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The Problem we are addressing 

For cyber-physical systems, programs do not adequately 
specify behavior. 
 
When interactions with physical processes are central, the 
temporal dynamics of software is a critical part of its behavior. 
 
Today, temporal dynamics emerges from an implementation of 
the system, rather than being part of the model and/or 
program(s) specifying the system. 
 
As a consequence, systems are brittle and non-portable. 
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Platform independent 
model of functional and 

timing behavior 
Code Generation 
to multiple target 
platforms 
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Our Goal: Determinate timing at sensors and actuators 
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Success on a test case: Flying Paster  
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Problems that complicate analysis of system behavior: 

Structure of a Cyber-Physical System 

Messages from different 
sources interleave 

nondeterministically Sensors may be locked 
out for an indeterminate 

amount of time 

Plat 

Variability of execution 
times affects results 

(not just WCET) 
Interrupt-driven I/O 
disrupts timing 

Platforms’ measurements of 
time differ 

A fault in a remote 
component may disrupt a 

critical local activity 

A fault in a remote 
component may 
go undetected for 
a long time 

Etc… 

Lee, et al. Berkeley  6 

Our Programming Model 

PTIDES:  
Programming Temporally Integrated Distributed 
Embedded Systems 
 
Based on a determinate discrete-event (DE) model of 
computation (MoC), originally developed for simulation. 
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Ptides: First step:  
Time-stamped messages. 

Messages carry time 
stamps that define their 

interleaving 
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Ptides: Second step:  
Network time synchronization 

GPS, NTP, IEEE 1588, 
time-triggered busses, 
etc., all provide some 
form of common time 
base. These are 
becoming fairly common. 

Assume bounded 
clock error 

Assume bounded 
clock error e 

Assume bounded 
clock error e 
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Ptides: Third step: 
Bind time stamps to real time at sensors and actuators 

Input time stamps are 
≥ real time 

Input time stamps are 
≥ real time 

Output time stamps 
are ≤ real time 

Output time stamps 
are ≤ real time Messages are 

processed in time-
stamp order. 

Clock synchronization 
gives global meaning to 

time stamps 
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Global latencies between sensors and actuators become 
controllable, which enables analysis of system dynamics. 

Ptides: Fourth step: 
Specify latencies in the model 

Model includes 
manipulations of time 
stamps, which control 

latencies between 
sensors and actors 

Actuators may be 
designed to interpret 
input time stamps as 
the time at which to 

take action. Feedback through the physical world 
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Ptides: Fifth step 
Safe-to-process analysis (ensures determinacy)  
Safe-to-process analysis guarantees that the generated code obeys time-stamp 
semantics (events are processed in time-stamp order), given some assumptions. 

Assume bounded 
network delay d 

Assume bounded 
clock error 

Assume bounded 
clock error e 

An earliest event with 
time stamp t here can 
be safely merged when 
real time exceeds  
t + s + d + e – d2 

Assume bounded 
clock error e 

Assume bounded 
sensor delay s 

Application 
specification of 

latency d2 
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Ptides Schedulability Analysis 
Determine whether deadlines can be met 

Schedulability analysis incorporates computation times to determine 
whether we can guarantee that deadlines are met. 

Deadline for delivery of 
event with time stamp t 

here is t – c3 – d2 

Deadline for delivery 
here is t 

Assume bounded 
computation time c1 

Assume bounded 
computation time c3 

Assume bounded 
computation time c2 
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PtidyOS: A lightweight microkernel supporting 
Ptides semantics 

PtidyOS runs on 
¢  Arm (Luminary Micro) 
¢  Renesas 
¢  XMOS 
Occupies about 16 kbytes of 
memory. 
 

Luminary  
Micro  
8962 

An interesting property of 
PtidyOS is that despite being 
highly concurrent, preemptive, 
and EDF-based, it does not 
require threads.  
A single stack is sufficient! 

The name “PtidyOS” is a bow to TinyOS, 
which is a similar style of runtime kernel. 

Renesas 7216 
Demonstration Kit  

  XMOS 
development 
board with 4 

XCores. 
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Workflow 
Structure 
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A Typical Cyber-Physical System 
Printing Press 

•  	  Applica(on	  aspects	  
•  local	  (control)	  
•  distributed	  (coordina(on)	  
•  global	  (modes)	  

•  Ethernet	  network	  
•  Synchronous,	  Time-‐Triggered	  
•  IEEE	  1588	  	  (me-‐sync	  protocol	  

•  High-‐speed,	  high	  precision	  
•  Speed:	  1	  inch/ms	  (~100km/hr)	  
•  Precision:	  0.01	  inch	  

-‐>	  Time	  accuracy:	  10us	  Bosch-‐Rexroth	  

15 

Lee, et al. Berkeley  16 
Source: http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html 

Example – Flying Paster 
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Source:	  hNp://offsetpressman.blogspot.com/2011/03/how-‐flying-‐paster-‐works.html	  

Flying	  Paster	  
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Printing Press – Model in Ptolemy II 
See talk Thursday by Patricia 
Derler at workshop on Model-
Based Design with a Focus on 
Extra-Functional Properties 
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Plant model  
+ 

Distributed Controllers 

5   Siemens CKI Project Review  
  Patricia Derler   

Printing Press – Model in Ptolemy II 
See talk Thursday by Patricia 
Derler at workshop on Model-
Based Design with a Focus on 
Extra-Functional Properties 
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Printing Press – Model in Ptolemy II 
See talk Thursday by Patricia 
Derler at workshop on Model-
Based Design with a Focus on 
Extra-Functional Properties 
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Platform independent 
model of functional and 

timing behavior 
Code Generation 
to multiple target 
platforms 
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Platform independent 
model of functional and 

timing behavior 
Code Generation 
to multiple target 
platforms 
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Renesas vs. XMOS: Measured I/O timing 
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Renesas vs. 
XMOS: Busy 
vs. Idle Time 
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Conclusions 

Today, timing behavior is a property only of realizations of 
software systems. 

Tomorrow, timing behavior will be a semantic property of  
programs and models. 

Raffaello Sanzio da Urbino – The Athens School 

Overview References: 
• Lee. Computing needs time. CACM, 52(5):70–79, 2009 
• Derler, Lee, Sangiovanni-Vincentelli,  
Modeling Cyber-Physical Systems,  
To appear in Proc. of the IEEE December, 2011. 


