Integrating real-time analysis into design flows

WATERS 2011

July 2011, Porto, Portugal

Michael González Harbour,

mgh@unican.es

www.ctr.unican.es
Integration into the design process

Translation
- Unit Testing
- Integration and Test
- Validation
- Scheduling policies
 - Architectural real-time models
 - Concurrency patterns
- System Engineering
 - Synchronization patterns
- Priority Assignment
- Sensitivity analysis

Testing
- WCET evaluation
- Generation of detailed real-time models
- High-level real-time analysis
- Identification of real-time situations:
 - Transactions
 - Timing requirements
 - Work loads

Design
- Detailed Design
- Mechanism Design
- Architectural Design
- Object analysis
- Mapping real-time properties to subsystems
- High-level real-time analysis

Analysis
- Requirements Analysis
- Schedulability analysis
- Priority Assignment
- Sensitivity analysis

Slide by: M. Drake
Integration of tools, techniques and standards

Component-Based Methods
- MDD
- UML
Deployment & Configuration
- Frameworks/C ode Generation

Validation Tools
- OS & Middleware & Networks

Hardware

Higher Abstraction Level

Non Real-Time
- Soft Real-Time
- Hard Real-Time
Integration of tools, techniques and standards

Higher Abstraction Level

Component-Based Methods
MDD
UML
Deployment & Configuration
Frameworks/Code Generation
Validation Tools
OS & Middleware & Networks
Hardware

RT-CB Methods
RT Models
UML/MARTE
RT-Frameworks
Simulation/Performance
Schedulability Analysis
POSIX/Ada/Java/RT Corba
CAN-Bus, TTP, AFDX,...
WCET
Special-purpose HW

Lower

Non Real-Time
Soft Real-Time
Hard Real-Time

RT-CB Methods
RT Models
UML/MARTE
RT-Frameworks
Simulation/Performance
Schedulability Analysis
POSIX/Ada/Java/RT Corba
CAN-Bus, TTP, AFDX,...
WCET
Special-purpose HW

Higher Abstraction Level

Component-Based Methods
MDD
UML
Deployment & Configuration
Frameworks/Code Generation
Validation Tools
OS & Middleware & Networks
Hardware

RT-CB Methods
RT Models
UML/MARTE
RT-Frameworks
Simulation/Performance
Schedulability Analysis
POSIX/Ada/Java/RT Corba
CAN-Bus, TTP, AFDX,...
WCET
Special-purpose HW

Lower

Non Real-Time
Soft Real-Time
Hard Real-Time

RT-CB Methods
RT Models
UML/MARTE
RT-Frameworks
Simulation/Performance
Schedulability Analysis
POSIX/Ada/Java/RT Corba
CAN-Bus, TTP, AFDX,...
WCET
Special-purpose HW

Higher Abstraction Level

Component-Based Methods
MDD
UML
Deployment & Configuration
Frameworks/Code Generation
Validation Tools
OS & Middleware & Networks
Hardware

RT-CB Methods
RT Models
UML/MARTE
RT-Frameworks
Simulation/Performance
Schedulability Analysis
POSIX/Ada/Java/RT Corba
CAN-Bus, TTP, AFDX,...
WCET
Special-purpose HW

Lower

Non Real-Time
Soft Real-Time
Hard Real-Time

RT-CB Methods
RT Models
UML/MARTE
RT-Frameworks
Simulation/Performance
Schedulability Analysis
POSIX/Ada/Java/RT Corba
CAN-Bus, TTP, AFDX,...
WCET
Special-purpose HW
Integration of tools, techniques and standards

Higher Abstraction Level

Component-Based Methods
- MDD
- UML
- Deployment & Configuration
- Frameworks/Code Generation
- Validation Tools
- OS & Middleware & Networks

RT-CB Methods
- RT Models
- UML/MARTE

RT-Frameworks
- RT Models
- UML/MARTE

Simulation/Performance
- POSIX/Ada/Java
- RT Corba
- CAN-Bus, TTP, AFDX,

Schedulability Analysis
- WCET

Special-purpose HW

Lower Abstraction Level

Non Real-Time
- Hardware

Soft Real-Time

Hard Real-Time
Integration of tools, techniques and standards

Higher Abstraction Level

Component-Based Methods
MDD
UML
Deployment & Configuration
Frameworks/Code Generation
Validation Tools
OS & Middleware & Networks

Lower Abstraction Level

Hardware

Non Real-Time

Soft Real-Time

Hard Real-Time

RT-CB Methods
RT Models
UML/MARTE

RT Frameworks

Simulation/Performance
Schedulability Analysis
POSIX/Ada/Java/RT Corba
CAN Bus, TTP, AFDX,...
WCET

Special-purpose HW

ACHIEVED
Integration of tools, techniques and standards

Component-Based Methods
- MDD
- UML
- Deployment & Configuration

Frameworks/
- Code Generation

Validation Tools
- OS & Middleware & Networks

Hardware

Higher Abstraction Level

Soft Real-Time
- Simulation/Performance
- Schedulability Analysis
- POSIX/Ada/Java/RT Corba
- CAN Bus, TTP, AFDX, ...
- WCET

Hard Real-Time
- Special-purpose HW

Lower Abstraction Level

Non Real-Time
- RT-CB Methods
- RT Models
- UML/MARTE
- RT-Frameworks

ACHIEVED

NOT INTEGRATED
Conclusion

Work in real-time systems has to pay attention to:

• More work in the methods and tools at the higher levels of abstraction

• Integration of design flows
 - models and standards

• While, at the same time, all the tool chain evolves to adapt to new hardware and implementation technology
 - multicore architectures