
Applying Model Driven Engineering to RTES: 

Technologies, Standards and ExperiencesTechnologies, Standards and Experiences
TiMoBD Workshop

Oct 9

Driven Engineering to RTES: 

Technologies, Standards and Experiences

PhD. Sara Tucci-Piergiovanni

CEA LIST Laboratory of model driven 
engineering 

Technologies, Standards and Experiences
- Embedded Systems Week

Oct 9-14 2011, Taipei, Taiwab

engineering 
for embedded systems (LISE)

Sara.Tucci@cea.fr



Introduction to RTES and ModelIntroduction to RTES and Model

Focus on the OMG Standard Language MARTE

Experience with MARTE in the European Project 

INTERESTED

TiMoBD Workshop - Embedded Systems Week

INTERESTED

Conclusion

2

Introduction to RTES and Model-Driven Engineering 

Outline of the talk

Introduction to RTES and Model-Driven Engineering 

Focus on the OMG Standard Language MARTE

Experience with MARTE in the European Project 

Embedded Systems Week 2



TiMoBD Workshop - Embedded Systems Week

3

Introduction

Embedded Systems Week 3



In 1969, the japanese engineer 

‘mechatronic system’ (MS), for a system whose main 

functionality is: functionality is: 

- control and adaptation to complex real

- implemented through the interaction of software, electronic, electric 

and mechanical parts or sub-systems 

TiMoBD Workshop - Embedded Systems Week

The ‘magic mixture’ was defined to deliver sophisticated 

functionality to clients, keeping production profitable 

4

engineer Tetsuro Mori defined the term 

system’ (MS), for a system whose main 

Mechatronic Systems 

control and adaptation to complex real-world phenomena

implemented through the interaction of software, electronic, electric 

systems 

Embedded Systems Week

The ‘magic mixture’ was defined to deliver sophisticated 

functionality to clients, keeping production profitable 

4



In MS, the control logics, subject to 

stringent timing and safety 

Classical 

stringent timing and safety 

constraints , is  implemented in 

software then deployed on some 

dedicated hardware

The  control part of the system is a 

Real-Time Embedded (sub) System

TiMoBD Workshop - Embedded Systems Week

5

Classical Mechatronic Systems

ABS control ABS control 

Antilock 
Brake 

microcontroller

ABS control 
running on  

microcontroller

Embedded Systems Week 5

Brake 
Control



Upcoming 

Upcoming MS capabilities require a 

massive introduction of complex RTE 

sub-systems. sub-systems. 

Volvo vision for  2020 ‘Cars that talk to one 

another, that recognize road signs, 

predict crashes; prevent them and 

prepare for the worst case scenario’

TiMoBD Workshop - Embedded Systems Week

Next RTES: Advanced controls, peer-to

peer communication, and sophisticated 

sensing capabilities; running on 

distributed networks of controllers 

6

Upcoming Mechatronic Systems

massive introduction of complex RTE 

‘Cars that talk to one 

Embedded Systems Week 6

to-

peer communication, and sophisticated 



MS development in industry today

A rigorous and time-effective

development process is a key factor 

to produce the right system, in the 

right way, at the right time

A fundamental step in this direction is 

the  introduction of so-called 

architecture frameworks (e.g. DoDAF, 

MODAF,  UPDM, TOGAF).  

Holistic view of the system inside the 

TiMoBD Workshop - Embedded Systems Week

Holistic view of the system inside the 
enterprise and in its eco-system 
specified through  a process and 
associated architecture views. 

7

MS development in industry today

system

refines

, 

sub 
system

sub 
system

sub 
system

projects

Embedded Systems Week 7

software

Principles: 

1. Decomposition

2. Abstraction

3. Multiple view points



Architecture-based development 

has opened the door to the use 

of  modeling languages, as: of  modeling languages, as: 

a modeling language (e.g. SysML, 

UML) has the capability of

� expressing the concepts of 

architecture, decomposition, 

abstraction and view

� establishing explicit relationships 

between elements at different 

abstraction levels and projected in 

TiMoBD Workshop - Embedded Systems Week

abstraction levels and projected in 

different views

Model is holistic

8

Modeling Languages

system

refines

sub 
system

sub 
system

sub 
system

refines

projects

Embedded Systems Week

8



Model Transformations

But how to manage (create, modify, cancel) 

formal relationships in a holistic model

How to keep the coherence? 

The model-driven engineering (MDE) 

discipline, focuses on this problem. It discipline, focuses on this problem. It 

mainly studies:

1. model transformations towards successive 

refinements under the same language, managing 

formal relationships between elements at 

different abstraction levels

-- SEMANTICS COHERENCE is OK---

TiMoBD Workshop - Embedded Systems Week

1. meta-models mappings, managing formal 

relationships between models expressed in 

different languages 

-- SEMANTIC COHERENCE is THE ISSUE-

9

Model Transformations

(create, modify, cancel) 

formal relationships in a holistic model? 

discipline, focuses on this problem. It discipline, focuses on this problem. It 

model transformations towards successive 

, managing 

formal relationships between elements at 

Decomposition

Abstraction

Views

Embedded Systems Week 9

, managing formal 

relationships between models expressed in 

Decomposition



The Model

Today,  MDE is a sufficiently mature technology

techniques, standards and tools to 

architecture-based development

Standard modeling languages as SysML

and UML are the backbone of the 

architecture-based development, 

but domain specific languages (DSL) 

may co-habit especially for specific 

view points. 

Views connect to the backbone through 

TiMoBD Workshop - Embedded Systems Week

Views connect to the backbone through 

meta-model mappings. 

A backbone language ‘includes’ the 

semantics of connected DSLs

10

The Model-Driven Approach

MDE is a sufficiently mature technology, offering methods, 

techniques, standards and tools to concretely implement a full 

SysML

backbone of the 

, 

domain specific languages (DSL) 

especially for specific 

Views connect to the backbone through 

requirements:
DOORS, Rectify

simulation: modelica, 
Simulink

V&V: B, 
Timed 
Automata

implementation: 

Embedded Systems Week

10

Views connect to the backbone through implementation: 
C++, SystemC, 
Java, Perl

Meta-model mapping



Standards reduce the heterogeneity, improving:

education of engineers

communication/exchanges between various stakeholders involved in 

process developmentsprocess developments

interoperability

But standards enable also vendor independence

Users have a choice of different vendors (no vendor “tie

Forces vendors into competing and improving their products

TiMoBD Workshop - Embedded Systems Week

This is why The Object Management Group (OMG) has created the Model

Driven Architecture initiative:

A comprehensive set of standards in support of MDE including standard 

modeling languages as UML2 and 

•

11

Standards reduce the heterogeneity, improving:

communication/exchanges between various stakeholders involved in 

Why Standard?

But standards enable also vendor independence

Users have a choice of different vendors (no vendor “tie-in”)

Forces vendors into competing and improving their products

Embedded Systems Week

This is why The Object Management Group (OMG) has created the Model-

A comprehensive set of standards in support of MDE including standard 

UML2 and SysML.

11



RTES Model

RTES development focuses on RTES development focuses on 

software running on dedicated 

hardware

entry point:  System-level component 

interfaces

to refine towards an Application 

Software Architecture Model …

TiMoBD Workshop - Embedded Systems Week

Software Architecture Model …

…to refine and refine, and to end-up 

with code 

12

RTES Model-Driven Development

System level
System scope and requirement analysis
Functional and technical architecture 
(definition  of component interfaces)

System level
System scope and requirement analysis
Functional and technical architecture 
(definition  of component interfaces)(definition  of component interfaces)(definition  of component interfaces)

Software Level
Application software architecture
Implementation Architecture  (Target Platform level)
Code

Software Level
Application software architecture
Implementation Architecture  (Target Platform level)
Code

Embedded Systems Week

12



A modeling language for RTES 

Key  capability  for RTES modeling 

languages is the power of expressing: 

- Real-time design paradigms (e.g. data - Real-time design paradigms (e.g. data 

flows, active objects)

- Detailed Platforms and Allocations

- Models for Performance 

/Schedulability Prediction/Simulation

UML is not tailored to fit this capability 

TiMoBD Workshop - Embedded Systems Week

At the same time in RTES domain too many 
specific approaches, languages and tools…

Sometimes redundant, but often 
complementary
Few capabilities of interoperability

13

A modeling language for RTES 

is the power of expressing: 

time design paradigms (e.g. data time design paradigms (e.g. data 

Prediction/Simulation

UML is not tailored to fit this capability 

Necessity of a standard 

Embedded Systems Week

At the same time in RTES domain too many 
specific approaches, languages and tools…

Necessity of a standard 

integrator language 

as UML,  but 

specific to RTES



A modeling language for RTES: MARTE

MARTE is a OMG standard UML 

profile with the following goals:

To be the universal translator towards 

domain-specific languages in RTES and 

provide tools interoperability

To be a modelling  language establishing 

relationships among elements at each 

level of abstraction in the development 

TiMoBD Workshop - Embedded Systems Week

level of abstraction in the development 

process

To ease capitalising, exchanging expertise

14

A modeling language for RTES: MARTE

standard UML 

with the following goals:

To be the universal translator towards 

specific languages in RTES and 

To be a modelling  language establishing 

relationships among elements at each 

level of abstraction in the development 

Embedded Systems Week

level of abstraction in the development 

To ease capitalising, exchanging expertise



A pleasant stroll through the MARTE specification
~720 pages – the first version finalised end 2009 after 4 years of work 

TiMoBD Workshop - Embedded Systems Week

15

A pleasant stroll through the MARTE specification
the first version finalised end 2009 after 4 years of work ☺

Embedded Systems Week 15



“A special kind of package containing stereotypes, modeling rules and model 

libraries that, in conjunction with the UML meta

domain-specific concepts and relationships.”

Standards

« metaclass »
UML::ClassUML::Class

« stereotype »
Semaphore

limit: Integer
getSem: Operation
relSem: Operation

extension

TiMoBD Workshop - Embedded Systems Week

notation « Constraint »
limit < UpperLimit

Language definition 

level

16

UML profile definition
“A special kind of package containing stereotypes, modeling rules and model 

libraries that, in conjunction with the UML meta-model, define a group of 

specific concepts and relationships.”

« semaphore »
SpeedDataLock

SpeedDataLock

SpeedDataLock

Embedded Systems Week

User model 

level



Pillar 1: Platform 

Independent Modeling

General Component Model

to support component 

based designs

The three pillars of MARTE

Pillar 2: Detailed Resource 

Modeling

Software Resource Modeling

to model OS execution support based designs

High Level Application 

Modeling

to specify concurrency and 

synchronization, based on 

active objects

Foundations: 

Allocation to bind the Platform Independent Model to the Platform Model

Hardware Resource Modeling 

to model hardware platforms

TiMoBD Workshop - Embedded Systems Week

Allocation to bind the Platform Independent Model to the Platform Model

QoS-aware Modeling

Non Functional Properties: to declare and apply well

Time: to define time and manipulate its representations

Value Specification Language: textual language for specifying algebraic expressions

17

The three pillars of MARTE

Pillar 2: Detailed Resource 

Software Resource Modeling

to model OS execution support 

Pillar 3: Annotations for 

quantitative analysis

Generic Quantitative Analysis 

Modeling  

to bind the Platform Independent Model to the Platform Model

Hardware Resource Modeling 

to model hardware platforms

Modeling  

to enable quantitative analysis

Schedulability and 

Performance Analysis

Modeling 

Embedded Systems Week

to bind the Platform Independent Model to the Platform Model

to declare and apply well-formed non-functional concerns

to define time and manipulate its representations

textual language for specifying algebraic expressions



Pillar 1: Platform 

Independent Modeling

General Component Model

to support component 

based designs

The three pillars of MARTE

Pillar 2: Detailed Resource 

Modeling

Software Resource Modeling

to model OS execution support based designs

High Level Application 

Modeling

to specify concurrency and 

synchronization, based on 

active objects

Foundations: 

Allocation to bind the Platform Independent Model to the Platform Model

Hardware Resource Modeling 

to model hardware platforms

TiMoBD Workshop - Embedded Systems Week

Allocation to bind the Platform Independent Model to the Platform Model

QoS-aware Modeling

Non Functional Properties: to declare and apply well

Time: to define time and manipulate its representations

Value Specification Language: textual language for specifying algebraic expressions

18

The three pillars of MARTE

Pillar 2: Detailed Resource 

Software Resource Modeling

to model OS execution support 

Pillar 3: Annotations for 

quantitative analysis

Generic Quantitative Analysis 

Modeling  

to bind the Platform Independent Model to the Platform Model

Hardware Resource Modeling 

to model hardware platforms

Modeling  

to enable quantitative analysis

Schedulability and 

Performance Analysis

Modeling 

Embedded Systems Week

to bind the Platform Independent Model to the Platform Model

to declare and apply well-formed non-functional concerns

to define time and manipulate its representations

textual language for specifying algebraic expressions



MARTE Generic Component Model

General component model 

Compatible with well-known 

component models, such as AADL, 

Autosar, EAST-ADL2, Lightweight-

CCM, and SysML. CCM, and SysML. 

Offering a rich semantics enabling 

various models of computation 

and communication

MARTE Component: UML 

BehavioredClassifier: contains 

behavior and structured data 

TiMoBD Workshop - Embedded Systems Week

behavior and structured data 

MARTE Port: extends UML Port

19

MARTE Generic Component Model

Support for Support for 

Embedded Systems Week

Support for 

Data Flow 

Communication

Support for 

OO 

Communication

possibility of 

specifying pull and 

push semantics



Pillar 1: Platform 

Independent Modeling

General Component Model

to support component 

based designs

The three pillars of MARTE

Pillar 2: Detailed Resource 

Modeling

Software Resource Modeling

to model OS execution support based designs

High Level Application 

Modeling

to specify concurrency and 

synchronization, based on 

active objects

Foundations: 

Allocation to bind the Platform Independent Model to the Platform Model

Hardware Resource Modeling 

to model hardware platforms

TiMoBD Workshop - Embedded Systems Week

Allocation to bind the Platform Independent Model to the Platform Model

QoS-aware Modeling

Non Functional Properties: to declare and apply well

Time: to define time and manipulate its representations

Value Specification Language: textual language for specifying algebraic expressions

20

The three pillars of MARTE

Pillar 2: Detailed Resource 

Software Resource Modeling

to model OS execution support 

Pillar 3: Annotations for 

quantitative analysis

Generic Quantitative Analysis 

Modeling  

to bind the Platform Independent Model to the Platform Model

Hardware Resource Modeling 

to model hardware platforms

Modeling  

to enable quantitative analysis

Schedulability and 

Performance Analysis

Modeling 

Embedded Systems Week

to bind the Platform Independent Model to the Platform Model

to declare and apply well-formed non-functional concerns

to define time and manipulate its representations

textual language for specifying algebraic expressions



Language support to express 

models of computation and 

concurrency: "Common" active objects,  

but alternative models can be defined

High-Level Application Modeling

but alternative models can be defined

real-time constraints: allows expressing 

real-time constraints as deadline or period 

on component interfaces and connectors

MARTE active object : «RtUnit» 

generalization of UML active object

TiMoBD Workshop - Embedded Systems Week

generalization of UML active object

MARTE passive object: : «PpUnit»

generalization of UML passive     

object

21

Level Application Modeling

owns at least one 

execution thread. 

Threads are managed 

To execute requires 

threads. Supports 

different 

Embedded Systems Week

Threads are managed 

either statically (pool) or 

dynamically. May have 

operational mode 

description.
Offers several (de) 

queuing policies

different 

concurrency 

policies: 

sequential, 

guarded or 

concurrent.



Pillar 1: Platform 

Independent Modeling

General Component Model

to support component 

based designs

The three pillars of MARTE

Pillar 2: Detailed Resource 

Modeling

Software Resource Modeling

to model OS execution support based designs

High Level Application 

Modeling

to specify concurrency and 

synchronization, based on 

active objects

Foundations: 

Allocation to bind the Platform Independent Model to the Platform Model

Hardware Resource Modeling 

to model hardware platforms

TiMoBD Workshop - Embedded Systems Week

Allocation to bind the Platform Independent Model to the Platform Model

QoS-aware Modeling

Non Functional Properties: to declare and apply well

Time: to define time and manipulate its representations

Value Specification Language: textual language for specifying algebraic expressions

22

The three pillars of MARTE

Pillar 2: Detailed Resource 

Software Resource Modeling

to model OS execution support 

Pillar 3: Annotations for 

quantitative analysis

Generic Quantitative Analysis 

Modeling  

to bind the Platform Independent Model to the Platform Model

Hardware Resource Modeling 

to model hardware platforms

Modeling  

to enable quantitative analysis

Schedulability and 

Performance Analysis

Modeling 

Embedded Systems Week

to bind the Platform Independent Model to the Platform Model

to declare and apply well-formed non-functional concerns

to define time and manipulate its representations

textual language for specifying algebraic expressions



Software Resource Modeling: define constructs for modeling multitask 

design

Real-Time Operating Systems (e.g. POSIX, OSEK/VDX and ARINC 653)

Real-Time language libraries (e.g. ADA)

Software platform

Ex.1: Concurrent execution mechanisms

Task, Interrupt, Alarm & Counter…

Ex2.: Synchronization mechanisms

 

TiMoBD Workshop - Embedded Systems Week

Ex2.: Synchronization mechanisms

Events, Mutual Exclusion Access Mechanisms…

 

23

Software Resource Modeling: define constructs for modeling multitask 

Time Operating Systems (e.g. POSIX, OSEK/VDX and ARINC 653)

latform-based Modelling

Ex.1: Concurrent execution mechanisms

Embedded Systems Week

Events, Mutual Exclusion Access Mechanisms…

23



Hardware Resource Modelling: to describe structure of hardware platforms

Different abstraction levels for: processor simulation, power consumption calculation, 

WCET analysis, block diagrams

Two sub-views:

Hardware platform

Two sub-views:

« hwLogical::hwResource »

smp : SMP

« hwProcessor »

cpu1 : CPU

{frequency = 800Mhz}

« hwCache »

l2 : UL2

{memorySize = 512kB}

« hwProcessor »

cpu2 : CPU

{frequency = 800Mhz}

« hwCache »

l2 : UL2

{memorySize = 512kB}

« hwProcessor »

cpu3 : CPU

{frequency = 800Mhz}

« hwCache »

l2 : UL2

{memorySize = 512kB}

« hwProcessor »

cpu4 : CPU

{frequency = 800Mhz}

« hwCache »

l2 : UL2

{memorySize = 512kB}

Logical view (functionality)

TiMoBD Workshop - Embedded Systems Week

« hwRAM »

sdram : SDRAM

{frequency = 266Mhz,

memorySize = 256MB}

« hwSupport »

battery : Battery

« hwDMA»

dma : DMA

{managedMemories = sdram}

« hwBus »

fsb : FSB

{frequency = 133Mhz,

wordWidth = 128bit}

24

Hardware Resource Modelling: to describe structure of hardware platforms

Different abstraction levels for: processor simulation, power consumption calculation, 

Hardware platform-based Modelling

 

}

Physical view (layouts)

Embedded Systems Week 24



Pillar 1: Platform 

Independent Modeling

General Component Model

to support component 

based designs

The three pillars of MARTE

Pillar 2: Detailed Resource 

Modeling

Software Resource Modeling

to model OS execution support based designs

High Level Application 

Modeling

to specify concurrency and 

synchronization, based on 

active objects

Foundations: 

Allocation to bind the Platform Independent Model to the Platform Model

Hardware Resource Modeling 

to model hardware platforms

TiMoBD Workshop - Embedded Systems Week

Allocation to bind the Platform Independent Model to the Platform Model

QoS-aware Modeling

Non Functional Properties: to declare and apply well

Time: to define time and manipulate its representations

Value Specification Language: textual language for specifying algebraic expressions

25

The three pillars of MARTE

Pillar 2: Detailed Resource 

Software Resource Modeling

to model OS execution support 

Pillar 3: Annotations for 

quantitative analysis

Generic Quantitative Analysis 

Modeling  

to bind the Platform Independent Model to the Platform Model

Hardware Resource Modeling 

to model hardware platforms

Modeling  

to enable quantitative analysis

Schedulability and 

Performance Analysis

Modeling 

Embedded Systems Week

to bind the Platform Independent Model to the Platform Model

to declare and apply well-formed non-functional concerns

to define time and manipulate its representations

textual language for specifying algebraic expressions



NFP types have the capability of 

modeling

1. Value as unit and dimension

2. characteristics on the way the value 2. characteristics on the way the value 

has been obtained, i.e. the nature of 

the measurement (e.g. statistical, 

empirical), its precision, the value’s 

source, e.g. Worst Execution Time as 

estimated. 

Rich MARTE library of predefined types 

TiMoBD Workshop - Embedded Systems Week

Rich MARTE library of predefined types 

as Power, Frequency, DataSize, 

Duration

26

NFP/VSL Modeling

characteristics on the way the value characteristics on the way the value 

has been obtained, i.e. the nature of 

source, e.g. Worst Execution Time as 

of predefined types 

Embedded Systems Week

of predefined types 



The   Value Specification Language 

(VSL) defines the formal textual 

syntax for specifying values of 

NFPs

syntax for specifying values of 

NFPs

Mathematical expressions  

(arithmetic, logical)

Variables: placeholders for a-priori 

unknown parameters.

Extended system of data types 

(tuples, collections, intervals)

Time expressions (delays, periods, 

TiMoBD Workshop - Embedded Systems Week

Time expressions (delays, periods, 

jitters)

27

NFP/VSL Modeling

Embedded Systems Week



Pillar 1: Platform 

Independent Modeling

General Component Model

to support component 

based designs

The three pillars of MARTE

Pillar 2: Detailed Resource 

Modeling

Software Resource Modeling

to model OS execution support based designs

High Level Application 

Modeling

to specify concurrency and 

synchronization, based on 

active objects

Foundations: 

Allocation to bind the Platform Independent Model to the Platform Model

Hardware Resource Modeling 

to model hardware platforms

TiMoBD Workshop - Embedded Systems Week

Allocation to bind the Platform Independent Model to the Platform Model

QoS-aware Modeling

Non Functional Properties: to declare and apply well

Time: to define time and manipulate its representations

Value Specification Language: textual language for specifying algebraic expressions

28

The three pillars of MARTE

Pillar 2: Detailed Resource 

Software Resource Modeling

to model OS execution support 

Pillar 3: Annotations for 

quantitative analysis

Generic Quantitative Analysis 

Modeling  

to bind the Platform Independent Model to the Platform Model

Hardware Resource Modeling 

to model hardware platforms

Modeling  

to enable quantitative analysis

Schedulability and 

Performance Analysis

Modeling 

Embedded Systems Week

to bind the Platform Independent Model to the Platform Model

to declare and apply well-formed non-functional concerns

to define time and manipulate its representations

textual language for specifying algebraic expressions



GQAM A foundational 

framework for model-based 

quantitative analysis

MARTE for Model

Schedulability Analysis 

Modeling 
Supports most common scheduling 

analysis techniques RMA-based, 

EDF –based, holistic techniques

Performance Analysis Modeling 
Supports most of common 

TiMoBD Workshop - Embedded Systems Week

Supports most of common 

performance analysis techniques

queuing networks, petri nets, and 

simulation

29

MARTE for Model-based QoS Analysis

Embedded Systems Week 29



Model-driven experience with MARTE

Interested Project

TiMoBD Workshop - Embedded Systems Week

30

driven experience with MARTE–

Interested Project

Embedded Systems Week 30



Now we focus on a Interested Project workpackage

application of a  model-driven approach, based on the standard language 

MARTE, to:

• Automotive Domain• Automotive Domain

• AUTOSAR software architecture

• Development of an RTES sub-system

Goal: Verification of the Deployment Model (application architecture to OS 

taks and OS tasks on ECUs) from a Schedulability

actual Deployment, through an integrated tool

TiMoBD Workshop - Embedded Systems Week

actual Deployment, through an integrated tool

Tools: 

RT-DRUID for schedulability

MARTE modeler

System-Desk AUTOSAR designer 

31

Interested Project

workpackage that explores the 

driven approach, based on the standard language 

system

: Verification of the Deployment Model (application architecture to OS 

Schedulability point of view before 

an integrated tool-chain

Embedded Systems Week 31

an integrated tool-chain

schedulability analysis

MARTE modeler

Desk AUTOSAR designer 



Verification of the Deployment model in AUTOSAR 

System

SWCs and Connections

ECUs and topology

Mapping Constraints

Mapping of SWC to ECU

Component Internal

Behavior (runnables

RTE configuration 

TiMoBD Workshop - Embedded Systems Week

mapping of runnables

BSW configuration

32

Verification of the Deployment model in AUTOSAR 

Software Level

System-level Specification

and Connections

of SWC to ECU

Internal

runnables)

RTE configuration 

Embedded Systems Week

runnables on OS tasks,

BSW configuration
verifica
tion

Optimi

zation



Method and Technologies

Methods: model-driven approach with

SySML/MARTE as backbone language 

DSLs to connect:  AUTOSAR, RT-DRUID

MARTE-RT-druid mapping

RT
schedulability
meta

AUTOSAR-MARTE mapping

Source meta-model AUTOSAR

Target meta-model Rt-Druid

TiMoBD Workshop - Embedded Systems Week

Integration Technologies

Eclipse Modeling Framework

ATL as language to specify meta-model 

mappings

33

Method and Technologies

RT-DRUID 
schedulability
meta-model

AUTOSAR software
architecture

Embedded Systems Week 33



Goal of the AUTOSAR

Goal of the AUTOSAR-MARTE mapping:  Enabling the MARTE

Mapping

obtained MARTE meta-model must contain 

to perform verification of timing constraints through to perform verification of timing constraints through 

enables

AUTOSAR-MARTE

.. but something was missing…

Concepts needed to map RT

TiMoBD Workshop - Embedded Systems Week

Concepts needed to map RT
druid meta

sub-set of MARTE meta
model obtained as output of 

the AUTOSAR
mapping

34

Goal of the AUTOSAR-MARTE-RT-druid mappings

MARTE mapping:  Enabling the MARTE-RT-DRUID 

model must contain all and only the concepts relevant 

to perform verification of timing constraints through schedulability analysisto perform verification of timing constraints through schedulability analysis

enables

MARTE-RT-druid

.. but something was missing…

Concepts needed to map RT-

Embedded Systems Week

Concepts needed to map RT-
druid meta-model

set of MARTE meta-
model obtained as output of 

the AUTOSAR-MARTE 
mapping



AUTOSAR

OS scheduling 

properties 

description

(fixed priority 

Hardware 

Allocation (fixed)

TiMoBD Workshop - Embedded Systems Week

So what is missing?

(fixed priority 

scheduler) and 

period and priority 

to tasks

35

AUTOSAR-MARTE mapping

Application 

View
Hardware 

Platform 

ViewView

OS scheduling 

properties 

description

(fixed priority 

Allocation (fixed)

Software 

Allocation (to 

explore and 

validate)

Embedded Systems Week

So what is missing?

(fixed priority 

scheduler) and 

period and priority 

to tasks



AUTOSAR

System-level Timing Constraint to validate…

System-level 
Function

deadline

Triggering
Stimulus

Missing information: description of timing requirements! 

Software 
decomposition

Internal 
Behavior 
definition

Triggering
Stimulus

TiMoBD Workshop - Embedded Systems Week

Note: in the newest release of AUTOSAR (v4) it has been added the capability of expressing 

timing constraints (Timing View), but it was not available at the beginning of the project and 

will discuss this point in conclusions

36

AUTOSAR-MARTE mapping

level Timing Constraint to validate…

Missing information: description of timing requirements! 

…end-to-end runnable’s

activation chains 

descriptions with 

deadlines and stimuli 

…refines also during 

software design to…

deadline

Embedded Systems Week

Note: in the newest release of AUTOSAR (v4) it has been added the capability of expressing 

timing constraints (Timing View), but it was not available at the beginning of the project and 

deadlines and stimuli 

arrival patterns! 

deadline



(manual) completion of the model in MARTE

End-to-end runnable’s activation chains descriptions with deadlines and 

stimuli arrival patterns

runnables to tasks mapping ���� to validate against well

TiMoBD Workshop - Embedded Systems Week

MARTE  « end-to-end flow », attribute end2endD=1000

37

(manual) completion of the model in MARTE

activation chains descriptions with deadlines and 

to validate against well-formed constraints

Embedded Systems Week

end2endD=1000

task mapping and 

scheduling 

parameters



The MARTE

The  mapping assumes the 

‘augmented’ source meta-

model

Concepts needed to map 
RT-druid meta

sub-set of MARTE meta
model obtained as output of 
the BLUE transformation 

Now we can automatically generate 

the entry model for RT-DRUID 

Perform  timing analysis in RT-

DRUID: try different runnable-to-

task mapping options, semantically 

valid (precedence order of runnables

respected)

TiMoBD Workshop - Embedded Systems Week

respected)

Re-import valid task mapping and 

obtained results in the MARTE 

model and in AUTOSAR

38

The MARTE-RT-DRUID Mapping

Meta-model

Concepts needed to map 
druid meta-model

set of MARTE meta-
model obtained as output of 
the BLUE transformation 

Optimi

zation

Embedded Systems Week 38

verifica
tion



Lesson learnt

• The Interested experience succeeded in proving the fitness of MARTE as a BACKBONE 

LANGUAGE for RTES development

• Although AUTOSAR v4 has introduced a Timing View, AUTOSAR has a limited scope and • Although AUTOSAR v4 has introduced a Timing View, AUTOSAR has a limited scope and 

it has not been designed to be a modeling language.  It cannot be used as backbone of 

the development process (remember the holistic view?).  

Future Work and Issues

• The missing piece in the Interested experience has been (1) the lack of formal 

representation of timing requirements at system level and (2) the proof that MARTE can 

keep formal relationships and coherence between system

TiMoBD Workshop - Embedded Systems Week

keep formal relationships and coherence between system

• Keeping coherence with system-level is the big issue. 

good choice as they share the same core (UML).   

39

The Interested experience succeeded in proving the fitness of MARTE as a BACKBONE 

Although AUTOSAR v4 has introduced a Timing View, AUTOSAR has a limited scope and 

Conclusions

Although AUTOSAR v4 has introduced a Timing View, AUTOSAR has a limited scope and 

designed to be a modeling language.  It cannot be used as backbone of 

the development process (remember the holistic view?).  

The missing piece in the Interested experience has been (1) the lack of formal 

representation of timing requirements at system level and (2) the proof that MARTE can 

keep formal relationships and coherence between system- and software -level elements

Embedded Systems Week

keep formal relationships and coherence between system- and software -level elements

level is the big issue. The SysML/MARTE integration is a 

good choice as they share the same core (UML).   

39



Acknowledgments: sebastien gerard

Useful links:

Thanks for your attention!

Useful links:

• MARTE Current version : MARTE 1.1 (http://www.omg.org/spec/MARTE/1.1/

first version was MARTE 1.0

� More than 4 years of work

� ~720 pages – Finalised end 2009

TiMoBD Workshop - Embedded Systems Week

• Papyrus is an Eclipse’s Modelling::MDT component

http::/www.eclipse.org/papyrus

40

gerard, francois terrier, bran selic. 

Thanks for your attention!

http://www.omg.org/spec/MARTE/1.1/) 

Embedded Systems Week

::MDT component

40



Questions?

TiMoBD Workshop - Embedded Systems Week

41

Questions?

Embedded Systems Week 41


