
Tracing Linux Kernel Events via STM

Michael Trimarchi <michael at amarulasolutions.com>
Stefan Kolbinger <Stefan.Kolbinger at lauterbach.com>

This work was done in collaboration with Lauterbach using
Lauterbach Power Trace

June 27, 2014



Intro ARM Coresight STM

Coresight is a standard debug interface for debug components
in an embedded System on Chip

STM is a Coresight component that implements a low latency
and high bandwidth printf style debug capability

Scalable solution enabling multi-processors and processes to
access STM without being aware of others; STM supports
65,536 channels enabling significant scalability



ARM Coresight STM



Why do we need to use tracing over STM?

The Software development costs increase compared to
hardware one Modern SoC are very complex system

Optimization and software quality are critical to ensure
product success

Traditional debug and tracing mechanism implement in
modern OS are invasive



Linux Tracer with tracepoints

We use tracepoints

A tracepoint placed in code provides a hook to call a function
(probe) that you can provide at runtime.

tracepoint can be ”off” it has no effect, except for adding a
tiny time penalty

Tracepoints ”on”, the function you provide is called each time
the tracepoint is executed, in the execution context of the
caller. You can put tracepoints at important locations in the
code.



Tracing Linux Kernel Events via STM

Use Linux Kernel tracing architecture

Add new tracepoints hooks

Send trace data over STM channel

Max event size is 8 Words (32bit)

Use one channel x CPU for increase parallelism

Make it portables to more SoC and with limited changes to
the Linux Kernel

Define a new standard for hardware debugger that can read
data from STM channels and can be ported even to no
open-source Operating System



Trace with Linux

PowerTrace II system

Dual-core cortex A9 system

STM’s compatible core

Widely used platform

Compatible with OMAP5 platform

Supported in mainline



What are we tracing?

Process/Thread Creation

Process/Thread Switch

Process/Thread Deletion

Process Rename

Thread State Change

Interrupt Exception Entry/Exit

ISR Entry/Exit

ASID Assign



Tracing Linux kernel events via STM: example

This is an example of the execution of a
tracepoint. In this case we have a Process
Context Switch, that generate the event to
the STM channel

PowerView can show the event on a graphics
interface



Pending problems

tracing is slow (up to 24uS event)

tracing work on STM 1.0 from TI

Stm Clock is not optimized (NDA required with TI)

code is written on top of an old TI driver (cleanup is not
sufficient)



Next steps...

Find someone that has time.. (1)

Rebase to a newer linux kernel and Coresight implementation
(3.16 and Patrick Pratel patchset
https://lkml.org/lkml/2012/12/19/331)

Export more tracepoint events or create pluggable backend to
the tracer

Create a graphical visualization of the events on Lauterbach
TRACE32(R) Combine hardware tracing information with
Linux Kernel Tracing over STM

Mainline kernel submission??? refer to point (1)


