energie atomique - energies alternatives

ng Model Driven Engineering ta 'LES/

ngies, Standards and {periences

..Lr
-,.,.\‘}' loBD Workshop - Embedded S s Week
- Oct 9-14 2011, Taipei, Taiwab

PhD. Sara- gjovanni
CEA LIST LabGratory of mode driven
engineering
or embedded systems (LISE)

N Asara.Tucci@cea.fr

Outline of the talk

Introduction to RTES and Model-Driven Engineering
Focus on the OMG Standard Language MARTE

Experience with MARTE in the European Project
INTERESTED

Conclusion

O lust

Introduction

Mechatronic Systems

In 1969, the japanese engineer Tetsuro Mori defined the term
‘mechatronic system’ (MS), for a system whose main
functionality is:

control and adaptation to complex real-world phenomena

implemented through the interaction of software, electronic, electric
and mechanical parts or sub-systems

The ‘magic mixture’ was defined to deliver sophisticated
functionality to clients, keeping production profitable

O lust

—

Ti [} : . 'l"“:i"‘._:“.-'..-:-_.‘.IA'-ﬂr'ﬁ = /! .'_

Classical Mechatronic Systems

ABS control module

In MS, the control logics, subject to
stringent timing and safety |
constraints , is implemented in A,S,f,f,-:’,’;t.ﬁ‘,’,’
software then deployed on some microcortrolier
dedicated hardware

Hydraulic pump and valves Wheel speed
sensor

The control part of the system is a

Real-Time Embedded (sub) System Antilock

Brake
Control

O lust

T| »BD Workshoo=Emibedded S
__11ivViobD V.o

e _— =T

Upcoming Mechatronic Systems

Upcoming MS capabilities require a
massive introduction of complex RTE
sub-systems.

Volvo vision for 2020 ‘Cars that talk to one
another, that recognize road signs,
predict crashes; prevent them and
prepare for the worst case scenario’

Next RTES: Advanced controls, peer-to-
peer communication, and sophisticated
sensing capabilities; running on

distributed networks of controllers

MS development in industry today

A rigorous and time-effective
development process is a key factor
to produce the right system, in the
right way, at the right time

refi nes

A fundamental step in this direction is
the introduction of so-called
architecture frameworks (e.g. DoDAF,
MODAF, UPDM, TOGAF).

Holistic view of the system inside the

softwape

enterprise and in its eco-system o i
specified through a process and Principles:
associated architecture views. 1. Decomposition

2. Abstraction
3. Multiple view

CEORist e '
- TiMoBD Workshon=Embeédded Svstems ! ;
________'____————'———"-_‘ h A A

e _— =T

Architecture-based development
has opened the door to the use
of modeling languages, as:

a modeling language (e.g. SysML,
UML) has the capability of

O lust

Modeling Languages

expressing the concepts of
architecture, decomposition,
abstraction and view

establishing explicit relationships
between elements at different
abstraction levels and projected in
different views

-

Model is holistic

Messienl g

sy S
= o

VioBD Worl

Model Transformations

But how to manage (create, modify, cancel)
formal relationships in a holistic model?
How to keep the coherence?

The model-driven engineering (MDE)
discipline, focuses on this problem. It
mainly studies:

1. model transformations towards successive
refinements under the same language, managing
formal relationships between elements at
different abstraction levels

-- SEMANTICS COHERENCE is OK---

1. meta-models mappings, managing formal
relationships between models expressed in
different languages

-- SEMANTIC COHERENCE is THE ISSUE-

Cedhirst o
— iMoBD.\Worl

Abstraction

Decomposition

The Model-Driven Approach

Today, MDE is a sufficiently mature technology, offering methods,
techniques, standards and tools to concretely implement a full
architecture-based development

Standard ; _odelmg languages as SysML
a.backbone of the
'archltecture-ba cd development,
but domain specific languages (DSL)
may co-habit especially for specific
view points.

SImuIatlon modelica,
% Slmulmk

Views connect to the backbone through
meta-model mappings.

A backbone language ‘includes’ the

semantics of connected DSLs ey —
— g Meta-model mapping =
- >

- T

r————

TiMoBD Workshop=Embec ystems ! :
—.--_-—#‘ — - E - - - -

11

Why Standard?

Standards reduce the heterogeneity, improving:
education of engineers

communication/exchanges between various stakeholders involved in
process developments

interoperability

But standards enable also vendor independence
Users have a choice of different vendors (no vendor “tie-in”)
Forces vendors into competing and improving their products

This is why The Object Management Group (OMG) has created the Model-
Driven Architecture initiative:

A comprehensive set of standards in support of MDE including standard
modeling languages as UML2 and SysML.

O lust

Ti ‘ 0 : . ""““iﬂIl'

RTES Model-Driven Development
[)

‘Fii |,
|‘“ A
)

b

_aystem |evel

System scope and requirement analysis
Functional and technical architecture

(definition of component interfaces)
4

RTES development focuses on

e ey

software running on dedicated N
hardware
entry point: System-level component SUftWEI I-EVE‘
interfaces Application software architectgre
Implementation Architecture farqet Platform level)

Code

to refine towards an Application
Software Architecture Model ...

...to refine and refine, and to end-up
with code

O lust

A modeling language for RTES

Key capability for RTES modeling
languages is the power of expressing:

- Real-time design paradigms (e.g. data
flows, active objects)

- Detailed Platforms and Allocations

- Models for Performance
/Schedulability Prediction/Simulation

UML is not tailored to fit this capability

o _ Necessity of a standard
At the same time in RTES domain too many .
specific approaches, languages and tools... integrator language

Sometimes redundant, but often as UML, but
complementary

ew capabilities of interoperability

CEDList e : ._
. . TI k‘ ® : .""'.‘_-:‘_-;-._:--.»_ N A AN C
_LIVIOB U WO

~ — ———

— R

A modeling language for RTES: MARTE

MARTE is a OMG standard UML
profile with the following goals:

To be the universal translator towards
domain-specific languages in RTES and
provide tools interoperability

To be a modelling language establishing
relationships among elements at each
level of abstraction in the development
process

To ease capitalising, exchanging expertise

CEDList e : ._
. . TI k‘ ® : .""'.‘_-:‘_-;-._:--.»_ N A AN C
_LIVIOB U WO

— ———

— R

15

A pleasant stroll through the MARTE specification

~720 pages — the first version finalised end 2009 after 4 years of work ©

e

15

VioBD_Work OD"="FMbe(Nded S
iMoBD Waorksh ystem:

A'A = =4)

e 6

by - ST '
UML profile definition
“A special kind of package containing stereotypes, modeling rules and model

libraries that, in conjunction with the UML meta-model, define a group of
domain-specific concepts and relationships.”

« metaclass »
UML::Class
extension |

« stereotype »
Semaphore

« semaphore »
SpeedDatalock

®
SpeedDatalock

—) SCEREEEES limit: Integer
getSem: Operation
relSem: Operation

« Constraint »
: limit < UpperLimit

Language definition User model & é
level

=
=
=

‘_—‘

O lust

TI []_'_' > ."AV'.‘ eS| --..E--:_ “EmRhas ~ i p———
s ____-'_———-_—-#*‘ -

= — ———
=

(Pillar 1: Platform
Independent Modeling

General Component Model
to support component
based designs

High Level Application

Modeling

to specify concurrency and

synchronization, based on
QJctive objects

~

/

The three pillars of MARTE

/Pillar 2: Detailed Resource\
Modeling

Software Resource Modeling
to model OS execution support

Hardware Resource Modeling
to model hardware platforms

N\ /

/Pillar 3: Annotations for \
guantitative analysis

Generic Quantitative Analysis
Modeling
to enable quantitative analysis

Schedulability and
Performance Analysis

Qﬂodeling /

Foundations:

=

CeOhust

QoS-aware Modeling

Allocation to bind the Platform Independent Model to the Platform Model

Non Functional Properties: to declare and apply well-formed non-functional concerns
Time: to define time and manipulate its representations
Value Specification Language: textual language for specifying algebraic expressions

The three pillars of MARTE

/Pillar 2: Detailed Resource\ /Pillar 3: Annotations for \
Modeling guantitative analysis

Pillar 1: Platform
Independent Modeling

Software Resource Modeling Generic Quantitative Analysis

_ ode/ OS execution support Modeling

to enable quantitative analysis

High Level Application Hardware Resource Modeling
Modeling

to specify concurrency and
synchronization, based on

\active objects / \ / \Modeling /

Foundations:
Allocation to bind the Platform Independent Model to the Platform Model

to model hardware platforms Schedulability and
Performance Analysis

QoS-aware Modeling
Non Functional Properties: to declare and apply well-formed non-functional concerns

Time: to define time and manipulate its representations [

q Value Specification Language: textual language for specifying algebraic expressions

O lust

MARTE Generic Component Model i

General component model

Compatible with well-known @
component models, such as AADL, il
Autosar, EAST-ADL2, Lightweight-

CCM, and SysML.

Offering a rich semantics enabling
various models of computation
and communication

« metaclass »
UML2::Ports::Port
« stereotype» « stereotype»

FlowPort ClientServerPort

Support for Support for
Data Flow 00
Communication Communication
MARTE Port: extends UML Port possibility of
specifying pull and
push semantics

-.'v-‘_n_.:‘k."ﬂ!-‘:»“-:___”‘__ ~ ams We

MARTE Component: UML
BehavioredClassifier: contains
behavior and structured data

The three pillars of MARTE

(Pillar 1: Platform \ /Pillar 2: Detailed Resource\ /Pillar 3: Annotations for \

Independent Modeling Modeling quantitative analysis

General Component Model .) o]

to support component Software Resource Modeling Generic Quantitative Analysis
to model OS execution support Modeling

based designs

to enable quantitative analysis

Hardware Resource Modeling
to model hardware platforms Schedulability and
Performance Analysis

/ Qﬂodeling /

Foundations:
Allocation to bind the Platform Independent Model to the Platform Model

QoS-aware Modeling
Non Functional Properties: to declare and apply well-formed non-functional concerns
Time: to define time and manipulate its representations [
Value Specification Language: textual language for specifying algebraic expressions

q ' ._ - ==

O lust

1

High-Level Application Modeling

Language support to express

« metaclass »
CommonBehavior::BasicBehaviors::
BehavioredClassifier

models of computation and
concurrency: "Common" active objects,
but alternative models can be defined

real-time constraints: allows expressing

. . . . « stereotype » « stereotype »
real-time constraints as deadline or period RtUnit ppUnit

on component interfaces and connectors

$

MARTE active object : «RtUnit» owns at east one To execute requires

. , , execution thread. threads. Supports
generalization of UML active object 1 . ore man aged different

either statically (pool) or concurrency
dynamically. May have policies:

operational mode sequential,
generalization of UML passive description. guarded or

':i object Offers several (de)
; queuing policies

MARTE passive object: : «<PpUnit»

O lust

The three pillars of MARTE

/Pillar 3: Annotations for \
guantitative analysis

~

(Pillar 1: Platform
Independent Modeling

Pillar 2: Detailed Resource
Modeling

General Component Model
to support component
based designs

Generic Quantitative Analysis
Modeling

to enable quantitative analysis

High Level Application
Modeling

to specify concurrency and
synchronization, based on

\actlve objects /

Foundations:
Allocation to bind the Platform Independent Model to the Platform Model

pedulability and
Performance Analysis

Qﬂodeling /

QoS-aware Modeling
Non Functional Properties: to declare and apply well-formed non-functional concerns
Time: to define time and manipulate its representations [

q Value Specification Language: textual language for specifying algebraic expressions

T

11VIO

NI IV N

O lust

Software platform-based Modelling

Software Resource Modeling: define constructs for modeling multitask
design
Real-Time Operating Systems (e.g. POSIX, OSEK/VDX and ARINC 653)
Real-Time language libraries (e.g. ADA)

Ex.1: Concurrent execution mechanisms M),
User
Task, Interrupt, Alarm & Counter... « NotificationResource »
Event
®Z> task
« Alarm » « SwSchedulableResource »
Alarm Task
Ex2.: Synchronization mechanisms
Events, Mutual Exclusion Access Mechanisms... User
« memoryPartition » M
Partition

: — « interruptResource » « messageComResource » « swSchedulableResource » | —
. ; its : Interrupt [0..*] mbx : MailBox [0..*] tasks : Task [1..%] p—
O hist] - - - i

Hardware platform-based Modelling

Hardware Resource Modelling: to describe structure of hardware platforms

Different abstraction levels for: processor simulation, power consumption calculation,
WCET analysis, block diagrams

Two sub-views:

Logical view (functionality) < Physical view (layouts) <

User
« hwLogical::hwResource » « hwComponent »
smp : SMP smp : SMP

{grid = {4,3},
area = 5000mm?,
r_conditions = (Temperature; Operating; “; [10°C,60°C])}

« hwProcessor » D « hwProcessor » D « hwProcessor » D « hwProcessor » D

cpui : CPU cpu2 : CPU cpu3 : CPU cpu4 : CPU
{frequency = 800Mhz} {frequency = 800Mhz} {frequency = 800Mhz} {frequency = 800Mhz} «hwComponent » «hwComponent »

« hwComponent »

cpui: CPU cpu3 : CPU sdram : SDRAM
{position = {[1,1], [1,11, {position = {12,2], [1,1), fpostion = U0 1L o
A J ‘ il nbPins =
« hwCache » @ « hwCache » @ « hwCache » @ « hwCache » @ staticConsumption = 5V} staticConsumption = SW}
12:UL2 12:UL2 12: UL2 12 : UL2
{memorySize = 512kB} {memorySize = 512kB} {memorySize = 512kB} {memorySize = 512kB} [‘
‘ H H ‘ « hwComponent »
fsb: FSB

«hwBus » = {position = {[1,4], [2,21}}
fsb : FSB

{frequency = 133Mhz,
wordWidth = 128bit}

hwS rt hwDMA - hwRAM
attery : Battor D :;m;v: DM;)\ 9 sd(lfan‘:v: SDR;M @

battery : Battery

« hwComponent »
cpu2 : CPU

« hwComponent »
cpud : CPU

« hwComponent »
dma : DMA

« hwPowerSupply »
battery : Battery
{position = {[4,4], [3,3]}, ’

capacity = 10Wh,
weight = 150g}

{position = {[1,1], [3,3]},
staticConsumption = 5W}

{position ={[2,2], [3,3]},
staticConsumption = 5W}

{position = {[3,3],
[3,3]}

{managedMemories = sdram} {frequency = 266Mhz,
memorySize = 256MB}

O lust

The three pillars of MARTE

(Pillar 1: Platform \ /Pillar 2: Detailed Resource\ /Pillar 3: Annotations for \

Independent Modeling Modeling quantitative analysis
General Component Model
to support component Software Resource Modeling Generic Quantitative Analysis
based designs to model OS execution support Modeling

to enable quantitative analysis
High Level Application Hardware Resource Modeling
Modeling to model hardware platforms Schedulability and

to specify concurrency and
synchronization, based on

\active objects / \ / Qﬂodeling /

Performance Analysis

Foundations:

6

NFP/VSL Modeling

NFP types have the capability of
modeling

«unit» s
«unit» ms {convFactor=1E-3}

«modelLibrary»
NfpTypes

«modelLibrary»
MeasurementUnits

1. Value as unit and dimension

2. characteristics on the way the value
. . fpT
has been obtained, i.e. the nature of
the measurement (e.g. statistical, : .
.. . .. p expr: VSL__Expre_ss_ion o

empirical), its precision, tl7e va!ue S .
source, e.qg. Worst Execution Time as
estimated.

transmMode: TransmModeKind
speedFactor: NFP_Real
capacity: NFP_DataTxRate
packetT: NFP_Duration
utilization: NFP_Real

Rich MARTE library of predefined types
as Power, Frequency, DataSize,

Duration > « CommHost »
e cani: CAN_Bus
{ transMode= Half-Duplex,
speedfFactor= (0.8, est),
capacity= (4, $capCani, kHz, max, req),
packetT= (64, pckSize/capCani, ms, calc) }

I\

The Value Specification Language
(VSL) defines the formal textual
syntax for specifying values of
NFPs

Mathematical expressions
(arithmetic, logical)

Variables: placeholders for a-priori
unknown parameters.

Extended system of data types
(tuples, collections, intervals)

Time expressions (delays, periods,
jitters)

NI IV N

NFP/VSL Modeling

MARTE_DataTypes ‘

@ « choiceType »
UML ArrivalPattern
periodic: PeriodicPattern
sporadic: SporadicPattern

« tupleType »
PeriodicPattern

« tupleType »
SporadicPattern

period: Real
jitter: Real

minlnterarrival: Real
maxInterarrival: Real

Examples::DataTypesUse

MyClass

length: Long

priorityRange: Integerinterval
position: IntegerVector
shape: IntegerMatrix
consumption: Power

arrival: ArrivalPattern

User

cl: MyClass

length = 212333

position= {2,3}
shape = {{2,3},{1,5}}

priorityRange = [0..2]

consumption = (-, exp=x*v1, unit= mW, source= calc)
arrival= periodic (period= 10, jitter= 0.1)

\ \\
‘.'.
| \

The three pillars of MARTE

(Pillar 1: Platform) /Pillar 2: Detailed Resource\ Pillar 3: Annotations for
Independent Modeling Modeling quantitative analysis

General Component Model

to support component Software Resource Modeling

based designs to model OS execution support
High Level Application Hardware Resource Modeling
Modeling

_ to model hardware platforms
to specify concurrency and

synchronization, based on

\active objects / \ /

Foundations:
Allocation to bind the Platform Independent Model to the Platform Model

QoS-aware Modeling
Non Functional Properties: to declare and apply well-formed non-functional concerns
Time: to define time and manipulate its representations e
q Value Specification Language: textual language for specifying algebraic expressions -

O lust

29

MARTE for Model-based QoS Analysis

GQAM A foundational
framework for model-based
quantitative analysis

Schedulability Analysis
Modeling

Supports most common scheduling
analysis techniques RMA-based,
EDF —based, holistic techniques

Performance Analysis Modeling
Supports most of common

performance analysis techniques
gueuing networks, petri nets, and
simulation

O lust

evaluate
situation

Analysis

Context
evaluate
capacity

Resources
Workload
: uses Platform
Behavior _
k) ;O
N '/; __\
R \-.\ /- exechost s
ot) N Vil
7 scenariosw, [esource o ﬁprotectéd\\
‘ allocation || resources

\ 7 comm.host

/
/
/
/
7
,

h 2

- /

i .

30

Model-driven experience with MARTE-
Interested Project

| Wm;i_l;l'lg.. .

Interested Project

Now we focus on a Interested Project workpackage that explores the
application of a model-driven approach, based on the standard language

MARTE, to:

e Automotive Domain
e AUTOSAR software architecture
e Development of an RTES sub-system

Goal: Verification of the Deployment Model (application architecture to OS
taks and OS tasks on ECUs) from a Schedulability point of view before
actual Deployment, through an integrated tool-chain

! /?) MARTE modeler

RT-DRUID for schedulability analysis

Tools:

System-Desk AUTOSAR designer

CEDRist —

Ti NRI) VAVr.v:i'i;_'_ff___,-:_;:.'_“;_.--v-v:r-rv- Svstel

Verification of the Deployment model in AUTOSAR

System-level Specification

AUTOSAR Methodology ‘
System Configuration Input

SWCs and Connections Sl]ftWﬂI"E I.EVEI

SWC1 | SWC2 | SWC3 SWC4

[Ti; F e | ECUs and topology
ecus | | Eecuz | |ecus Mapping Constraints
)

— S S e S S

System Configuration Description

Mapping of SWC to ECU

ECU1 _ ECU2 ECU3
swer || swea | | swes | ' swez | | Component Internal
Behavior (runnables)
Extract ECU : EF'.-'_f -
i r | swe SWed ' .
Specific Information I F_H_L | RTE configuration

ECU Configuration | sm..Eft[”swm ' | mapping of runnables on OS ta

RTE |

verifica

I m| | BSW configuration tion
———————————————————— giteidTgoTE T T T T —
I:I‘I'I:I'I:‘I11'|l:l'|:Ii1l:?
“===== ECU Executable Generation 000011100110

1010101010100
11090101 10900
0001111091111

Method and Technologies

Methods: model-driven approach with

SySML/MARTE as backbone language
DSLs to connect: AUTOSAR, RT-DRUID

Source meta-model AUTOSAR

g AUTOSAR-MARTE mapping

. MARTE-RT-druid mapping

Target meta-model Rt-Druid

Integration Technologies
Eclipse Modeling Framework ©emf

EEEEEEEEEEEEEEEEEEEEEE

ATL as language to specify meta-model
mappings

Cedhirst o
— iMoBD.\Worl

Goal of the AUTOSAR-MARTE-RT-druid mappings

Goal of the AUTOSAR-MARTE mapping: Enabling the MARTE-RT-DRUID
Mapping

obtained MARTE meta-model must contain all and only the concepts relevant
to perform verification of timing constraints through schedulability analysis

AUTOSAR-MARTE MARTE-RT-druid

o IR

.. but something was missing...

o

Concepts needed to map RT-
druid meta-model

sub-set of MARTE meta-

model obtained as output of
the AUTOSAR-MARTE

{"‘—mk."ﬂl.‘,.. | o=
——E

AUTOSAR Methodology

—————

System Configuration Input

SWC1 | SWC2 || swea || swed
I{i! 4 e ‘

| —]]

———

|
ECU1 Ecuz

M~RTE

Extract ECU
Specific Information

-

0110101100011
0101111100110
0000011100110
1010101010100
1101010110100

0001111011111

iMoBD Worksho S — T
MoBD.Wce

AUTOSAR-MARTE mapping

UMLES

Application

: Hard
View ardware

Platform
View

Hardware
Allocation (fixed)
Software
Allocation (to
OS scheduling explore and
properties validate)

description

(fixed priority
scheduler) and
period and priority
to tasks

So what is missing?

AUTOSAR-MARTE mapping

Missing information: description of timing requirements!
deadjine System-level Timing Constraint to validate...

Triggering
Stimulus

————————————————— ...refinesalso during
Software .
software design to...

decomposition

_____________________________ ...end-to-end runnable’s

Internal Triggering activation chains
Behavior Stimulus . . .
definition | descriptions with

deadine . deadlines and stimuli

arrival patterns!

Note: in the newest release of AUTOSAR (v4) it has been added the capability of expressing -
timing constraints (Timing View), but it was not available at the beginning of the project and —
will discuss this point in conclusions

—'-‘,_..r"

CE0hist e - "
: : TiMoBD . Workshop=Embec TI=3c
__———-"_'_'_—-_-_-__—_L‘ —

————

R

(manual) completion of the model in MARTE

End-to-end runnable’s activation chains descriptions with deadlines and
stimuli arrival patterns

runnables to tasks mapping = to validate against well-formed constraints

«3aSteps
execTime =
[(min=20,max=20,unit=us]]

«achedulableResources 5
GaWorkloadEronts - ~ i schedParams = [fpiprionty=10]]
pattern = sparadic eAllocateds
(value=1000,unit=ms) _ seasteps -~ allocatedFram = [SYNCMGM keyOn, SYNCDVRS keyOn]
=] syncmgm.KeyOn() ‘ - allocatedTo = [ecu]
sgEiorkloa. T
ev_key on = i i !
«5aSteps | = e, schedulabl. . qallncated,Is::hedulableﬁes... gallocated, schedulabl
syncdvrs.KeyOni) ‘ r,E[_u": Task key_on: Task int_cam: Task
J— task mapping and
Ti = L .
. [(mii}{=E2C5,Ir;nae}{=25,unit=usj] schedullng /
. arameters S
== MARTE « end-to-end flow », attribute end2endD=1000 P =

~____TiMoBD Workshop mbedded Sy Z

The MARTE-RT-DRUID Mapping

Concepts needed to map
RT-druid meta-model

The mapping assumes the
‘augmented’ source meta-
model

sub-set of MARTE meta-
model obtained as output of

the BLUE transformation Meta-m0d6|

AUTOSAR Methodology

s S e e i e ey s

System Configuratiol

Now we can automatically generate suc: ' swe:l[swes

o] i [o
the entry model for RT-DRUID B
ECuU1 ECU2z ECU3 ‘
ﬁ
Perform timing analysis in RT- ‘System Configuration Descriptior
. ECU‘I_ ECuz ECU
DRUID: try different runnable-to- ower || m] [ewes| || [ewe]
task mapping options, semantically _ %
/d d d bl Extract ECU _ ECU1 Optimi
vaii (prece ence oraer Of runnaples specific information Jjﬂm% T
L
respected) —':E ——————— verifica
ECU Configuration ﬁg swca
Re-import valid task mapping and —
obtained results in the MARTE el G i
model and in AUTOSAR o __ s ______ L

CeDmist e ——— . -
. . TI k‘ ° : .""'.‘_“”_-;-._.:--:--_;_.."-vTr"-".
____-___._-___-#'*‘ . -1

= ————

s

9

Conclusions

Lesson learnt

e The Interested experience succeeded in proving the fitness of MARTE as a BACKBONE
LANGUAGE for RTES development

e Although AUTOSAR v4 has introduced a Timing View, AUTOSAR has a limited scope and
it has not been designed to be a modeling language. It cannot be used as backbone of
the development process (remember the holistic view?).

Future Work and Issues

e The missing piece in the Interested experience has been (1) the lack of formal
representation of timing requirements at system level and (2) the proof that MARTE can
keep formal relationships and coherence between system- and software -level elements

e Keeping coherence with system-level is the big issue. The SysML/MARTE integration is a
good choice as they share the same core (UML).

O lust

Thanks for your attention!

Acknowledgments: sebastien gerard, francois terrier, bran selic.

Useful links:

e MARTE Current version : MARTE 1.1 ()

first version was MARTE 1.0
More than 4 years of work
~720 pages — Finalised end 2009

e Papyrus is an Eclipse’s Modelling::MDT component)J

http::/www.eclipse.org/papyrus

Ti k‘ 0 » ."l"-‘::‘:z..--_it_:_;_.--v-"-""'—" /S 2 T
— -

41

Questions?

