

Design and Evaluation of Future Ethernet-based ECU Networks

Michael Glaß, Sebastian Graf, Felix Reimann, and <u>Jürgen Teich</u>

> Hardware-Software-Co-Design University of Erlangen-Nuremberg teich@cs.fau.de

Outline

Motivation

Ethernet and IP in automotive networks

- Ethernet AVB
 - Timing analysis
 - Timing simulation
- Use Case and Conclusions

Motivation

- Novel applications in the infotainment and driver assistance domain
 - Bird's eye view
 - Car-to-X
 - Rear seat entertainment

© earthycars.com

- Result: Heavily increasing bandwidth requirements
- Problem: Common field busses (FlexRay, CAN, ...) overstrained

List of Wishes for a Novel Field Bus

- Technical requirements
 - High bandwidth
 - Simplify current heterogeneous bus systems
 - Real-time capabilities
- Economical requirements
 - Low cost for communication controllers, wiring, ...
 - Open standard

Candidate: IP over Ethernet

- Technical advantages
 - 10MBit/s up to 10GBit/s bandwidth
 - IP as common addressing scheme
 - Extensions for hard (PROFINET, EtherCAT, ...) and soft (Ethernet AVB) real-time capabilities
- Economical advantages
 - Ethernet physical and MAC layer are a common standard in various areas
 - Unshielded twisted pair wires for 100MBit/s possible

Motivation

SEIS – Security in IP based embedded Systems

DAIMLER

BMW Group

Fraunhofer Institut

Continental®

Fraunhofer Einrichtung

Sichere Informations-Technologie

> Einrichtung Systeme der Kommunikationstechnik

Our Focus in SEIS: Design Automation

<u>Automotive Design Automation</u>

 Modeling: Tool coupling with industrial CASE tool PREEvision (supports model-based design)

mycodesign.com/research/scd

- Automatic Design Space Exploration
 - See talk of M. Lukasiewycz: Model-based Design of Distributed Automotive Systems
- This talk: Performance estimation
 - Timing evaluation of an IP/Ethernet-based E/E architecture

Ethernet/AVB (Audio/Video Bridging)

- Ethernet defines physical and MAC-Layer
- AVB enhances MAC layer by:
 - Clock Synchronization (IEEE802.1AS)
 - Bandwidth Reservation (IEEE802.1Qat)
 - Traffic Shaping (IEEE802.1Qav)
- IEEE1722 is the transport protocol of AVB
- TCP/IP can be used in parallel to AVB/1722

Credit Based Shaping of Ethernet AVB

- Traffic shaping at each output port
- CBS delays messages to avoid bursts
- Otherwise, bursts could lead to buffer overflows at switches and, thus, to message

CBS – Example 1

• Two consecutive frames of same traffic class

CBS – Example 2

3 queues; queue A and B with CBS

Delays in Ethernet-based Networks

1. Input Queuing Delay

- Typically negligible

2. Store-and-forward Delay

- Crossbar operates at high bandwidth
- Non-blocking switches typically used:
 bandwidth of crossbar >> bandwidth of input links

3. Interference Delay

- Interference with traffic from other input ports
- Best effort, priority-based, and CBS

4. Frame Transmission Delay

- Depends on link bandwidth
- 10 MBit/s, 100MBit/s, 1GBit/s, 10GBit/s

5. LAN Propagation Delay

Signal propagation on medium at light speed

Real-time analysis of Ethernet AVB

 Real-time calculus to evaluate end-to-end best and worst case delays

 All message streams are known at design time (in contrast to common Ethernet-based systems)

 Dynamic bandwidth reservation IEEE802.1Qat unnecessary

 Routing, priorities, and traffic queues fixed during runtime

Delays in Ethernet-based Networks

1. Input Queuing Delay

- Typically negligible

2. Store-and-forward Delay

- Crossbar operates at high bandwidth
- Non-waiting switches typically used:
 bandwidth of crossbar >> bandwidth of input links

3. Interference Delay

- Interference with traffic from other input ports
- Best effort, priority-based, and CBS

4. Frame Transmission Delay

- Depends on link bandwidth
- 10 MBit/s, 100MBit/s, 1GBit/s, 10GBit/s

5. LAN Propagation Delay

Signal propagation on medium at light speed

- Typical use case: Video stream
 - One image each 33ms
 - HD resolution -> about 1400 Ethernet frames
 - Significant burst
- Simplified use case for this talk: 6kByte every 33ms
 - Burst of 4 frames with 1500 Byte each
 - No interfering traffic

- Available service depends on reserved bandwidth of the queue
- Modells CBS by providing service in small chunks

- Resulting arrival curve shows equally shaped messages
- Bigger delay but much less jitter as with standard Ethernet

- Analysis has to consider additionally:
 - Interfering traffic of higher traffic classes
 - Traffic in same traffic class
 - Either already shaped or
 - New, unshaped input
 - Head of line blocking of best effort traffic from lower priority queues

- Function performs an action instantaneous and calls *compute()* for timing simulation
- Component determines additional delays due to
 - Scheduling
 - Resource contention
- Delay of an action is assumed to be specified for each mapping edge

component network

ECU1

Communication Controller

functional network

- Acceleration of simulation speed:
 - Extract all <u>static</u> delays in IP/Ethernet stack (most are indep. on message size)
 - Only compute <u>dynamic</u> delays (dep. on message size) during simulation:
 - CRC calculation in UDP
 - delay on physical medium

Use Case AVB: Streaming and Control

Application

- 40 tasks to map
- 39 messages to route

Architecture

- 15 ECUs
- 4 CANs
- 3 Switches

Use Case AVB Preliminary Results

Source to Sink delay	Best case [ms]	Worst case [ms]	Relative difference
Actuator 1	3,51	4,98	42%
Actuator 2	3,46	4,78	38%
Actuator 3	3,76	4,65	24%
Actuator 4	3,1	4,39	42%

Average case [ms]	Sim. Vs RTC
3,82	TBD
3,79	TBD
4,13	TBD
3,55	TBD

Lessons learnt from timing analysis

- Most important: Interference delay at output ports
- Traffic shaping reduces jitter
 - But: Best case delay higher as with best effort
- Jitter depends mainly on output port, i.e., messages with same direction

Conclusion

Ethernet will be part of future cars!

- Successful integration of IP/Ethernet requires a holistic design flow
 - Consider specific features during modeling, optimization, and analysis
- This talk: Analytical and simulative timing evaluation for functional validation of Ethernet AVB-based E/E architectures

Thank you for your attention.

Questions?

