as virtualized implementations consume more resources
than their non virtualized equivalents.
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Fig. 3. Overhead introduced by virtualized middleware technology (small
size data)

V. CONCLUSION

The work describes a benchmarking process to obtain
information on the performance of virtual machines containing
applications that communicate via publish-subscribe (data cen-
tric) middleware. Precisely, we have analysed the behavior of
DDS for its two most popular implementations (Open Splice
and RTI). Initially, we have identified the important aspects
to consider in the design of a benchmark for performance
analysis of virtualized middleware, including the identification
of the potential bottlenecks to search for, and the consid-
erations with respect to the software stack to be analysed.
Lastly, we have describe the benchmark tests executed for
applications that make intensive use of the network and the
processor. Results have shown the comparison and impact on
both implementations of the virtualization software.

Future work will include the execution of just released
industrial benchmarks for virtual machines that simulate a real
environment based on scenarios described in [28], [29] and
[30].
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Abstract—AFDX (Avionics Full Duplex Switched Ethernet)
Networks have been proposed to meet unique ADN (Aircraft
Data Networks) characteristics and then standardized as a Part
7 in ARNIC 664. As for this new communication technology, some
research works have been conducted to address design issues such
as optimizing virtual links as well as analytic modeling including
response time. Despite of their research efforts, configuration
problem for both MTU (Maximum Transmission Unit) and BAG
(Bandwidth Allocation Gap) over virtual links in AFDX networks
remains unsolved yet. In this paper, we propose how to set MTU
and BAG value on each virtual link according to both application
requirements and AFDX switch constraints. We define a new
problem of feasible configurations of virtual links in an AFDX
switch and propose an algorithm to derive feasible BAG and MTU
pairs based on the branch-and-bound technique. Throughout
simulations, we evaluate the proposed algorithm and analyze the
effect of parameters in AFDX networks.

I. INTRODUCTION

As new aircraft’s demanding requirements to high available
bandwidth, minimum wiring to reduce the weight and low
development cost have emerged, the current three main ADNs
(Aircraft Data Networks), ARNIC 429, MIL-STD-1553 and
ARNIC 629 are regarded as not appropriate communication
technologies to meet these demands completely. This fact
implies that not only reliable and deterministic property of
ADN but also implementation cost should be concerned in
next generation aircraft. Consequently, from development of
data networks on the Airbus 380 aircraft, a new technology,
called AFDX (Avionics Full Duplex Switched Ethernet), has
been implemented and then standardized for new ADN [1],

(21, [3].

The AFDX was extended from original Ethernet to ensure
deterministic behavior and high reliability in order to comply
with the stringent requirements of ADNs. To ensure them,
new functions are implemented in two ways. One is traffic
control by guaranteeing the bandwidth of each application,
and the other is dual redundant channel for reliability. While
the former targets to limit the jitter and transmit latency, the
latter transmits the same data stream over disjoint networks. To
achieve this goal, virtual links have been employed between
source and destination. With these virtual links, deterministic
behaviors are guaranteed and all controls are ensured through
them. So, determining virtual link properties and configuring
network environments become network designer’s great task.

System configuration parameters of virtual links include
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traffic scheduling, maximum jitter, and bandwidth constraints
[1], [2], [3]. Among many system parameters, two are im-
portant with regard to the guarantee of real-time require-
ments: BAG (Bandwidth Allocation Gap) and MTU (Maximum
Transfer Unit). BAG is a timeslot confining the virtual link’s
bandwidth by defining the minimum gap time between two
consecutive frames. The range of the BAG value is between 1
and 128 msec in a form of power of 2. MTU is defined as the
maximum size of message to be transmitted in each frame.

Much recent work has focused on the system analysis of
AFDX networks [7], [8], [9], [10], [12]. The AFDX network
analysis is done by queuing networks, network calculus, or
model checking. Throughout the analysis, the impact of param-
eters has been analyzed, including end-to-end delays, worst-
case latencies, and so on. However, only a few studies have
been done on the problem of AFDX configuration such as
BAG and MTU. In [4], the authors proposed how to set the
transmission parameters of virtual links so as to minimize
the reserved bandwidth while transmitting the data within
their maximum delivery times. They first derive optimized
parameters of each virtual link for a given set of messages.
Then, they solve the optimization problem of multiple virtual
links in order to minimize bandwidth. The weakness of this
approach is that the optimized parameters found in a single
virtual link cannot be feasible when they are used in finding
feasible configurations of multiple virtual links in an AFDX
network switch.

In this paper, we focus on finding feasible BAG and
MTU parameters of virtual links in an AFDX switch for a
given virtual links of messages. We define a new problem
of feasible configuration of an AFDX switch, and then solve
the problem using the branch-and-bound technique. The main
contributions of this paper include (i) defining a problem of
feasible configuration, (ii) providing an algorithm to solve
the problem, and (iii) analyzing the algorithm through the
simulations.

The rest of this paper is organized as follows. First, we
describe the related work briefly in Section II. And then,
the system model and the problem definition are provided in
Section III. In Section IV, we explain the proposed algorithm.
Performance evaluations are shown in Section V. Finally,
conclusion and further work are followed in Section VI.
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II. RELATED WORK

In this section, we briefly introduce related work on AFDX
networks. In this research area, existing technologies mainly
fall into two main categories. One is for design issue and the
other is for analysis modeling.

First, the authors in [4] have focused on the design of
virtual links in AFDX networks. In their works, the problem
domain is ranged from how to set the transmission param-
eters of virtual links to how to route virtual links in the
AFDX interconnect. For this goal, several closed-form results
and efficient numerical algorithms as well as exact integer-
linear programming formulation of the routing problem are
newly presented. Through above method, optimal bandwidth
management is achieved, such as, minimizing reserved band-
width and the bandwidth consumption. In another research
work, modeling method for AFDX frame management was
introduced to ascertain the reliability properties of design [5].
They modeled the system as a network of timed automata
to indicate weakness of current AFDX frame management
against faults. Moreover, they present the solution by including
a priority queue at receivers. In addition to mentioned works,
one of outstanding features, reliability through redundancy
transmission on AFDX was analyzed by formal method in [6].

While the design issue targets to build AFDX networks,
the other works have been proposed to analyze the system
metric such as response time. The representative work for this
goal has been proposed in [7]. The authors introduce three
methods, network calculus, queuing networks simulation and
model checking to evaluate bounding end-to-end delays on
AFDX networks. As the previous work, they also showed
that Trajectory approach which analyzes the worst-case delays
throughout message flows outperforms the Network calculus
method under industrial configuration [11] and reached reliable
conclusion that combination of two methods could lead to an
improvement of the existing analysis in [8]. However, since
the previous model did not include contention in the end or
switches, different analysis was given to obtain worst-case
latencies and output jitter for the network messages in [9]
by defining a real-time model for a communications network
based on AFDX. In addition to analysis model, simulation
system based on popular NS-2 was designed and implemented
to evaluate the performance and analyze impact of several
system parameters such as scheduling algorithm in [10].

III. SYSTEM MODEL AND PROBLEM DEFINITION
A. System Model

Avionics network systems consist of many components,
such as sensors, LRUs (Line Replacement Units), computing
units, and so on. These components communicate each other
throughout AFDX switches. An AFDX message is uniquely
defined by UDP source and destination ports, as shown in
Figure 1. Sine we focus on real-time AFDX messages, a
message flow f; is defined by (I;, p;), where [; is the payload
of the message in bytes and p; is Message Transmit Cycle
(MTC) of the message in msec. That is, a message of /; bytes is
generated every p; time units and is delivered to the destination
application.

A Virtual Link (VL) is a logical communication unit
in AFDX networks. Figure 1 shows an example of AFDX
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networks with three virtual links among LRUs. These virtual
links sharing physical links are scheduled in AFDX network
switches. Furthermore, multiple applications transmit real-time
messages throughout a common virtual link if their source and
destination units are the same. In the example of Figure 1, two
application messages are shared in the virtual link VLs.

A virtual link requires two important parameters other than
source and destination information. The first is Bandwidth
Allocation Gap (BAG) to specify a periodic frame. In AFDX
switches, a BAG is defined by a value of 2k msec, where
k = 0,1,...,7. As all BAGs are 2* msec, virtual links
are multiplexed in AFDX switches. The second parameter
is Maximum Transfer Unit (MTU) of the message in bytes
at each frame. Payloads of applications in a virtual link are
transmitted within maximum MTU bytes in a single frame. If
the size of a payload is greater than the MTU, it is fragmented
into multiple frames. Therefore, a virtual link VL; is defined
by (BAG;, MTU;, F;) as follows.

e  BAG;: bandwidth allocation gap or period of VL; in a
value of 2¥ msec where k =0,1,...,7.

e  MTU,;: maximum transfer unit or message size of VL;
in bytes.

e Fi: a set of message flows in VL;, where the j-th
message flow is denoted as f; ; = (I5,, Di j)-

As avionics systems are hard real-time systems, it is an
important issue to guarantee the schedulability both in com-
puting units and in network flows. The virtual link scheduler
in an AFDX switch plays a role in scheduling multiple virtual
links. For example, the scheduling algorithm in [2] is Round
Robin (RR). In this paper, we will define a new problem of
finding a feasible configuration of BAG and MTU pairs of
given virtual links in an AFDX switch in order to meet all
real-time requirements of messages.

B. Problem Definition

For a given virtual link VL;, MTU and BAG are configured
so as to meet all the real-time requirements of message flows in
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the link. If the payload of a message is greater than the MTU
size, it is transmitted in multiple fragmented packets. Since
all BAGs of VLs are harmonic, the schedulability analysis is
easily derived by utilization analysis. Thus, Eqn. (1) tells the
message constraint of VL; with n; messages to guarantee the
real-time requirement of all message flows in the link [2].

Z [Li/MTU] _ 1

Di.j ~ BAG;

ey

j=1

Let us assume that the system has NV VLs on an AFDX switch
with B bandwidth in bps. Each VL; is configured with (MTU;,
BAG)), so that MTU, bytes are transmitted every BAG; msec.
In addition, each VL message requires the overhead of 67 bytes
as shown in Figure 2. Since the total bandwidth of VLs should
not exceed the network bandwidth, the following bandwidth
constraint should be met.

" MTU; + 67 5
8 — — x10°<B 2
; BAG; x - 2)

The last constraint of virtual link scheduling is about jitter.
The maximum allowed jitter on each virtual link in the ARINC
664 specification requires 500 psec [2]. Thus, the following
equation tells the jitter constraint, where 40 usec is the typical
technological jitter in hardware level to transmit an Ethernet
frame.

N 8> " (67 + MTU;)

40
B

< 500 3)

Now we define a problem of finding a feasible configu-
ration of BAG and MTU pairs of virtual links of an AFDX
switch. Three constraints of Eqn. (1), Eqn. (2), and Eqn. (3)
should be met in order to satisfy all real-time requirements
of messages in virtual links, which derives a new problem as
follows.

Definition 3.1: For a given set of virtual links V' =
{VL; | i = 1,...,N}, the problem of AFDX-CONF is to
determine (BAG;, MTU;) of each VL; so as to satisfy three
constraints of Eqn. (1), Eqn. (2), and Eqn. (3), where BAG; €
{1,2,4,8,16,32,64,128} and MTU; € {1,2,...,1471}.

IV. THE PROPOSED ALGORITHM

We solve the problem AFDX-CONF in two steps. The
first step is to find the list of (BAG;, MTU;) which guarantees
the schedulability of message flows in VL;. Each (BAG,,
MTU;) should be selected such that it satisfies the constraint
of Eqn. (1). Then, we find the feasible solutions of a given
virtual links with consideration of two constraints of Eqn. (2)
and Eqn. (3).
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A. Schedulable BAG and MTU Pairs of a VL

Let us consider a virtual link VL; with two message flows
of f11(80,10), f12(100,12) as an example. The values of
BAG and MTU of VL; are set to satisfy Eqn. (1) in order
to meet the real-time requirement of two messages. The left
side of Eqn. (1) is shown in Figure 3 as a step function, while
1/BAG is also drawn in the figure for different BAG values.

For a given BAG;, there exist many MTUs which satisfy
Eqn. (1). For example, when BAG; = 1, all MTUs can be used
if MTU > 17, as shown in Figure 3. Since a longer MTU size
requires more bandwidth and jitter, the smallest value should
be selected. Thus, MTU,; of the example VL, is 17 bytes when
BAG; is 1 msec. Similarly, MTUs of VL; for BAGs with 2
msec and 4 msec are given by 40 bytes and 100 bytes in each,
as shown in Figure 3.

When the MTU size is greater than the maximum payload
size of messages, the required utilization is not changed. For
example, the lower bound of the utilization of VL; is given
by about 0.1834 at MTU = 100. This implies that there is no
MTU which guarantees the schedulability of two messages if
BAG is greater than or equal to 8 msec. Therefore, the feasible
solutions, (BAG, MTU,), of VL, are given by (1, 17), (2, 40),
and (4, 100).

The pseudo-algorithm of Figure 4 describes how to obtain
the set of feasible BAG and MTU pairs of a given virtual link
VL;. The first part of the algorithm gathers all step integers at
which the utilization function begins a new piecewise constant
due to the ceiling function. We denote the set of such step
integers as Ngep. For each message f; ;, such step points are
derived and added into N, (lines 1-8).

Then, for each 2¥ value, we find the minimum MTU which
satisfies Eqn. (1). (lines 9-13). We denote s; ; as the feasible
BAG and MTU pair in case of BAG; = 2* for a virtual link
VL,;. For a given n; flows, the time complexity of the algorithm
in Figure 4 is O(n; - | Nstep|) since we have to find and check
the feasibility at each step point of messages.
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Algorithm Find_Feasible BAG_MUT (VL;)
Nstgp — g
for each message f; ; in VL; do
frag < Tli;/([li;/Pi.j1)]
while frag > 1 do
m < [l j/frag]
Nstep <~ Nstep U {m}
frag < frag — 1
endwhile
endfor
for k from 0 to 7 do
10: my, < the least m € Nggep s.t. Z?;l ”—’p/ﬂ < 2%
11:  if my # NULL then "
12: sik — (2F,my)
13:  endfor

VRN HE LN

Fig. 4. Algorithm of feasible BAG and MTU pairs of a VL

B. Feasible BAG and MTU Pairs of VLs

The problem of finding feasible BAG and MTU pairs of
a given set of virtual links is not trivial. For example, let us
consider the example of two virtual links of Table I where the
network speed (B) is given by 1Mbps. For each virtual link,
the feasible BAG and MTU pairs are derived by the algorithm
of Figure 4, as shown in the last column of Table I. Now,
a new problem arises about selecting appropriate BAG and
MTU pairs of two virtual links so as to meet both constraints
of Eqn. (2) and Eqn. (3).

There are some tradeoffs among feasible s; j, of a virtual
link VL;. Solutions with smaller BAG provide less jitter due
to smaller MTU size, while they require more bandwidth due
to overhead of fragmentation. For example, if we select (1,5)
and (1,6) as (BAG, MTU) of two VLs of Table I, it does not
meet the bandwidth constraint of Eqn. (2). On the contrary, if
(2,9) and (2,12) are selected as (BAG, MTU) of two VLs, this
configuration does not meet the jitter constraint of Eqn. (3).
The selection of (1,5) and (2,12) of VL; and VL, satisfies both
constraints so that all messages in VLs meet their real-time
requirements.

Let us denote s; j, as the feasible BAG and MTU pair of
VL; in case of BAG; = 2%, which is derived from the algorithm
of Figure 4. If there is no feasible MTU for BAG; = 2k, Sik =
&. Then, the problem to be solved is defined as follows.

Definition 4.1: For a given set of virtual links V =
{VL; | i =1,...,N}, let us assume that a feasible pair of
BAG and MTU for BAG, = 2F is available as S;,%. The problem
of AFBM is to select s; of each VL; so as to satisfy both
constraints of Eqn. (2) and Eqn. (3).

For a given N virtual links, the exhaustive search of the

TABLE L AN EXAMPLE OF VIRTUAL LINKS (B = 1 MBPS)
Flows | Payload MTC Feasible BAG and MTU pairs
(fig) Li,j) (pi,j) (sik)
fi1 200 80
VLy s 550 160 (1,5), (2,9), (4,17), (8,34), (16,67), (32,200)
f2,1 250 220
VLo Tos 500 70 (1,6), (2,12), (4,25), (8,50), (16,100), (32,200)
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Algorithm Find_Feasible_Configurations (1)
/* V ={VLili=1,...,N} %/

1 for i from 1 to N do

2: call Find_Feasible_BAG_MUT (VL;)
3 S+wo

4:  result + DFS_BandB (0, 0, 1, S)

5:  return S

Function DFS_BandB (Bcyrr, Jewrr, 4, S)
6: if i = N + 1 then return true
7. for each s; j, of VL; do
8: bandwidth < Beurr + (mtu; i, + 67)/bag; 4,
9: jitter <— Jewrr + 67 + mtu; i, ’
10: if bandwidth < B /8000 and jitter < 460 - B then

11: result < DFS_BandB (bandwidth, jitter, i + 1, S)
12: if result = true then

13: S SU{s; 1}

14: return frue

15: endif

16: endif

17:  endfor

18:  return false

Fig. 5. The proposed algorithm

problem AFBM takes O(8") since each virtual link might
have maximum eight solutions. In this paper, we provide a
branch-and-bound algorithm to find a feasible solution for
a given N virtual links with their feasible BAG and MTU
pairs derived by Figure 4. The proposed branch-and-bound
algorithm consists of pruning condition and branch-and-bound
strategy as follows.

e Pruning condition: The pruning condition is two
constraints of Eqn. (2) and Eqn. (3). The algorithm
examines whether the solutions in the subset satisfy
both constraints. Since both bandwidth and jitter val-
ues increase with a new branch in the search tree, the
algorithm stops the search of the subset which already
violates one of two constraints.

e Branch and bound strategy: We can use the current
values of total bandwidth and jitter as a branch con-
dition. For example, a node with the least bandwidth
is selected as a new branch. The algorithm finds a
feasible solution when it reaches at any leaf node in
the search tree.

The proposed algorithm searches a feasible solution in a
leaf node in Depth-First-Search (DFS) manner. The function
DFS_BandB in Figure 5 is the recursive implementation at
level 7 in the search tree. Two values of B,y and J., are the
total bandwidth and jitter of sub-solutions from VL; to VL;_.
For each s;, = (bag, ,,,mtu; ), two constrains of Eqn. (2)
and Eqn. (3) are checked including a new solution of VL;
(lines 8-10). If either of two constraints is not satisfied, it is
pruned. Otherwise, the depth-first-search is continued with two
updated bound values (line 11).

When the search reaches at a leaf node, the function returns
true (line 6). The return value of calling DFS_BandB is rrue,
the final solution S is updated as to include s; j (line 13) and
the function returns true. Thus, the problem of AFDX-CONF
is solved by the algorithm in Figure 5. If the return value of
DFS_BandB (0, 0, 1, S) is true, a feasible solution is stored

22



Proposed mmmmm  Brute-Force s

10 b
E 8}
=
19}
2
g 6
el
(5]
N
] L
£ 4
o
z
2 b
10~60 60~110 110~160 160~210  210~260
MTC
Fig. 6. Algorithm execution time
TABLE II. THE PERCENTILE OF FEASIBLE SOLUTIONS
MTC [ 10 ~60 T 60 ~ 110 J 110 ~ 160 [ 160 ~ 210 [ 210 ~ 260

Feasible Sets | 34% | 23.6% | 401% | 540% | 62.0%

in S. Otherwise, the empty set is returned, which implies no
feasible configuration is found for a give set of virtual links.

V. PERFORMANCE EVALUATIONS

In this section, we show performance evaluation of the
proposed algorithm. First, we evaluate the execution time of
the proposed algorithm compared with the brute-force search.
In the experiments, we generate five virtual links with two
message flows in each virtual link. The payload of a message is
randomly generated from 20 to 80 bytes. The MTC or period of
a message is randomly selected among five different intervals,
as shown in Figure 6. The network bandwidth is set as 6Mbps.

For each case of Figure 6, we generate 5000 random
sets of five virtual links and measure the average execution
time of the proposed algorithm. In order to compare the
execution time, the brute-force search algorithm is also run.
In Figure 6, the execution time is normalized based on that of
the proposed algorithm in case of the first interval of MTC in
the experiments.

As shown in Figure 6, the proposed algorithm runs about
two or six times faster than the exhaustive search algorithm.
Since the proposed algorithm is based on branch-and-bound
technique, it runs faster. Table II shows the percentile of
feasible solutions among 5000 random test cases. In case of
smaller MTCs, the performance of the proposed algorithm is
more than those in bigger MTCs. As shown in Table II, most
of random test sets are infeasible in lower MTCs. In this case,
the proposed algorithm rejects the given virtual link sets in
early search steps due to the pruning condition. However, the
exhaustive search algorithm tests all possible cases.

Next, we analyze the payload bound of a message to be
schedulable. The MTC is varied from 10 to 100 bytes. We
generate 12 messages of the same requirement. The number
of virtual links is varied from 1 to 6 in order to analyze
the impact of the number of virtual links. Figure 7 shows
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the payload bound of a message by simulating the proposed
algorithm from the payload size 1 to 1471. Figure 7 shows that
the message of lower payload size than the bound is guaranteed
to be scheduled.

As shown in Figure 7, the schedulability of more virtual
links shows generally worse than that of less virtual links
for the same number of messages. It is because of jitter
and bandwidth overhead of virtual links in AFDX switches.
However, in case of lower MTCs, the schedulability of a single
virtual link shows poor since it becomes difficult to meet the
message constraint of Eqn. (1).

Let us consider the case of MTC = 100 in Figure 7. All
messages of the payload size less than or equal to 1471 bytes
are schedulable if N < 4. We measure the bandwidths and
jitters of four different number of virtual links, as shown in
Figure 8. Figure 8 implies that it is better to use a single virtual
link to send 12 messages in order to reduce the total bandwidth
and jitter. The remaining bandwidth can be used to transmit
other non-real-time network traffic in AFDX switches.

VI. CONCLUSIONS

In this paper, we defined a new problem of feasible
configurations of an AFDX switch for the purpose of meeting
the real-time requirements of all messages in avionics. Two
important parameters of BAG and MTU of virtual links are
derived by solving the problem. The proposed algorithm first
derives optimal MTUs of a virtual link for each possible BAG,
and then obtains feasible BAG and MTU pairs of multiple
virtual links. In the simulation results, the proposed scheme
is faster than the exhaustive search algorithm. And, we also
analyzed the payload bound and the effect of selection of
virtual links.

Since the AFDX network configuration becomes an im-
portant issue in avionics systems, we will investigate many
problems based on the results of this paper. For example,
we will extend the problem into multiple AFDX switches or
discuss about the routing issues through the networks.
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Abstract—The partitioning of fixed-priority hard real-time tasks
and messages in a distributed system is a well know NP-hard
problem. Therefore, there are no methods that provide an
optimal solution in polynomial time. In this paper, we propose
the Distributed using Optimal Priority Assignment (DOPA)
heuristic, which simultaneously solves the problem of assigning
task to processors and assigning priorities to tasks. DOPA makes
use of Audsley’s Optimal Priority Assignment (OPA) algorithm
to assign priorities to tasks and messages. However, in order to
use the OPA algorithm for task sets with dependencies, we first
transform the task set into a set of independent tasks by imposing
intermediate deadlines. The experimental results show how the
utilisation of the OPA algorithm increases in average the number
of schedulable tasks and messages in a distributed system when
compared to the utilisation of the Deadline Monotonic (DM)
priority assignment usually used in other works.

Keywords—real-time; distributed systems; task allocation;
priority assignment; intermediate deadlines; holistic analysis.

I. INTRODUCTION

Real-time distributed systems are present in our everyday life.
These systems range from safety critical to entertainment and
domestic applications, presenting a very diverse set of
requirements. Although diverse, in all these areas, modern
distributed applications are becoming larger and more
complex. Therefore, integrating the system’s functional
requirements to comply with their associated real-time
constraints has shown to be a challenging problem within the
real-time domain.

Hard real-time distributed systems are composed of two
main elements: (i) a set of real-time applications and (ii) a
distributed computing platform that executes such
applications. Applications are composed of a set of tasks that
communicate through messages to perform a certain
functionality  (e.g. realizing input/output operations,
processing data, etc.). On the other hand, distributed platforms
are composed of a set of processing elements (e.g. processors,
ECUs, etc.) and networks, that provide the needed
computational resources for tasks to be executed and messages
to be transmitted.

When considering real-time applications, the processing of
tasks and messages must comply with their associated time
constraints. Commonly, for applications, this time constraint is
expressed by an end-to-end deadline, which is the longest
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elapsed time a sequence of tasks and messages (an
application) is permitted to take from the time at which it was
activated until it completes its execution.

Furthermore, for a given set of applications and a given
computing platform, the main objective is to find a feasible
allocation for tasks and messages in a way that all
application’s end-to-end deadlines are met. Unfortunately, this
problem is known to be NP-hard [1]. The problem of task
allocation can be viewed as a two-sided problem: (i) finding
the partitioning of tasks and messages onto the processing
elements of the distributed system, and (ii) finding the priority
assignment for tasks and messages for that partition, so that
real-time tasks and messages are executed within their
deadlines. Therefore, a careful trade-off between the solutions
of those two subproblems needs to be taken in order to obtain
a correct global solution.

Contribution. This paper presents the Distributed using
Optimal Priority Assignment (DOPA) heuristic to find a
feasible partitioning and priority assignment for tasks in
distributed computing platforms by using the Optimal Priority
Assignment (OPA) algorithm, known as Audsley’s algorithm
[2]. The algorithm is an optimal priority assignment algorithm
for independent fixed priority tasks on uniprocessor systems.
The OPA algorithm requires tasks to be independent,
therefore, in order to use the OPA algorithm for task sets with
dependencies (applications), we first need to transform tasks
with dependencies to a set of independent tasks by imposing
intermediate deadlines. Also, the use of intermediate
deadlines makes our approach easily extensible to more
powerful task models such as multithreaded parallel real-time
models, when compared to previous approaches. Furthermore,
our simulations show how the use of the OPA algorithm
increases, in average, the number of schedulable task and
messages in a distributed system, when compared to the usual
method consisting in using the Deadline Monotonic (DM)
priority assignment [3].

Structure of the paper. The remainder of the paper is
structured as follows. Section II presents the related work,
whilst Section III introduces the system model. Section IV
presents the DOPA heuristic. Section V shows some
experimental results, and finally, in Section VI we draw our
conclusions and propose future work.
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II.  RELATED WORK

The problem of task allocation is divided in two sub problems:
finding the partitioning of tasks and messages onto the
distributed system, and finding the priority assignment for that
partition. In this section we present some relevant works that
address such problems, nevertheless restraining our attention
to the case of preemptive fixed-priority task scheduling based
approaches.

In [4], Tindell et al., addressed this issue as an optimisation
problem with the general purpose simulated annealing
algorithm. The simulated annealing algorithm is used for
iterating in a random manner, over a given allocation for tasks
and messages to processors and networks, and performs an
evaluation based on an “energy” function, which evaluates the
quality of the encountered solution (allocation). Tindell used
the DM scheduling algorithm [3] to assign priorities to
periodic tasks with constrained deadlines assuming that each
task in an application has its own deadline and period. The
latter assumption may however not always be true in real
systems.

In [5], Gutierrez et al., proposed an optimisation technique
for the priority assignment of tasks and messages in a
distributed system. They assumed a set of tasks and messages
that are statically allocated to processors and networks
(therefore, no partitioning phase is considered); thus, focusing
on the problem of assigning the priorities to the allocated tasks
and messages. Their method is based on imposing
intermediate deadlines to the tasks and messages that compose
a “sequence of actions” and then using DM to assign the task
priorities.

The problem of partitioning tasks and messages in
distributed systems is also addressed in Richard et al. [6].
They propose a solution based on branch-and-bound;
branching (enumerating) the possible paths that can lead to
and allocation, and bounding (cutting the path) whenever a
feasible schedule cannot be reached by following such a path.
Again, DM is used to assign the priorities assuming that each
task is defined by its own deadline and period. The bounding
step is performed by checking the schedulability of each
branch based on the schedulability technique for RMA derived
by Tindell et al. in [7].

In [8] and [9], the authors model the task partitioning
problem as an optimisation problem. However, this work still
assumes that each task has its own period and deadline, and it
uses DM to assign priorities.

More recently, Azketa et al. [10] addressed the problem of
task and message allocation in a distributed system by taking
hand of the general purpose genetic algorithms. They use a
genetic algorithm with a permutational solution encoding.
They initiate their genetic algorithm by assigning priorities
using the HOPA heuristic [5] which is based on DM priority
assignment [3] and iterate over different solutions by applying
crossover, mutation and clustering operations. To test
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schedulability they use the Tindell’s holistic analysis [7] and
Palencia’s schedulability tests [11, 12].

Although there are some similarities between our method
and previous works, none of the previous approaches has used
Audsley’s OPA to assign priorities to tasks in a distributed
system. As proved in [2], the OPA algorithm is optimal for the
case of preemptive fixed priority tasks, thereby implying that
if the system is schedulable with DM then OPA will also find
a priority assignment to schedule the task set. Further, DM has
been proved to not be optimal for systems where all tasks do
not release jobs simultaneously [3], which is typically the case
in distributed systems due to the task precedence constraints.
By adding intermediate deadlines to tasks, we show that the
Audsley’s algorithm can be used and that it increases the
number of schedulable task sets (i.e. applications) in
comparison with DM.

III. SYSTEM MODEL

A. Real-Time Applications

A distributed real-time system is composed of software
applications that we model as a set [ ={I},..,[;} of n
concurrent sequential applications [;with i € {1,...,n}. An
application [} is composed of a set 7; = {7; 4, ..., Ty, } Of Wy
tasks and a set of y; = {{j 1, -, fim;—1} Of n; — 1 messages,
which are executed and transmitted on processors and
networks, respectively. We assume the linear model of event-
driven distributed system [13]. In this model, each application
[; is activated by an external event e; with a minimum inter-
arrival time of T;. The arrival of an external event e; is
followed by the activation of the first task 7;; of [;. Whenever
a task 7; ; completes its execution, it sends a message y; ; to
the next task 7; ;4 and hence triggers its execution.

Each task 7; ; is characterized by its Worst-Case Execution
Time (WCET) (; ;, and each message y; ; by a transmission
time €7’ . Communications between tasks can be carried out
within the same or different processors in the distributed
system. If two tasks 7; ; and 7; ;1 communicate via a message
i j and execute in the same processor, we consider that the
message transmission time is negligible, thereby assuming that
C;;*? = 0. Also, an application I} is characterised by an end-
to-end deadline D;, which is the longest elapsed time that the
sequence of tasks and messages is permitted to take from the
time in which it is activated (e;) until it completes its
execution (time at which the last task 7; ,, in the sequence of
tasks and messages completes its execution). We assume that
D; <T;. The density §; of an application I} is given by
sk el
§ ===t and the total density of the system is

13
defined as § = Yr,er 6;.

We consider that tasks are scheduled with a preemptive
fixed-priority algorithm. On the other hand, messages are
scheduled with a non-preemptive fixed priority algorithm. We
also consider that some tasks of an application can be
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restrained to execute in some specific processors due to some
design constraints. Such constraints can be related to design
reasons, safety reasons, or to specific functionality offered by
the processors in the distributed system (e.g. sensors,
actuators, required libraries, etc.), and required for the
execution of a task 7; ; within an application [;. Therefore,
there exists a set A C I of tasks that are resource constrained
(they need to be executed in a specific processor), thus, those
tasks are statically assigned to those processors. Also, there
exist a set Y € I' of tasks that do not have any resource
constrains and can be allocated onto any processor.

B. Distributed Computing Platform

A distributed computing platform is composed of a set of
processors that provide the computing power to execute tasks,
which are connected through a fixed-priority real-time
network (e.g. a CAN network [14]). We assume a set w =
{my, .., mn} of m identical uniprocessor nodes for the
execution of the tasks, and a single shared real-time network
w for message transmission.

Figure 1 shows an example of a computing platform
composed of three processors and one real-time network.
There are three applications I}, T, and I3, each composed of
only one task (7q,,7,; and 731). Tasks 71 4,7, 1, 731 and 754
are resource constrained (thus belonging to the set A) being
pre-assigned to the specific processors 1, 2, 3 and 1
respectively. Also, there exists a list Y of unallocated tasks
T41,Ta2, Ts2 > Te1 and Tg, that can be allocated to any
processor.

List of applications

to be allocated
.

T21

Real-Time
o Network

Processor 2

T11 T31

Processor 1 Processor 3

Figure 1. List of applications to be allocated in a computing platform.

The objective is to find (i) a feasible partitioning of the
tasks constituting the applications onto the processors and (ii)
a priority assignment to the tasks in a way that all end-to-end
deadlines are met. Figure 2, shows an example of allocation
a* of tasks and messages for the unallocated applications
shown in Figure 1. By looking at Figure 2 it is possible to
notice that tasks in application I'y (T4, T4 ) are allocated to
the same processor, and therefore the message p,; can be
neglected, thereby reducing its communication cost to
€9 = 0. In the following section we present an heuristic

solving this problem.
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; =
T51 " Hs | Ts5.2
T

41 21

Real-Time
r— Network

Processor 2

T2

To2 ' He1 T61

T11 T31

Processor 1 Processor 3

Figure 2. Example of a task allocation for the system presented in Figure 1.

IV. THE DOPA HEURISTIC

The DOPA heuristic simultaneously addresses the two
interrelated sub-problems of: (i) finding the partitioning of
tasks and messages onto the elements of the distributed
system, and (ii) finding the priority assignment for that
partitioning.

A. Optimal Priority Assignment (OPA) algorithm

Regarding the problem of priority assignment, there exist
several techniques to assign priorities to a set of preemptive
independent tasks. DM [3] is the one usually considered in
every work on distributed systems. DM is optimal for
assigning priorities if there exists an instant in the schedule
where all the tasks release a job simultaneously. However, in
distributed systems tasks and/or messages have dependencies
on other tasks or messages of the same application. Hence,
because a task 7;;,, never starts its execution before the
completion of task 7; ;, 7; ; and 7; ;. will never release a job
simultaneously, thereby violating the optimality condition of
DM. One should therefore conclude that DM is not optimal
for distributed systems. On the other hand, Davis and Burns
[15] proved that the Audsley’s OPA algorithm is optimal
regarding the assignment of task priorities if there exists a
schedulability test S respecting the three following conditions:
(C1) the schedulability of a task 7;; according to S, may be
dependent on the set of higher priority tasks HP; ;, but not on
the relative priority order of those tasks, (C2) the
schedulability of a task 7;; according to a test S, may be
dependent on the set of lower priority tasks, but not on the
relative priority order of those tasks, and, (C3) for two tasks
with adjacent priority, if their priorities are swapped, the task
that has been assigned the higher priority cannot become
unschedulable according to the test S, if it was schedulable at
the lower priority.

1. for each priority level k, lowest first{

2. for each unassigned task Ty;{

3. if (7j; is schedulable at priority k according to

test VERIFY_SCHEDULABILITY(t; - m;) with all

unassigned tasks assumed to have higher
priorities){

4. assign T1j; to priority k

5. break (continue outer loop)
6. }

7. }

8. return unschedulable

9. }

10. return schedulable

Figure 3. OPA algorithm pseudocode.
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The OPA algorithm is based on three simple steps (see
Figure 3): (i) check the schedulability according to S of all
non-priority-assigned tasks by assuming they have the lowest
priority, (ii) arbitrarily chose one that respects its deadline,
and (iii) remove the chosen task from the list of non-priority-
assigned tasks and start again. To verify the schedulability
(VERIFY_SCHEDULABILITY(t;; € m;)) of the task set, we
use the schedulability analysis presented in [7]. Note however
that other tests could also be used (e. g. [11, 12]). We know
from [16] that the worst-case response time 7;; of an
independent task 7;;, scheduled with a preemptive fixed
priority scheduling algorithm is given by the following
equation:

=C Bujl ¢ 1
1, = Cy; + 7| Cab ¢y
a

Tab € HPiJ'

where HP; ; is the set of tasks with a higher priority than 7; ;
that can interfere with 7; ;. Due to the presence of the term 7; ;
on both side of (1), this equation is usually solved in an

iterative

k
k+1 _ Tij :
manner, 135 = Cyj+ Xo, e HP; [El Cqp Wwith

1 _ : : kK _ o k+1
r;,j = C; ;. The iteration stops when 77; = 17;
In a distributed time system, the worst-case response time

WCRT; ; of a task 7; j can then be computed as [7]:
j-1
WCRT,"] = T'i’]- + Z(T‘i,k + T'i?;sg (2)
k=1

where 7.9 is the response time of a message y; obtained
with a network dependent analysis such as [14]. An
application I; (and hence its constituting tasks and messages)
is deemed schedulable if WCRT; ,, < D;.

Unfortunately, this schedulability test makes the
schedulability of a task 7; ; dependent on the response times
and hence the priorities of all the other tasks and messages in
[}, thereby making OPA unusable. We therefore transform the
tasks and messages with dependencies to an equivalent set of
tasks and messages without dependencies by imposing an
intermediate deadline d; ; (d;;?, resp.) to each task 7; ; (each
message ; j, resp.) as shown in Figure 4. The intermediate
deadline d; ; of 7; ; then becomes an offset on the release of
the message y; ;, and the deadline d;;'? of p;;, becomes an
offset on the release of 7; j, ;. Therefore, we now have that:

i,j—1

3
WCRT] = dj + 77 )

{ WCRTlJ = dTnSg + TL"]'
implying that the worst-case response time of each task and
message becomes independent of the relative priority order of
higher and lower priority tasks. Now, a task 7; ; (a message
Mij , resp.) is deemed schedulable if WCRT;; <d,;
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(WCRT?*? < di9, resp.) and the three Audsley’s OPA
algorithm validity conditions (C1, C2 and C3) are respected.

The tasks and messages intermediate deadlines are
computed as a function of the application end-to-end deadline
and the tasks and messages WCETs (Cy; and ([},
respectively). For tasks and messages, the intermediate
deadlines are given by:

C: .
dij =d; % + ——2—== D; 4)
g J-1 n msg Yi
kl=1 Cige + Ci,k
msg
A" =d;; + ——2——7 D (5)
1] L] n msg i
kl=1 Cige + Ci,k

Note that from those definitions, we have thatd;,, = D;.

Hence, if all tasks (and messages) respect their intermediate
deadlines d;j, i.e., WCRT; ; < d; ;, the end to end deadline D;
of the application is also respected.

msg
diq dhrl release of p;; release of 744

1
F———— offsetofy;; ——
b—————— offsetofr,;;; ———————————————

3

Figure 4. Intermediate deadlines.

B. Partitioning Algorithm

The problem of partitioning the task set onto the processors of
the platform and assigning priorities to the tasks and messages
is solved by the algorithm PARTITION(TI ) presented in
Figure 5. The algorithm is entirely based on the following
idea; if two successive tasks 7;; and 7;;,, of the same
application I; are assigned to a same processor 7, then the
message {; ; can be ommited, thereby reducing the load on the
network and increasing the acceptable response time for the
other tasks and messages in I;. Therefore, PARTITION(T)
tries to maximize the number of successive tasks of the same
application being assigned on the same processor.

The pseudo code of the partitioning algorithm can be
understood as follows. Applications [; € I are assigned in a
non-increasing density order. Tasks in [ are considered in a
lexical order. Each task 7;; is first assigned on the same
processor than the previous task 7;;_; (if any) of the
application I}, thereby assuming that the message p;;_; is
unneeded and hence €7} = 0. If the priority assignment
(using OPA) does not succeed (i.e., the task is unschedulable
on that processor) and the next task (if any) that must be
executed in the application [ has already been assigned on a
processor 7y, then PARTITION(T') tries to assign 7;; on 1
assuming that the message y;; is unneeded and hence
C;rj?sg = 0. If the priority assignment fails again, then the

algorithm tries to assign 7; ; on any other processor in a worst-
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fit order (i.e., the processor with the smallest total density
first). Finaly, the schedulability on the network is checked.
Note that the intermediate deadlines of the tasks in I} are
recomputed at each step since their values depend on the
number of messages the application must send on the network,
i.e., the number of messages with C;*Y > 0. However, this
modification of the intermediate deadlines does not jeopardize
the schedulability of the tasks that are already assigned to
processors since, by studying Equations (4) and (5), we can
see that the intermediate deadlines increase whenever a
message is ommited (i.e., one of the terms C;}’Y becomes
equal to 0). Therefore, if the previous deadlines were
respected, the new one will also be.

PARTITION(T)

1 for all I; ordered by non-increasing §; {

2 for all 7;;€ T; {

3. assign 7;; to m| 7y €7, assuming C/;7 =0
4. call OPA_ASSIGNMENT(7;;, Tqp € Ty)

5 if OPA succeed to assign 7;; {

6 break

7

8 else if OPA fails to assign 7;; {

9. assign 7;; to m| 7yj4; €7, assuming C/;7 =0
10. call OPA_ASSIGNMENT(7;;, Tqp € i)

11. if OPA succeed to assign 7;; {

12. break

13.

14. else if OPA fails to assign 7;; {

15. for all m, in Worst-Fit order {

16.

17. assign 7;; to my

18. call OPA_ASSIGNMENT(T;;, Tqp € my)
19. 1f OPA succeeds {

20. assign message p;; to the network
21. VERIFY_SCHEDULABILITY(u;; € w)
22. if message u;; schedulable

23. break

24. else

25. return unschedulable

26. }

27. else

28. return unschedulable

29. }

30. }

31. }

32. }

32. }

33. return schedulable

Figure 5. Partitioning algorithm pseudocode.

V. EXPERIMENTAL EVALUATION

In this section we present some experimental results of our
simulations of the DOPA heuristic. Let us recall that the
DOPA heuristic simultaneously (i) finds the partitioning of
tasks and messages onto the elements of the distributed
system, and (ii) finds the priority assignment for that
partitioning. For all experiments we use the PARTITION(I')
algorithm for the partition of tasks and messages onto the
elements of the distributed system, and we use two different
priority assignment algorithms, namely DM and OPA.

One of the main objectives of this work is to demonstrate
that by using the OPA algorithm, for the case of tasks with
dependencies, it is possible to increase in average the number
of schedulable tasks and messages in a distributed system
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when compared to the utilisation of the DM priority
assignment, frequently used in other works.

For generating the applications [ and their respective tasks
7;; and messages y; ; we follow the guidelines presented in
[17] for generating random task sets for multiprocessor
systems, using the Stafford’s Randfixedsum algorithm [18].
The Randfixedsum algorithm generates a set of n values which
are evenly distributed and whose components sum to a constant
value. Thus, we use the Randfixedsum algorithm for
generating unbiased sets of applications with a fixed total
density 8;; =Y, 6; . For a given total density &, , the
algorithm returns n applications with density §;; with values
from a minimum density bound 8™ = 0.1 for each
application, and a maximum density bound §*** = 0.9. For
generating the tasks’ and messages’ densities we use again the
Randfixedsum algorithm taking as an input the previous
generated densities §; = Y(8;; + 6;;7), obtaining a set of
values &8;; =d;;/T; for tasks and &, =d;;?/T; for
messages with values from a minimum density bound for tasks

mn — 0,01 and a maximum density of

and messages u;;
ms,
messages C;; 7 and

u™ = 0.9. The WCETs of tasks C; ;,
end-to-end deadlines D; are generated as recommended in [17];
we considered that applications have implicit end-to-end
deadlines (D; = T;) following a uniform distribution. For each

experiment 100 sets are generated.

Figure 6 (a) shows the number of accepted tasks sets over
100 experiments for different total densities 6;,;. We simulate
50 applications that execute tasks and transmit messages in a
computing platform of 10 processors and 1 network. It is
possible to see that OPA in average performs better in terms of
the number of accepted task sets. For example, the OPA
algorithm accepts 52% of task sets with total system density of
9. In contrast, the DM algorithm reaches 16% with the same
system density.

In Figure 6 (b) we show the number of accepted task sets
for 100 experiments simulating 50 applications that execute
tasks and transmit messages in a computing platform
composed of 1 network and a varying number of processors.
The density is fixed to §;,; = 8. It is possible to see that OPA
in average performs better, for example, when the number of
processors is equal to 9, the OPA algorithm accepts 70% of
task sets, whilst the DM algorithm only accepts 30% of task
sets.

Figure 6 (c) shows the number of accepted tasks sets over
100 experiments, where we vary the number of applications
with a fixed total density U;,; =8 to be scheduled in a
computing platform of 10 processors and 1 network. It is
possible to see that the OPA algorithm, in average performs
better; in the range between 10 and 50 applications, OPA
always accepts more task sets than DM. For example, for the
case of 40 applications, the OPA algorithm accepts 69% of task
sets, in contrast the number of accepted tasks sets obtained by
the DM algorithm is 34%. Note that the number of accepted
task sets increases with the number of generated applications.
This behaviour can be explained by the fact that the average
density of tasks and messages decreases, thereby meaning that
more tasks can be scheduled on each processor in average.
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Figure 6. 100 experiments varying (a) the total density, (b) the number of processors, and (c) the number of applications in the system.

The effects presented in Figures 6 (a), (b), (c), can be
explained because, when DM is used for assigning priorities, it
fails more often than OPA due to its non-optimality. Therefore,
such non-schedulable tasks need to be partition onto other
processor in the distributed system, thus increasing the number
of messages in the network, which leads to an increasing
number of unschedulable systems.

VL

This paper presented the DOPA heuristic for the simultaneous
partitioning and priority assignment of tasks and messages
(applications) onto the constituting elements of the distributed
system by using the OPA algorithm known as Audsley’s
algorithm [2].

CONCLUSIONS AND FUTURE WORK

We proposed a method that imposes intermediate deadlines
to tasks and messages thus permitting the use OPA for tasks
with dependencies. Furthermore, our approach is easily
extensible to more powerful task models such as multithreaded
parallel real-time models, when compared with other works
addressing sequential dependent tasks and messages in a
distributed system. We demonstrated through simulations that
OPA increases, in average, the number of schedulable tasks
and messages in a distributed system, when compared to the
DM algorithm, when using the same partition algorithm.

We are currently working on the extension of the DOPA
heuristic for considering multithreaded parallel real-time
models and the inclusion of more complex topologies of
communication networks.
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Abstract

This paper summarizes key research findings in
the area of real-time performance and predictabil-
ity of multimedia applications in cloud infrastruc-
tures, namely: outcomes of the IRMOS European
Project, addressing predictability of standard vir-
tualized infrastructures; Osprey, an Operating Sys-
tem with a novel design suitable for a multitude of
heterogeneous workloads including real-time soft-
ware; MediaCloud, a novel run-time architecture
for offering on-demand multimedia processing facil-
ities with unprecedented dynamism and flexibility
in resource management.

The paper highlights key research challenges ad-
dressed by these projects and shortly presents ad-
ditional questions lying ahead in this area.

1 Introduction

The continuous evolution of computation and com-
munication technologies is causing a paradigm
shift in our own idea of computing. Indeed, the
widespread availability of broadband connections is
simply leading to the end of the Personal Computer
era, marking the beginning of a new era where com-
puting is mostly distributed. Users not only recur
to “the network” to retrieve contents. They also
store and manage their data remotely, keeping it
accessible from a variety of heterogeneous devices
and widespread locations. Users exhibit increas-
ingly challenging requirements on the computing
capabilities remotely accessible, not limiting them-
selves to delegate off-line computations to remote
servers, but rather expecting more and more in-
teractive and real-time applications to be readily
available on-demand. This is witnessed by the in-
creasing use of on-line collaborative document edit-
ing or video authoring services, for example.
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Being a major driver to the Cloud Computing
model, a key role in the new panorama is being
played by wirtualization. With the possibility to
host multiple virtualized machines seamlessly onto
the same physical hardware, the possibility to cre-
ate virtual network overlays abstracting away from
the actual network topology, and the possibility
to dynamically live-migrate virtualized machines
while they are running, virtualization technologies
constitute an enabler for flexible and efficient man-
agement of physical resources in data centers.

However, an application domain where the
provisioning of interactive on-line services with
nearly “real-time” responsiveness remains challeng-
ing from a technical viewpoint is the domain of
multimedia. Indeed, multimedia contents are char-
acterized by an isochronous delivery model, where
for example audio or video frames need to be de-
livered at perfectly regular intervals. However, the
network over which most of these contents are dis-
tributed nowadays, the Internet, has not been de-
signed with predictability in mind. Furthermore,
often multimedia servers that need to deliver con-
tents to many users concurrently make use of soft-
ware technologies (e.g., Operating System, middle-
ware, etc.) that have been designed for best-effort
performance, not for predictable execution. Even
more, the use of multimedia compression algo-
rithms leads to a naturally fluctuating networking
and computing workload that is usually reflected
in variable execution and transmission times. Last,
but not least, the use of virtualization technolo-
gies increases further the unpredictable behaviors
in the execution of services, as due to the increased
degree of sharing of physical resources (particularly
computing and networking) among different (often
heterogeneous) applications. The overall outcome
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is an irregular, randomly varying and unpredictable
delivery of multimedia contents to end users, mak-
ing it very difficult to adhere to precise QoS speci-
fications in Service Level Agreements (SLAs) [13].

2 Related Work

The problem of guaranteeing stable Quality of Ser-
vice levels to cloud and distributed applications has
been investigated on multiple levels.

The performance implications of data move-
ments have received a lot of attention in the cloud
environment, e.g., for proximity reasons [27] and
bulk data migration purposes [16]. Placement of
computations in large distributed clouds was hy-
pothetically evaluated in [9]. When dealing with
deployments spanning geographically distributed
data centers, it has been proposed [24] to consider
network requirements for the selection of comput-
ing locations across the WAN under various sce-
narios. In [30], authors show the benefits of con-
sidering the network topology and overall demand
for response times when load-balancing workloads
across neighboring data centers. In [6], it is pro-
posed to leverage end-to-end application-level la-
tency expression specifications for optimal place-
ment across geographically distributed locations.
In [3], a placement algorithm is proposed that finds
a mapping for components of an application with a
minimal diameter of the spanned network graph.

Concerning the isolation of virtualized software
on the computing level, authors proposed [20] to
use an EDF-based scheduling algorithm [21] for
Linux on the host to schedule Virtual Machines
(VMs). Unfortunately, the proposed scheduler is
built into a user-space process (VSched), leading
to unacceptable context switch overheads. Further-
more, VSched cannot properly guarantee temporal
isolation in presence of a VM that blocks and un-
blocks, e.g., as due to I/O. IRMOS has improved
over these approaches (see Section 3).

Some authors investigated [14] the performance
isolation of virtual machines, focusing on the ex-
ploitation of various scheduling policies available
in the Xen hypervisor [8]. Furthermore, various en-
hancements to the Xen credit scheduler have been
proposed [12] to address various issues related to
the temporal isolation and fairness among the CPU
share dedicated to each VM. Adaptive CPU allo-
cation has been proposed [23] to maintain a sta-
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ble performance of VMs, using application-specific
metrics to run the necessary QoS control loops.

Concluding, while various solutions have been
proposed to the problem of performance isolation
in virtualized environments, these are either not
focused on critical parameters that are necessary
for running real-time applications, or they lack of
a proper low-level real-time scheduling infrastruc-
ture, which is needed for supporting temporal isola-
tion among concurrently running software compo-
nents. The following section explains how IRMOS
addressed these issues.

3 IRMOS/ISONI Platform

The IRMOS European Project! has investigated
on how to enhance execution of real-time multi-
media applications in distributed virtualized infras-
tructures. The IRMOS Intelligent Service-Oriented
Networking Infrastructure (ISONI) [28, 24] acts as
a Cloud Computing TaaS provider, managing and
virtualizing a set of physical computing, networking
and storage resources available within a provider
domain. One of the key innovations introduced by
ISONT is its capability to ensure guaranteed lev-
els of resource allocation for individual hosted ap-
plications. In ISONI, each distributed application
is specified by a Virtual Service Network (VSN), a
graph whose vertexes represent Application Service
Components (ASCs), deployed as VMs, and whose
edges represent communications among them. VSN
elements are associated with precise computing and
networking requirements. These are fulfilled thanks
to the allocation and admission control logic pur-
sued by ISONI for VM instantiation, and to the
low-level mechanisms shortly described in what fol-
lows. A comprehensive ISONI overview is out of the
scope of this paper and can be found in [28, 24].

Isolation of Computing. In order to provide
scheduling guarantees to individual VMs scheduled
on the same system, processor and core, IRMOS in-
corporates a deadline-based scheduler [7] for Linux.
It provides temporal isolation among multiple pos-
sibly complex software components, such as entire
VMs. It uses a variation of the CBS algorithm [1],
based on EDF, for ensuring that each group of pro-
cesses/threads is scheduled on the available CPUs

lInteractive Real-time Multimedia Applications on
Service-oriented Infrastructures. More information is avail-
able at: http://www.irmosproject.eu.
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for a specified time every VM-specific period.
Isolation of Networking. Isolation of the traffic
of independent VMs within ISONTI is achieved by a
VSN-individual virtual address space and by polic-
ing the network traffic of each deployed VSN. The
virtual addresses overlay avoids unwanted crosstalk
between services sharing physical network links.
Mapping individual virtual links onto diverging
network paths allows for a higher utilization of
the network infrastructure by mixing only compat-
ible traffic classes under similar predictability con-
straints and by allowing selection of more than just
the shortest path. Traffic policing avoids that the
network traffic going through the same network el-
ements causes any overload leading to an uncon-
trolled growth of loss rate, delay and jitter for the
network connections of other VSNs. It is impor-
tant to highlight that ISONI allows for the specifi-
cation of the networking requirements in terms of
common and technology-neutral traffic characteri-
zation parameters, such as the needed guaranteed
average and peak bandwidth, latency and jitter.
An ISONI transport network adaptation layer ab-
stracts from technology-specific QoS mechanisms
of the networks, like Differentiated Services [5], In-
tegrated Services [32, 31] and MPLS [25]. The
specified VSN networking requirements are met by
choosing the most appropriate transport network,
among the available ones. More detailed infor-
mation on QoS provisioning between data centers
within an ISONI domain is given in [29]. Other
interesting results from the research carried out in
IRMOS include algorithms for the optimum place-
ment of distributed virtualized applications with
probabilistic end-to-end latency requirements [18],
a probabilistic model for dealing with workload
variations in elastic cloud services [17] and the use
of neural networks for estimating the performance
of VM execution under different scheduling config-
urations [19]. The effectiveness of IRMOS/ISONI
has been demonstrated, among others, through an
e-Learning demonstrator [10].

4 Ongoing and Future Work

The IRMOS project has addressed various chal-
lenges in the area of predictable execution of virtu-
alized multimedia applications. However, a num-
ber of problems still remain unaddressed. For ex-
ample, these workloads would benefit from lighter
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run-time environments than VM instances contain-
ing full-fledged OSes, as used in current cloud in-
frastructures. These are among the motivations of
MediaCloud [11] and Osprey [26], two projects from
Bell Labs described below.

MediaCloud. Handling the predicted growth of
video and media traffic is one of the key challenges
future generation networks need to address. Up to
now, cache-assisted delivery schemes [15] enabled
the networks to scale with the data traffic imposed
by video centric services. However, video delivery
is becoming more tailored to the specific user ac-
cessing it (e.g., user-specific ads). Moreover, future
video centric media services will see more people ac-
tively producing content. Also, the area of on-line
gaming has a growing interest in providing highly
dynamic and interactive multimedia. With more
contents dynamically produced, customized and ac-
cessed from mobile devices, intermediate processing
of media streams will need an unprecedented degree
of dynamism and adaptability that go beyond the
possibilities of today’s virtualized infrastructures.

Indeed, the contemporary cloud computing
model is based on virtual machines that are stat-
ically allocated ahead of time, before it is known
who accesses which contents and from where. Fur-
thermore, only relatively small and infrequent ad-
justments can be done dynamically, as due to the
unavoidable “inertia” behind migration of VMs,
whose contained OSes often amount to GB of data
for the OS volatile memory and tens of GB for
the VM disk image. In consequence, today’s ap-
plications are typically designed in a way, that
data has to be moved through the network to
where the application is executed [27] which proves
costly for live multimedia contents. We believe that
this paradigm will change in the future, meaning
that an intelligent infrastructure will also force the
movement of applications in the line of data and de-
mand sources. Therefore we are working on ways to
optimize the delivery of (real-time) media services
on top of a distributed cloud environment.

The MediaCloud Project [4] is investigating novel
virtualized computing paradigms specifically tied
to multimedia applications, where the location of
media processing can be quickly altered at run-
time, when sources and destinations of the mul-
timedia applications are known. Moving towards a
largely distributed service execution paradigm re-
quires software to be split up into fine-grained ser-
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vice components. Designing a service from a plu-
rality of atomic service components requires an on-
line set-up of how those components interact, that
is, which media flows the components exchange at
service run-time. The customer of such a service
should not need to care about the location of ex-
ecution in the network. MediaCloud takes care of
finding best-fit resources during service run-time,
when sources and sinks of relevant media streams
are known, resulting in reduced end-to-end service
latencies and offloaded networks by keeping traffic
local. The execution framework ensures fluent me-
dia flow forwarding between service components.
This deferred allocation puts the foundation for
very efficient management of resources. However,
one of the main challenges to address is the instan-
tiation of the required media processing functions
that needs to be performed so quickly as to not im-
pact the QoE for the end users. The achievement
of such a goal is severely obstructed by the use of
machine virtualization. Investigations and exper-
iments have shown that using fully-fledged oper-
ating systems inside a virtual machine as execu-
tion containers can hardly offer the required per-
formance, scalability and efficiency for running dis-
tributed real-time media-centric services [4].

MediaCloud introduces a lightweight execution
container design, which is fully optimized for sup-
porting efficient execution of fine-grained service
components. These can be added and deleted and
media flows can be moved between, added to or
removed from components at run-time. Such dy-
namic mechanisms in combination with the ability
to move service components between execution re-
sources in the network during run-time, build the
basic foundation for an efficient, top-performing
and scalable service execution on distributed pro-
cessing resources in the network.

MediaCloud introduces a novel flow driven ex-
ecution environment optimized for the processing
of media functions, which departs from traditional
software stacks being deployed in today’s virtual-
ized cloud infrastructures.

Preliminary measurements [11] performed on the
prototype implementation proved that MediaCloud
is able to provide the envisaged level of agile re-
source allocation and utilization. It supports in-
stantiation of media processing functions, as well
as re-assignment of media processing components
across processing resources, in the time-frame of 2
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to 3 milliseconds, in some investigated scenarios.

Even highly optimized VM-based systems can

accomplish these tasks in seconds but not in mil-
liseconds. Additional investigations indicate that
MediaCloud is also able to achieve much more ef-
ficient resource utilization. A collection of coop-
erative media processing tasks executed on a Me-
diaCloud controlled processing resource consumed
only about half of the resources needed when do-
ing the same job by making each task a process on
the Linux OS. At the same time, we could show
significantly better end-to-end service delay figures
for a collection of media processing components ex-
ecuted on MediaCloud despite its lower resource
utilization.
Osprey. As discussed above, while bringing a
number of advantages in terms of ease of (and seam-
less) management of software, machine virtualiza-
tion in itself is also constituting the root cause of
many technically unnecessary overheads in today’s
cloud applications. Indeed, virtualized infrastruc-
tures have replicated software layers providing sim-
ilar functions, such as resources management and
allocation (e.g., CPU scheduling, memory and pe-
ripheral management). Also, many attempts to re-
duce such overheads so as to obtain a smarter re-
source management among the hypervisor and the
hosted guest OSes usually result in the increase of
the degree of para-virtualization of the guest OSes,
reducing the advantages of full machine virtual-
ization (e.g., seamless server consolidation and in-
creased isolation/security).

As a consequence, we claim that more attention
should be devoted to OS virtualization instead, a
technique allowing for a single Operating System to
create multiple isolated “domains”, where indepen-
dent software can be deployed. For example, the
Linux LXC project? and FreeBSD Jails® provide
such a mechanism. However, even though apply-
ing QoS-aware (or real-time) resource management
techniques in a General-Purpose OS (GPOS) is
principally possible, as shown in IRMOS by patch-
ing the Linux kernel with a real-time scheduler [7],
nonetheless this leads to a suboptimal solution from
a number of viewpoints. Still, we keep having repli-
cated functionality among the hypervisor and guest
OSes. Furthermore, there are resource wastes due

2More information is available at: http://lxc.sf.net.
3More information is available at: http://www.freebsd.
org/doc/en\_US.IS08859-1/books/handbook/jails.html.
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to the unawareness of the host and guest sched-
ulers, i.e., in order to guarantee certain real-time
performance levels, more resources need to be al-
located than strictly needed, because of the hierar-
chical composition of schedulers [2]. Furthermore,
a GPOS is designed for a relatively low number of
processes/cores and tasks to handle. However, a
big server in a virtualized data center may easily
include tens/hundreds of cores in a single machine.
A nowadays GPOS does not have the necessary de-
gree of scalability and flexibility in configuration
that allow for an efficient management of resources
in these conditions.

Osprey [26] is a new OS under development
at Bell Laboratories suitable for a multitude of
future computing scenarios, including: embed-
ded systems; cloud-hosted real-time multimedia
applications with tight timing requirements and
highly fluctuating and horizontally scalable re-
source requirements; future data-intensive and
high-performance applications. Osprey includes
mechanisms for scalable, low-overhead and energy-
aware resources management and scheduling, sup-
porting predictable execution. The OS can be de-
ployed with a very small memory footprint and a
lightweight set of functionality, so as to fit within
embedded devices dealing with multimedia (e.g.,
smart phones, set-top boxes, smart TVs, etc...),
and very fast boot-up times, so to reduce energy-
consumption due to stand-by modes. Osprey can
be deployed within network elements, such as base
stations, routers, firewalls. In cloud computing en-
vironments, Osprey is suitable both for thin clients
and for provider-side run-time environments for fu-
ture cloud applications. It includes OS-level vir-
tualization, and an OS architecture featuring a
very small micro-kernel, just capable of switching
between address spaces and fielding system calls,
traps and interrupts. It uses asynchronous com-
munication primitives among core OS components
and for user-kernel space interactions, reducing un-
needed overheads. Also, it includes into the core
OS mechanisms for check-pointing, migration and
recovery of processes, enabling fault-tolerance.

Finally, Osprey integrates Pepys [22], a novel net-
working protocol for content distribution, with na-
tive and efficient support for named replicated con-
tents and mobile users. It also avoids unneeded
copies of data across the network stack, enabling
high-performance data-intensive applications.
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5 Conclusions

In this paper, key research efforts in the area of real-
time performance and predictability for multimedia
applications in cloud infrastructres have been sum-
marized, along with some of the research challenges
that deserve further attention, and a short overview
of ongoing research projects promising to address
these challenges.
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Abstract

Resource allocation in clouds is mostly done as-
suming hard requirements, time-sensitive applications
either receive the requested resources or fail. Given the
dynamic nature of workloads, guaranteeing on-demand
allocations requires large spare capacity. Hence, one
cannot have a system that is both reliable and efficient.

To mitigate this issue, we introduce service-level
awareness in clouds, assuming applications contain
some optional code that can be dynamically deac-
tivated as needed. We propose a resource manager
that allocates resources to multiple service-level-aware
applications in a fair manner. To show the practi-
cal applicability, we implemented service-level-aware
versions of RUBIS and RUBBoS, two popular cloud
benchmarks, together with our resource manager. Ex-
periments show that service-level awareness helps in
withstanding flash-crowds or failures, opening up more
flexibility in cloud resource management.

1. Introduction

Cloud computing radically changed the manage-
ment of data-centers [5]. In the past, machines used
to have one specific purpose. The need for a new
functionality, such as a new web application, implied
the purchase of a new Physical Machine (PM). This
tendency resulted in poor resource utilization and en-
ergy waste. This issue was further aggravated by the
growing number of cores per PM, driven by the end
of frequency scaling, which increased the amount of
unused hardware per node. However, thanks to ad-
vances in cloud computing technologies, applications
are now wrapped inside Virtual Machines (VMs) and
consolidated onto fewer PMs [20].

As a result, resource management becomes a key
issue. Specifically, it is crucial to decide how the
available capacity is distributed among applications to
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ensure that on-demand resource requests are satisfied
given the available hardware. In this area, there has
been a tremendous amount of work, mostly assuming
that applications are time-sensitive — lengthy responses
may lead to dissatisfied users — and their resource
requirements are not flexible — the application is either
given the needed amount of resources or fails. Com-
bined with the fact that most cloud applications have
dynamic resource requirements [23], this imposes a
fundamental limitation to cloud computing, which de-
crease its flexibility: To guarantee on-demand resource
allocations, the data-center needs large spare capacity,
leading to inefficient resource utilization.

For increased resource management flexibility, we
propose introducing Service-Level (SL) awareness in
clouds. SL aware applications are characterized by a
dynamic parameter, the service-level, that monotoni-
cally affects both the end-user experience, as well as
the computing capacity required by the application. For
example, online shops offer end-users recommenda-
tions of similar products they might be interested in.
No doubt, recommender engines greatly increase user
experience. However, due to their sophistication, they
are highly demanding on computing resources [18]. By
selectively activating or deactivating the corresponding
code, proportionally to the service-level, resource con-
sumption can be controlled and data-center overload
can be avoided at the expense of end-user experience.

SL awareness opens up the possibility to deal
predictably and efficiently with unexpected events.
Unexpected peaks — also called flash crowds —
may increase the volume of requests by up to 5

This work was partially supported by the Swedish Rescarch Council
(VR) under contract number C0590801 for the project Cloud Control
and through the LCCC Linnaeus Center. Also, we received partial
support from the EU project VISION Cloud under grant agrecment
no. 257019, the Swedish Government’s strategic effort eSSENCE
and from the ELLIIT Excellence Center.
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times [3]. Similarly, unexpected failures reduce the
capacity of the data-center until they are repaired. Also,
unexpected performance degradations may arise due to
interference among co-located applications [20]. These
phenomena are well-known and software is readily
written to cope with them, using techniques such as
replication and dynamic load balancing, as long as
resource provisioning is sufficient [2, 15]. However,
given the short duration of such unexpected events, it
is often economically unfeasible to provision enough
capacity for them. On the contrary, using SL aware-
ness, the infrastructure can simply ask applications to
temporarily reduce their requirements. Consequently,
end-user experience is reduced, since the optional code
is not executed. However, delivering partial content in
a timely manner is better than overloading the data-
center and rendering hosted applications unresponsive.

In this article we build the necessary software
infrastructure to support SL-aware cloud applications.
We focus on the resources of a single PM, leaving
multiple-PM extensions for future work. We assume
that the application developer followed the guidelines
to produce SL-aware application presented in Sec-
tion 2. We propose a Resource Manager (RM) that
coordinates the resource allocation among applications
competing for the same resources (Section 3). The
highlight of our contribution is that the design is
backed up by theoretical results from game theory.
Our system provides specific guarantees on desirable
properties such as convergence and fairness among the
applications, which translates to withstanding capacity
shortages predictably. We evaluate our approach, in
Section 4, using two well-known cloud benchmark
applications, RUBIS [24] and RUBBoS [4], that are
extended with SL-aware recommender engines. To
foster further research and pursue repeatability we have
made all source code publicly available!.

2. Application model

In this section we describe the application model
that we expect developers to follow. We assume
that every application 7 is composed of time-sensitive
requests, which have to be executed before a soft
deadline expires: Exceeding it should be minimized,
to avoid user dissatisfaction. As an example, such
applications can be made Service-Level (SL)-aware,
by marking a part of the request as optional. Being
able to run optional computations is desirable, as
they would improve end-user experience, however,
deactivating them is preferred to missing a deadline.
Let the probability of executing optional computations
between time? k and k4 1 be equal to the SL of the
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application Af Consequently, the capacity required by
the application is proportional to cﬁ“

Every application is requested to regularly update
the Resource Manager (RM) about its performance.
More precisely, a matching value respecting three
properties should be computed. First, the matching
value should be close to zero when the assigned
resources are perfectly matched with the current SL
of the application. Second, if the matching value
is positive, the resources assigned to the application
are abundant and the application can compute at a
higher SL, or the amount of assigned resources can
be reduced. Third, and dual, if the matching value is
negative, either more resources have to be provided or
the application should reduce its SL to avoid missing
deadlines.

For the application model described above, we
chose to compute our matching value fik as follows:

fi=1-1/n ()
where ; is the desired deadline and t{‘ is the maximum
response-time of requests served from k— 1 to k. The
matching value fik is the only value that the application
has to communicate to the RM. It is easy to prove that
our choice respects the properties described above.

Our framework can exploit the adaptivity of appli-
cations that change their SL to offer an overall better
performance. Each adaptive application i may change
the SL it runs at, as a function g; of the current
performance, called the update rule. At time j the
application i updates its service level according to

st =gils] ) @)
that can be different for each application. This internal
feedback loop belongs to the application and the RM is
not informed about its behavior, nor about its execution
interval (the distance between j and j+ 1). Examples
of how to design such loop can be found in [17]. As
a result, both the SL s{ and the update rule g; are
private to the application, i.e., the RM is not informed
about them. This assumption allows the RM to run in
linear time with respect to the number of applications,
resulting in a lower overhead compared to a complex
optimization approach where the RM also selects the
SLs of the applications. Moreover, this allows appli-
cations to customize their definition of the SLs and
their update rule. Two proposals for update rules are
described in [17]. Note that our framework allows
application to be non-cooperative, i.e, SL-unaware, as

!GitHub repository: https:/github.com/cristiklein/cloudish
2Throughout, time is assumed discrete and denoted with k or j, while
i always represents the application.
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most existing applications are. If no matching value is
communicated, the RM simply assumes it to be zero.

To clarify the above concepts, we sketch an e-
commerce website as an example of an SL-aware
application. We consider the visualization of a prod-
uct’s page as one request. The optional code of such
a request consists in retrieving recommendations of
similar products. For each request, besides retrieving
the product information, the application runs the rec-
ommender engine with a probability s{ . Increasing s{
increases the amount of served recommendations, thus
increasing end-user experience, but also the capacity
requirements of the application. To avoid saturation,
the application is made self-adaptive by controlling the
parameter s{ so as to keep the maximum response-time
around a configured deadline.

One of the main differences between this work and
similar research in the context of embedded systems [7,
19] is that we do not assume anything about the
application’s behavior, thus, the RM does not have
access to the SL update rules. In fact, our framework
is completely general with respect to the choice of g;.

3. Resource management

The role of the RM is to select the capacity of
the Physical Machine (PM) that each application is
allowed to use. In many works cited in Section 5,
cloud resource allocation is done based on monitored
resource usage. However, this approach cannot be used
to support SL-aware applications. For example, when
an application’s CPU usage is low, without additional
information, the RM cannot distinguish whether the
application is abundantly provisioned and runs at max-
imum SL, or insufficiently provisioned but runs at
low SL to compensate. Therefore, our RM does not
directly monitor the resource usage of the applications
but uses information on the applications’ performance
that are conveyed through the matching value defined
in Eq. (1)> without needing to know the SLs of the
applications.

Let us now describe the RM’s behavior. We denote
with ¢k € [0,1] the capacity assigned at time k to
the i-th application relative to the total capacity C of
the PM. At initialization, the RM sets the capacities
to c? = 1/n where n is the number of applications.
Subsequently, at the beginning of each control interval,
it first retrieves measurements for all the matching
values fik — as defined in Eq. (1) — then updates
each capacity according to

E g (ﬁ—cf-zf:;) ®

p
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where €., is a design constant. Given that initially
Y, c? =1, one can prove through induction that:
Yi=1 €5
i
i.e., the RM enforces that the total allocated capacity
does not exceed the available one. Since the matching
values of the applications are closer to zero when the
resources they receive match their SLs, the new alloca-
tion favors the applications that are more distant from
their target performance values — whose matching
values are more negative. The new resource allocation
reflects the relative distance between the applications’
performance. Finally, the computed relative capacities
cf? are multiplied by the total capacity C, to obtain
the absolute values CX. The RM itself needs to make
sure that it gets enough resources to function correctly,
either by reserving some capacity for itself, or by run-
ning with a higher priority than the applications. The
RM’s complexity is linear with respect to the number
of applications, which allows its implementation to
have low overhead.

Let us summarize the convergence analysis of the
designed system; detailed proof can be found in [7,
Section IV]. Using game-theory and treating applica-
tions as players bidding for resources, it can be shown
that the RM allocations converge to a stationary
point, that is characterized by the following property:
Applications are either performing sufficiently well,
which means that their matching values are close to
zero, or are poorly performing but already operate at
minimum service level. It was also proven that if a
stationary point where all the matching values of the
running applications are driven to zero exists, this point
is reached. Moreover, the RM ensures fairness among
applications. Whenever the applications have similar
definition for their matching values, the framework
theoretically guarantees that, in case of overload, the
resources assigned to the applications converge to
equal values. In other words, applications contribute
equally to dealing with the overload.

4. Experimental evaluation

Experimental setup. Our testbed is a single PM
equipped with two AMD Opteron™ 6272 processors*
and 56 GB of memory, which hosts several Virtual
Machines (VMs). We used Xen 4.1.2 as a hypervisor
and Ubuntu 12.04.2 LTS 64-bits with Linux kernel

3 As long as the matching value respects the three introduced proper-
ties, its formulation can be changed.
42100 MHz, 16 cores per processor, no hyper-threading
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Figure 1: Resource manager and two applications.

version 3.2.0, both for the privileged Domg and the
unprivileged Domy VMs. Every unprivileged VM is
configured with 4 GB of memory and a variable
number of virtual CPUs. The number of virtual CPUs
is determined as a function of the cap parameter
— a cap of 400 means that the VM has exclusive
access to 4 cores of the PM, while with cap = 50
the VM has access to a single core of the PM, but
only for half of the time. We deployed our SL-aware
versions of RUBIS and RUBBoS, each inside a single
VM among Domy, and the RM inside Domgy. Each
application’s VM contains the self-adaptive version of
the application and all tiers belonging to it — Apache
web server, PHP interpreter, MySQL server. Since we
focus on CPU allocations, we ensured that the database
could be fully cached in memory.

Experimental methodology. To simulate the
users’ behavior, we dynamically select a think-time
and a number of users. Each user runs an infinite
loop, which waits for a random time and then issues
a request. The random waiting time is chosen from
an exponential distribution, whose rate is given by the
think-time parameter. Since we are interested in study-
ing how well the framework controls CPU resources,
we made sure that network or disk did not influence
our results. Therefore, we ran our workload generator
inside Domg on a dedicated core. Furthermore, we dis-
abled logging and made sure that each VM had enough
memory to keep the whole database in-memory. In-
deed, disk activity measured during the experiments
was negligible. The RUBiS and RUBBoS applications
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are made SL-aware as described in [17], with desired
deadlines of 1 and 0.5 seconds, respectively.

The platform is limited to 4 cores of the PM,
on which we deploy both the SL-aware RUBiS and
RUBBoS. Their caps are selected by the RM, as
described in Eq. (3), based on the matching values they
send, computed according to Eq. (1). The RM’s control
period is set to 5 seconds and €, is 0.2. During the
experiments, we vary the number of users accessing
the two services at time 200, 400, 600 and 800, and
observe the behavior of the RM and applications.

Results. Figure 1, displaying the results, is struc-
tured as follows. Four metrics are plotted as a function
of time for each of the two applications: the cap
chosen by the RM, the matching value, the SL and
the maximum user-perceived latency. The vertical bars
represent time intervals during which the number of
users is kept constant, with values listed on top. At time
instant 0, the experiment starts in its default configura-
tion: Each application is allocated half of the platform
and both SLs are 0.5. Since the load on RUBBoS is
low, it increases the SL to maximum. Similarly, the
adaptive RUBiS will try to increase the SL, however,
it has insufficient resources to do so immediately. The
RM detects this conditions, through the transmitted
matching value, and rebalances the platform, so as
to reduce RUBBoS’s cap and increase RUBiS’s cap.
Thanks to this, the system reaches a configuration in
which both applications may run at maximum SL. At
time instant 200, we increase the number of RUBBoS
users. RUBBoS reacts to avoid overload and reduces
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the SL. Furthermore, the RM increases its cap and
decreases RUBiS’s cap. RUBIS reduces its SL to deal
with the new resource allocation. Thus, the system ap-
proaches a stationary point, in which the performance
requirements of both applications are satisfied. Indeed,
both RUBIS and RUBBoOS users experience maximum
latencies around the configured desired deadline of
each application (1 second and 0.5 seconds). Similarly,
new stationary points are reached after the changes in
number of users occurring at 400, 600 and 800.

To further test the fairness of the system, we con-
ducted an experiment with 4 SL-aware applications, 2
RUBIS and 2 RUBBoS VMs, and a platform consisting
of 8 cores. As can be seen in all intervals of Fig. 2,
applications that do not run at full SL are assigned
equal caps, whose value we call fair cap. In other
words, despite targeting different desired deadlines and
executing different code, applications that reduce their
SL to deal with the infrastructure’s overload contribute
with an equal amount of resources to overload reduc-
tion. This is easily observed for application 1, 2, 3
and 4 in the 4th interval, whose caps settle around
200 or applications 2, 3, 4 in the 5th interval, whose
caps settle around 230. Some applications may be able
to run at full SL with fewer resources than the fair
cap. For these applications, their cap is reduced to
the minimum value which allows them to run at full
SL. Thus, such applications contribute with even more
resources to overload reduction, without sacrificing
their SL. For example, application 1 in the 5th interval
runs at full SL with a cap around 98, which is smaller
than the fair cap of 230.

Note that in both Figs. 1 and 2, latencies may
temporarily increase above the desired deadline. This
is expected, since applications continuously try to max-
imize their service-level, hence, latencies may shortly
overshoot. To conclude, we experimentally showed that
the RM behaves as theoretically designed, avoiding
overload while respecting fairness among applications.

5. Related work

Managing resources in clouds is a challenging task.
Resource management schemes are either applica-
tion or infrastructure-centric. Performing application-
centric resource allocation (e.g. [6, 8, 26]) means
deciding the right amount of resources to allocate
avoiding under- or over-provisioning. However, appli-
cations are not cooperative and cannot reduce their
requirements if resources are congested. In this way,
the limitations of the underlying infrastructure are
neglected, taking only the application’s point-of-view.

Application-centric allocation can be combined
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with game theory. For example, Ardagna et al. [1]
studies resource allocation in which users bid for
resources and the provider sets the price to maximize
his revenue. A solution which converges to a Nash
equilibrium is proposed. Sharma et al. [25] proposes
Kingfisher, a system that tries to minimize the cloud
tenant’s deployment cost while reacting to workload
changes. However, none of these works take into
account the capacity limitations of the cloud provider.
Although some works deal with performance dif-
ferentiation for multiple classes of clients [21], to our
knowledge, the only cloud application that comes close
to being SL aware is Harmony [9]. It adjusts the
consistency-level of a distributed database as a function
of the incoming end-user requests, so as to minimize
resource consumption. This is a specific example of
SL awareness in cloud applications, and the adaptation
strategy is not reflected in the resource allocation.
Infrastructure-centric resource allocation strategies
like [12, 27] mostly regard applications as non-
cooperative “black-boxes”, with hard resource require-
ments. Among the different contributions to the area,
we most closely relate to those dealing with over-
subscription (also called over-booking) [28]. In [11,
22] the RM is assumed to know the minimum ap-
plication requirements a priori, which is not a valid
assumption in a cloud environment. In [16], application
requirements are modeled as random variables and
statistical analysis is applied to avoid data-center over-
load. In [14] the approach is extended with correlation
coefficients between the requirements and portfolio
theory is used to increase over-subscription, while
controlling the overload risk. However, in both of
these works no remedy is given to overload conditions,
besides having to pay a penalty to the user. A possible
solution is presented in [29] by allowing the provider
to suspend the least “important” VMs. However, this
solution may be unacceptable when the VMs are
hosting interactive, Internet-facing applications.
SL-awareness can be an alternative or a comple-
ment to other techniques. For example, out-scaling
is often proposed as a solution to temporary lack of
capacity [13] — requesting VMs from a public cloud
provider, such as Amazon EC2 or Rackspace, effec-
tively creating a hybrid cloud. SL awareness can be
an initial, temporary solution, during the time interval
when out-scaling is set up, or an alternative, whenever
out-scaling is not an option such as budget constraints
or privacy concerns. In fact, with out-scaling, besides
the cost for renting the VMs, the owner would also
have to pay the cost of transferring her data onto
the public cloud and back into the data-center after
the unexpected condition expired. Also, the owner
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may deal with sensitive data, such as company know-
how, credit card transactions, user profiles, that are
not transferable outside the private data-center. Finally,
cloud providers themselves have limited capacity and
even Amazon EC2 — one of the largest computing
inventories — can run out of capacity [10].

To the best of our knowledge, this is the first
work that deals with SL-aware cloud applications, inte-
grating them with resource allocation. Existing papers
either do not study how such applications change their
SL and interact with the infrastructure or how the
infrastructure coordinates multiple such applications.

6. Conclusion

In this paper we discussed a proposal for resource
allocation to service-level aware cloud applications.
We proposed a game-theoretic resource manager to
coordinate the demands of multiple applications in a
predictable and fair way. These applications can reduce
the burden they inflict on the cloud infrastructure,
therefore cooperating to the better management of the
available resources, in particular to avoid data-center
overload. We implemented the framework and tested
it with real-life experiments, demonstrating that we
allocate resources fairly to the running applications.
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