
2nd International Workshop on

Real-time and distributed

computing in emerging

applications

REACTION 2013

Co-located with IEEE RTSS

Vancouver, Canada

December 3rd, 2013

Marisol GARCIA VALLS and Tommaso CUCINOTTA Editors

❘❊❆❈❚■❖◆ ✷✵✶✸ ✐✐

❚❤✐s ♣❛❣❡ ❤❛s ❜❡❡♥ ❧❡❢t ✐♥t❡♥t✐♦♥❛❧❧② ❜❧❛♥❦✳

Message from the General Chairs

A number of challenges to achieve temporal predictability are faced by distributed applications
given the complexity and scale of the current and upcoming domains. Approaches to enhance

the traditional scheduling-centered focus of real-time research are needed since it is no longer
possible to work solely on the assumptions of highly predictable execution platforms.

The germ of the first edition of the REACTION workshop initiated in 2012 was the idea of

providing a forum for presenting novel contributions to merge real-time with the new
computing paradigms and emerging applications that are intensive in the use of distribution.

In this second edition of REACTION 2013, we persist in our aim to bring together researchers

from the real-time and the distributed systems communities to cross fertilize and provide fresh,
novel, and (why not!) risky approaches that may open the road to new efficient solutions. We

move on with our exploratory approach aiming at attracting the presentation and discussion of
ideas of researchers working on distributed real-time systems for the next-generation

applications. Contributions on both practical and theoretical aspects applied to the integration of
real-time support in the new computation paradigms and emerging applications emphasizing

aspects of real-time support for flexibility and system dynamics have been attracted.

The General Chairs of REACTION 2013 would like to thank all authors, contributors, and
reviewers. They have shown that there is a real interest for the idea that we had in mind since

the first edition. Also, we would like to thank the members of the Programme Committee for
their support and help in making this event a reality. We would also like to thank Scuola

Superiore Sant'Anna for their support in hosting the REACTION'13 website. Last but not least,
we want to thank the RTSS Organizing Committee with special mention to the Workshops Chair

for his outstanding support.

The REACTION 2013 General Chairs

Marisol GARCIA VALLS and Tommaso CUCINOTTA

❘❊❆❈❚■❖◆ ✷✵✶✸ ✐✐✐

❘❊❆❈❚■❖◆ ✷✵✶✸ ✐✈

❚❤✐s ♣❛❣❡ ❤❛s ❜❡❡♥ ❧❡❢t ✐♥t❡♥t✐♦♥❛❧❧② ❜❧❛♥❦✳

Keynote talk

Adaptive Resource Allocation in the Cloud

Srikanth Kandula, Microsoft Research, Redmond, USA

Carefully allocating resources can improve throughput, lower latency and offer more predictable

service. In this talk, I will present three recent examples and point out future directions.

With SWAN, we show that given responsive networks and responsive applications adapting who

gets to send how much, when, and along which network paths can improve network utilization
without losing out on business priorities. We show how SWAN can be incorporated into the

wide-area network of enterprises that have a global datacenter footprint. With Kwiken, we show
how to improve the tail latency of datacenter services which are built as workflows over many

components by appropriately allocating additional resources across the various stages in the
workflow. Interestingly, we also cast incompleteness (i.e., returning partial results) as a resource

and show that small amounts of incompleteness can improve latency by a lot. Finally, with RoPE,
we show how execution plans for jobs in big data clusters can improve given additional

information about properties of the user code, data and how the code and data interact. We also
describe a system that extracts such properties at scale.

Biography

Srikanth Kandula is a Researcher at Microsoft Research. His research interests span many aspects

of networked systems including datacenters, network management, diagnosis, applied statistical
inference and security. He has published over 15 papers in top-tier venues such as SIGCOMM,

NSDI, MobiSys and SIGMOD. He is a winner of the NSDI best student paper award (2005).
Many of his research artefacts have been widely adopted in Windows and Microsoft's cloud

infrastructure. He obtained his Ph. D. from the Massachusetts Institute of Technology (2008).

❘❊❆❈❚■❖◆ ✷✵✶✸ ✈

❘❊❆❈❚■❖◆ ✷✵✶✸ ✈✐

❚❤✐s ♣❛❣❡ ❤❛s ❜❡❡♥ ❧❡❢t ✐♥t❡♥t✐♦♥❛❧❧② ❜❧❛♥❦✳

Table of contents

Session A – Middleware and distributed systems

Experimental evaluation of the real-time performance of publish-subscribe

middlewares

Tizar Rizano, Luca Abeni and Luigi Palopoli

1

Towards the integration of data-centric distribution technology into partitioned

embedded systems

Héctor Pérez and J. Javier Gutiérrez

7

Benchmarking communication middleware for cloud computing virtualizers

Marisol García-Valls, Pablo Basanta-Val and Rosbel Serrano-Torres

13

Session B – Scheduling in distributed systems and multiprocessors

A feasible configuration of AFDX Networks for Real-Time Flows in Avionics

Systems

Dongha An, Hyun Wook Jeon, Kyong Hoon Kim and Ki-Il Kim

19

Task partitioning and priority assignment for hard real-time distributed systems

Ricardo Garibay-Martínez, Geoffrey Nelissen, Luis Lino Ferreira, Luís Miguel

Pinho

25

Session C – Cloud computing

Run-time support for real-time multimedia in the cloud

Tommaso Cucinotta, Karsten Oberle, Manuel Stein, Peter Domschitz and Sape

Mullender

31

Resource management for service level aware cloud applications

Cristian Klein, Martina Maggio, Karl-Erik Arzén and Francisco Hernández

47

❘❊❆❈❚■❖◆ ✷✵✶✸ ✈✐✐

❘❊❆❈❚■❖◆ ✷✵✶✸ ✈✐✐✐

❚❤✐s ♣❛❣❡ ❤❛s ❜❡❡♥ ❧❡❢t ✐♥t❡♥t✐♦♥❛❧❧② ❜❧❛♥❦✳

Experimental Evaluation of the Real-Time Performance of Publish-Subscribe

Middlewares

Tizar Rizano, Luca Abeni, Luigi Palopoli

Dipartimento di Scienza e Ingegneria dell’Informazione

University of Trento, Trento, Italy

tizar.rizano@unitn.it, luca.abeni@unitn.it, luigi.palopoli@unitn.it

Abstract—The integration of the complex network of mod-
ules composing a modern distributed embedded systems calls
for a middleware solution striking a good tradeoff between
conflicting needs such as: modularity, architecture indepen-
dence, re-use, easy access to the limited hardware resources
and ability to respect real–time constraints. Several middleware
architectures proposed in the last years offer reliable and easy
to use abstractions and intuitive publish-subscribe mechanism
that can simplify system development to a good degree. How-
ever, a complete compliance with the different requirements
of assistive robotics application (first and foremost real–time
constraints) remains to be investigated. This paper evaluates
the performance of these solutions in terms of latency and
scalability.

I. INTRODUCTION

The recent developments in sensing and battery technolo-

gies and in embedded computing devices are creating the

premises for the development of low cost robotic applica-

tions for a consumer market. The ever-increasing presence

of robot vacuum cleaners in our homes, of robotic toys

amusing our children, of robotic drones shooting impressive

pictures from surprising points of view are witnesses of a

clear market trend. At the forefront of this movement are

robots created to assist older adults or people with different

disabilities. One of the basic needs that can effectively be

addressed by assistive robots is personal mobility.

These embedded systems integrate several modules and

rely on different types of sensors that convey information

on the surrounding environment. For example, they can use

video sensors to detect moving objects or obstacles, or can

use gyroscopes encoders, 3D cameras and RFID readers for

localisation purposes. The same level of complexity is on the

software architecture, that can include modules for video-

analysis, mission planning, short term planning and control.

All these services might interact with other components such

as a geo spatial database that stores relevant information

about the environment (in this case, the geo spatial database

maintains a consistent description of the environment, where

each model inserts additional information layers).

The integration of this complex network of modules

calls for a middleware solution striking a good tradeoff

between conflicting needs such as: modularity, architecture

independence, re-use, easy access to the limited hardware

resources and real–time constraints.

Several middleware architectures proposed in the last

years offer reliable and easy to use abstractions and intuitive

publish-subscribe mechanism that can simplify the devel-

opment of complex robotic applications to a good degree.

Examples are OpenDDS1, which implements a standard

proposed by the Object Management Group[1], ZeroMQ [2],

which implements a publish-subscribe paradigm to support

concurrent programming over socket connections using a

publish-subscribe paradigm and is freely available2, and

ORTE [3], which implements a publish-subscribe mecha-

nism over a real–time Ethernet connection (in particular, it

is compliant with the RTPS - Real-Time Publish-Subscribe

- protocol).

The three mentioned solutions have different reasons of

interest: OpenDDS builds on top of the decennial experience

made by the CORBA community and offers powerful ab-

stractions, ZeroMQ is extremely lightweight and potentially

interesting for its easy adaptation to embedded architectures,

and ORTE is a product has been developed for a special care

for its real–time performance.

Based on some previous experience [4], this paper eval-

uates the performance of the three middlewares in terms

of latency, scalability, and communication throughput. This

comparison will be used as a cornerstone for the devel-

opment of a reliable software architecture for the DALi

cognitive walker (cWalker), an embedded device designed

to assist adults with non-severe cognitive abilities in the

navigation of complex and crowded environments (e.g., an

airport or a mall), which challenge the sense of direction and

generate anxiety. However, this work is not limited to the

cWalker, but is aimed at increasing the diffusion of real–time

middlewares in a large class of robotic applications.

The rest of the paper is organised as follow. Section II

offers a high level overview of the case study. Section III,

shortly describes the three middleware analysed in the paper

and compares their features. Section IV, reports the experi-

mental results on the performance comparison between the

1http://www.opendds.org
2http://www.zeromq.org

❘❊❆❈❚■❖◆ ✷✵✶✸ ✶

Short Term

Planner

People

Detection

Kinect
3D

Cameras

Wheel

Encoder

Localisation

Environment

Reconstruction

Inertial

Platforms
RFID

Reader

Haptics

Control
Brakes

Control

Electric

Brakes

Haptic

Interfaces

SENSORS

FUNCTIONALITIES

ACTUATORS

MAPSLong Term

Planner

Audio/Visual

Interface

Occupation

Maps

Environment

Cameras

HMI USER

Figure 1. Simplified functional scheme of the DALi cWalker.

three different alternatives. Finally, Section V, presents some

conclusions and a short discussion of future work directions.

II. CASE–STUDY

An important motivational example for this work has

been offered to us by a cooperative European project 3

coordinated by the University of Trento. The objective of

the project is the development of a robotic assistant to help

older adults with emerging cognitive impairments navigate

large and challenging environments (e.g., a shopping mall,

or an airport). Because the main focus of the project is

to compensate for cognitive deficiencies, the assistant is

called cWalker (cognitive walker). A simplified scheme of

the most important functionalities of the cWalker is shown

in Figure 1. The cWalker prompts the user for a sequence

of target points in the environment that he/she wants to visit

through a visual interface. The Long Term Planner finds the

most convenient path using the map of the environment and

the real–time information on the state of the place, which

is acquired querying remote sensors (e.g., the surveillance

cameras). When the users starts to move, the walker guides

her/him along the path using electro-actuated brakes [5],

haptic interfaces and audio/video interfaces. The guidance

requires a real–time localisation system which tracks the

position of the cWalker while it moves. Along the way,

the cWalker localises the user in the environment, detects

anomalies and the motion of people in the surroundings and

plans deviation from the planned path when required (e.g.,

to avoid accidents or such behaviours as could violate the

social rules). These tasks are performed by a Short–Term

planner.

A description of the different functionalities is beyond

the goals of the present paper, and can be found in previous

work [4].

3http://www.ict-dali.eu

Short Term

Planner

People

Tracker
Localisation

Haptics

Control
Brakes

Control

Long Term

Planner

Audio/Visual

Interface

Heat

Maps

100ms

500ms

10ms

60s

300s

Figure 2. Publish-Subscribe architecture for some of DALi’s components.

III. PUBLISH-SUBSCRIBE MIDDLEWARES

The functional architecture described in Figure 1 suggests

the following considerations:

1) Many of the components are re-usable across a wide

family of applications and systems (e.g., the localisa-

tion module and the people tracker);

2) The computational demand and the physical con-

straints call for a distributed hardware implementation,

in which the functionalities could be deployed in dif-

ferent nodes in different implementations or operating

conditions (e.g., in response to a system failure);

3) The different components require varied expertise; the

resulting development team is large and heteroge-

neous.

These requirements can be fulfilled by adopting a middle-

ware infrastructure that implements publish-subscribe func-

tionalities. Moreover, this solution simplifies the develop-

ment and testing of the various modules, by permitting to

decouple their development.

Figure 2 shows a possible implementation scheme for the

communication between some of the modules. As an exam-

ple, the people tracker publishes a sequence of positions and

velocity of the people within the reach of the sensors with a

periodicity of 100ms and this topic is subscribed to by the

short term planner. The localisation module publishes a new

position of the cWalker every 10ms and this information

is used by various subscribers (at least those shown in

the figure). Similarly in the graph one can read the topics

published and subscribed to by other modules.

Since the cWalker modules are characterised by some

real-time constraints (as shown in the previous example), the

middleware implementing the publish-subscribe mechanism

needs to be predictable and has to provide reasonable upper

❘❊❆❈❚■❖◆ ✷✵✶✸ ✷

bounds for the communication latencies without compromis-

ing the throughput. Hence, the middleware has to be explic-

itly designed to support real-time communications. While

the idea of real-time publish-subscribe communication is not

new [6], a systematic comparison of multiple open-source

alternatives is still missing.

The Object Management Group (OMG) published various

standards regarding real-time data exchange based on a

publish-subscribe protocol. In particular, the Data Distribu-

tion Service (DDS) standard defines a service for distributing

application data between tasks (in distributed applications),

and the Real-Time Publish-Subscribe (RTPS) standard de-

fines an application-level protocol based on UDP/IP, which

can be used for the real-time communications required by

DDS.

The DDS specification defines both an application level

interface for a service implementing the publish-subscribe

functionalities (in real-time systems) and an additional layer

that allows distributed data to be shared between applications

based on DDS. The first interface (Data-Centric Publish-

Subscribe - DCPS) is in charge of efficiently delivering the

proper information to the proper recipients (according the

publish-subscribe) and introduces a global data space to be

used by applications for exchanging data.

The second part of the standard (Data-Local Reconstruc-

tion Layer - DLRL) is a higher level software layer based

on DCPS and uses it to construct local object models on top

of the global data space.

DDS does not specify a specific “wire protocol” to be

used for data exchange and control, hence different DDS

implementations can use different (and incompatible) pro-

tocols, being them TCP-based, UDP-based, or something

different (for example, 2 modules running on the same node

can communicate through shared memory to improve the

performance).

RTPS is a possible wire protocol to be used by DDS

(technically speaking, it is an application-level protocol,

generally based on UDP). The RTPS protocol has been

designed focusing on real-time requirements, hence it allows

to trade the reliability of message delivery for low latencies.

As a result, it often implements real-time communications on

top of unreliable and connectionless transport protocols such

as UDP (although TCP can also be used - see OpenDDS

below). The protocol supports publication and subscription

timing parameters and properties to allow some performance

vs reliability trade-offs.

When using DDS, a publisher and a subscriber commu-

nicate by writing/reading data identified by two parameters:

topic and type: the topic is a label that identifies each data

flow while the type describes the data format.

To provide good real-time performance (and to properly

scale, without having the communication latency affected by

the number of publishers or subscribers), DDS and RTPS

do not rely on an active service that receives messages from

the publishers and forwards them to the proper subscribers.

Instead, peer-to-peer connections between each publisher

and the interested subscribers are created, based on a naming

service that can be provided by some dedicated daemon.

Finally, DDS provides automatic data serialisation through

an Interface Definition Language (IDL) compiler, so that

components running on different architectures can easily

interoperate and communicate (notice, however, that this

feature is not strictly needed in the DALi context, since the

distributed architecture is based on uniform nodes).

One of the goals of this evaluation is to quantify the

overhead (if any) introduced by the various DDS and RTPS

abstractions, in order to understand their costs and their ben-

efits. Hence, three different middlewares (ranging from one

that is fully compliant with DDS to one that is not compliant

with any standard) have been considered: OpenDDS, ORTE,

and ZeroMQ.

OpenDDS is fully compliant with the DDS standard

forces to use the IDL compiler to serialise the data to be

exchanged. ORTE is less flexible, but still implements the

RTPS protocol (and is explicitly focused on respecting real-

time constraints). Finally, ZeroMQ is not compliant with any

specific standard, does not provide a naming service, but

relies on simplicity to provide good performance. Hence,

comparing the three middlewares allows to evaluate the

cost and the benefits of the various features described in

the standards and to estimate the overhead that the various

features and abstractions might introduce. In more details:

OpenDDS

is an implementation of DDS v1.2 using RTPS

as a “wire protocol” (according to the DDS-RTPS

standard v2.1). Both UDP and TCP can be used as

a transport protocol below RTPS. It is implemented

using the C++ language and is based on CORBA

(using ACE/TAO) for the naming and discovery

service and for serialising the data (through the

TAO IDL). This allows OpenDDS to provide cross

platform portability and to easily implement the

DCPS layer;

ORTE (the Open Real-Time Ethernet)

is a lighter implementation of the RTPS protocol

which does not rely on external software and di-

rectly implement RTPS using UDP sockets. Seriali-

sation can be performed directly by the application.

It is implemented using the C language;

ZeroMQ

is an open source based messaging library imple-

mented in C++ providing support for the publish-

subscribe communication paradigm over TCP. Se-

rialisation is not considered. It is not compliant

with any standard, and does not provide any kind

of naming service (which is then application’s

responsibility). It exports an object-oriented API

with bindings for various languages e.g. C, C++,

❘❊❆❈❚■❖◆ ✷✵✶✸ ✸

python and Java.

IV. PERFORMANCE EVALUATION

The three middlewares have been compared by evaluating

their performance in terms of both worst case and average

real-time latencies.

This evaluation has been performed by using some test

programs implementing publish-subscribe communication,

and using a setup similar to the one described in Figure 2.

Since the specific middleware that will be used in the

DALi walker has not been decided yet (but only the needed

features have been identified), an abstraction layer providing

the needed publish-subscribe functionalities has been devel-

oped. Such an abstraction layer exports a simplified API

that allow to create publishers and subscribers, publish and

receive topics, and perform all the operations needed by the

various DALi modules.

In particular, the abstraction layer is written in C++ and

its API is composed by:

• A class modelling global data space abstraction, where

data is published and received by the subscribers;

• A class modelling a Publisher. This class can be instan-

tiated once a global data space has been defined, and

can publish a topic on such a data space;

• A class modelling a Subscriber. Similarly to the pub-

lisher class, this class can be instantiated only once

a global data space has been defined, and receives

messages concerning a specified topic from such a data

space.

The global data space class only provide a constructor,

a destructor, and two methods to create a Publisher or

a Subscriber. When creating a Publisher, it is possible to

specify a name for the topic it publishes; the Publisher class

then provides a publish() method that allows to send

messages for this topic. When creating a Subscriber, it is

possible to specify the name of the topic to subscribe to; the

Subscriber class then provides a register_callback()

method that allows to specify a callback to be invoked when

a message for the specified topic is received.

The C++ classes then hide all of the implementation

details (and the middleware API), allowing to write code

using the publish-subscribe paradigm without relying on a

specific middleware. The abstraction layer currently supports

the three middlewares considered in this paper, but extending

it to other middlewares based on the publish-subscribe

paradigm should be simple.

Some preliminary experiments measured the performance

of the middleware without considering the effects of the

network (by running the experiments on a single node) and

revealed that ORTE seems to perform slightly better than the

other middlewares when only few subscribers are active, but

ZeroMQ scales better [4]. In any case, on an Intel i7 CPU

running at 2.8GHz the worst-case measured latency was

smaller than 1ms, for all the middlewares.

In this paper, the experiments have been performed using

a setup that is more similar to the DALi hardware and

software architecture. First of all, the embedded boards that

will probably be used in the DALi cWalker (pandaboards4,

based on an OMAP4460 - powered by an ARM core running

at 1Ghz) have been used. Moreover, the experiments are

performed on two identical pandaboards connected via fast

ethernet switch (100 Mbps); hence, network effects have

been accounted for in the experiments. The two boards run

Ubuntu 12.04 with the 3.2.0 Linux kernel.

A first set of experiments, still based on the simple test

programs used in the previous paper, compare the real-

time performance of the three middlewares by measuring

the latency between the generation of a message (from the

publisher) and its arrival to the subscribers - this will be

referred as “publish-subscribe latency”. With respect to the

previous experiments, the ones reported here are based on

the pandaboard setup described above. First, some “single

node” experiments (similar to the previous ones) have been

run, and then the measurement have been repeated with

the publisher running on one board and the subscribers

running on the other one. As in the previous experiments, the

middleware abstraction layer has been used to easily repeat

the same tests with different middlewares.

The publisher is implemented as a single-threaded process

scheduled with SCHED_FIFO and the maximum real-time

priority. Each subscriber (maximum 4 subscribers) is also a

high priority (SCHED_FIFO, maximum real-time priority)

process. However, the process is multi-threaded, since all of

the tested middlewares create at least two threads for each

subscribers: main thread and the subscriber listener thread.

For OpenDDS, there is an extra thread that run its ORB and

several threads for non-CORBA transport IO. OpenDDS and

ORTE are configured to use UDP as their transport protocol.

However, ZeroMQ is configured to use TCP since UDP is

not officially supported.

Figure 3 reports the results (worst-case and average la-

tencies as a function of the number of subscribers) obtained

when running publisher and subscribers on the same node.

Respect to the results obtained on the x86-based PC, the

worst-case latencies are about 10 times larger, and the ORTE

behaviour is slightly worse than the ZeroMQ one (in the

previous experiments, ORTE behaved better than ZeroMQ

for small numbers of subscribers, but ZeroMQ scaled better).

Figure 4 reports the results of the same experiment exe-

cuted in a distributed environment (publisher and subscribers

on 2 different nodes). It is immediately possible to notice

that the latencies increase even more, and only ZeroMQ

stays below 10 ms in both average and worst case latencies

for all the numbers of subscribers. Again, confirming the

result obtained in [4] ORTE performs well with a limited

number of subscribers while ZeroMQ scales better than the

4http://www.pandaboard.org

❘❊❆❈❚■❖◆ ✷✵✶✸ ✹

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4

L
a

te
n

c
y
 [

u
s
]

Number of Subscribers

Orte, average
OpenDDS, average

ZeroMQ, average
Orte, max

OpenDDS, max
ZeroMQ, max

Figure 3. Single node Publisher/Subscriber latency as a function of the
number of subscribers.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 2 3 4

L
a

te
n

c
y
 [

u
s
]

Number of Subscribers

Orte, average
OpenDDS, average

ZeroMQ, average
Orte, max

OpenDDS, max
ZeroMQ, max

Figure 4. Multi node Publisher/Subscriber latency as a function of the
number of subscribers.

other middlewares even in the distributed scenario.

Finally, Figure 5 reports the latencies as a function of

the message size, showing that the average latencies of all

middlewares scale well with message size up to 1000 bytes.

After running the first experiments with a simplified test

application, a more realistic test case based on Figure 2 has

been used to compare the three middlewares. The test is

composed by 8 processes emulating the 8 software modules

that will run on the cWalker: the People Tracker (PT), the

Localization module (LOC), the Heat Maps (HM), the Short

Term Planner (STP), the Long Term Planner (LTP), the

Brakes Control (BC), the Haptics Control (HC) and the

Audio Visual Interface (AVI). All the modules are modelled

as periodic real-time tasks running with the periods indicated

in Figure 2, subscribing to some topics, and eventually

producing messages at each activation.

Each task/software module is statically assigned to a

pandaboard, and different ways to distribute the tasks have

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600 700 800 900 1000

L
a

te
n

c
y
 [

u
s
]

Message Size [byte]

Orte, average
OpenDDS, average

ZeroMQ, average
Orte, max

OpenDDS, max
ZeroMQ, max

Figure 5. Multi node Publisher/Subscriber latency as a function of the
message size

Mapping protocol max avg stdev

ZeroMQ 1740 523.41 183.68
1 ORTE 7599 712.39 260.39

OpenDDS 6135 2016.79 470.46

ZeroMQ 6752 2368.42 427.55
2 ORTE 10170 4563.44 832.93

OpenDDS 11268 4952.68 680.27

ZeroMQ 7851 3720.68 680.27
3 ORTE 11940 5092.19 410.39

OpenDDS 11482 6179.72 295.92

Table I
LATENCY IN MICROSECONDS

been tested. In particular, the results obtained with three

different mappings of modules to embedded boards will be

reported:

• Mapping 1: All modules run on pandaboard 1

• Mapping 2: The AVI, HM, and LTP modules run on

pandaboard 1 while BC, HC, PT, LOC, and STP run

on pandaboard 2

• Mapping 3: The AVI module runs on pandaboard 1

while all the other modules (BC, HC, PT, LOC, STP,

HM, and LTP) run on pandaboard 2.

The worst-case and average latencies measured the output

of the AVI module are reported in Table I. This set of

experiments show the effect of distributed processes on the

performance of the middlewares. The average latencies of

all middlewares stay below the minimum period of the

modules (10 ms). However, the worst case latencies of

all middlewares except ZeroMQ are above the minimum

period.

V. CONCLUSIONS

This paper presents the performance evaluation of three

open-source publish-subscriber middlewares. The evalua-

tion focuses on their real-time performance, to identify

the solution that best suits the needs of modern robotic

❘❊❆❈❚■❖◆ ✷✵✶✸ ✺

applications based on distributed embedded architectures.

The experimental setup was designed taking inspiration from

an existing robotic application.

Based on the result of the experiments, ZeroMQ is shown

as the most suitable middleware for DALi application.

Although the average latencies of both ORTE and OpenDDS

are below the minimum period required by DALi applica-

tion, their worst case latencies is above it. However, Their

latencies remain below 7 ms for 99% of the time.

The goals of future investigations are manifold. One of the

most important is to extend the analysis to other middleware

solutions explicitly developed for robot applications such as

ROS [7] and OROCOS [8].

REFERENCES

[1] OMG, “Data distribution service for real-time systems – ver-
sion 1.2,” The Object Management Group, Tech. Rep., 2007.

[2] P. Hintjens, ZeroMQ: Messaging for Many Applications.
O’Reilly, 2013.

[3] P. Smolik, Z. Sebek, and Z. Hanzalek, “Orte–open source
implementation of real-time publish-subscribe protocol,” in
Proc. 2nd International Workshop on Real-Time LANs in the
Internet Age, 2003, pp. 68–72.

[4] T. Rizano, L. Abeni, and L. Palopoli, “Middleware for robotics
in assisted living: A case study,” in Proceedings of the 15th
Real-Time Linux Workshop, Lugano, Switzerland, October
2013.

[5] D. Fontanelli, A. Giannitrapani, L. Palopoli, and D. Prat-
tichizzo, “Unicycle steering by brakes: a passive guidance
support for an assistive cart,” in Proceedings of the 52nd IEEE
Conference on Decision and Control, Firenze, Italy, December
2013.

[6] R. Rajkumar, M. Gagliardi, and L. Sha, “The real-time pub-
lisher/subscriber inter-process communication model for dis-
tributed real-time systems: design and implementation,” in
Proceedings of the 1st Real-Time Technology and Applications
Symposium (RTAS95), 1995, pp. 66–75.

[7] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot op-
erating system,” in ICRA workshop on open source software,
vol. 3, no. 3.2, 2009.

[8] H. Bruyninckx, “Open robot control software: the orocos
project,” in Robotics and Automation, 2001. Proceedings 2001
ICRA. IEEE International Conference on, vol. 3. IEEE, 2001,
pp. 2523–2528.

❘❊❆❈❚■❖◆ ✷✵✶✸ ✻

Abstract—This work proposes an architecture to enable the use

of data-centric real-time distribution middleware in partitioned

embedded systems based on a hypervisor. Partitioning is a

technique that provides strong temporal and spatial isolation,

thus allowing mixed-criticality applications to be executed in

the same hardware. The proposed architecture not only enables

transparent communication among partitions, but it also

facilitates the interconnection between partitioned and non-

partitioned systems through distribution middleware.

Preliminary results show that hypervisor technology provides

low overhead and a reasonable trade-off between temporal

isolation and performance.

Keywords—distributed systems; middleware; hypervisor; DDS;

real-time systems.

I. INTRODUCTION
1

Partitioning is a widespread technique that enables the

execution of multiple applications in the same hardware

platform with strong temporal and space isolation, thus

allowing the coexistence of mixed-criticality applications,

which fulfils their different requirements (i.e. integrity,

security, timing, etc.). Although partitioned systems were

initially conceived for safety-critical contexts and do not

traditionally contemplate the use of distribution middleware

because of its complexity, this technique is becoming more

and more popular and it is starting to be applied in a

heterogeneous set of emerging applications [1].

The use of middleware technology can provide a set of

services that may be of interest for partitioned systems, such

as location transparency, abstraction of network services,

communication management or interoperability. As part of

modern model-driven software development techniques, it

also may help to resolve key challenges in the development

and validation of distributed systems [2] [3]. Over the last

years, the Data Distribution Service for Real-Time Systems

(DDS) standard [4] has been attracting an increasing interest

within the industry due to its flexibility and decoupling

capabilities, along with a rich set of Quality of Service (QoS)

parameters. These features make this standard suitable for

the development of distributed systems with real-time

requirements [5][6].

Our concern is to enable partitioned systems to take

advantage of common real-time distribution middleware in

several scenarios where a high level of criticality is not

required. Under these conditions, important design

objectives for partitioned systems include software reuse or

interoperability between partitioned and non-partitioned

systems. Both objectives can be fulfilled by integrating

distribution middleware into partitioned systems as shown in

[7], which presents an early experience dealing with RT-

CORBA [8] and Ada DSA [9] standards. Furthermore, there

is an initial attempt to extend DDS with a safety-critical

profile [10][11] suitable for partitioned systems such as

those defined by ARINC-653 (Avionics Application

Standard Software Interface) [12], which proposes this

standard as a suitable candidate to interconnect the next-

generation of partitioned distributed real-time systems.

Therefore, this paper proposes a system architecture that

integrates the use of distribution middleware based on the

DDS standard within XtratuM [13], which is an ARINC-

653-like hypervisor especially designed for real-time

embedded systems. Additionally, a prototype has been

developed in order to provide a performance analysis that

estimates the overhead incurred when using the proposed

architecture. The trade-off between performance and

temporal/spatial isolation capabilities is also analysed.

To the best of our knowledge, few research papers have

dealt with the merging of DDS and virtualization technology.

For instance, the authors in [14] use DDS to interconnect

virtual resources on heterogeneous hypervisors.

Furthermore, the impact of using DDS in a general-purpose

virtualized scenario is addressed in [15]. However, our work

differs from these in the target systems, as XtratuM is

specially designed to be used in scenarios with hard real-

time requirements, in which safety-critical features can be

also considered.

This document is organized as follows. Section II

introduces the basic characteristics of XtratuM and the DDS

standard. The architecture for integrating DDS middleware

with XtratuM is proposed in Section III. Section IV

describes a potential application as a proof of concept, while

Section V evaluates the performance of the proposed

architecture. Finally, Section VI draws the conclusions.1. This work has been funded in part by the Spanish Government and
FEDER funds under grant number TIN2011-28567-C03-02 (HIPARTES).

Towards the integration of data-centric distribution technology

into partitioned embedded systems

Héctor Pérez

Computers and Real-Time Group

Universidad de Cantabria

Santander, SPAIN

perezh@unican.es

J. Javier Gutiérrez

Computers and Real-Time Group

Universidad de Cantabria

Santander, SPAIN

gutierjj@unican.es

❘❊❆❈❚■❖◆ ✷✵✶✸ ✼

II. BACKGROUND

A Overview of DDS

The Data Distribution Service (DDS) standard defines a

data-centric distribution middleware that supports the

development of distributed real-time systems [16] by

including a wide set of configurable parameters to provide

different degrees of QoS. The standard is based on the

publisher-subscriber paradigm, where publishers and

subscribers communication entities respectively write

(produce) and read (consume) data. All the communication

entities that share compatible QoS parameters may be

grouped in participants of a domain, and only entities

belonging to the same domain can communicate.

To enable the communication among entities, publishers

require to declare their intent to publish a specific topic (i.e.

the data type to share), while subscribers require to register

their interest in receiving particular topics. The example in

Figure 1 illustrates a distributed system which consists of

three participants in a single domain and two topics. Both

topics have a single publisher in charge of generating new

data samples. However, successive updates for topic # 1 will

only be received by one subscriber, whereas new samples for

topic # 2 will be received by two subscribers.

B Overview of XtratuM

XtratuM [13] is an open source hypervisor with

capabilities to meet real-time and integrity requirements.

Although it does not follow a specific standard, its design

follows the philosophy of the ARINC-653 avionics standard

[12]. This specification defines the interface of a partition-

based operating system that allows multiple applications to

execute in the same hardware platform, while maintaining

time and space isolation. The general architecture of a

system using XtratuM is shown in Figure 2, where the term

partition represents one or several applications executing

over a bare machine or an operating system. Each partition is

allocated one or several dedicated time windows during

which it may execute and thus multiple partitions can be

concurrently executed on the same core module (a hardware

platform with one or more processors or cores). Among the

facilities provided by XtratuM are the virtualization of the

basic resources of the system (clocks, timers, memory,

interrupts, etc.) and specific communication services.

Two different and complementary communication

services are defined in XtratuM: the ARINC-like

communication ports [12] or the XMIO communication

service based on Virtio [17]. The former was designed to

enable communication in high-integrity systems (e.g.,

systems with static workload and pre-configured

communication links), while the latter is aimed at non-

critical software systems with some kind of timing

requirements.

In XtratuM, the control and management of devices is left

to partitions. To this end, XtratuM provides a configuration

service to access the I/O ports, which must be configured at

compilation time. I/O ports can belong to only one partition,

which means that specific I/O partitions should be created

when more than one partition needs to access a particular

device. Furthermore, I/O partitions are responsible for

implementing the device drivers so devices shared among

several partitions should be managed in a special way, as

described in the next section.

III. SYSTEM ARCHITECTURE

This section aims to explore the possible architectures that

enable the use of data-centric distribution middleware in

partitioned systems in which a hypervisor is used to manage

the hardware. To guarantee the interoperability among non-

critical open subsystems, our proposal will rely on the DDS

distribution standard and the XMIO communication service.

The analysis for more restrictive scenarios, which may

require the use of the ARINC-like communication services

and/or a reduced set of the DDS features, is left for future

work.

As XtratuM does not implement drivers at the hypervisor

level, sharing a device such as a network interface card

(NIC) among multiple partitions should focus on handling

Fig. 1 DDS architecture Fig. 2 XtratuM architecture

❘❊❆❈❚■❖◆ ✷✵✶✸ ✽

the contention in order not to compromise both space and

time isolation capabilities. A common strategy is the use of

an I/O partition that has exclusive access to the network card.

Under this approach, the I/O partition is responsible for

redirecting messages from the remaining partitions within

the same core module to the communications network. To

this end, two design strategies could be followed:

• Designing an I/O partition exclusively aimed at

forwarding messages. In this case, messages are opaque

to the I/O partition, and they would be routed through

statically established connections. Therefore, each

partition should know the destination of each

communication link beforehand, which may not be

suitable for open systems with variable workload.

• Considering the use of DDS middleware in the I/O

partition. Thus, data-centric middleware will be

responsible for performing routing transparently (e.g.,

based on topics). In this case, messages are not opaque

and can be processed by the I/O partition. Moreover, this

option may enable the use of different domains for inter-

and intra-communication in core modules, as they may

need to maintain certain information contained within.

Hence, each partition should implement data-centric

middleware in order to provide distribution facilities such as

location transparency, interoperability or connection

management, and to facilitate data routing in the case of the

I/O partition.

Figure 3 shows a system with three core modules

following the proposed architecture for integrating data-

centric middleware with a partitioned system using XtratuM.

Communications between partitions, belonging or not to the

same core module, are performed via DDS. As can be seen

in the figure, each core module provides: (1) a virtual

network (V-NETWORK) to enable the communication

among partitions within the core module, which denotes a

DDS domain; (2) a virtual network card (V-NIC) for each

partition; and (3) an I/O partition, with exclusive access to

the network card, which is responsible for routing the

messages received by the underlying communication

network, and which is part of another DDS domain. In this

case, we have defined three communication links that

interconnect partitions: link #1 defines one-to-many

communications (i.e., one publisher and several subscribers);

link #2 defines one-to-one communications within the same

core module; and link #3 defines one-to-one

communications between different core modules.

IV. USAGE SCENARIO: VIDEO-SURVEILLANCE SYSTEMS

This section describes a video-surveillance system as a

proof of concept in which the use of the proposed

architecture can be advantageous. Built-in video-

surveillance applications will probably become common in

the near future, for example in vehicles for recording

unexpected situations (accidents, thefts, etc.). A key feature

for this kind of systems resides in the reliability of the

recording application, as it must keep recording data

continuously, so it can benefit from strong isolation

capabilities and can be executed together with other

applications. In our example, a distributed application with

multiple display monitors may request video captures from

the recording application. The architecture for the proposed

system is depicted in Figure 4 and it is composed of:

• One core module with two partitions: the

Video_Recorder partition which is responsible for

obtaining data from the attached video cameras and

serving the requested video captures to other partitions,

and the Routing_Service partition which is in charge of

Fig. 3 Proposed architecture for integrating DDS with XtratuM

❘❊❆❈❚■❖◆ ✷✵✶✸ ✾

routing the data from/to other core modules spread

across the distributed systems.

• A variable number N of core modules that may request

the current live video stream or a previous recording (i.e.

the monitoring subsystem). These nodes or core module

may or may not be partitioned systems.

The use of DDS enables the interoperability among the

video recorder and the monitoring subsystems, regardless of

whether they are partitioned or not. Furthermore, it also

enables the interconnection among the partitions within the

same core module (e.g., Video_Recorder and

Routing_Service partitions). The Routing_Service partition

also relies on DDS to control the information that flows in

and out of the core module by providing data distribution

between domains. Finally, third-party applications can be

easily integrated into the system without compromising the

security and data integrity of the Video_Recorder partition,

as they are isolated in terms of space and time.

V. PERFORMANCE METRICS

This section aims to obtain preliminary performance

metrics and assess the interoperability capabilities of using

data-centric middleware in partitioned systems by simulating

the video-surveillance scenario described in the previous

section. In this evaluation, the distributed application

consists of two nodes: the video recorder partitioned

subsystem and one monitoring non-partitioned subsystem.

The hardware platform consists of two single core 2.8 GHz

nodes connected through an isolated Gigabit switch in which

internal traffic has been disabled (for instance, network

packets coming from the Spanning Tree or ARP protocols).

We have adapted and integrated in a software platform: RTI

Connext DDS1 as distribution middleware, a fully pre-

emptive Linux kernel 2.6.30.5 as the operating system and

XtratuM as the hypervisor. Furthermore, a DDS add-on

included in the RTI toolsuite1 has been used to implement

the routing service.

In the case of partitioned systems, the optimal

configuration of partitions to maximize the processor’s

utilization is not a trivial problem, and it is even harder with

inter-partitions dependencies. Thus, an I/O partition should

be executed with sufficient regularity to fulfil the I/O

requirements of other partitions. In our example, it is

expected that the execution time of middleware operations

will be similar to the ones associated with the routing

operations, as both rely on DDS middleware. Hence, the

video-surveillance application has been configured to have a

dedicated time window of 800μs for the Routing_Service,

and 700μs for the Video_Recorder partition, resulting in a

scheduling plan repeated every 1,500μs.

The test will measure the execution time of a remote

operation that publishes the requested video frames. We

measure the operation carried out from the time when the

request of a video capture is made until the image is

returned. This operation is executed 10,000 times, and the

average, maximum, and minimum times are estimated,

together with the standard deviation and the 99th percentile

(i.e., the value below which 99 percent of the measurements

are found). To avoid additional overheads in the

measurements, the test is executed without requiring

network fragmentation (i.e., the payload is bounded to 1

kilobyte). The performance analysis includes two case-

studies.

The first case study, which is called the overhead test,

aims to estimate the overhead added by XtratuM when it is

used as hypervisor. Three scenarios have been defined for

this case study:

1. RTI-DDS toolsuite is available at http://www.rti.com

Fig. 4 Scheme of a video-surveillance system

❘❊❆❈❚■❖◆ ✷✵✶✸ ✶✵

• Network, which estimates the temporal cost of using the

network (transmitting and receiving a message of 1

kilobyte) by implementing the test over UDP in

isolation.

• Traditional DDS, which measures the performance of

the video-surveillance application using DDS over two

non-partitioned nodes.

• Single DDS Partition, which measures the performance

of the video-surveillance application when the node

under analysis is partitioned with XtratuM. In this case,

the core module only holds one partition that executes

the application and has exclusive access to the network

device. Therefore, this scenario estimates the overhead

of using XtratuM.

The second case-study (performance test) evaluates the

performance of the proposed system architecture, that is,

with one partition dedicated to the I/O operations. To

perform a fairer comparison, this case is contrasted with the

traditional distributed application in which a routing service

has been added. Therefore, two scenarios have been defined:

• Traditional DDS with Routing, which measures the

performance of the video-surveillance application using

DDS over two non-partitioned nodes. One of the nodes

also executes a routing application to enable the

communication between domains.

• Partitioned DDS with Routing, which measures the

performance of the video-surveillance application when

the proposed partitioned architecture is applied to one

node. In this case, the core module holds two partitions:

(1) the Video_Recorder partition, and (2) the

Routing_Service partition to enable the communication

between domains.

The results of the analysis for the overhead test are shown

in Table 1. As can be observed, the DDS example adds a

minimum overhead to the network test which makes it

suitable for developing our approach, as it requires a

lightweight middleware implementation in each partition.

Likewise, the maximum overhead of using the distributed

application on top of XtratuM is less than 60μs. Taking these

metrics into account, it is shown that using hypervisor

technology with data-centric middleware is highly efficient.

Table 2 shows the results of the measurements taken for

the performance test, in which the proposed system

architecture adds complexity by integrating a routing service

into the distributed application. As shown in Table 2, the

distributed operation for the DDS with routing scenario takes

a maximum of 1,632μs, while this value is 4,157μs for the

partitioned system. This variation in performance depends

on the nature of the partitioned systems and their time

window configuration (e.g., a network message received

during the execution of the Video_Recorder partition has to

wait until the next time window corresponding to the

Routing_Service partition). In our example, we use a time

window configuration that allows Linux partitions to be

executed properly, as the optimization of time windows for

this particular application is beyond the scope of this paper.

In any case, the increase in the response times corresponds to

a reasonable number of measurements for less critical

applications (see the 99th percentile).

To complete the study, an additional test has been carried

out to evaluate the impact of the proposed architecture with

different workloads. Figure 5 depicts the results obtained for

the same experiment but using different image sizes.

Similarly to the results obtained in Table 1 and Table 2, it is

shown that the hypervisor adds a minimum overhead to the

traditional DDS scenario regardless of the payload, and the

maximum response times are appreciably higher for the

partitioned system due to the inherent effect produced by the

temporal partitioning. As a consequence of these results, a

significant improvement is expected when using a

Table 1: Measurements of response times for the overhead test (in

μsecs)

MIN AVG MAX STD PER99

NETWORK 154 206 262 20 249

TRADITIONAL DDS 218 286 415 29 383

SINGLE DDS PARTITION 262 331 467 28 409

Table 2: Measurements of response times for the performance

test (in μsecs)

MIN AVG MAX STD PER99

TRADITIONAL DDS WITH

ROUTING

662 764 1632 36 876

PARTITIONED DDS WITH

ROUTING

1028 1858 4157 539 3346

��� ��� ��� ��� ���

	

�			

�			

			

�			

�			

��������	
����
����
�

���������������
�����	�����

��������
������
�����	�����

�����
�����
��������

��������������

������

	

�
�

�
�

��
��

�

Fig. 5 Maximum response times for different image sizes (in μsecs)

❘❊❆❈❚■❖◆ ✷✵✶✸ ✶✶

multiprocessor approach that allows, for example, one core

to be dedicated to communications, which could avoid the

extra delays inherent to the time window configuration. This

approach is planned for future work.

VI. CONCLUSIONS AND FUTURE WORK

An increasingly important trend in many domains, such as

the automotive, energy distribution or industrial control

ones, is support for mixed-criticality applications within the

same hardware platform. In this kind of applications, there is

also a need to address the integration with the underlying

communication subsystem. The proposed integration of

DDS data-centric middleware into partitioned systems

provides important benefits such as (1) the transparent

invocation of services allocated in partitions, independently

of whether they are in the same processor (or core) or in

different ones; (2) the abstraction of network services which

allows the application code to be simplified while

maintaining it independent from the communication

subsystem; and (3) interoperability between partitioned and

non-partitioned systems, or between two or more

heterogeneous partitions, e.g., with different levels of

criticality or using different data representations (e.g.,

endianness).

As a consequence of the response times obtained in the

performance analysis, it can be observed that the overhead of

using data-centric middleware together with a partitioned

system could be reasonable for a wide range of applications

with soft real-time requirements. However, a significant

improvement is expected when using the hypervisor

technology adapted to multiprocessor systems, as it may

partially mitigate the delays associated with the

configuration of time windows. Anyway, it has been shown

that this configuration is not a trivial problem and it

represents a key step in the design of distributed applications

with a partitioned architecture.

Although this integration can facilitate the use of

partitioned systems with DDS, further investigation is

required to fully determine which features of the standard

can be applied, i.e., the applicability of some QoS

configurations. Furthermore, it could be interesting to

explore other approaches such as the use of the ARINC-like

communication services for the incoming safety-critical

profile of DDS.

REFERENCES

[1] Multi-cores Partitioning for Trusted Embedded Systems

(MULTIPARTES) European Project, Part of the 7th

Framework Programme, http://www.multipartes.eu. 2013.

[2] A. Gokhale, K. Balasubramanian, A.S. Krishna, J.

Balasubramanian, G. Edwards, G. Deng, E. Turkay, J. Parsons,

and D.C. Schmidt, “Model driven middleware: A new

paradigm for developing distributed real-time and embedded

systems,” Science of Computer Programming 73, pp. 39-58,

2008.

[3] K. An, T. Kuroda, A. Gokhale, S. Tambe, and A. Sorbini,

“Model-driven Generative Framework for Automated OMG

DDS Performance Testing in the Cloud,” 12th International

Conference on Generative Programming: Concepts &

Experiences (GPCE), Indianapolis (USA), 2013.

[4] Object Management Group. Data Distribution Service for

Real-time Systems. OMG Document, v1.2, formal/07-01-01.

2007.

[5] M. Ryll, and S. Ratchev, “Application of the Data Distribution

Service for Flexible Manufacturing Automation,”

International Journal of Aerospace and Mechanical

Engineering (2:3), pp. 193-200, 2008.

[6] F. Ben Cheikh, M.A. Mastouri, and S. Hasnaoui,

“Implementing a Real-Time Middleware Based on DDS for

the Cooperative Vehicle Infrastructure Systems,” 6th

International Conference on Wireless and Mobile

Communications (ICWMC), Valencia, (Spain), 2010.

[7] H. Pérez, and J. J. Gutiérrez, “Experience with the integration

of distribution middleware into partitioned systems,” Proc. of

the 17th International Conference on Reliable Software

Technologies, LNCS, vol. 7896. Springer, 1-16. 2013.

[8] Object Management Group. Realtime Corba Specification.

OMG Document, v1.2. formal/2005-01-04. 2005.

[9] Ada 2012 Reference Manual. Language and Standard

Libraries - Intl. Standard ISO/IEC 8652:2012(E). 2012.

[10] R. Wahlin, and G. Hunt, “Towards a Safety Critical profile for

DDS,” Real-time and Embedded Systems Workshop,

Arlington, VA (USA), 2009.

[11] R. Karoui, and A. Corsaro. “Real time Data Distribution for

Airborne Systems,” Workshop on Real-time, Embedded and

Enterprise-Scale Time-Critical Systems, Washington DC,

(USA), 2011.

[12] Airlines Electronic Engineering Committee, Aeronautical

Radio INC. “Avionics Application Software Standard

Interface”. ARINC Specification 653-1. March, 2006.

[13] M. Masmano, I. Ripoll, A. Crespo, and J.J. Metge, “Xtratum a

hypervisor for safety critical embedded systems,” Proc. of the

11th Real-Time Linux Workshop, Dresden (Germany), 2009.

[14] Y. Cho, J. Choi, and J. Choi, “An integrated management

system of virtual resources based on virtualization API and

data distribution service,” Proc. of the ACM Cloud and

Autonomic Computing Conference, New York (USA), 2013.

[15] R Serrano-Torres, M García-Valls, and P Basanta-Val,

“Virtualizing DDS middleware: performance challenges and

measurements,” Proc. of 11th IEEE International Conference

on Industrial Informatics, Bonchum (Germany), 2013.

[16] H. Pérez, and J. J. Gutiérrez, “On the schedulability of a data-

centric real-time distribution middleware,” Computer

Standards & Interfaces (34:0), pp. 203-211, 2012.

[17] M. Masmano, S. Peiro, J. Sanchez, J. Simo, and A. Crespo,

“IO Virtualisation in a Partitioned System,” Proc. of the 6th

Embedded Real Time Software and Systems (ERTS2), Paris

(France), 2012.

❘❊❆❈❚■❖◆ ✷✵✶✸ ✶✷

Benchmarking communication middleware for

cloud computing virtualizers

Marisol Garcı́a-Valls, Pablo Basanta-Val, Rosbel Serrano-Torres

Distributed Real-Time Systems Laboratory

Departamento de Ingeniera Telemática

Universidad Carlos III de Madrid

Av. de la universidad 30

28911 Leganés, Madrid, Spain

{mvalls,pbasanta}@it.uc3m.es

Abstract—Virtualization technologies typically introduce ad-
ditional overhead that is specially challenging for specific domains
such as real-time systems. One of the sources of overhead are
the additional software layers that provide parallel execution
environments which reduce the effective performance given by
the infrastructure. This work identifies the factors to be analysed
by a benchmark for performance evaluation of a virtualized
middleware. It provides the set of benchmark tests that evaluate
empirically the overhead and stability on a trendy communication
middleware, DDS (Data Distribution System for Real-Time),
which enables message transmissions via publisher-subscriber
(P/S) interactions. Two different implementations, RTI and
OpenSplice, have been analysed over a general purpose virtual
machine monitor to evaluate their behavior on a client-server
application. Obtained results have provided initial execution clues
on the performance that a virtualized communication middleware
like DDS can exhibit.

I. INTRODUCTION

Communications middleware and virtualization technolo-

gies have been two main contributions to the development

and maintainability of software systems. On the one hand,

middleware brings in the capacity to abstract the low level

details of the networking protocols and the associated specifics

of the physical platforms (e.g. endianness, frame structure,

and packaging, among others). This augments the productivity

of systems development by easing the programmability and

debugging. More recently, virtualization technologies have

promoted a new technological trend that has fast penetrated

different domains due to the benefits that it brings about: a)

speed up of the customized system development and deploy-

ment to specific platforms; b) server consolidation and the

subsequent savings on energy, etc. ; c) reducing maintenance

and deployment costs and d) data availability any time and

anywhere.

Communication middleware and virtualization technology

originated for general purpose distributed applications, so

initially in a different perspective from that of real-time

environments where determinism is a key target. As science

evolves and new applications are envisioned and engineered,

real-time applications have progressively approached middle-

ware and virtualization technologies, facing the problem of

temporal predictability. The traditional focus of real-time and

middleware has been significantly different. Networked real-

time systems traditionally have focused on eliminating (or

minimizing) the sources of unpredictability by direct program-

ming of tasks in the real-time operating system or directly

in the hardware platform itself and using controlled medium

access protocols to develop real-time networks. Middleware

has typically been implemented for distributed systems over

non collision-free networks, and using software engineering

techniques that introduce additional software layers aiming

at easing programmability and interoperability. As a conse-

quence, communications middleware has appeared as a black

box, containing extra code that is difficult to analyse with

sufficient level of detail and guarantees as required by some

real-time applications.

Over the past decade, the OMG’s DDS standard [1] (Data

Distribution Service for Real-Time Systems) has appeared

with considerable success for distributed soft real-time appli-

cations. DDS provides an asynchronous interoperability via

a publish-subscribe paradigm that is data-centric. One of the

success factors of DDS is that it provides quality of service

(QoS) communication by means of specifying a collection of

diverse QoS parameters. There are different realizations of the

DDS standard that achieve different behaviors, mainly with

respect to performance and to the specific set of implemented

QoS parameters. In general, the level of temporal guarantees

provided by different implementations varies depending on

different factors such as the physical deployment, application

type, and middleware communication paradigm and fine-

tuning. There are not many public independent studies about

the performance achieved by the different implementations.

The performance of middleware can be essential for de-

termining if a specific real-time application can be migrated

to the cloud. This requires to analyse the timely behavior of

the middleware implementation and extract conclusions about

the suitability for specific physical deployments (i.e., software,

hardware, and network structure) and application types (e.g.

data intensive, sporadic short messages, etc.). Also, traditional

virtualization techniques can be a source of overhead and even

nondeterminism. Virtualization technology comes at the cost

of, in general, being more prone to suffering variations in per-

formance compared to bare machine execution, in general. The

❘❊❆❈❚■❖◆ ✷✵✶✸ ✶✸

latter needs to be studied for the specific deployments since

technological developments, such as multicore systems, are

introducing new interesting properties derived from execution

on dedicated cores. In a previous work [3] [2], we have per-

formed an exploratory analysis of the performance evaluation

on virtualized environments extracting preliminary results. In

this paper, we deepen into the analysis of DDS in a virtu-

alized deployment, providing a benchmark for the analysis,

conducting further experiments, and elaborating conclusions

as comparison between the two most popular implementations.

We explore the overhead of virtualization in distributed DDS

communication stacks by black box benchmarking (with no

code fine-tuning), and we reason about the causes of virtual-

ization costs, communication latencies, communication jitter,

and execution nondeterminism.

The paper is structured as follows. Section 2 describes

related work. Section 3 presents the potential drawbacks of the

virtualization technology for timely behavior, and it describes

the benchmark elaborated for the experiments or specific

tests that have been carried out. In section 4, the proposed

virtual data-distribution scenario is defined (two main DDS

implementations running on VirtualBox) as well as the used

evaluation forms, i.e. processor and network intensive sce-

narios. Section 5 reports the evaluation results discussing the

minimum, maximum, and average response-times in different

setups. Finally, section 6 outlines the main conclusions and

future work.

II. RELATED WORK

Virtualization technology for cloud computing, such as

hypervisors and/or virtual machine monitors, can challenge

the temporal properties of soft real-time applications due to the

possible introduction of higher latencies and communication

jitter. Still, the deadlines for the soft real-time domain may

be respected (or tolerably lost) by the new high performance

cloud computing platforms that provide very efficient network-

ing by using specific technology as InfiniBand [4].

Predictable hypervisors exist that achieve temporal and

spatial isolation such as the academic initiatives of [26] [21],

among others in the industrial domain1, for real-time domains.

In the hard real-time domain, predictability offered by real-

time hypervisors is obtained at the cost of having to recompile

the execution environment. This is not desired for the case of

soft real-time applications and mainstream domains that are

likely to be interested in using existing binaries, and they may

even suffer run-time migration.

There are a few studies and analysis of the performance

of both, virtualization technology and virtualized environ-

ments with varying quality results. Diverse applications have

been used as payload to evaluate virtualization performance.

These can refer to low-level services [10], function-specific

applications (e.g. MapReduce [19] [16], storage solutions

[20]), and middleware systems [18]. Some works report [17]

significant delays due to the virtualization layer in contexts

1WindRiver Hypervisor, WMWare ESX, etc.

where applications are in execution within virtual machines.

In contrast, other empty scenarios (i.e., without applications

or virtual machines) report that the execution is similar to the

results obtained on the physical platform [24] [25].

For this purpose, other virtualization technologies exist that

do not offer temporal isolation but statistical guarantees with

the advantage of allowing functional additions at run-time.2

The different implementations of DDS were not originally

designed for virtualized environments. As a result, they can

exhibit a significant different behavior either in a virtualized

or in a bare machine with operating system. There are some

previous experiences of using DDS in a virtual context offering

good average communication times, such as the one reported

in the iLAND reference implementation [6] [15] that uses

a bi-dimensional QoS model [14] that can be mapped to

DDS QoS properties. Possible sources of this behavior are the

efficient resource management policies at node level inspired

on [12] using QoS resource brokers such as [9]; timeliness

was preserved even in the event of system reconfigurations that

required real-time service composition [13] [32]. However, no

benchmarking was performed in this context and only average

times were reported.

Mainstream and traditional individual parallel applications

or benchmarks have been applied to evaluating the perfor-

mance of virtual machines. Benchmarks are being modified to

adequately model the operation of virtual machines such as

the industry benchmarks VMark [11], vConsolidate [10], and

SPEC committee [22] that are virtualization benchmarks that

can be used for consistent and repeatable server performance

analysis. There are interesting studies applying vConsolidate

in specific VM performance modeling such as [27]. Released

two weeks prior to the submission of this work, [22] simulates

a world-wide company with an IT infrastructure with varied

requests that enables specifying deadlines for service requests

(from few to hundreds of ms, and supports multiple run con-

figuration for analysing bottlenecks at multiple layers (from

hardware to application layer).

The execution of communication middleware in a virtual

environment is not supported by a specific benchmark. Conse-

quently, we have identified a set of specific tests for devising

the behavior of the system to identify possible bottlenecks,

reasoning about the possible sources of the problems.

III. BENCHMARKING VIRTUALIZED MIDDLEWARE

The behavior of the system is analysed in terms of usage of

physical resources, stability of the execution, and load of the

servers is considered as an initial step to analyse the system.

Considered resources are: Processor, network bandwidth, and

memory consumption. The stability is measured by analysing

the behavior of specific communications in the presence of

interference and without interference. Different load levels for

the servers are also experimented by executing operations that

require various resource usage levels, from light weight to

2Popular virtualization technologies that provide applications execution
environments include Citrix Xen, VMWare, KVM [19], Oracle VirtualBox,
SPLPAR, MS Virtual Server and Solaris Container [23].

❘❊❆❈❚■❖◆ ✷✵✶✸ ✶✹

heavy operations. Other interesting measures are derived such

as throughput (i.e., number of requests per unit of time), and

latencies.

A. Potential performance drawbacks in the virtualization

The execution risks of a virtualized communication mid-

dleware are the following:

• Overhead of the virtualization. Virtual machines are in-

terfered by the execution of other VMs. This may affect

the use of visible shared resources (e.g. the same physical

core or memory capacity) and invisible shared resources

(e.g., cache space, memory bandwidth, etc.). These can

be visible or invisible depending on the implementation

of the host operating system and virtualization monitor.

• Overhead of the communication middleware abstractions.

A virtualization infrastructure adds extra costs in the

response time of distributed applications since requests

traverse the software layers; requests may be queued

at different levels. This overhead affects main statistical

metrics (i.e. minimum, average, and maximum response

times), increasing jitter and overhead. That refers to the

cost of serializing and deserializing parameters sent in

different communications. Notice that part of this serial-

ization cost may be alleviated using virtual machines that

run similar virtualized operating systems and hardware

infrastructures.

• Coexistence issues. Other particular inefficiencies

stemmed from the integration of two different

software stacks: the virtualization software and complex

middleware. Depending on the particular middleware-

virtualizer combination, different inefficiencies may

appear (e.g. unnecessary copies from virtualized buffers

to middleware buffers).

B. Benchmark description

In order to produce a meaningful set of tests for virtual-

ized middleware, a benchmark should take into account the

following key aspects:

• Application nature. Different types of applications exhibit

distinct performance patterns that are, mainly, of two

types: (i) network intensive applications and (ii) CPU in-

tensive applications. Network-intensive applications make

heavy use of I/O operations and peripheral actions, and

their processor computations are minimum as compared

to the network I/O activity. CPU intensive are dedicated

to intra-node activity rather than in communication or

information exchange.

• Middleware communication paradigm. The supported in-

teraction paradigms of the middleware (e.g. its publish-

subscribe (P/S), synchronous remote invocations, etc.)

influence its internal implementation and synchronization

aspects which directly affects the performance of the re-

mote execution and, as a result, also influence virtualized

environments. Other influencing aspects to be taken into

account are the marshalling (and unmarshalling) tech-

niques which typically represent a considerable source

of overhead in middleware infrastructures.

• Virtualization software characteristics. The type of vir-

tual machine monitor (VMM) or hypervisor and the

virtualization technique, and guarantees (either real-time

or statistical) over the temporal and spatial isolation of

virtual machines influence the performance of the system.

Next section illustrates a practical evaluation via a specific

set of tests that consider the above mentioned concepts in a

general scenario: i) a client-server application, which is ii)

running on DDS, which iii) is virtualized using VirtualBox

over Linux. This soft real-time scenario has been chosen

because it reduces development and deployment costs (i.e. the

time require to develop a virtualized application). Real-time

virtualizers would produce better performance results, requir-

ing additional resources (CPU, or additional infrastructure)

too.

IV. ANALYSIS OF DDS EXECUTING IN VIRTUAL MACHINES

This section describes the set of tests carried out in a

client-server application installed on a DDS infrastructure.

Such applications are typical of many distributed systems and

require the server to block, waiting for a response from the

client. In essence, the benchmarked application carries out the

following operations:

• The client sends information packed in an array that is

transferred to a server node. Internally, the communica-

tion with the server is carried out using a DDS topic.

• Then, the server which is another node running DDS,

reads the data, processes the data, and sends back a

response to the client node. In the specific implementation

of the test, this action is supported with a different DDS

topic that sends data back to the client.

• After receiving the information, the client to server com-

munications stops so the client-server interaction ends.

A. Experimental setting

The physical deployment comprises two machines, one

acting as a server and another as a client (see Table I). Both

machines are connected via a local isolated Switched Ethernet

network that connects to Linux nodes. Client and server

run in a Ubuntu Linux 12.04 virtualized (with Virtualbox)

image that communicates via one of two alternative DDS

implementations: The first is the OpenSplice 5.5 DDS, and

the second is the professional RTI 5.0 implementation.

Since the hosting operating system, the virtualization soft-

ware and the virtualized operating systems are non real-

time infrastructures, the tests carried out focus on average

performance that may be suitable in some best-effort real-time

applications. A worst-case scenario requires to use a real-time

virtualizer and real-time operating system, which are not the

focus of this evaluation scenario.

In this particular, the following evaluation goals were

pursued:

❘❊❆❈❚■❖◆ ✷✵✶✸ ✶✺

TABLE I
HARDWARE AND SOFTWARE STACK USED IN THE EVALUATION

HW/SW Item Description

Server machine: CPU Core2Duo E4500 @2.2 Ghz
Server machine: Memory 6 Gigabyes

Client machine: CPU Core2 6320 @1.86 Ghz
Client machine: memory 3 Gigabyes

Network 100 Mbps switched Ethernet

Hosting OS Ubuntu 12.04
Virtualization software Virtualbox 4.2
Hosted OS Ubuntu 12.04

First DDS middleware: OSPL Community v5.5.1
Second DDS middleware RTI Connext Professional 5.0

Small size data sets: 64 bytes
Medium size data sets: 512 bytes

Processing time at server: From 0 to 100 µs

• To measure the absolute performance of client-server

applications from different DDS middleware vendors.

• To evaluate the overhead introduced by the virtualiza-

tion infrastructure in different DDS implementations. To

assess the differences in costs introduced by the virtual-

ization process.

• To evaluate the impact of different virtualized DDS

middleware implementations from the point of view of

a real-time application (considering different deadlines).

• To determine the absolute overhead introduced by the

DDS infrastructure when compared against an ideal in-

frastructure. The ideal infrastructure refers to a minimum

distributed system based on ICMP messages that do not

pay serialization/deserialization costs.

B. Results and analysis

The first experiment refers to the time required for the

whole client-server interaction under different setups. The

different setups refer to the following choices:

• The experiment is executing (i) inside the virtual machine

or (ii) in the host with no VM intermediation.

• The experiment is running (i) on an ideal ICMP scenario,

(ii) on OSPL or on (iii) RTI stacks.

• In the experiment the data sent to the server has to be

processed. The processing at the server ranges from 0 to

100 µs.

The obtained results (see Figure 1) show the expected

performance patterns. In all cases, the execution costs increase

with the amount of data sent to the server. They also increase

as they are virtualized, i.e. the costs in the non virtualized

environment are less than in the virtualized one, ranging from

800µs to few milliseconds with medium size data sets.

A remarkable result is the gap between the ideal middle-

ware setting (represented in the evaluation with ICMP) and

DDS. It is due to the multiple abstractions that are supported

by the DDS programming model, mainly due to serialization

overhead, and to the use of topics and multiple I/O buffers,

that manifest (i.e., are paid for) in the ICMP stack.

Fig. 1. Absolute end-to-end response time results with server and without
server processing time

Figure 2 complements the previous results with informa-

tion on the extra cost paid by the virtualization process. For

the given scenarios, the extra cost ranges from a minimum

of 120% to a maximum of almost 300%. In practical terms,

the virtualized application has reductions in performance that

may leave the available utilization in almost 25% of the time

consumed in a non virtualized environment equivalent. Notice

that this time is, to some extent, the maximum penalty; this

could be alleviated by using optimized virtualizers that take

into account the host infrastructure. The virtualizer used in this

experiment does not take advantage of this feature to improve

performance.

It is also remarkable that the virtualization may require

up to 50% of the total available time for small response

time applications (i.e., applications with a 10ms deadline).

This cost is reduced to less than 5% (i.e. a more moderated

and admissible penalty) when deadlines are in the 100ms
range. As operational deadlines increase, this margin reduces

to 1% for applications with deadlines that are in the range of

milliseconds.

The last set of experiments refers to the overhead in-

troduced by a middleware like DDS. Different middleware

implementations introduce an overhead when they compare

against an idealized communication middleware that do not

require to perform general application serialization, copying

data from different multilevel buffer, nor other middleware-

❘❊❆❈❚■❖◆ ✷✵✶✸ ✶✻

Fig. 2. Virtualization overhead main results with and without server process-
ing time

level overhead. As in the previous cases, the evaluation has

been carried out in small (see Figure 3) and medium (see

Figure 4) data sizes.

The following are remarkable outcomes:

• In most cases, the overhead introduced by the stacks

represents an important amount of the available time.

This extra overhead takes into account the amount of time

required for serialization and deserialization processes.

• For the given virtualization scenarios (and under the

described evaluation conditions), the use of OSPL sup-

port outperforms an RTI equivalent stack. In average

performance terms, the virtualized RTI requires and 50%
amount of CPU time to offer an OSPL-equivalent perfor-

mance.

• Lastly, it should be noticed that for both implementations,

the overhead of the virtualization dominates over the

overhead introduced by the middleware abstraction. In

all tests (see Figure 3 and Figure 4), the cost of the

middleware abstraction is typically 30% of the total time,

while the the cost of the virtualization may represent

72% of the total time. In practice, this effect is shown

in the graphs with the two virtualized DDS-middlewares

as virtualized implementations consume more resources

than their non virtualized equivalents.

Fig. 3. Overhead introduced by virtualized middleware technology (small
size data)

V. CONCLUSION

The work describes a benchmarking process to obtain

information on the performance of virtual machines containing

applications that communicate via publish-subscribe (data cen-

tric) middleware. Precisely, we have analysed the behavior of

DDS for its two most popular implementations (Open Splice

and RTI). Initially, we have identified the important aspects

to consider in the design of a benchmark for performance

analysis of virtualized middleware, including the identification

of the potential bottlenecks to search for, and the consid-

erations with respect to the software stack to be analysed.

Lastly, we have describe the benchmark tests executed for

applications that make intensive use of the network and the

processor. Results have shown the comparison and impact on

both implementations of the virtualization software.

Future work will include the execution of just released

industrial benchmarks for virtual machines that simulate a real

environment based on scenarios described in [28], [29] and

[30].

ACKNOWLEDGMENT

This work has been partly supported by the Salvador de

Madariaga Programme for International Research Stays from

the Spanish Ministry of Education (PRX12/00252) and by the

Spanish national project REM4VSS (TIN 2011-28339).

❘❊❆❈❚■❖◆ ✷✵✶✸ ✶✼

Fig. 4. Overhead introduced by virtualized middleware technology (medium
size data)

REFERENCES

[1] Object Management Group. Data Distribution Service for Real-Time

Systems. OMG, 1.2 formal/07-01-01 edition., Jan. 2007.

[2] R. Serrano-Torres, M. Garcı́a-Valls, P. Basanta-Val. Performance Evalua-

tion of Virtualized DDS Middleware IV Simposio de Sistemas de Tiempo
Real (IV STR - CEDI). September 2013.

[3] R. Serrano-Torres, M. Garcı́a-Valls, P. Basanta-Val. Virtualizing DDS mid-

dleware: performance challenges and measurements. IEEE International
Conference on Industrial Informatics (INDIN’13). Bochum, Germany.
July 2013.

[4] Infiniband Trade Association. InfiniBand Architecture specification vol. 1,

release 1.2.1. 2007.

[5] G. Chen, M. Li, and D. Kotz. Data-centric middleware for context- aware

pervasive computing Pervasive and Mobile Computing, pp. 216 253, April
2008.

[6] M. Garcı́a-Valls, L. Fernández Villar, I. Rodrı́guez López. iLAND: An

enhanced middleware for real-time reconfiguration of service oriented

distributed real-time Systems. IEEE Transactions on Industrial Informat-
ics, vol. 9(1), pp. 228- 236. February 2013.

[7] iLAND project. iLAND Reference Implementation Installation & User

Guide. September 2012.
http://sourceforge.net/projects/iland-project/

[8] M. Garcı́a-Valls, A. Crespo, J. Vila. Resource Management for Mobile

Operating Systems based on the Active Object Model International Journal
on Computer Systems Science and Engineering. July 2013.

[9] M. Garcı́a-Valls A. Alonso, J. Ruı́z, A. Groba. An architecture for a

Quality of Service resource manager for flexible multimedia embedded

systems. In Proc. of 3rd International Workshop on Software Engineering
and Middleware (SEM02). Lecture Notes in Computer Science vol. 2596.
2003.

[10] M. Greenfield, J.P. Casazza, and K. Shi. Redefining server performance

characterization for virtualization benchmarking August 2006.

[11] VMWare. VMWare vmark. http://www.wmware.com/products/vmmark/
results.html

[12] M. Garcı́a-Valls, A. Alonso, J. A. de la Puente. A dual priority

assignment mechanism for dynamic QoS resource management. Future
Generation Computer Systems, vol. 28(6), pp.902-911. June 2012.

[13] M. Garcı́a-Valls, P. Basanta-Val. A real-time perspective of service com-

position: key concepts and some contributions. http://dx.doi.org/10.1016/
j.sysarc.2013.06.008 Journal of Systems Architecture, Elsevier. (Available
online 16 July 2013)

[14] M. Garcı́a-Valls, P. Basanta-Val, M. Marcos, E. Estevez. A bi-

dimensional QoS model for SOA and real-time middleware International
Journal of Computer System Science and Engineering, vol. 28. ISSN
0267 6192. September 2013.

[15] M. Garcı́a-Valls, P. Basanta-Val. Comparative analysis of two different

middleware approaches for reconfiguration of distributed real-time sys-

tems. http://dx.doi.org/10.1016/j.sysarc.2013.08.010 Journal of Systems
Architecture, Elsevier. (Available online 24 August 2013)

[16] D. d. Oliveira, K. Ocaña, E. Ogasawara, J. Dias, J. Goncalves, F.
Baiao, and M. Mattoso. Performance evaluation of parallel strategies in

public clouds: A study with phylogenomic workflows Future Generation
Computer Systems, January 2013.

[17] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin. Performance

evaluation of virtualization technologies for server consolidation. HP
Laboratories Palo Alto, Enterprise Systems and Software Laboratory,
Tech. Rep., 2007.

[18] Oracle. Middleware virtualization http://www.oracle.com/us/
\-technologies/virtualization/middleware-virtualization-068082.html

[19] A. Matsunaga, M. Tsugawa, and J. Fortes. Cloudblast: Combining

mapreduce and virtualization on distributed resources for bioinformatics

applications. 4th IEEE International Conference on eScience, 2008. [On-
line]. Available: http://graal.ens- lyon.fr/ ecaron/m2/papers/papier06.pdf

[20] D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, J. Xu, R. Menon,
and T. P. Lee. Performance virtualization for large-scale storage systems.
22nd Int’l Symposium on Reliable Distributed Systems. 2003.

[21] S. Xi, J. Wilson, C. Lu, and C. Gill. RT-Xen: Towards real-time

hypervisor scheduling in Xen. Washington University in St. Louis, Tech.
Rep. http://www.cse.wustl.edu/lu/papers/emsoft11.pdf. 2011.

[22] Standard Performance Evaluation Corporation. Specjbb2013 http://www.
spec.org/jbb2013/ 2013.

[23] E. Benjamin. 3 key trends in middleware virtualization. VMWare,
vFabric Team, Tech. Rep. http://blogs.vmware.com/vfabric\-/2012/08/
3-key-trends-in-middleware-virtualization.html 2012.

[24] J. Lu, L. Makhlis, and J. Chen. Measuring and modeling the perfor-

mance of the Xen VMM. bMC Software Inc.
[25] J. Lei, X. Yang, G.Xiong, W. Jiang, and Y.Liao. VMM-based real-time

embedded system International Conference on Embedded Software and
Systems Symposia, pp. 213218. July 2008.

[26] A. Crespo, I. Ripoll, and M. Masmano. Partitioned embedded architec-

ture based on hypervisor: The XtratuM approach. European Dependable
Computing Conference, pp. 67-72. 2010.

[27] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell. Modeling virtual machine

performance: challenges and approaches. SIGMETRICS Perform. Eval.
Rev. vol.37(3), pp. 55-60. January 2010.

[28] P. Basanta Val, M. Garcia-Valls, M. Baza-Cuado. A simple data-muling

procotol. Accepted in, IEEE Transactions on Industrial Informatics. 2013.
[29] P. Basanta Val, M. Garcia-Valls. A Distributed Real-Time Java-centric

Architecture for Industrial Systems. Accepted in, IEEE Transactions on
Industrial Informatics. DOI: 10.1109/TII.2013.2246172. 2013.

[30] P. Basanta Val, M. Garcia-Valls. Resource Management Policies for

Real-time Java Remote Invocations. Accepted in, Journal of Parallel and
Distributed Computing. DOI: 10.1016/j.jpdc.2013.08.001. 2013.

[31] P. Basanta-Val, M. Garca-Valls. Enhanced JRMP multiplexing headers

under non-fragmented local area network constraints. Electronics Letters,
vol.49, no.21, pp.1333-1335. October 2013. doi:10.1049/el.2013.2239

[32] M. Garcı́a-Valls, P. Basanta-Val. Low complexity reconfiguration for

real-time data-intensive service-oriented applications. Future Generation
Computer Systems, Elsevier. (Accepted for publication: October 2013)

❘❊❆❈❚■❖◆ ✷✵✶✸ ✶✽

A Feasible Configuration of AFDX Networks for

Real-Time Flows in Avionics Systems

Dongha An, Hyun Wook Jeon, Kyong Hoon Kim, and Ki-Il Kim

Department of Informatics

Gyeongsang National University

Jinju-daero 501, Jinju, 660-701, South Korea

Email: {dhan,krsoftno1,khkim,kikim}@gnu.ac.kr

Abstract—AFDX (Avionics Full Duplex Switched Ethernet)
Networks have been proposed to meet unique ADN (Aircraft
Data Networks) characteristics and then standardized as a Part
7 in ARNIC 664. As for this new communication technology, some
research works have been conducted to address design issues such
as optimizing virtual links as well as analytic modeling including
response time. Despite of their research efforts, configuration
problem for both MTU (Maximum Transmission Unit) and BAG
(Bandwidth Allocation Gap) over virtual links in AFDX networks
remains unsolved yet. In this paper, we propose how to set MTU
and BAG value on each virtual link according to both application
requirements and AFDX switch constraints. We define a new
problem of feasible configurations of virtual links in an AFDX
switch and propose an algorithm to derive feasible BAG and MTU
pairs based on the branch-and-bound technique. Throughout
simulations, we evaluate the proposed algorithm and analyze the
effect of parameters in AFDX networks.

I. INTRODUCTION

As new aircraft’s demanding requirements to high available
bandwidth, minimum wiring to reduce the weight and low
development cost have emerged, the current three main ADNs
(Aircraft Data Networks), ARNIC 429, MIL-STD-1553 and
ARNIC 629 are regarded as not appropriate communication
technologies to meet these demands completely. This fact
implies that not only reliable and deterministic property of
ADN but also implementation cost should be concerned in
next generation aircraft. Consequently, from development of
data networks on the Airbus 380 aircraft, a new technology,
called AFDX (Avionics Full Duplex Switched Ethernet), has
been implemented and then standardized for new ADN [1],
[2], [3].

The AFDX was extended from original Ethernet to ensure
deterministic behavior and high reliability in order to comply
with the stringent requirements of ADNs. To ensure them,
new functions are implemented in two ways. One is traffic
control by guaranteeing the bandwidth of each application,
and the other is dual redundant channel for reliability. While
the former targets to limit the jitter and transmit latency, the
latter transmits the same data stream over disjoint networks. To
achieve this goal, virtual links have been employed between
source and destination. With these virtual links, deterministic
behaviors are guaranteed and all controls are ensured through
them. So, determining virtual link properties and configuring
network environments become network designer’s great task.

System configuration parameters of virtual links include

traffic scheduling, maximum jitter, and bandwidth constraints
[1], [2], [3]. Among many system parameters, two are im-
portant with regard to the guarantee of real-time require-
ments: BAG (Bandwidth Allocation Gap) and MTU (Maximum
Transfer Unit). BAG is a timeslot confining the virtual link’s
bandwidth by defining the minimum gap time between two
consecutive frames. The range of the BAG value is between 1
and 128 msec in a form of power of 2. MTU is defined as the
maximum size of message to be transmitted in each frame.

Much recent work has focused on the system analysis of
AFDX networks [7], [8], [9], [10], [12]. The AFDX network
analysis is done by queuing networks, network calculus, or
model checking. Throughout the analysis, the impact of param-
eters has been analyzed, including end-to-end delays, worst-
case latencies, and so on. However, only a few studies have
been done on the problem of AFDX configuration such as
BAG and MTU. In [4], the authors proposed how to set the
transmission parameters of virtual links so as to minimize
the reserved bandwidth while transmitting the data within
their maximum delivery times. They first derive optimized
parameters of each virtual link for a given set of messages.
Then, they solve the optimization problem of multiple virtual
links in order to minimize bandwidth. The weakness of this
approach is that the optimized parameters found in a single
virtual link cannot be feasible when they are used in finding
feasible configurations of multiple virtual links in an AFDX
network switch.

In this paper, we focus on finding feasible BAG and
MTU parameters of virtual links in an AFDX switch for a
given virtual links of messages. We define a new problem
of feasible configuration of an AFDX switch, and then solve
the problem using the branch-and-bound technique. The main
contributions of this paper include (i) defining a problem of
feasible configuration, (ii) providing an algorithm to solve
the problem, and (iii) analyzing the algorithm through the
simulations.

The rest of this paper is organized as follows. First, we
describe the related work briefly in Section II. And then,
the system model and the problem definition are provided in
Section III. In Section IV, we explain the proposed algorithm.
Performance evaluations are shown in Section V. Finally,
conclusion and further work are followed in Section VI.

❘❊❆❈❚■❖◆ ✷✵✶✸ ✶✾

II. RELATED WORK

In this section, we briefly introduce related work on AFDX
networks. In this research area, existing technologies mainly
fall into two main categories. One is for design issue and the
other is for analysis modeling.

First, the authors in [4] have focused on the design of
virtual links in AFDX networks. In their works, the problem
domain is ranged from how to set the transmission param-
eters of virtual links to how to route virtual links in the
AFDX interconnect. For this goal, several closed-form results
and efficient numerical algorithms as well as exact integer-
linear programming formulation of the routing problem are
newly presented. Through above method, optimal bandwidth
management is achieved, such as, minimizing reserved band-
width and the bandwidth consumption. In another research
work, modeling method for AFDX frame management was
introduced to ascertain the reliability properties of design [5].
They modeled the system as a network of timed automata
to indicate weakness of current AFDX frame management
against faults. Moreover, they present the solution by including
a priority queue at receivers. In addition to mentioned works,
one of outstanding features, reliability through redundancy
transmission on AFDX was analyzed by formal method in [6].

While the design issue targets to build AFDX networks,
the other works have been proposed to analyze the system
metric such as response time. The representative work for this
goal has been proposed in [7]. The authors introduce three
methods, network calculus, queuing networks simulation and
model checking to evaluate bounding end-to-end delays on
AFDX networks. As the previous work, they also showed
that Trajectory approach which analyzes the worst-case delays
throughout message flows outperforms the Network calculus
method under industrial configuration [11] and reached reliable
conclusion that combination of two methods could lead to an
improvement of the existing analysis in [8]. However, since
the previous model did not include contention in the end or
switches, different analysis was given to obtain worst-case
latencies and output jitter for the network messages in [9]
by defining a real-time model for a communications network
based on AFDX. In addition to analysis model, simulation
system based on popular NS-2 was designed and implemented
to evaluate the performance and analyze impact of several
system parameters such as scheduling algorithm in [10].

III. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model

Avionics network systems consist of many components,
such as sensors, LRUs (Line Replacement Units), computing
units, and so on. These components communicate each other
throughout AFDX switches. An AFDX message is uniquely
defined by UDP source and destination ports, as shown in
Figure 1. Sine we focus on real-time AFDX messages, a
message flow fi is defined by (li, pi), where li is the payload
of the message in bytes and pi is Message Transmit Cycle
(MTC) of the message in msec. That is, a message of li bytes is
generated every pi time units and is delivered to the destination
application.

A Virtual Link (VL) is a logical communication unit
in AFDX networks. Figure 1 shows an example of AFDX

LRU 1

Partition 1
✁✂✄
✆✝✞✟ ✠

✁✂✄
✆✝✞✟ ✡

�☎☛☞
✌✍✎✏ ✑

�☎☛☞
✌✍✎✏ ✒

✓✔ ✕✖
✗✘✔ ✕

✓✔ ✙✖
✗✘✔ ✕

LRU 2

Partition 1

✁✂✄
✆✝✞✟ ✠

✁✂✄
✆✝✞✟ ✡

�☎☛☞
✌✍✎✏ ✑

�☎☛☞
✌✍✎✏ ✒

✓✔ ✕
✗✘✔ ✕

✓✔ ✚
✗✘✔ ✙

LRU 3

Partition 1

✁✂✄
✆✝✞✟ ✡

✁✂✄
✆✝✞✟ ✠

�☎☛☞
✌✍✎✏ ✒

�☎☛☞
✌✍✎✏ ✑

✓✔ ✚
✗✘✔ ✙

✓✔ ✙
✗✘✔ ✕

✛✜✢ ✣ ✛✜✢ ✤

Partition 2
✁✂✄
✆✝✞✟ ✠

✁✂✄
✆✝✞✟ ✡

�☎☛☞
✌✍✎✏ ✑

�☎☛☞
✌✍✎✏ ✒

✓✔ ✕✖
✗✘✔ ✕

✓✔ ✙✖
✗✘✔ ✕

✛✜✢ ✣✥

✛✜✢ ✦

VL 1

AFDX switch
VL 2

VL 3

Fig. 1. An example of virtual links in an AFDX switch

networks with three virtual links among LRUs. These virtual
links sharing physical links are scheduled in AFDX network
switches. Furthermore, multiple applications transmit real-time
messages throughout a common virtual link if their source and
destination units are the same. In the example of Figure 1, two
application messages are shared in the virtual link VL3.

A virtual link requires two important parameters other than
source and destination information. The first is Bandwidth
Allocation Gap (BAG) to specify a periodic frame. In AFDX
switches, a BAG is defined by a value of 2k msec, where
k = 0, 1, . . . , 7. As all BAGs are 2k msec, virtual links
are multiplexed in AFDX switches. The second parameter
is Maximum Transfer Unit (MTU) of the message in bytes
at each frame. Payloads of applications in a virtual link are
transmitted within maximum MTU bytes in a single frame. If
the size of a payload is greater than the MTU, it is fragmented
into multiple frames. Therefore, a virtual link VLi is defined
by (BAGi, MTUi, Fi) as follows.

• BAGi: bandwidth allocation gap or period of VLi in a
value of 2k msec where k = 0, 1, . . . , 7.

• MTUi: maximum transfer unit or message size of VLi

in bytes.

• Fi: a set of message flows in VLi, where the j-th
message flow is denoted as fi,j = (li,j , pi,j).

As avionics systems are hard real-time systems, it is an
important issue to guarantee the schedulability both in com-
puting units and in network flows. The virtual link scheduler
in an AFDX switch plays a role in scheduling multiple virtual
links. For example, the scheduling algorithm in [2] is Round
Robin (RR). In this paper, we will define a new problem of
finding a feasible configuration of BAG and MTU pairs of
given virtual links in an AFDX switch in order to meet all
real-time requirements of messages.

B. Problem Definition

For a given virtual link VLi, MTU and BAG are configured
so as to meet all the real-time requirements of message flows in

❘❊❆❈❚■❖◆ ✷✵✶✸ ✷✵

✧★✩✪✫✬✭✩
✮ ✬✯✰✩✱

✲✳✴
✵ ✬✯✰✩

✶✷✸
✴✩✱✰✹✺✪✰✹✻✺
✼ ✬✯✰✩✱

✶✷✸
✲✻✽★✾✩
✼ ✬✯✰✩✱

✿✯❀✩
❁✧❂❃

❄ ✬✯✰✩✱

❁✧
❅✩✪❆✩★
❄❇ ✬✯✰✩✱

❈✴✧
❅✩✪❆✩★
❉ ✬✯✰✩✱

✷✳✴❊
✧✪✯✭✻✪❆
✵❋✵✮ ✬✯✰✩✱

✧✪❆❆✹✺●
❇ ❍ ✵✼
✬✯✰✩✱

✲■
✵ ✬✯✰✩

✳✸✲
❃ ✬✯✰✩✱

❁✳❏
✵❄ ✬✯✰✩✱

❑▲▼◆❖▼P◗ ❘❙❚ ❯❱❲▼❳❨
❩❬❭❪ ❫P❱❴❵P◗ ❑▲▼◆❖▼P◗ ❘❛❜ ❯❱❲▼❳❨

Fig. 2. The AFDX frame structure and its overhead

the link. If the payload of a message is greater than the MTU
size, it is transmitted in multiple fragmented packets. Since
all BAGs of VLs are harmonic, the schedulability analysis is
easily derived by utilization analysis. Thus, Eqn. (1) tells the
message constraint of VLi with ni messages to guarantee the
real-time requirement of all message flows in the link [2].

ni∑

j=1

⌈li,j/MTUi⌉

pi,j
≤

1

BAGi
(1)

Let us assume that the system has N VLs on an AFDX switch
with B bandwidth in bps. Each VLi is configured with (MTUi,
BAGi), so that MTUi bytes are transmitted every BAGi msec.
In addition, each VL message requires the overhead of 67 bytes
as shown in Figure 2. Since the total bandwidth of VLs should
not exceed the network bandwidth, the following bandwidth
constraint should be met.

8
n∑

i=1

MTUi + 67

BAGi
× 103 ≤ B (2)

The last constraint of virtual link scheduling is about jitter.
The maximum allowed jitter on each virtual link in the ARINC
664 specification requires 500 µsec [2]. Thus, the following
equation tells the jitter constraint, where 40 µsec is the typical
technological jitter in hardware level to transmit an Ethernet
frame.

40 +
8
∑n

i=1
(67 + MTUi)

B
≤ 500 (3)

Now we define a problem of finding a feasible configu-
ration of BAG and MTU pairs of virtual links of an AFDX
switch. Three constraints of Eqn. (1), Eqn. (2), and Eqn. (3)
should be met in order to satisfy all real-time requirements
of messages in virtual links, which derives a new problem as
follows.

Definition 3.1: For a given set of virtual links V =
{VLi | i = 1, . . . , N}, the problem of AFDX-CONF is to
determine (BAGi, MTUi) of each VLi so as to satisfy three
constraints of Eqn. (1), Eqn. (2), and Eqn. (3), where BAGi ∈
{1, 2, 4, 8, 16, 32, 64, 128} and MTUi ∈ {1, 2, . . . , 1471}.

IV. THE PROPOSED ALGORITHM

We solve the problem AFDX-CONF in two steps. The
first step is to find the list of (BAGi, MTUi) which guarantees
the schedulability of message flows in VLi. Each (BAGi,
MTUi) should be selected such that it satisfies the constraint
of Eqn. (1). Then, we find the feasible solutions of a given
virtual links with consideration of two constraints of Eqn. (2)
and Eqn. (3).

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

U
ti

li
za

ti
o

n

MTU

⌈80/MTU⌉
10

+ ⌈100/MTU⌉
12

1/1 (BAG = 1)

1/2 (BAG = 2)

1/4 (BAG = 4)

1/8 (BAG = 8)

Fig. 3. An example of feasible BAG and MTU of a virtual link

A. Schedulable BAG and MTU Pairs of a VL

Let us consider a virtual link VL1 with two message flows
of f1,1(80, 10), f1,2(100, 12) as an example. The values of
BAG and MTU of VL1 are set to satisfy Eqn. (1) in order
to meet the real-time requirement of two messages. The left
side of Eqn. (1) is shown in Figure 3 as a step function, while
1/BAG is also drawn in the figure for different BAG values.

For a given BAGi, there exist many MTUs which satisfy
Eqn. (1). For example, when BAG1 = 1, all MTUs can be used
if MTU ≥ 17, as shown in Figure 3. Since a longer MTU size
requires more bandwidth and jitter, the smallest value should
be selected. Thus, MTU1 of the example VL1 is 17 bytes when
BAG1 is 1 msec. Similarly, MTUs of VL1 for BAGs with 2
msec and 4 msec are given by 40 bytes and 100 bytes in each,
as shown in Figure 3.

When the MTU size is greater than the maximum payload
size of messages, the required utilization is not changed. For
example, the lower bound of the utilization of VL1 is given
by about 0.1834 at MTU = 100. This implies that there is no
MTU which guarantees the schedulability of two messages if
BAG is greater than or equal to 8 msec. Therefore, the feasible
solutions, (BAG1, MTU1), of VL1 are given by (1, 17), (2, 40),
and (4, 100).

The pseudo-algorithm of Figure 4 describes how to obtain
the set of feasible BAG and MTU pairs of a given virtual link
VLi. The first part of the algorithm gathers all step integers at
which the utilization function begins a new piecewise constant
due to the ceiling function. We denote the set of such step
integers as Nstep. For each message fi,j , such step points are
derived and added into Nstep (lines 1-8).

Then, for each 2k value, we find the minimum MTU which
satisfies Eqn. (1). (lines 9-13). We denote si,k as the feasible
BAG and MTU pair in case of BAGi = 2k for a virtual link
VLi. For a given ni flows, the time complexity of the algorithm
in Figure 4 is O(ni · |Nstep|) since we have to find and check
the feasibility at each step point of messages.

❘❊❆❈❚■❖◆ ✷✵✶✸ ✷✶

Algorithm Find Feasible BAG MUT (VLi)
1: Nstep ← ∅

2: for each message fi,j in VLi do

3: frag← ⌈li,j/(⌈li,j/pi,j⌉)⌉
4: while frag ≥ 1 do
3: m← ⌈li,j/frag⌉
5: Nstep ← Nstep ∪ {m}
6: frag← frag − 1
7: endwhile

8: endfor

9: for k from 0 to 7 do

10: mk ← the least m ∈ Nstep s.t.
∑ni

j=1
⌈li,j/m⌉

pi,j
≤ 1

2k

11: if mk 6= NULL then

12: si,k ← (2k ,mk)
13: endfor

Fig. 4. Algorithm of feasible BAG and MTU pairs of a VL

B. Feasible BAG and MTU Pairs of VLs

The problem of finding feasible BAG and MTU pairs of
a given set of virtual links is not trivial. For example, let us
consider the example of two virtual links of Table I where the
network speed (B) is given by 1Mbps. For each virtual link,
the feasible BAG and MTU pairs are derived by the algorithm
of Figure 4, as shown in the last column of Table I. Now,
a new problem arises about selecting appropriate BAG and
MTU pairs of two virtual links so as to meet both constraints
of Eqn. (2) and Eqn. (3).

There are some tradeoffs among feasible si,k of a virtual
link VLi. Solutions with smaller BAG provide less jitter due
to smaller MTU size, while they require more bandwidth due
to overhead of fragmentation. For example, if we select (1,5)
and (1,6) as (BAG, MTU) of two VLs of Table I, it does not
meet the bandwidth constraint of Eqn. (2). On the contrary, if
(2,9) and (2,12) are selected as (BAG, MTU) of two VLs, this
configuration does not meet the jitter constraint of Eqn. (3).
The selection of (1,5) and (2,12) of VL1 and VL2 satisfies both
constraints so that all messages in VLs meet their real-time
requirements.

Let us denote si,k as the feasible BAG and MTU pair of

VLi in case of BAGi = 2k, which is derived from the algorithm
of Figure 4. If there is no feasible MTU for BAGi = 2k, si,k =
∅. Then, the problem to be solved is defined as follows.

Definition 4.1: For a given set of virtual links V =
{VLi | i = 1, . . . , N}, let us assume that a feasible pair of
BAG and MTU for BAGi = 2k is available as si,k. The problem
of AFBM is to select si,k of each VLi so as to satisfy both
constraints of Eqn. (2) and Eqn. (3).

For a given N virtual links, the exhaustive search of the

TABLE I. AN EXAMPLE OF VIRTUAL LINKS (B = 1 MBPS)

Flows Payload MTC Feasible BAG and MTU pairs

(fi,j) (li,j) (pi,j) (si,k)

VL1

f1,1 200 80
(1,5), (2,9), (4,17), (8,34), (16,67), (32,200)

f1,2 250 160

VL2

f2,1 250 220
(1,6), (2,12), (4,25), (8,50), (16,100), (32,200)

f2,2 200 40

Algorithm Find Feasible Configurations (V)
/∗ V = {VLi|i = 1, . . . , N} ∗/

1: for i from 1 to N do

2: call Find Feasible BAG MUT (VLi)
3: S ← ∅

4: result ← DFS BandB (0, 0, 1, S)
5: return S

Function DFS BandB (Bcurr , Jcurr, i, S)
6: if i = N + 1 then return true

7: for each si,k of VLi do

8: bandwidth ← Bcurr + (mtui,k + 67)/bagi,k
9: jitter ← Jcurr + 67 + mtui,k
10: if bandwidth ≤ B/8000 and jitter ≤ 460 · B then

11: result ← DFS BandB (bandwidth, jitter, i+ 1, S)
12: if result = true then

13: S ← S ∪ {si,k}
14: return true

15: endif
16: endif

17: endfor

18: return false

Fig. 5. The proposed algorithm

problem AFBM takes O(8N) since each virtual link might
have maximum eight solutions. In this paper, we provide a
branch-and-bound algorithm to find a feasible solution for
a given N virtual links with their feasible BAG and MTU
pairs derived by Figure 4. The proposed branch-and-bound
algorithm consists of pruning condition and branch-and-bound
strategy as follows.

• Pruning condition: The pruning condition is two
constraints of Eqn. (2) and Eqn. (3). The algorithm
examines whether the solutions in the subset satisfy
both constraints. Since both bandwidth and jitter val-
ues increase with a new branch in the search tree, the
algorithm stops the search of the subset which already
violates one of two constraints.

• Branch and bound strategy: We can use the current
values of total bandwidth and jitter as a branch con-
dition. For example, a node with the least bandwidth
is selected as a new branch. The algorithm finds a
feasible solution when it reaches at any leaf node in
the search tree.

The proposed algorithm searches a feasible solution in a
leaf node in Depth-First-Search (DFS) manner. The function
DFS BandB in Figure 5 is the recursive implementation at
level i in the search tree. Two values of Bcurr and Jcurr are the
total bandwidth and jitter of sub-solutions from VL1 to VLi−1.
For each si,k = (bagi,k,mtui,k), two constrains of Eqn. (2)
and Eqn. (3) are checked including a new solution of VLi

(lines 8-10). If either of two constraints is not satisfied, it is
pruned. Otherwise, the depth-first-search is continued with two
updated bound values (line 11).

When the search reaches at a leaf node, the function returns
true (line 6). The return value of calling DFS BandB is true,
the final solution S is updated as to include si,k (line 13) and
the function returns true. Thus, the problem of AFDX-CONF
is solved by the algorithm in Figure 5. If the return value of
DFS BandB (0, 0, 1, S) is true, a feasible solution is stored

❘❊❆❈❚■❖◆ ✷✵✶✸ ✷✷

 0

 2

 4

 6

 8

 10

10~60 60~110 110~160 160~210 210~260

N
o

rm
a

liz
e

d
 E

x
e

c
.

T
im

e

MTC

Proposed Brute-Force

Fig. 6. Algorithm execution time

TABLE II. THE PERCENTILE OF FEASIBLE SOLUTIONS

MTC 10 ∼ 60 60 ∼ 110 110 ∼ 160 160 ∼ 210 210 ∼ 260

Feasible Sets 3.4% 23.6% 40.1% 54.0% 62.7%

in S. Otherwise, the empty set is returned, which implies no
feasible configuration is found for a give set of virtual links.

V. PERFORMANCE EVALUATIONS

In this section, we show performance evaluation of the
proposed algorithm. First, we evaluate the execution time of
the proposed algorithm compared with the brute-force search.
In the experiments, we generate five virtual links with two
message flows in each virtual link. The payload of a message is
randomly generated from 20 to 80 bytes. The MTC or period of
a message is randomly selected among five different intervals,
as shown in Figure 6. The network bandwidth is set as 6Mbps.

For each case of Figure 6, we generate 5000 random
sets of five virtual links and measure the average execution
time of the proposed algorithm. In order to compare the
execution time, the brute-force search algorithm is also run.
In Figure 6, the execution time is normalized based on that of
the proposed algorithm in case of the first interval of MTC in
the experiments.

As shown in Figure 6, the proposed algorithm runs about
two or six times faster than the exhaustive search algorithm.
Since the proposed algorithm is based on branch-and-bound
technique, it runs faster. Table II shows the percentile of
feasible solutions among 5000 random test cases. In case of
smaller MTCs, the performance of the proposed algorithm is
more than those in bigger MTCs. As shown in Table II, most
of random test sets are infeasible in lower MTCs. In this case,
the proposed algorithm rejects the given virtual link sets in
early search steps due to the pruning condition. However, the
exhaustive search algorithm tests all possible cases.

Next, we analyze the payload bound of a message to be
schedulable. The MTC is varied from 10 to 100 bytes. We
generate 12 messages of the same requirement. The number
of virtual links is varied from 1 to 6 in order to analyze
the impact of the number of virtual links. Figure 7 shows

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50 60 70 80 90 100

P
a

y
lo

a
d

 b
o

u
n

d

MTC

of VLs = 1
of VLs = 2
of VLs = 3

of VLs = 4
of VLs = 6

Fig. 7. Payload bounds w.r.t MTC

the payload bound of a message by simulating the proposed
algorithm from the payload size 1 to 1471. Figure 7 shows that
the message of lower payload size than the bound is guaranteed
to be scheduled.

As shown in Figure 7, the schedulability of more virtual
links shows generally worse than that of less virtual links
for the same number of messages. It is because of jitter
and bandwidth overhead of virtual links in AFDX switches.
However, in case of lower MTCs, the schedulability of a single
virtual link shows poor since it becomes difficult to meet the
message constraint of Eqn. (1).

Let us consider the case of MTC = 100 in Figure 7. All
messages of the payload size less than or equal to 1471 bytes
are schedulable if N ≤ 4. We measure the bandwidths and
jitters of four different number of virtual links, as shown in
Figure 8. Figure 8 implies that it is better to use a single virtual
link to send 12 messages in order to reduce the total bandwidth
and jitter. The remaining bandwidth can be used to transmit
other non-real-time network traffic in AFDX switches.

VI. CONCLUSIONS

In this paper, we defined a new problem of feasible
configurations of an AFDX switch for the purpose of meeting
the real-time requirements of all messages in avionics. Two
important parameters of BAG and MTU of virtual links are
derived by solving the problem. The proposed algorithm first
derives optimal MTUs of a virtual link for each possible BAG,
and then obtains feasible BAG and MTU pairs of multiple
virtual links. In the simulation results, the proposed scheme
is faster than the exhaustive search algorithm. And, we also
analyzed the payload bound and the effect of selection of
virtual links.

Since the AFDX network configuration becomes an im-
portant issue in avionics systems, we will investigate many
problems based on the results of this paper. For example,
we will extend the problem into multiple AFDX switches or
discuss about the routing issues through the networks.

❘❊❆❈❚■❖◆ ✷✵✶✸ ✷✸

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 50 200 350 500 650 800 950 1100 1250 1400

B
a
n
d
w

id
th

 (
K

b
p
s
)

Payload size

of VLs = 1
of VLs = 2

of VLs = 3
of VLs = 4

(a) bandwidth

 0

 100

 200

 300

 400

 500

 50 200 350 500 650 800 950 1100 1250 1400

J
it
te

r
(µ

s
e
c
)

Payload size

(b) jitter

Fig. 8. Bandwidth and jitter of feasible sets

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Ko-
rea (NRF) funded by the Ministry of Education (No. NRF-
2012R1A1A1015096) and BK21+ Program.

REFERENCES

[1] R. L. Alena, J. P. Ossenfort, K. I. Laws, A. Goforth, and F. Figueroa.
Communications for integrated modular avionics. In Proc. of 2007

IEEE Aerospace Conference, March 2007.

[2] AFDX Tutorial. http://www.techsat.com/fileadmin/media/pdf/infokiosk/
TechSAT TUT-AFDX-EN.pdf.

[3] AFDX/ARNIC 664 Tutorial. http://www.cems.uwe.ac.uk/∼ngunton/
afdx detailed.pdf.

[4] A. Al Sheikh, O. Brun, M. Cheramy, and P.-E. Hladik. Optimal design
of virtual links in AFDX networks. Real-Time Systems, vol. 49, no. 3,
pp. 308-336, May 2013.

[5] I. Saha and S. Roy. A finite state modeling of AFDX frame management
using spin. Lecture Notes in Computer Science, vol. 4346, pp. 227-243,
2007.

[6] J. Taubrich and R. Hanxleden. Formal specification and analysis of
AFDX redundancy management algorithms. Lecture Notes in Computer

Science, vol. 4680, pp. 436-450, 2007.

[7] H. Charara, J. Scharbarg, J. Ermont, and C. Fraboul. Methods for
bounding end-to-end delays on an AFDX network. In Proc. Of 18th

Euromicro Conference on Real-time Systems, pp. 193-202, July 2006.

[8] H. Bauer, J. Scharbarg, and C. Fraboul. Worst-case end-to-end delay
analysis of an avionics AFDX network. In Proc. Of Design, Automation

& Test in Europe Conference & Exhibition, pp. 1220-1224, March 2010.

[9] J. J. Gutierrez, J. C. Palencia, and M. G. Harbour. Response time
analysis in AFDX networks with sub-virtual links and prioritized
switches. XV Jornadas de Tiempo Real, Santander, January-February
2012.

[10] S. Dong, Z. Xingxing, D. Lina, and H. Qiong. The design and
implementation of the AFDX network simulation system. In Proc. Of

International Conference on Multimedia Technology, pp. 1-4, October
2010.

[11] M. Tawk, X. Liu, L. Jian, G. Zhu, Y. Savaria, and F. Hu. Optimal
scheduling and delay analysis for AFDX end-systems. SAE Technical

Paper, 2011-01-2751, 2011.

[12] Y. Hua and X. Liu. Scheduling heterogeneous flows with delay-aware
deduplication for avionics applications. IEEE Transactions on Parallel

and Distributed Systems, vol. 23, no. 9, pp. 1790-1802, September 2012.

❘❊❆❈❚■❖◆ ✷✵✶✸ ✷✹

���������	�	
�	��������	
�	������	��������
������

������	����	���	�������������
�

�	���
����	������������ ���
������!��	���� �"�	��"	�
�#����	�� �"�����	������	�$
�

%&��'�(&!'�%��'% �&�'���

�
�����$�	��&���	�����
���
��
 ��
�������

)���� ����*� ���� ���*+,	��*-	**-*��

�

�

��������.��������	�	
�	���
�	������	
�	��������������	���������

���� ��������� 	�� �� �	���	������ ������� 	�� �� ����� ��
�� ��������

��
������ �����
���� ������ ���� �
� ����
��� ����� ��
�	��� ���

��	���� �
���	
�� 	�� �
���
�	��� �	���� ��� ��	�� ������� ��� ��
�
���

���� �	���	������ ��	��� ��	���� ��	
�	��� !��	������� "� �!#�

����	��	$�� ��	$�� �	�������
����� �
����� ���� ��
�����
� ���	��	���

������
���
$���
����������	��	�����	
�	�	����
��������� �!�������

����
�!������%�� ��	������	
�	���!��	������� " �!#� ���
�	����

�
����	�����	
�	�	��� �
� ��������������������&
������� 	��
����� �
�

���� ���� �!����
�	����
�� ����� ������	�����������$	������� 	����

�����
����������������	��
�������
�	��������������������	��
�	���

	�������	���� �����	����� ���� �����	������� �������� ��
�� �
�� ����

��	�	���	
��
����� �!����
�	����	�$�������	���������������������

� �$���������� ������������������� 	�����	���	������������������

$
������� �
� ���� ��	�	���	
��
� ���� �����	��� '
�
�
�	$� "�'#�

��	
�	������	��������������������	��
������
�����

�	
������	������	�� ��������	� �
��	���� ����� ������������

�������
��������	�������	��	���	�	����	����������������
�����

&-� �&!��/�0%�&/!�

������	���	���	�����������������*�������	��
����1�������	��-�
�$���� �������� ������ ��
�����������	�	���� �
��������	���������

����	�� �**�	���	
�� � *������	��� �� 1���� 	1����� ����
��
��2�	�������-� ���$
��$� 	1���� � 	�� ���� �$���� ����� � �
����
	���	����� �**�	���	
��� ���� ���
�	��� ������� ��� �
���
�
�*��3-� �$����
�� � 	�������	��� �$�� ������4�� �����	
����
��2�	�������� �
� �
�*��� 5	�$� �$�	�� ���
�	���� ������	���
�
�����	����$��� �$
5�� �
�������$������	���*�
�����5	�$	�� �$��
������	���
��	�-��

���� ������	��� 	���	����� �������� ���� �
�*
���
�� �5
�

��	�� ��������6� 7	8� �� ����
�� ������	��� �����������	� ��� 7		8� ��

	���	����� �
�*��	��� ����
���� �$��� �3������� ���$�

�**�	���	
��-��**�	���	
��������
�*
���
��������
�� �������$���

�
����	����� �$�
��$� ��������� �
� *���
��� �� �����	��

�����	
���	��� 7�-�-� ����	�	��� 	�*��(
��*���
*����	
�� �

*�
����	������ ����-8-�/���$��
�$���$�� �	���	�����*����
����

�����
�*
���
��������
��*�
����	������������7�-�-�*�
����
�� �

'%0� � ���-8� ��� ���5
��� � �$��� *�
1	�� �$�� �����

�
�*����	
�������
�������
���������
�����3������������������

�
����������	���-��

9$����
��	��	���������	����**�	���	
�� ��$��*�
����	���
��

������ ��� ��������� ����� �
�*��� 5	�$� �$�	�� ���
�	���� �	���

�
�����	���-�%
��
��� ��
���**�	���	
�� ��$	���	����
�����	���	��

�3*������ ��� ��� ��������� ������ � 5$	�$� 	�� �$�� �
������

���*��� �	��� �� ��2������
�� ������ ��� ��������� 7���

�**�	���	
�8�	��*���	�����
��������
���$���	������5$	�$�	��5���

���	1�������	��	���
�*������	����3����	
�-��

#���$���
�� � �
�� �� �	1��� ����
�� �**�	���	
��� ��� �� �	1���

�
�*��	��� *����
�� � �$�� ��	��
�:���	1�� 	�� �
� �	�� ��
�	����

����������� �
�� ������ ��� ��������� 	�� �� 5��� �$��� ����

�**�	���	
�4������
�������	�����������-�0��
��������� ��$	��

*�
����� 	�� ��
5�� �
� ��� �������� ;<=-� �$�� *�
�����
�� �����

���
���	
�� �������1	�5�� ��� �� �5
��	��*�
����6� 7	8� �	�	���

�$�� *���	�	
�	���
�� ������ ��� ���������
��
� �$�� *�
����	���

���������
���$��	���	����������� ����7		8��	�	����$��*�	
�	���

���	������� �
�� ������ ��� ��������� �
�� �$��� *���	�	
� � �
� �$���

������	��� ������ ��� ��������� ���� �3������ 5	�$	�� �$�	��

���	���-��$����
�� ����������������
������5�����$���
���	
���

���$
����5
����*�
������������
����������	��
�����
�
���	��

���
��������
�����
���	
�-�

(
���	���	
��� �$	�� *�*��� *�������� �$�� �	���	����� ��	���

/*�	���� ��	
�	��� ���	������� 7�/��8� $���	��	�� �
� �	�� ��

����	���� *���	�	
�	��� ��� *�	
�	��� ���	������� �
�� ������ 	��

	���	������
�*��	���*����
���������	����$��/*�	������	
�	���

���	������� 7/��8����
�	�$� ���
5�����������4�����
�	�$��

;>=-��$�����
�	�$��	�����
�	�����	
�	������	����������
�	�$��

�
�� 	��*������ �	3��*�	
�	��� ������
����	*�
����
�� �������-�

�$�� /��� ���
�	�$�� ��2�	���� ������ �
� ��� 	��*����� �

�$����
�� �	��
�����
������$��/������
�	�$���
������������5	�$�

�*�����	��� 7�**�	���	
��8 � 5�� �	���� ���� �
� ������
��� ������

5	�$��*�����	��� �
��� ����
�� 	��*������ ��������� 	�*
�	���

���������� ������	-� ���
 � �$�� ����
�� 	������	����

���	���� ������
��� �**�
��$� ���	��� �3����	���� �
� �
���

*
5������������
�������$��������	�$�����*��������������	���

�
��� �5$����
�*�����
�*��1	
����**�
��$��-�#���$���
�� �

��� �	�����	
��� �$
5� $
5� �$�� ����
�� �$�� /��� ���
�	�$��

	�������� � 	�� �1����� � �$�� �������
�� ��$�������� ����� ���

���������	����	���	����������� �5$����
�*�����
��$��������

���$
� �
��	��	��� 	�� ��	��� �$�� ����	��� �
�
�
�	�� 7��8�

*�	
�	������	�������;?=-�

)���$�����
� ���� ������� �$�� ����	����
�� �$�� *�*��� 	��

���������� ��� �
��
5�-� ����	
�� &&� *�������� �$�� ������� 5
�� �

5$	���� ����	
�� &&&� 	���
����� �$�� ������� �
��-� ����	
�� &@�

*�������� �$�� �/��� $���	��	�-� ����	
�� @� �$
5�� �
���

�3*��	������� ������� � ��� �	����� � 	�� ����	
�� @&� 5�� ��5�
���

�
�����	
������*�
*
����������5
��-�

❘❊❆❈❚■❖◆ ✷✵✶✸ ✷✺

&&-� �'"��'��9/�A�

�$��*�
�����
����������
���	
��	��	1	��	���5
�����*�
�����6�

�	�	��� �$�� *���	�	
�	���
�� ������ ��� ���������
��
� �$��

	���	����������� �����	�	����$��*�	
�	������	��������
���$���

*���	�	
�-� &�� �$	������	
��5��*��������
�������1����5
���� �$���

������ ���$� *�
����� � ��1���$������ ������	�	���
��� ������	
��

�
��$�������
��*����*�	1���	3��*�	
�	����������$���	��������

�**�
��$��-�

&��;B= ��	���������� ���������$	��	�����������
*�	�	���	
��

*�
����� 5	�$� �$�� �������� *��*
��� 	�������� ���������

���
�	�$�-� �$�� �	������� ������	��� ���
�	�$�� 	�� ���� �
��

	�����	���	�������
�������� �
1������	1������
���	
���
��������

��� ��������� �
� *�
����
��� ��� ���5
��� � ��� *���
���� ���

�1�����	
�������
�����C������D������	
� �5$	�$��1���������$��

2���	���
�� �$�� ���
������� �
���	
�� 7���
���	
�8-� �	����� ����

�$�� ��� ��$���	��� ���
�	�$�� ;?=� �
� ���	��� *�	
�	�	��� �
�

*��	
	�� ������ 5	�$� �
�����	������	���� �����	��� �$��� ���$�

����� 	�� ��� �**�	���	
�� $��� 	���
5�� ���	��� ��� *��	
-� �$��

������� �����*�	
�� ���� $
5�1��� �
�� ��5���� ��� ����� 	�� �����

�������-�

&��;E= ����	����������� �*�
*
������
*�	�	���	
�����$�	2���

�
�� �$�� *�	
�	��� ���	�������
�� ������ ��� ��������� 	�� ��

	���	�����������-��$����������������
��������������������

�$��� ���� ����	������ ���
����� �
� *�
����
��� ��� ���5
����

7�$����
�� ��
�*���	�	
�	���*$����	���
��	���8F��$�� ��
���	���

���$��*�
�����
�����	��	����$��*�	
�	�	����
��$�����
�����������

��� ��������-� �$�	�� ���$
� 	�� �����
�� 	�*
�	���

	������	�������	�����
��$���������������������$����
�*
���

��C��2������
�����	
��D�����$�����	�������
����	����$�������

*�	
�	�	��-�

�$�� *�
�����
�� *���	�	
�	��� ������ ��� ��������� 	��

	���	����� �������� 	�� ���
� ������� 	�� �	�$��� �� ���� ;G=-�

�$��� *�
*
��� �� �
���	
�� �����
�� �����$�����
��F�

�����$	��� 7��������	��8� �$�� *
��	���� *��$�� �$��� ���� ���� �
�

��� ���
���	
� � ��� �
��	��� 7����	��� �$�� *��$8� 5$���1��� ��

����	������$���������
���������$������
��
5	������$���*��$-�

���	� ����	�������
����	����$��*�	
�	�	��������	����$������$�

�����	����	������	���
5�����	������*��	
-��$���
��	���

���*� 	�� *���
���� ��� �$���	��� �$�� ��$�����	�	���
�� ���$�

�����$������
���$����$�����	�	������$�	2����
��������	1��

����	�����������	��;H=-�

&�� ;I=� ��� ;J= � �$�� ���$
��� �
��� �$�� ����� *���	�	
�	���

*�
�����������
*�	�	���	
��*�
����-��
5�1�� ��$	��5
�����	���

���������$������$������$���	���
5��*��	
�������	�� ����	��

���������
����	���*�	
�	�	��-�

�
����������� �������������-�;<K=���������$��*�
�����
��

�������������������
���	
��	����	���	������������������	���

$���
�� �$�� �������� *��*
��� �����	�� ���
�	�$��-� �$��� ���� ��

�����	�� ���
�	�$�� 5	�$� �� *�������	
���� �
���	
�� ���
	��-�

�$��� 	�	�	���� �$�	�� �����	�� ���
�	�$�� ��� ���	��	��� *�	
�	�	���

��	��� �$���/���$���	��	�� ;E=�5$	�$� 	�������
�����*�	
�	���

���	�������;?=����	�������
1���	���������
���	
�������**��	���

��
��
1�� � �����	
�� ��� �������	���
*����	
��-� �
� �����

��$�����	�	��� �$������� �$���	����4�� $
�	��	��������	�� ;H=����

������	�4����$�����	�	���������;<< �<>=-�

���$
��$� �$���� ���� �
��� �	�	���	�	��� ���5����
��� ���$
�

���*��1	
���5
��� ��
���
���$��*��1	
����**�
��$���$�������

������4�� /��� �
� ���	��� *�	
�	�	��� �
� ������ 	�� �� 	���	�����

������-����*�
1��	��;>= ��$��/������
�	�$��	��
*�	�����
���$��

�����
��*����*�	1���	3��*�	
�	�������� � �$������	�*��	����$���

	���$���������	����$��������5	�$�����$���/���5	������
��	��

��*�	
�	������	��������
���$������$����������-�#���$�� ����$���

�����*�
1���
��
�����
*�	�����
����������5$�������� ������
�

�
����������:
����	�������
�����;?= �5$	�$�	����*	�������$�������

	��	���	���������������� �
� �$�� �����*����������
�����	���-�

L�� �	��� 	������	���� ���	���� �
� ����� � 5�� �$
5� �$��� �$��

������4�� ���
�	�$�� ���� ��� ���� ��� �$��� 	�� 	��������� �$��

�������
�� ��$�������� ����� ����� 7	-�-� �**�	���	
��8� 	��

�
�*��	�
��5	�$���-�

&&&-� �M��'���/�'"�

��� �������������������	�

�� 	���	����� ������	��� ������� 	�� �
�*
���
�� �
��5����

�**�	���	
��� �$��� 5�� �
��� ��� �� ���� Γ = {Γ�, … , Γ�} �
�� 	�

�
��������� ��2����	��� �**�	���	
���Γ
5	�$� �	 ∈ 	 {1, … , 	} -� ���

�**�	���	
��Γ
 �	�� �
�*
���
�� �� �����
 = {�
,�, … , �
,��} �
��	
�
������ ��� �� ����
���
 = {�
,�, … , �
,����}�
��	
 − 1 ��������� �

5$	�$� ���� �3������ ��� ������	����
�� *�
����
��� ���

���5
��� ����*���	1���-�9����������$��������������
�����

��������	��������	�	���;<?=-�&���$	���
�� ����$��**�	���	
��Γ
�	�� ���	1���� ��� ��� �3������� �1�����
�5	�$� �� �	�	���� 	�����

���	1��� �	���
�� �
 -� �$�� ���	1���
�� ��� �3������� �1���� �
 �	��

�
��
5������$�����	1��	
��
���$���	����������
,��
��Γ
-�9$���1���

�� ������
,���
�*������ 	��� �3����	
� � 	�� ����� �� ���������
,� ��
�

�$����3��������
,�������$�������	������	����3����	
�-��

'��$�������
,��	���$�������	������	���9
����%����'3����	
��

�	��� 79%'�8��
,� � ��� ���$� ���������
,� ���� �� ������	��	
��

�	����
,�����-�%
����	���	
������5���������������������	��
���

5	�$	�� �$�� �����
�� 	�������� *�
����
��� 	�� �$�� 	���	�����

������-�&���5
��������
,������
,�����
����	�����1	������������

�
,����� �3������ 	�� �$�� ����� *�
����
� � 5�� �
��	��� �$��� �$��

��������������	��	
���	���	������	�	��� ��$�����������	����$����
,���� = 0-����
 � ����**�	���	
��Γ
�	�� �$�������	������������

�
�������	����
 �5$	�$� 	�� �$�� �
���������*��� �	��� �$��� �$��

��2������
��������������������	��*���	�����
��������
���$��

�	��� 	�� 5$	�$� 	�� 	�� ���	1���� 7 �
 8� ���	�� 	�� �
�*������ 	���

�3����	
��7�	������5$	�$� �$�� ����� ������
,���	�� �$�� ��2������
��

�������������������
�*������	����3����	
�8-�9����������$����
 ≤ �
 -� �$�� ���	��� �
	
�� ��� �**�	���	
�� Γ
 �	�� �	1��� ���

�
 = ∑ !�,"�!�,"#$%&�"'(
)� ���� �$�� �
���� ���	���
�� �$�� ������� 	��

��	������� = ∑ �
�∈ -�

9�� �
��	��� �$��� ������ ���� ��$����� 5	�$� �� *����*�	1��

�	3��*�	
�	��� ���
�	�$�-� /�� �$��
�$��� $�� � ��������� ����

��$�����5	�$����
��*����*�	1���	3��*�	
�	������
�	�$�-�9��

���
� �
��	��� �$��� �
��� ������
�� ��� �**�	���	
�� ���� ���

❘❊❆❈❚■❖◆ ✷✵✶✸ ✷✻

������	����
��3������	���
����*��	�	��*�
����
�������
��
���

�	���� ���	������	-� ���$� �
�����	���� ���� ��� ������� �
� ��	���

����
�� ������������
�� �
���
��*��	�	�������	
���	���
���������

�$�� *�
����
��� 	�� �$�� 	���	����� ������� 7�-�-� ����
�� �

������
�� � ��2�	��� �	����	�� � ���-8 � ��� ��2�	��� �
�� �$��

�3����	
��
�� �� ������
,� �5	�$	�� ��� �**�	���	
��Γ
 -� �$����
�� �

�$�����3	������ ����Α ⊆ Γ�
�� ������ �$��� ���� ���
������
�����	���

7�$��������
�����3������	�����*��	�	��*�
����
�8 ��$�� ��$
���

������ ���� ����	������ ���	���� �
� �$
��� *�
����
��-� ���
 � �$����

�3	��� �� ����Υ ⊆ Γ �
�� ������ �$���
� �
�� $�1�� ���� ���
�����

�
�����	����������������
�����
��
�����*�
����
�.	�
��� ��	����������������������
����

�� 	���	����� �
�*��	��� *����
��� 	�� �
�*
���
�� �� ����
��

*�
����
����$���*�
1	���$���
�*��	���*
5����
��3����������� �

5$	�$� ���� �
������� �$�
��$� �� �	3��*�	
�	��� ������	���

���5
��� 7�-�-� �� %�!� ���5
��� ;<B=8-� 9�� ������� �� ����/ ={/�, … , /�} �
�� 0 �	���	���� ��	*�
����
�� �
��� �
�� �$��

�3����	
��
�� �$�� ����� � ����� �	����� �$���� ������	������5
���1��
����������������	��	
�-�

#	����� <� �$
5�� ��� �3��*���
�� �� �
�*��	��� *����
���

�
�*
���
�� �$���� *�
����
��� ���
��� ������	��� ���5
��-�

�$���� ���� �$���� �**�	���	
���Γ�, Γ2 ����Γ3 � ���$� �
�*
���
��

����
��� ����� 7��,�, �2,������3,�8-� ��������,�, �2,� ��3,������4,��

���� ���
����� �
�����	��� 7�$��� ���
��	��� �
� �$�� ����Α8� ��	���

*������	���� �
� �$�� �*��	�	�� *�
����
��� < � > � ?� ��� <�

���*���	1���-� ���
 � �$���� �3	���� �� �	���Υ �
�� �����
����� �������5,�, �5,2 � �4,2 � �6,� ���� �6,2 ��$��� ���� ��� ���
����� �
� ����

*�
����
�.	�

�
#	�����<-�� "	���
���**�	���	
����
�������
�����	�����
�*��	���*����
��-�

�$��
�:���	1�� 	�� �
� �	�� 7	8� �� ����	���� *���	�	
�	���
�� �$��

�������
���	���	����$���**�	���	
���
��
��$��*�
����
������7		8�

��*�	
�	������	��������
��$��������	����5����$�����������
����

���	���� ���� ���-� #	����� > � �$
5�� ��� �3��*���
�� ���
���	
��α∗ �
�� ������ ��� ��������� �
�� �$�� �����
����� �**�	���	
���

�$
5�� 	�� #	����� <-� L�� �

�	��� ��� #	����� >� 	�� 	�� *
��	���� �
�

�
�	��� �$��� ������ 	�� �**�	���	
��Γ5�7τ5,�, τ5,28� ���� ���
����� �
�

�$�� ����� *�
����
� � ��� �$����
��� �$�� ��������μ5,� ����� ���

�������� � �$������ ����	��� 	��� �
����	���	
�� �
��� �
��
,;��� = 0-� &�� �$�� �
��
5	��� ����	
�� 5�� *������� ��� $���	��	��

�
�1	����$	��*�
����-�

�

#	�����>-�� '3��*���
������������
���	
���
���$���������*��������	��#	�����<-��

&@-� ��'��/����'0�&��&%�

�$�� �/��� $���	��	�� �	�������
����� �������� �$�� �5
�

	����������� ����*�
������
�6� 7	8� �	�	��� �$�� *���	�	
�	���
��

������ ��� ���������
��
� �$�� ���������
�� �$�� 	���	�����

������ � ��� 7		8� �	�	��� �$�� *�	
�	��� ���	������� �
�� �$���

*���	�	
�	��-�

��� �����������������		�������! ��"�����������

�����	��� �$�� *�
�����
�� *�	
�	��� ���	������ � �$���� �3	���

��1����� ���$�	2���� �
� ���	��� *�	
�	�	��� �
� �� ����
�� *����*�	1��

	��*������ �����-� ��� ;?=� 	�� �$��
��� �������� �
��	���� 	��

�1���� 5
���
�� 	���	����� �������-� ��� 	��
*�	���� �
��

���	��	��� *�	
�	�	��� 	�� �$���� �3	���� ��� 	������� 	�� �$�� ��$�����

5$�������� �$������������������:
���	�������
����-��
5�1�� � 	��

	���	����� �������� ��������(
�����������$�1���*�����	���

��
�$��� ������
�� ���������
�� �$�� ����� �**�	���	
�-� ����� �

�������� �� ����� �
,��� ���1��� ������� 	��� �3����	
�� ���
��� �$��

�
�*���	
��
�� ������
,� ��
,������
,����5	��� ��1��� �������� �� :
��

�	�������
���� � �$������ 1	
���	��� �$��
*�	���	��� �
�	�	
��
��

��-� /��� �$
��� �$����
��� �
������ �$��� ��� 	�� �
��
*�	����

�
�� 	���	����� �������-� /�� �$��
�$��� $�� � ��1	�� ��� L�����

;<E=� *�
1�� �$��� �$�� ������4�� /��� ���
�	�$�� 	��
*�	����

�����	��� �$�� ���	�������
�� ����� *�	
�	�	��� 	�� �$���� �3	���� ��

��$�����	�	��������<����*���	����$���$�����
��
5	����
�	�	
��6�

7%<8� �$�� ��$�����	�	���
�� �� ������
,� ����
�	��� �
�< � ���� ���

�*������
���$������
��$	�$���*�	
�	���������=>
,� ������
��
��

�$�� �����	1�� *�	
�	���
����
�� �$
��� ����� � 7%>8� �$��

��$�����	�	���
�� �� ������
,� ����
�	��� �
� �� �����< � ���� ���

�*������
�� �$�� ����
�� �
5��� *�	
�	��� ����� � ���� �
��
�� �$��

�����	1��*�	
�	���
����
�� �$
��� ����� � �� � 7%?8� �
�� �5
� ������

5	�$��:������*�	
�	�� �	���$�	��*�	
�	�	��������5�**� ��$�������

�$��� $��� ����� ���	���� �$�� $	�$��� *�	
�	��� ����
�� ���
���

����$�����������
�	����
��$�������< �	��	��5�����$�����������

�$���
5���*�	
�	��-��

1. for each priority level ?, lowest first{
2. for each unassigned task τ@,A{
3. if (τ@,A is schedulable at priority ? according to
 test VERIFY_SCHEDULABILITY(τ@,A → /;) with all
 unassigned tasks assumed to have higher

 priorities){

4. assign τ@,A to priority ?
5. break (continue outer loop)

6. }

7. }

8. return unschedulable

9. }

10. return schedulable

#	�����?-�� /������
�	�$��*���
�
�-�

❘❊❆❈❚■❖◆ ✷✵✶✸ ✷✼

�$�� /��� ���
�	�$�� 	�� �����
�� �$���� �	�*��� ���*�� 7����

#	����� ?86� 7	8� �$���� �$�� ��$�����	�	��� ���
�	��� �
�	<�
�� ����

�
��*�	
�	������	������������������	����$���$�1���$���
5����

*�	
�	�� � 7		8� ���	����	��� �$
���
��� �$��� ���*����� 	��� ���	�� �

���7			8����
1���$���$
�����������
���$���	���
���
��*�	
�	���

���	���� ������ ��� ������ ���	�-� �
� 1��	��� �$�� ��$�����	�	���

7VERIFY_SCHEDULABILITY(�
,� ∈ 	/;)8�
�� �$�� ����� ��� � 5��

�����$����$�����	�	���������	��*��������	��;H=-�!
���$
5�1���

�$���
�$��� �������
������
�������� 7�-��-� ;<< �<>=8-�9����
5�

��
�� ;<G=� �$��� �$�� 5
��������� ���*
���� �	��� C
,� �
�� ���

	��*������ ����� �
,� � ��$����� 5	�$� �� *����*�	1�� �	3��

*�	
�	��� ��$���	��� ���
�	�$�� 	�� �	1��� ��� �$�� �
��
5	���

�2���	
�6��

C
,� = �
,� + E FC
,��G HIJ,K	∈	LM�,"
�G,N																							O1P�

5$����	=>
,��	�� �$�� ����
�� ������5	�$���$	�$���*�	
�	��� �$����
,��
�$�������	���������5	�$��
,�-������
��$��*��������
���$�������C
,��

�� �
�$� �	��
�� 7<8 � �$	�� �2���	
�� 	�� �������� �
�1�� 	�� ���

	�����	1�� ������ � C
,�;�� = �
,� + ∑ FQ�,"RSJ HIJ,K	∈	LM�," �G,N �5	�$�

C
,�� = �
,�-�$��	�����	
����
*��5$���C
,�; = C
,�;��-�

&����	���	������	��������� � �$��5
������������*
�����	���T�U�
,��
����������
,�������$�������
�*�������;H=6�

T�U�
,� = C
,� +EVC
,; + C
,;���W
���

;X�
																					O2P�

5$����C
,;��� �	�� �$�� ���*
���� �	���
�� �� ���������
,; �
���	���

5	�$� �� ���5
��� �*������ ������	�� ���$� ��� ;<B=-� ���

�**�	���	
��Γ
�7���$����� 	��� �
���	���	��� �����������������8�

	���������$��������	��T�U�
,�� ≤ �
-�
0��
��������� � �$	�� ��$�����	�	��� ����� ������ �$��

��$�����	�	���
�� �� ������
,���*������
�� �$�� ���*
���� �	����

���$������$��*�	
�	�	���
�������$��
�$���������������������	��Γ
 ��$���������	���/�����������-�9���$����
���������
����$��

������������������5	�$��*�����	����
�����2�	1����������
��

������ ��� ��������� 5	�$
��� �*�����	��� ��� 	�*
�	��� ���

	������	�������	���Z
,��7Z
,���� � ���*-8� �
����$� ������
,��7���$�

���������
,� � ���*-8� ��� �$
5�� 	�� #	����� B-� �$�� 	������	����

���	���Z
,� �
���
,� ��$��� ���
���� ���
������
�� �$�� ��������
��

�$�� ���������
,� � ��� �$�� ���	���Z
,���� �
�� ��
,� � ���
���� ���

������
���$����������
���
,���-��$����
�� �5���
5�$�1���$��6�

[T�U�
,� = Z
,���
��� + C
,�

T�U�
,���� = Z
,� + C
,���� 																								O3P�
	�*��	��� �$��� �$�� 5
��������� ���*
���� �	���
�� ���$� ����� ���

�����������
����	��*������
���$�������	1��*�	
�	���
����
��

$	�$��� ��� �
5��� *�	
�	��� �����-� !
5 � �� ������
,� �7�� ��������

�
,� � ���*-8� 	�� ����� ��$�������� 	�� T�U�
,� ≤ Z
,��

7T�U�
,���� ≤ Z
,���� � ���*-8� ��� �$�� �$���� ������4�� /���

���
�	�$��1��		����
�	�	
���7%< �%>����%?8��������*����-�

�$�� ������ ��� ��������� 	������	���� ���	���� ����

�
�*��������������	
��
���$���**�	���	
������
�������	���

��� �$�� ������ ��� ��������� 9%'��	 O �
,� 	��	 �
,���� ,	
���*���	1���8-� #
�� ������ ��� �������� � �$�� 	������	����

���	���������	1�����6�

Z
,� = Z
,������ + �
,�
∑ �
,; + �
,;�����;X�

	�
 																						O4P	

Z
,���� = Z
,� + �
,����
∑ �
,; + �
,;�����;X�

	�
 																						O5P	
!
��� �$��� ��
�� �$
�����	�	�	
�� � 5��$�1�� �$��	Z
,�� =	�
 -�

����� � 	�� ���� ������ 7��� ��������8� ���*���� �$�	�� 	������	����

���	����d@,A � 	-�- �T�U�
,� ≤ Z
,� � �$����� �
�������	���D@�

���$���**�	���	
��	�����
����*����-��

�

#	�����B-�� &������	�������	���-�

��� �����������������������

�$��*�
�����
��*���	�	
�	����$�����������
��
��$��*�
����
���
��

�$��*����
���������	��	���*�	
�	�	����
��$��������������������

	�� �
�1�� ��� �$�� ���
�	�$�� PARTITION(Γ)� *�������� 	��

#	����� E-� �$�� ���
�	�$�� 	�� ���	����� �����
�� �$�� �
��
5	���

	��F� 	�� �5
� �������	1�� ������ � �
,� ���� �
,��� �
�� �$�� �����

�**�	���	
��Γ
 ����� ���	���� �
� �� ����� *�
����
��/; � �$��� �$��

���������
,���������
��	�� ��$����������	����$���
��
���$��

���5
��� ��� 	������	��� �$�� ����*������ ���*
���� �	��� �
�� �$��

�$��� ������ ��� ��������� 	��Γ
 -� �$����
�� � PARTITION(Γ)�

��	����
���3	�	����$���������
���������	1��������
���$�������

�**�	���	
����	������	����
���$�������*�
����
�-��

�$�� *���
� �
��
�� �$�� *���	�	
�	��� ���
�	�$�� ���� ���

������

� ��� �
��
5�-� �**�	���	
���Γ
 ∈ Γ����� ���	���� 	�� ��

�
��	������	��� ���	���
���-� ������ 	��Γ
����� �
��	���� 	�� ��

��3	����
���-� '��$� ����� �
,� �	�� �	���� ���	����
�� �$�� �����

*�
����
�� �$��� �$�� *��1	
��� ����� �
,��� �7	�� ���8�
�� �$��

�**�	���	
��Γ
 � �$������ �����	��� �$��� �$�� ���������
,��� �	��

������� ��� $������
,������ = 0 -� &�� �$�� *�	
�	��� ���	�������

7��	���/��8�
����
���������7	-�- � �$������� 	������$��������

�� �$��� *�
����
�8� ��� �$�� ��3�� ����� 7	�� ���8� �$��� ����� ���

�3������ 	�� �$���**�	���	
��Γ
�$������������������	����
�� ��

*�
����
��/; � �$��� PARTITION(Γ) ��	��� �
� ���	����
,� �
��/;�

�����	��� �$��� �$�� �������� �
,� �	�� ������� ��� $�����

�
,���� = 0 -� &�� �$�� *�	
�	��� ���	������� ��	��� ���	� � �$��� � �$��

���
�	�$����	����
����	����
,��
������
�$���*�
����
��	����5
����

❘❊❆❈❚■❖◆ ✷✵✶✸ ✷✽

�	��
���� 7	-�- � �$�� *�
����
�� 5	�$� �$�� ��������� �
���� ���	���

�	���8-� #	���� � �$�� ��$�����	�	���
�� �$�� ���5
��� 	�� �$����-�

!
��� �$��� �$�� 	������	���� ���	����
�� �$�� ������ 	��Γ
 �����

���
�*���� ��� ���$� ���*� �	���� �$�	�� 1������ �*���
�� �$��

�������
������������$���**�	���	
�����������
���$�����5
�� �

	-�- � �$�� �������
�� ��������� 5	�$��
,���� > 0-� �
5�1�� � �$	��

�
	�	���	
��
���$��	������	�������	����
����
��:�
*��	���

�$�� ��$�����	�	���
�� �$�� ������ �$��� ���� ������� ���	���� �
�

*�
����
��� �	��� � ��� ����	��� '2���	
��� 7B8� ��� 7E8 � 5�� ����

���� �$��� �$�� 	������	���� ���	���� 	�������� 5$���1��� ��

�������� 	��
��	��� 7	-�- �
���
�� �$�� �������
,;��� ����
����

�2���� �
� K8-� �$����
�� � 	�� �$�� *��1	
��� ���	���� 5����

���*���� ��$����5�
���5	������
���-�

PARTITION(Γ)
1. for all Γ
	 ordered by non-increasing �
 {
2. for all �
,� ∈ 	Γ
 {
3. assign �
,� to /;| �
,��� ∈ /; , assuming �
,���� = 0
4. call OPA_ASSIGNMENT(�
,�,	�G,N ∈ 	/;)
5. if OPA succeed to assign �
,� {
6. break

7. }

8. else if OPA fails to assign �
,� {
9. assign �
,� to /;| �
,��� ∈ /; , assuming �
,���� = 0
10. call OPA_ASSIGNMENT(�
,�,	�G,N ∈ 	/;)
11. if OPA succeed to assign �
,� {
12. break

13. }

14. else if OPA fails to assign �
,� {
15. for all /; in Worst-Fit order {
16.

17. assign �
,� to /;
18. call OPA_ASSIGNMENT(�
,�,	�G,N ∈ 	/;)
19. if OPA succeeds {

20. assign message �
,� to the network
21. VERIFY_SCHEDULABILITY(�
,� ∈ 	1)
22. if message �
,� schedulable
23. break

24. else

25. return unschedulable

26. }

27. else

28. return unschedulable

29. }

30. }

31. }

32. }

32. }

33. return schedulable

#	�����E-�� ����	�	
�	������
�	�$��*���
�
�-�

@-� 'N�'�&�'!��"�'@�"0��&/!�

&�� �$	�� ����	
�� 5�� *������� �
��� �3*��	������� ��������
��
���

�	�����	
���
�� �$�� �/��� $���	��	�-� "��� ��� ������� �$��� �$��

�/��� $���	��	�� �	�������
����� 7	8� �	��� �$�� *���	�	
�	���
��

������ ��� ���������
��
� �$�� ���������
�� �$�� 	���	�����

������ � ��� 7		8� �	��� �$�� *�	
�	��� ���	������� �
�� �$���

*���	�	
�	��-� #
�� ���� �3*��	������ 5�� ���� �$��PARTITION(Γ)�

���
�	�$�� �
�� �$�� *���	�	
��
�� ������ ��� ���������
��
� �$��

���������
�� �$��	���	����� ������ � ��� 5�� ���� �5
�	��������

*�	
�	������	����������
�	�$�� ��������������/��-��

/���
���$����	��
�:���	1���
���$	��5
���	�� �
���
��������

�$��� ��� ��	��� �$�� /��� ���
�	�$� � �
�� �$�� �����
�� ������ 5	�$�

�*�����	�� �	��	��*
��	�����
�	��������	���1�������$���������

�� ��$�������� ������ ��� ��������� 	�� �� 	���	����� �������

5$��� �
�*���� �
� �$�� ��	�	���	
��
�� �$�� ��� *�	
�	���

���	������ ����2�����������	��
�$���5
���-�

#
���������	����$���**�	���	
���Γ
�����$�	�����*���	1���������
,� ���� ����������
,� �5�� �
��
5� �$�� ��	��	���� *�������� 	��

;<H=� �
�� �������	��� ���
�� ����� ����� �
�� ����	*�
����
��
������� � ��	��� �$�� �����
�4�� ����	3����� ���
�	�$�� ;<I=-�
�$������	3��������
�	�$������������������
��	�1������5$	�$�
�����1�����	���	��������5$
����
�*
�����������
����
�������
1����-� �$�� � 5�� ���� �$�� ����	3����� ���
�	�$�� �
��
�������	��� ���	���� �����
�� �**�	���	
��� 5	�$� �� �	3�� �
����
���	��� �cdc = ∑�
 -� #
�� �� �	1��� �
���� ���	��� �cdc � �$��
���
�	�$�� ��������	��**�	���	
��� 5	�$� ���	����
 F� 5	�$� 1������

��
�� �� �	�	���� ���	��� �
��� �
�
� = 0.1 ��
�� ���$�
�**�	���	
� � ��� �� ��3	���� ���	��� �
����
�Ge = 0.9-� #
��
�������	����$�������4������������4����	�	���5���������	���$��
����	3����� ���
�	�$�� ���	��� ��� ��� 	�*��� �$�� *��1	
���

��������� ���	�	����
 = ∑V�
� + �
,����W �
���	�	��� �� ����
��

1������ �
,� = Z
,� �
⁄ ��
�� ������ ��� �
,���� = Z
,���� �
⁄ ��
��

���������5	�$�1��������
�����	�	�������	����
����
��������

��� ��������� h
,��
� = 0.01 ���� �� ��3	���� ���	���
��

h
,��Ge = 0.9 -� �$�� 9%'���
�� �������
,� � ����������
,���� ����

����
�������	�����
 ��������������������
������	��;<H=F�
5�� �
��	���� �$��� �**�	���	
��� $�1�� 	�*�	�	�� ����
����
���	����7�
 = �
8��
��
5	�������	�
���	���	���	
�-�#
�����$�
�3*��	�����<KK������������������-��

#	�����G� 7�8��$
5�� �$���������
������*��� �����������
1���
<KK��3*��	�������
��	���������
�������	�	����cdc-�9���	�������
EK� �**�	���	
��� �$��� �3������ ������ ��� ������	����������� 	�� ��
�
�*��	��� *����
���
�� <K� *�
����
��� ��� <� ���5
��-� &�� 	��
*
��	�����
������$���/���	���1������*���
�����������	��������
��
�$�� �������
�� ����*��� ����� ����-� #
�� �3��*�� � �$�� /���
���
�	�$������*���E>O�
������������5	�$��
��������������	���
��
J-� &�� �
������ � �$�� ������
�	�$�� ����$���<GO� 5	�$� �$�� �����
����������	��-�

&��#	�����G� 7�8�5���$
5� �$���������
������*��� ����� �����
�
�� <KK� �3*��	������ �	�����	��� EK� �**�	���	
��� �$��� �3������
������ ��� ������	�� ��������� 	�� �� �
�*��	��� *����
���
�
�*
���
�� <� ���5
��� ��� �� 1���	��� �������
�� *�
����
��-�
�$�����	���	���	3���
��cdc = 8-�&��	��*
��	�����
������$���/���
	�� �1������*���
���������� � �
�� �3��*�� �5$��� �$���������
��
*�
����
��� 	�� �2���� �
� J � �$�� /��� ���
�	�$�� ����*��� HKO�
��
����� ���� � 5$	���� �$�� ��� ���
�	�$��
���� ����*��� ?KO�
�� �����
����-��

#	�����G�7�8��$
5�� �$���������
������*��� �����������
1���
<KK� �3*��	����� � 5$���� 5�� 1���� �$�� �������
�� �**�	���	
���
5	�$� �� �	3�� �
���� ���	��� jcdc = 8 ��
� ��� ��$����� 	�� ��
�
�*��	��� *����
���
�� <K� *�
����
��� ��� <� ���5
��-� &�� 	��
*
��	���� �
� ���� �$��� �$�� /��� ���
�	�$� � 	�� �1������ *���
����
������F� 	�� �$�� ������ ���5���� <K� ��� EK� �**�	���	
�� � /���
��5��������*����
��� ����� ����� �$�����-�#
���3��*�� � �
�� �$��
�����
��BK��**�	���	
�� ��$��/������
�	�$������*���GJO�
�������
���� �	���
��������$���������
������*��������������
���	������
�$�� ��� ���
�	�$�� 	�� ?BO-� !
��� �$��� �$�� �������
�� ����*���
����� ����� 	���������5	�$� �$���������
������������**�	���	
��-�
�$	�� ��$�1	
��� ���� ��� �3*��	��� ��� �$�� ����� �$��� �$�� �1������
���	���
���������������������������� ��$����������	����$���
�
������������������$�����
�����$�*�
����
��	���1�����-��

❘❊❆❈❚■❖◆ ✷✵✶✸ ✷✾

�

#	�����G-�� <KK��3*��	������1���	���7�8��$���
�������	�� �7�8��$���������
��*�
����
�� ����7�8��$���������
���**�	���	
���	���$��������-�

�$�� �������� *�������� 	�� #	������ G� 7�8 � 7�8 � 7�8 � ���� ���

�3*��	���������� �5$������	�������
�����	��	���*�	
�	�	�� �	��

��	����
���
������$���/�������
�	����
��
*�	���	��-��$����
�� �

���$� �
����$�������� ������ ���� �
� ��� *���	�	
��
��
�
�$���

*�
����
��	���$��	���	����������� ��$���	������	����$���������

�� ��������� 	�� �$�� ���5
�� � 5$	�$� ����� �
� ��� 	������	���

�������
������$���������������-�

@&-� %/!%"0�&/!���!��#0�0�'�9/�A��

�$	��*�*���*���������$���/���$���	��	���
���$���	�������
���
*���	�	
�	��� ��� *�	
�	��� ���	�������
�� ������ ��� ���������
7�**�	���	
��8�
��
��$���
���	���	������������
���$��	���	�����
������� ��� ��	��� �$�� /��� ���
�	�$�� ��
5�� ��� ������4��
���
�	�$��;>=-��

9��*�
*
��������$
��$���	�*
����	������	�������	����
�
� ������ ��� ��������� �$��� *���	��	��� �$�� ���� /��� �
�� ������
5	�$� �*�����	��-� #���$���
�� �
��� �**�
��$� 	�� ���	���
�3����	�����
��
���*
5������������
�������$��������	�$�����
*�������� ������	��� �
��� � 5$��� �
�*���� 5	�$�
�$��� 5
����
�����	��� ��2����	��� �*������ ������ ��� ��������� 	�� ��
	���	����� ������-�9����
�������� �$�
��$��	�����	
��� �$���
/��� 	�������� � 	�� �1����� � �$�� �������
�� ��$�������� ������
��� ��������� 	�� �� 	���	����� ������ � 5$��� �
�*���� �
� �$��
������
�	�$� �5$�����	����$�������*���	�	
�����
�	�$�-�

9�� ���� ���������� 5
��	���
�� �$�� �3����	
��
�� �$�� �/���
$���	��	�� �
�� �
��	��	��� ����	�$����� *�������� ������	���
�
���� ��� �$�� 	�����	
��
�� �
��� �
�*��3� �
*
�
�	���
��
�
����	���	
�����5
���-�

�%A!/9"'���'!���

�$	�� 5
��� 5��� *���	����� ��**
���� ��� !��	
���� #���� �$�
��$� #%��
7�
���������#
����	
���
����	�����������$�
�
��8�������'��#�7'��
*����
���	
���� ��1��
*����� #��8� �$�
��$� %/��'�'� 7/*����	
���� ��
�������
P�$����	�� #���
���
�� %
�*��	�	1�����P8 � 5	�$	�� *�
:����� #%/���K<�K<>B�
#'�'��K<EKKG� 7@&�%/�'8� ��� #%/���K<�K<>B�#'�'��K?H>I<�
7%&��'�8F� ��� #%�� ��� '0� ���'�&�� Q0 � 5	�$	�� *�
:����
���'�&�(KKK?(>K<> �Q0���������-�???KE?�7%/!%'��/8F����#%�����'�#�
7'��
*���� �
�	��� #��8� �$�
��$� �/��� 7�
��������� ������ �
����	���
/*����	
������
����8 �������$���������#��(L�(H<EG>(>K<K-�

�'#'�'!%'��

;<=�� �-� L���� � R��$���	��� $��� ������	��� �������6� �� ��1	�5 R� #�
�$���
%���������&������'�1
�-�G ��
-�? �**-�<<G�<>I �<JJ<-��

;>=�� !-� %-� ������ � R/*�	���� *�	
�	��� ���	������� ��� ����	�	�	���
�� ����	��

*�	
�	���������5	�$����	�������������	��� R�0�	1���	���
��M
�� ���*��������

��%
�*�������	���� �<JJ<-�

;?=�� Q-� "����� ��� Q-� 9$	��$�� � R/�� �$�� �
�*��3	���
�� �	3��*�	
�	���

��$���	���
��*��	
	� �������	�������� R���
����������������'�1
�-�> �
�
-�B �**-�>?H�>EK �<JI>-��

;B=�� A-� �	���� � �-� L����� ��� �-� Q-� 9���	��� � R���
���	��� $��� ������	���

�����6����!��$���*�
������������� R���������#�	��	'�1
�-�B ��
-�> �
**-�<BE�<GE �<JJ>-��

;E=�� Q-� Q-� ���	S������������ ��� �-� �
��T��������
�� � R/*�	�	��� *�	
�	���

���	��������
��������������������	��	���	�����$���������	���������� R�
	����������	��
����������(%%%�)��*	���������������������	��������

��������#�	��	 �<JJE-��

;G=�� �-��	�$�� ��-��	�$������#-�%
���� �R���
���	��������$���	���������	��
����	*����	������������	���������� R�	����������	��
�(%%%����
����

���%����������������	�����+������������������!%�+�,-." �>KK?-��

;H=�� A-��	��������Q-�%���� � R�
�	��	�� ��$�����	�	���������	�� �
��	���	�����
$��� ������	��� ������� R�/��������		��������/���������������'�1
�-�

BK ��
-�>�? �**-�<<H���<?B� �<JJB-��

;I=�� 9-� U$��� � V-� U$� ��-� �	� !������ ��� �-� �-� @	��������	 � R���	�	�	
��
��
����� ���
���	
�� ��� *�	
�	��� ���	������� 	�� $��� ������	��� 	���	�����

������� R� 	�� ������ 01��� (%%%� (������������ �������� #�	��	�

#����	����!��##,0--2" �>KKH-��

;J=�� �-������������%-�����- �R����������
*�	����������	�	�����**�
��$��
�

�$�� ��������
���	
��*�
����� 	��	���	��������$	�������� R� 	���������
� ���

02��� (%%%� (������������ �������� #�	��	� #����	���� !� ��##,-3" �
>KKG-��

;<K=�'-� ������ � Q-� �-� 0�	��� � Q-� Q-� ���	S���� � �-� ����
�� ��� "-� ����	� �

R��������	
���� �����	�� ���
�	�$�� �
�� �$��
*�	�	��� ��**	��� ���
��$���	���
��������������������	��	���	�����������	���������� R�	��(��

��������	� �
� ��� 0-44(%%%� 4-��� (������������ ���
���� ��� ���	�'�

#������������������� ������������������������������	'���5#�� / �
>K<<-��

;<<=� Q-� %-� ������	�� ��� �-� �
��T��������
�� � R��$�����	�	��� ������	�� �
��

������5	�$�����	���������	��
������ R�	����������	��
����46���(%%%�
��������#�	��	�#����	����!��##,61" �<JJI-��

;<>=� Q-� %-� ������	�� ��� �-� �
�����������
�� � R'3*�
	�	��� *���������

�����	
���	���$����$�����	�	���������	��
��	���	�����������	���������� R�
	�� ��������	� �
� ��� 0-��� (%%%� �������� #�	��	� #����	����

!��##,66" �<JJJ-��

;<?=� Q-� %-� ������	� � Q-� Q-� ���	S����� ��� �-� �
��T��������
�� � C/�� �$��
��$�����	�	��� ������	�� �
�� 	���	�����$��� ������	��� ������� D� 	��������

�
�(%%%�������%���������)��*	���������������#�	��	 �<JJH-��

;<B=��-� &-� ��1	� � �-� A
������ � @-� �
���3� ��� #-� ��
��� � R��$�����	�	���
������	���
��%
���
����������!��5
���7%�!8�5	�$�#&#/�2������*�	
�	���

2������ ��� ����5��� R��������� #�	��	'� 1
�-� BJ � �
-� < � **-� H?�<<G �

>K<?-��

;<E=��-�&-���1	������-�L����� �R��	
�	������	��������
����
����#	3����	
�	���

����'�*�	1����$���	���	������	*�
����
��������	���������� R�	��������

�
����.-���(%%%���������#�	��	�#����	����!��##�0--6" �>KKJ-��

;<G=��-� Q
��*$� ��� �-� ����� � R#	�	��� ���*
���� �	���� 	�� �� ������	���

������ R������������&������'�1
�-�>J ��
-�E �**-�?JK�?JE �<JIG-��

;<H=��-�'�����
� ��-������
������-�&-���1	� �R���$�	2�����
���$������$��	��

������	*�
����
���������� R�	��(��4	��(������������)��*	������������	�	�

����	� ���� /���������	�
��� %������ ���� �������� #�	��	�

!)��%�#,4-" �>K<K-��

;<I=��-� �����
�� � R���
�� 1���
��� 5	�$� �	3�� ��� R� ;/��	��=-� �1�	�����6�

$��*6((555-���$5
���-�
�(�������������(�	���3�$����(JHKK �>KKG-�

�

❘❊❆❈❚■❖◆ ✷✵✶✸ ✸✵

Run-time Support for Real-Time Multimedia in the Cloud

Tommaso Cucinotta(1), Karsten Oberle(2), Manuel Stein(2) Peter Domschitz(2), Sape Mullender(3)

(1) Bell Laboratories, Alcatel-Lucent, Dublin, Ireland
(2) Bell Laboratories, Alcatel-Lucent, Stuttgart, Germany
(3) Bell Laboratories, Alcatel-Lucent, Antwerp, Belgium

E-mail: firstname.lastname@alcatel-lucent.com

Abstract
This paper summarizes key research findings in
the area of real-time performance and predictabil-
ity of multimedia applications in cloud infrastruc-
tures, namely: outcomes of the IRMOS European
Project, addressing predictability of standard vir-
tualized infrastructures; Osprey, an Operating Sys-
tem with a novel design suitable for a multitude of
heterogeneous workloads including real-time soft-
ware; MediaCloud, a novel run-time architecture
for offering on-demand multimedia processing facil-
ities with unprecedented dynamism and flexibility
in resource management.

The paper highlights key research challenges ad-
dressed by these projects and shortly presents ad-
ditional questions lying ahead in this area.

1 Introduction
The continuous evolution of computation and com-
munication technologies is causing a paradigm
shift in our own idea of computing. Indeed, the
widespread availability of broadband connections is
simply leading to the end of the Personal Computer
era, marking the beginning of a new era where com-
puting is mostly distributed. Users not only recur
to “the network” to retrieve contents. They also
store and manage their data remotely, keeping it
accessible from a variety of heterogeneous devices
and widespread locations. Users exhibit increas-
ingly challenging requirements on the computing
capabilities remotely accessible, not limiting them-
selves to delegate off-line computations to remote
servers, but rather expecting more and more in-

teractive and real-time applications to be readily
available on-demand. This is witnessed by the in-
creasing use of on-line collaborative document edit-
ing or video authoring services, for example.

Being a major driver to the Cloud Computing
model, a key role in the new panorama is being
played by virtualization. With the possibility to
host multiple virtualized machines seamlessly onto
the same physical hardware, the possibility to cre-
ate virtual network overlays abstracting away from
the actual network topology, and the possibility
to dynamically live-migrate virtualized machines
while they are running, virtualization technologies
constitute an enabler for flexible and efficient man-
agement of physical resources in data centers.

However, an application domain where the
provisioning of interactive on-line services with
nearly “real-time” responsiveness remains challeng-
ing from a technical viewpoint is the domain of
multimedia. Indeed, multimedia contents are char-
acterized by an isochronous delivery model, where
for example audio or video frames need to be de-
livered at perfectly regular intervals. However, the
network over which most of these contents are dis-
tributed nowadays, the Internet, has not been de-
signed with predictability in mind. Furthermore,
often multimedia servers that need to deliver con-
tents to many users concurrently make use of soft-
ware technologies (e.g., Operating System, middle-
ware, etc.) that have been designed for best-effort
performance, not for predictable execution. Even
more, the use of multimedia compression algo-
rithms leads to a naturally fluctuating networking
and computing workload that is usually reflected
in variable execution and transmission times. Last,
but not least, the use of virtualization technolo-
gies increases further the unpredictable behaviors
in the execution of services, as due to the increased
degree of sharing of physical resources (particularly
computing and networking) among different (often
heterogeneous) applications. The overall outcome

❘❊❆❈❚■❖◆ ✷✵✶✸ ✸✶

is an irregular, randomly varying and unpredictable

delivery of multimedia contents to end users, mak-
ing it very difficult to adhere to precise QoS speci-
fications in Service Level Agreements (SLAs) [13].

2 Related Work
The problem of guaranteeing stable Quality of Ser-
vice levels to cloud and distributed applications has
been investigated on multiple levels.

The performance implications of data move-
ments have received a lot of attention in the cloud
environment, e.g., for proximity reasons [27] and
bulk data migration purposes [16]. Placement of
computations in large distributed clouds was hy-
pothetically evaluated in [9]. When dealing with
deployments spanning geographically distributed
data centers, it has been proposed [24] to consider
network requirements for the selection of comput-
ing locations across the WAN under various sce-
narios. In [30], authors show the benefits of con-
sidering the network topology and overall demand
for response times when load-balancing workloads
across neighboring data centers. In [6], it is pro-
posed to leverage end-to-end application-level la-
tency expression specifications for optimal place-
ment across geographically distributed locations.
In [3], a placement algorithm is proposed that finds
a mapping for components of an application with a
minimal diameter of the spanned network graph.

Concerning the isolation of virtualized software
on the computing level, authors proposed [20] to
use an EDF-based scheduling algorithm [21] for
Linux on the host to schedule Virtual Machines
(VMs). Unfortunately, the proposed scheduler is
built into a user-space process (VSched), leading
to unacceptable context switch overheads. Further-
more, VSched cannot properly guarantee temporal
isolation in presence of a VM that blocks and un-
blocks, e.g., as due to I/O. IRMOS has improved
over these approaches (see Section 3).

Some authors investigated [14] the performance
isolation of virtual machines, focusing on the ex-
ploitation of various scheduling policies available
in the Xen hypervisor [8]. Furthermore, various en-
hancements to the Xen credit scheduler have been
proposed [12] to address various issues related to
the temporal isolation and fairness among the CPU
share dedicated to each VM. Adaptive CPU allo-
cation has been proposed [23] to maintain a sta-

ble performance of VMs, using application-specific
metrics to run the necessary QoS control loops.

Concluding, while various solutions have been
proposed to the problem of performance isolation
in virtualized environments, these are either not
focused on critical parameters that are necessary
for running real-time applications, or they lack of
a proper low-level real-time scheduling infrastruc-
ture, which is needed for supporting temporal isola-
tion among concurrently running software compo-
nents. The following section explains how IRMOS
addressed these issues.

3 IRMOS/ISONI Platform
The IRMOS European Project1 has investigated
on how to enhance execution of real-time multi-
media applications in distributed virtualized infras-
tructures. The IRMOS Intelligent Service-Oriented
Networking Infrastructure (ISONI) [28, 24] acts as
a Cloud Computing IaaS provider, managing and
virtualizing a set of physical computing, networking
and storage resources available within a provider
domain. One of the key innovations introduced by
ISONI is its capability to ensure guaranteed lev-
els of resource allocation for individual hosted ap-
plications. In ISONI, each distributed application
is specified by a Virtual Service Network (VSN), a
graph whose vertexes represent Application Service
Components (ASCs), deployed as VMs, and whose
edges represent communications among them. VSN
elements are associated with precise computing and
networking requirements. These are fulfilled thanks
to the allocation and admission control logic pur-
sued by ISONI for VM instantiation, and to the
low-level mechanisms shortly described in what fol-
lows. A comprehensive ISONI overview is out of the
scope of this paper and can be found in [28, 24].

Isolation of Computing. In order to provide
scheduling guarantees to individual VMs scheduled
on the same system, processor and core, IRMOS in-
corporates a deadline-based scheduler [7] for Linux.
It provides temporal isolation among multiple pos-
sibly complex software components, such as entire
VMs. It uses a variation of the CBS algorithm [1],
based on EDF, for ensuring that each group of pro-
cesses/threads is scheduled on the available CPUs

1Interactive Real-time Multimedia Applications on
Service-oriented Infrastructures. More information is avail-
able at: http://www.irmosproject.eu.

❘❊❆❈❚■❖◆ ✷✵✶✸ ✸✷

for a specified time every VM-specific period.

Isolation of Networking. Isolation of the traffic
of independent VMs within ISONI is achieved by a
VSN-individual virtual address space and by polic-
ing the network traffic of each deployed VSN. The
virtual addresses overlay avoids unwanted crosstalk
between services sharing physical network links.
Mapping individual virtual links onto diverging
network paths allows for a higher utilization of
the network infrastructure by mixing only compat-
ible traffic classes under similar predictability con-
straints and by allowing selection of more than just
the shortest path. Traffic policing avoids that the
network traffic going through the same network el-
ements causes any overload leading to an uncon-
trolled growth of loss rate, delay and jitter for the
network connections of other VSNs. It is impor-
tant to highlight that ISONI allows for the specifi-
cation of the networking requirements in terms of
common and technology-neutral traffic characteri-
zation parameters, such as the needed guaranteed
average and peak bandwidth, latency and jitter.
An ISONI transport network adaptation layer ab-
stracts from technology-specific QoS mechanisms
of the networks, like Differentiated Services [5], In-
tegrated Services [32, 31] and MPLS [25]. The
specified VSN networking requirements are met by
choosing the most appropriate transport network,
among the available ones. More detailed infor-
mation on QoS provisioning between data centers
within an ISONI domain is given in [29]. Other
interesting results from the research carried out in
IRMOS include algorithms for the optimum place-
ment of distributed virtualized applications with
probabilistic end-to-end latency requirements [18],
a probabilistic model for dealing with workload
variations in elastic cloud services [17] and the use
of neural networks for estimating the performance
of VM execution under different scheduling config-
urations [19]. The effectiveness of IRMOS/ISONI
has been demonstrated, among others, through an
e-Learning demonstrator [10].

4 Ongoing and Future Work
The IRMOS project has addressed various chal-
lenges in the area of predictable execution of virtu-
alized multimedia applications. However, a num-
ber of problems still remain unaddressed. For ex-
ample, these workloads would benefit from lighter

run-time environments than VM instances contain-
ing full-fledged OSes, as used in current cloud in-
frastructures. These are among the motivations of
MediaCloud [11] and Osprey [26], two projects from
Bell Labs described below.
MediaCloud. Handling the predicted growth of
video and media traffic is one of the key challenges
future generation networks need to address. Up to
now, cache-assisted delivery schemes [15] enabled
the networks to scale with the data traffic imposed
by video centric services. However, video delivery
is becoming more tailored to the specific user ac-
cessing it (e.g., user-specific ads). Moreover, future
video centric media services will see more people ac-
tively producing content. Also, the area of on-line
gaming has a growing interest in providing highly
dynamic and interactive multimedia. With more
contents dynamically produced, customized and ac-
cessed from mobile devices, intermediate processing
of media streams will need an unprecedented degree
of dynamism and adaptability that go beyond the
possibilities of today’s virtualized infrastructures.
Indeed, the contemporary cloud computing

model is based on virtual machines that are stat-
ically allocated ahead of time, before it is known
who accesses which contents and from where. Fur-
thermore, only relatively small and infrequent ad-
justments can be done dynamically, as due to the
unavoidable “inertia” behind migration of VMs,
whose contained OSes often amount to GB of data
for the OS volatile memory and tens of GB for
the VM disk image. In consequence, today’s ap-
plications are typically designed in a way, that
data has to be moved through the network to
where the application is executed [27] which proves
costly for live multimedia contents. We believe that
this paradigm will change in the future, meaning
that an intelligent infrastructure will also force the
movement of applications in the line of data and de-
mand sources. Therefore we are working on ways to
optimize the delivery of (real-time) media services
on top of a distributed cloud environment.
The MediaCloud Project [4] is investigating novel

virtualized computing paradigms specifically tied
to multimedia applications, where the location of
media processing can be quickly altered at run-
time, when sources and destinations of the mul-
timedia applications are known. Moving towards a
largely distributed service execution paradigm re-
quires software to be split up into fine-grained ser-

❘❊❆❈❚■❖◆ ✷✵✶✸ ✸✸

vice components. Designing a service from a plu-
rality of atomic service components requires an on-
line set-up of how those components interact, that
is, which media flows the components exchange at
service run-time. The customer of such a service
should not need to care about the location of ex-
ecution in the network. MediaCloud takes care of
finding best-fit resources during service run-time,
when sources and sinks of relevant media streams
are known, resulting in reduced end-to-end service
latencies and offloaded networks by keeping traffic
local. The execution framework ensures fluent me-
dia flow forwarding between service components.
This deferred allocation puts the foundation for
very efficient management of resources. However,
one of the main challenges to address is the instan-
tiation of the required media processing functions
that needs to be performed so quickly as to not im-
pact the QoE for the end users. The achievement
of such a goal is severely obstructed by the use of
machine virtualization. Investigations and exper-
iments have shown that using fully-fledged oper-
ating systems inside a virtual machine as execu-
tion containers can hardly offer the required per-
formance, scalability and efficiency for running dis-
tributed real-time media-centric services [4].
MediaCloud introduces a lightweight execution

container design, which is fully optimized for sup-
porting efficient execution of fine-grained service
components. These can be added and deleted and
media flows can be moved between, added to or
removed from components at run-time. Such dy-
namic mechanisms in combination with the ability
to move service components between execution re-
sources in the network during run-time, build the
basic foundation for an efficient, top-performing
and scalable service execution on distributed pro-
cessing resources in the network.
MediaCloud introduces a novel flow driven ex-

ecution environment optimized for the processing
of media functions, which departs from traditional
software stacks being deployed in today’s virtual-
ized cloud infrastructures.
Preliminary measurements [11] performed on the

prototype implementation proved that MediaCloud
is able to provide the envisaged level of agile re-
source allocation and utilization. It supports in-
stantiation of media processing functions, as well
as re-assignment of media processing components
across processing resources, in the time-frame of 2

to 3 milliseconds, in some investigated scenarios.
Even highly optimized VM-based systems can

accomplish these tasks in seconds but not in mil-
liseconds. Additional investigations indicate that
MediaCloud is also able to achieve much more ef-
ficient resource utilization. A collection of coop-
erative media processing tasks executed on a Me-
diaCloud controlled processing resource consumed
only about half of the resources needed when do-
ing the same job by making each task a process on
the Linux OS. At the same time, we could show
significantly better end-to-end service delay figures
for a collection of media processing components ex-
ecuted on MediaCloud despite its lower resource
utilization.
Osprey. As discussed above, while bringing a
number of advantages in terms of ease of (and seam-
less) management of software, machine virtualiza-
tion in itself is also constituting the root cause of
many technically unnecessary overheads in today’s
cloud applications. Indeed, virtualized infrastruc-
tures have replicated software layers providing sim-
ilar functions, such as resources management and
allocation (e.g., CPU scheduling, memory and pe-
ripheral management). Also, many attempts to re-
duce such overheads so as to obtain a smarter re-
source management among the hypervisor and the
hosted guest OSes usually result in the increase of
the degree of para-virtualization of the guest OSes,
reducing the advantages of full machine virtual-
ization (e.g., seamless server consolidation and in-
creased isolation/security).
As a consequence, we claim that more attention

should be devoted to OS virtualization instead, a
technique allowing for a single Operating System to
create multiple isolated “domains”, where indepen-
dent software can be deployed. For example, the
Linux LXC project2 and FreeBSD Jails3 provide
such a mechanism. However, even though apply-
ing QoS-aware (or real-time) resource management
techniques in a General-Purpose OS (GPOS) is
principally possible, as shown in IRMOS by patch-
ing the Linux kernel with a real-time scheduler [7],
nonetheless this leads to a suboptimal solution from
a number of viewpoints. Still, we keep having repli-
cated functionality among the hypervisor and guest
OSes. Furthermore, there are resource wastes due

2More information is available at: http://lxc.sf.net.
3More information is available at: http://www.freebsd.

org/doc/en_US.ISO8859-1/books/handbook/jails.html.

❘❊❆❈❚■❖◆ ✷✵✶✸ ✸✹

to the unawareness of the host and guest sched-
ulers, i.e., in order to guarantee certain real-time
performance levels, more resources need to be al-
located than strictly needed, because of the hierar-
chical composition of schedulers [2]. Furthermore,
a GPOS is designed for a relatively low number of
processes/cores and tasks to handle. However, a
big server in a virtualized data center may easily
include tens/hundreds of cores in a single machine.
A nowadays GPOS does not have the necessary de-
gree of scalability and flexibility in configuration
that allow for an efficient management of resources
in these conditions.
Osprey [26] is a new OS under development

at Bell Laboratories suitable for a multitude of
future computing scenarios, including: embed-
ded systems; cloud-hosted real-time multimedia
applications with tight timing requirements and
highly fluctuating and horizontally scalable re-
source requirements; future data-intensive and
high-performance applications. Osprey includes
mechanisms for scalable, low-overhead and energy-
aware resources management and scheduling, sup-
porting predictable execution. The OS can be de-
ployed with a very small memory footprint and a
lightweight set of functionality, so as to fit within
embedded devices dealing with multimedia (e.g.,
smart phones, set-top boxes, smart TVs, etc...),
and very fast boot-up times, so to reduce energy-
consumption due to stand-by modes. Osprey can
be deployed within network elements, such as base
stations, routers, firewalls. In cloud computing en-
vironments, Osprey is suitable both for thin clients
and for provider-side run-time environments for fu-
ture cloud applications. It includes OS-level vir-
tualization, and an OS architecture featuring a
very small micro-kernel, just capable of switching
between address spaces and fielding system calls,
traps and interrupts. It uses asynchronous com-
munication primitives among core OS components
and for user-kernel space interactions, reducing un-
needed overheads. Also, it includes into the core
OS mechanisms for check-pointing, migration and
recovery of processes, enabling fault-tolerance.
Finally, Osprey integrates Pepys [22], a novel net-

working protocol for content distribution, with na-
tive and efficient support for named replicated con-
tents and mobile users. It also avoids unneeded
copies of data across the network stack, enabling
high-performance data-intensive applications.

5 Conclusions
In this paper, key research efforts in the area of real-
time performance and predictability for multimedia
applications in cloud infrastructres have been sum-
marized, along with some of the research challenges
that deserve further attention, and a short overview
of ongoing research projects promising to address
these challenges.

References

[1] L. Abeni and G. Buttazzo. Integrating Multime-
dia Applications in Hard Real-Time Systems. In
Proceedings of the IEEE Real-Time Systems Sym-
posium, Madrid, Spain, 1998.

[2] L. Abeni and T. Cucinotta. Efficient virtualisation
of real-time activities. In Proceedings of the IEEE
International Workshop on Real-Time Service-
Oriented Architecture and Applications (RTSOAA
2011), Irvine, CA, December 2011.

[3] M. Alicherry and T.V. Lakshman. Network aware
resource allocation in distributed clouds. In Pro-
ceedings of the 31st Annual IEEE International
Conference on Computer Communications, Or-
lando, Florida, USA, March 2012.

[4] M. Bauer, S. Braun, and P. Domschitz. Media
processing in the future internet. In Proc. of Eu-
roView 2011: Visions of Future Generation Net-
works, Wuerzburg, Germany, July 2011.

[5] S. Blake, D. Black, M. Carlson, E. Davies,
Z. Wang, and W. Weiss. RFC2475, An Architec-
ture for Differentiated Service. IETF, Dec 1998.

[6] F. Chang, R. Viswanathan, and T. L. Wood.
Placement in clouds for application-level latency
requirements. In Proceedings of the 5th IEEE
International Conference Cloud Computing, Hon-
olulu, Hawaii, USA, June 2012.

[7] F. Checconi, T. Cucinotta, D. Faggioli, and G. Li-
pari. Hierarchical multiprocessor CPU reserva-
tions for the linux kernel. In Proceedings of the
5th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications
(OSPERT 2009), Dublin, Ireland, June 2009.

[8] L. Cherkasova, D. Gupta, and A. Vahdat. Compar-
ison of 3 CPU schedulers in Xen. SIGMETRICS
Perform. Eval. Rev., 35:42–51, September 2007.

[9] K. Church, A. Greenberg, and J. Hamilton. On de-
livering embarrassingly distributed cloud services.
In Proceedings of the Seventh ACM Workshop on
Hot Topics in Networks (HotNets-VII), Calgary,
CA, October 2008.

❘❊❆❈❚■❖◆ ✷✵✶✸ ✸✺

[10] T. Cucinotta, F. Checconi, G. Kousiouris, K. Kon-
stanteli, S. Gogouvitis, D. Kyriazis, T. Varvarigou,
A. Mazzetti, Z. Zlatev, J. Papay, M. Boniface,
S. Berger, D. Lamp, T. Voith, and M. Stein. Virtu-
alised e-learning on the irmos real-time cloud. Ser-
vice Oriented Computing and Applications, pages
1–16, 2011. 10.1007/s11761-011-0089-4.

[11] P. Domschitz and M. Bauer. Mediacloud -
a framework for real-time media processing in
the network. In Proceedings of EuroView 2012,
Wuerzburg, Germany, July 2012.

[12] G. Dunlap. Scheduler development update. Xen
Summit Asia, Shanghai, 2009.

[13] G. Gallizo, R. Kuebert, G. Katsaros, K. Oberle,
K. Satzke, S. Gogouvitis, and E. Oliveros. A ser-
vice level agreement management framework for
real-time applications in cloud computing environ-
ments. In Proceedings of the 2nd International
ICST Conference on Cloud Computing (Cloud-
Comp 2010), Barcelona, Spain, October 2010.

[14] D. Gupta, L. Cherkasova, R. Gardner, and A. Vah-
dat. Enforcing performance isolation across vir-
tual machines in Xen. In Proceedings of the
ACM/IFIP/USENIX International Conference on
Middleware, pages 342–362, New York,USA, 2006.
Springer-Verlag New York, Inc.

[15] M. Hofmann and L. Beaumont. The book about
content networking. Morgan Kaufman, Feb 2005.
ISBN I 55860 834 6.

[16] D. Klein, M. Menth, R. Pries, Phuoc Tran-Gia,
M. Scharf, and M. Sollner. A subscription model
for time-scheduled data transfers. In Integrated
Network Management (IM), 2011 IFIP/IEEE In-
ternat. Symp. on, pages 555–562, May 2011.

[17] K. Konstanteli, T. Cucinotta, K. Psychas, and
T. Varvarigou. Admission control for elastic cloud
services. In Proc. of the 5th IEEE Interna-
tional Conference on Cloud Computing, Honolulu,
Hawaii, USA, June 2012.

[18] K. Konstanteli, T. Cucinotta, and T. Var-
varigou. Optimum allocation of distributed ser-
vice workflows with probabilistic real-time guar-
antees. Service Oriented Computing and Applica-
tions., 4:68:229–68:243, December 2010.

[19] G. Kousiouris, T. Cucinotta, and T. Varvarigou.
The effects of scheduling, workload type and con-
solidation scenarios on virtual machine perfor-
mance and their prediction through optimized ar-
tificial neural networks. Journal of Systems and
Software, In Press, Corrected Proof:–, 2011.

[20] B. Lin and P. Dinda. Vsched: Mixing batch and in-
teractive virtual machines using periodic real-time
scheduling. In Proceedings of the IEEE/ACM Con-
ference on Supercomputing, November 2005.

[21] C. L. Liu and James W. Layland. Scheduling algo-
rithms for multiprogramming in a hard real-time
environment. J. ACM, 20:46–61, January 1973.

[22] S. Mullender, P. Wolkotte, F. Ballesteros, E. So-
riano, and G. Guardiola. Pepys – the network is
a file system. Technical Report TR RoSaC20114,
Bell Labs and Rey Juan Carlos University, 2011.

[23] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-
Clouds: Managing Performance Interference Ef-
fects for QoS-Aware Clouds. In Proceedings of
the 5th European Conference on Computer systems
(EuroSys), Paris, France, April 2010.

[24] K. Oberle, M. Kessler, M. Stein, T. Voith,
D. Lamp, and S. Berger. Network virtualization:
The missing piece. In Intelligence in Next Gen-
eration Networks, 2009. ICIN 2009. 13th Interna-
tional Conference on, pages 1–6, October 2009.

[25] E. Rosen, A. Viswanathan, and R. Callon.
RFC3031, Multi-protocol Label Switching Architec-
ture. IETF, Jan 2001.

[26] J. Sacha, J. Napper, H. Schild, S. Mullender, and
J. McKie. Osprey: Operating system for pre-
dictable clouds. In in Proceedings of the 2nd Work-
shop on Dependability of Clouds, Data Centers and
Virtual Machine Technology (DCDV’12), Boston,
MA, USA, June 2012.

[27] B. Tiwana, M. Balakrishnan, M. Aguilera, H. Bal-
lani, and Z. M. Mao. Location, location, location!
modeling data proximity in the cloud. In In Hot-
Nets IX: Ninth Workshop on Hot Topics in Net-
working, pages 1–6, Monterey, CA, October 2010.

[28] T. Voith, M. Kessler, K. Oberle, D. Lamp,
A. Cuevas, P. Mandic, and A. Reifert. ISONI
Whitepaper v2.0, 2009.

[29] T. Voith, K. Oberle, and M. Stein. Quality of
service provisioning for distributed data center
inter-connectivity enabled by network virtualiza-
tion. Elsevier Future Generation Computer Sys-
tems (FGCS 2011), 2011.

[30] I. Widjaja, S. Borst, and I. Saniee. Geographically
distributed datacenters with load reallocation. In
DIMACS Workshop on Cloud Computing, Piscat-
away, NJ, USA, December 2011.

[31] J. Wroclawski. RFC 2210, The Use of RSVP with
IETF Integrated Services. IETF, Sep 1997.

[32] J. Wroclawski. RFC2211, Specification of the Con-
trolled Load Quality of Service. IETF, Sep 1997.

❘❊❆❈❚■❖◆ ✷✵✶✸ ✸✻

