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Wheel Sensor

Heterogeneous Network – Motivation 

Advanced Driver
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Outline

• Exploration Model

• Optimization of Constrained Combinatorial Problems

• Model Encoding

• Timing Aspects

• Case Studies
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• Allocation of resources (interconnection to buses)

• Distribution of tasks

• Routing of messages

• Parameters (priorities, scheduling policies)

Wheel Sensor

Motivation – Design Space Exploration

Brake

Advanced Driver
Assistance System
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Model (Y-Chart Approach)

application architecture

Design Space Exploration
(1)allocation
(2)binding
(3)routing

implementation
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Specification
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Problem Transformation

Optimize: f(x) 

s.t.  Ax≤b 

and x∈{0,1}n

application architecture

Design Space Exploration

implementation

Design Space 

Exploration
Constrained 

Combinatorial Problem
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Model Encoding

• Allocation encoding

– Binary variable for each resource

• Binding encoding

– Binary variable for each mapping

– Linear constraints for unique binding 
and binding to an allocated resource

• Routing encoding

– Binary variables for each pair of 
resource and time step

– Linear constraints fulfill 
dependencies
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Constrained Combinatorial Problem

• Definition:

• Objective function f is non-linear and multi-objective

• Linear constraints define the feasible solution space 
Xf⊆{0,1}n

Optimize: f(x) 

s.t.  Ax≤b and x∈{0,1}n
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Illustration of Problem Complexity
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Common Approaches

• Evolutionary Algorithms (EA)

– Suitable for multi-objective 
optimization problems

– Restricted-use for constrained 
optimization problems

• Integer Linear Programming 

(ILP)

– Suitable for linearly constrained 
optimization problems

– Restricted to single linear objective 
function
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Proposed Approach

• Decoding Approach
– Search in the simply constrained search space V

– Decoding to a feasible solution in the solution space Xf

– Combination of EA und PB (Pseudo-Boolean) solver
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PB Solver

• Backtracking algorithm for ILPs with binary variables

• Branching determined by

– ρρρρ - priority for each variable  

– σσσσ - decision phase for each variable

while true do

branch()

if CONFLICT( ) then

backtrack()

else if SATISFIED( ) then

return x

end if

end while
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backtracking algorithm branching example
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Proposed Approach – Flow 

• The search space V=Rn×{0,1}n is defined as the set 

of all branching strategies for the PB solver

EA PB solver

Variation
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Decoding
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Decoding
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Selection

f(x)

Selection
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Init

Stop

(ρρρρ,σσσσ) – branching strategy for the PB 

solverx – feasible solution
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Results

• Comparison using test cases from „PB Evaluation 2009“

– ILPs with a single objective function and binary variables

Synthesis for Mixed PTL/CMOS Circuits (651 var.,1658 con.)Course Assignment Problem (907 var., 403 con.)Area Optimization in Digital Filter Synthesis (644 var., 1034 con.)Course Assignment Problem (257 var., 97 con.)
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Wheel Sensor

Compositional Timing Analysis – Motivation 

Advanced Driver
Assistance System

Brake
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Design Space Exploration Framework

Based on open source optimization framework www.opt4j.org
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Automotive Network Case Study

• Application: 46 tasks, 42 messages

• Architecture: 15 ECUs, 2 CANs, FlexRay, Gateway

• Optimization runtime: 1h (timing analysis)
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Application Domains
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Motion-JPEG Decoder Case Study

• Application: 21 tasks, 56 communication tasks

• Architecture: ARM processors, DSP, buses, gateway 

• Optimization runtime: 17h (performance simulation with 

SystemC)

24fps
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Conclusions

• Design Space Exploration

– Flexible model

– Flexible multi-objective optimization 

– Applicable to arbitrary domains, e.g., automotive networks, 
MPSoCs, NoCs

• Timing Analysis

– Worst-case analysis

– Simulations
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