Towards the Integration of UPPAAL for Formal Verification of EAST-ADL Timing Constraint Specification

Tahir Naseer Qureshi,
DeJiu Chen, Magnus Persson, and Martin Törngren
Department of Machine Design.
KTH - The Royal Institute of Technology, Stockholm, Sweden. {tnqu, chen, magnper, martin@md.kth.se}
Presentation Outline

• Background
• Objectives and methodology
• Base technologies
 – EAST-ADL
 – UPPAAL
• Transformation scheme
• Results and Conclusions
Background

• Automotive system development
 – Paradigm shift

• Software and distributed computing
 – Innovations and features
 – Increased safety and performance

• Increased complexity
 – Life Cycle
 • Maintenance, product variability, information exchange across domains and enterprises
 – Run-time
 • Modes, dependencies ...
Background (Contd.)

- Technologies for system specification (UML, SysML, EAST-ADL, AADL, AUTOSAR etc.)
 - Requirements,
 - Functions, software / hardware
 - Behavior and non-functional constraints
 - Variability
 - Verification and validation
- Different views, concerns, scope
 - Consistency
 - Communication
 - Automation
- Tools and tool integration
Objectives

• To investigate
 – The support for formal verification of execution timing constraints by external tools
 – Automation possibilities

• To identify possible transformation scheme and challenges
Approach

- Case studies
 - Emergency Braking Assistant
 - Brake-by-wire

- Base technologies
 - EAST-ADL
 - UPPAAL

- Prototype transformation
 - MDWorkBench (MQL)

- Results
Behavior taxonomy

- Application logic and interaction
- Execution and timing
- Nominal vs. error
- Required vs. provided
- Discrete vs. continuous time
EAST-ADL

• Electronics Architecture and Software Technology
 – Architecture Description Language (2001 – present)
 – Addresses current industrial needs
 – Embraces de-facto standards
 – Complement best industrial practices
 – Tool Support
 • Specification tools (e.g. PapyrusUML)
 • External analysis tools (e.g. HIP-HOPS)
EAST-ADL (Contd.)
UPPAAL

- Uppsala and Aalborg Universities
- Industrial usage
 - Philips audio protocol, Gear controller by Mecel AB
- Timed Automata
 - Quantitative treatment of time
 - Easy and flexible modeling
- Formal verification
 - Modeling
 - Graphical and C like syntax
 - Simulation
 - Non-exhaustive analysis
 - Verification (Query Language)
 - CTL

A[] (ECU.TaskFinished imply ECU.Timer <= Deadline)
EAST-ADL vs. UPPAAL

<table>
<thead>
<tr>
<th>UPPAAL</th>
<th>EAST-ADL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>Function type</td>
</tr>
<tr>
<td>Process</td>
<td>Function prototype</td>
</tr>
<tr>
<td>States</td>
<td>Implicit</td>
</tr>
<tr>
<td>Transitions</td>
<td>Implicit</td>
</tr>
<tr>
<td>Channels</td>
<td>Implicit through connectors, execution events</td>
</tr>
<tr>
<td>Time guards and clocks</td>
<td>Timing constraints</td>
</tr>
</tbody>
</table>

Contribution:
Make explicit transformation

Result:
Transformation algorithm
Semi-automated transformation
EAST-ADL vs. UPPAAL
Transformation Scheme - 1

EAST-ADL::Design Function Type
 -->
UPPAAL::Template

Define a clock in the declaration of the new template.

clock LocalClock;
Transformation Scheme - II

- Create standard locations and transitions
 - Periodic

 ![Periodic Diagram]

 ![Aperiodic Diagram]
Transformation Scheme - III

- EAST-ADL::Timing
 - Period and execution time
- UPPAAL::Conditions & State Invariants
Transformation Scheme - IV

- EAST-ADL::FunctionPort
 -> UPPAAL::synchronization event
Transformation Scheme - V

- EAST-ADL::System (FDA) -> UPPAAL::system
- FunctionPrototype->UPPAAL::Process
- FunctionConnector -> UPPAAL::Channel

broadcast chan DesiredTorque;

ActFR=WActuator(ACComFR, stopClock2);

system BTC,GBC, ABSRR, ABSRL, ABSFL, ABSFR, ActFL, ActFR, ActRL, ActRR, TMFL, TMFR, TMRR, TMRL;
Transformation Scheme - VI

- Time logging for end-to-end timing constraint verification
 - Additional templates
 - $A[] \ (\text{TMRR.Finished \ imply \ (TMRL.TimerClock<300)})$
Transformation Prototype

- MDWorkBench and MQL
- Partially automatic
 - EAST-ADL EMF meta-model to UPPAAL EMF meta-model.
 - EMF to UPPAAL XML (manual)
BBW case verification

• Deadlock free
 – Only for sender-receiver interface
 – Client-server type for future enhancement

• Specification consistency
 – Execution time w.r.t period
 – End-to-end timing constraint w.r.t. local timing constraints
 • Reaction time ≤ 300ms
Summary

• One EAST-ADL and UPPAAL integration effort for verifying consistency of timing constraint specifications.
• Automated transformation possible but with challenges
 – Distributed information
 – Task allocation to hardware.
 – Multiple response times and event chains.
Future Work

• Supporting the upcoming EAST-ADL extension for native behavior specifications and the verification.

• Consistency checking between constraints specified at two different abstraction levels in EAST-ADL.

• Bi-directional transformation utilizing requirements to generate queries and V&V package for analysis results.
Questions