
Continuous Constant-Memory Monitoring of 

Embedded Software Timing

Johan Kraft and Thomas Nolte

Mälardalen University

Västerås, Sweden

{johan.kraft, thomas.nolte}@mdh.se





ABB Industrial robot controller

• Complex

– 3 million lines of code

– About 50 tasks– About 50 tasks

– Highly event triggered

• Failures very expensive

• Real-time and Performance

• Timing analysis?

– Trial-and-error



Timing Analysis by Simulation

• RTOS-level simulation on PC

– Application code + CPU usage annotations

– Run many simulations with random variations– Run many simulations with random variations

• Applicable to complex systems

– No design assumptions

• Finds problems and extreme cases

– But no guarantees – like testing

• Our simulator: RTSSim



Challenge

• Modeling an existing complex embedded 
software system for simulation-based timing
analysis?analysis?

– Manual modeling not realistic



Simulation Model Extraction

• Extract functional model from source code

– Earlier work, using program slicing

• Generate timing profile from measurements• Generate timing profile from measurements

– Execution times

– Inputs

– Response times – for validation



Paper Contribution

• Continuous Online Timing Profile Generation

– Allows for very long monitoring sessions

– Uses a constant, moderate amount of RAM– Uses a constant, moderate amount of RAM

– No extra hardware – monitor deployed systems



Timing Profile

• Sample distribution: complex, multimodal 

– Does not fit theoretical distributions

• Represent as N intervals• Represent as N intervals

– Min: Lowest sample value of interval

– Max: Highest sample value of interval

– Count: Number of samples in interval

• Usage during simulation

– Select interval by probability Count / TotalSamples

– Sample from uniform distribution [Min, Max]



Timing Model Generation



Interval Merge Heuristics

• Calculate merge fitness for neighbour intervals

– Proximity

• Closer intervals are more suitable for merge• Closer intervals are more suitable for merge

– Density

• The more similar Count/(Max-Min), the better fitness

• To avoid merging a ”spike” with a ”plateu”

– Count

• If few samples, disregard ”Density” in fitness value



Characteristics

• Processes one sample at a time

– Process directly – no sample buffer needed

– Or, use a small buffer and process on idle time– Or, use a small buffer and process on idle time

• RAM needed per property: 3wn

– w: Width of interval properties (e.g., 2 or 4 bytes)

– n: Number of intervals allowed

• At w = 4, n = 10:

– 120 bytes per property

– Allow for 4.294.967.295 (232 -1) samples per interval



Prototype Evaluation Setup

RTXC on 
ARM7 Trace

Tracealyzer

ARM7 Trace

RTSSim
Simulator Timing Profile

Generation

Trace



Tracealyzer / RTXCview

www.percepio.se, www.quadros.com



“Timing Profile Viewer”











Future Work

• Implement for online use on embedded HW

– FreeRTOS on Atmel AT91SAM7 (ARM7) 

• Design, implement and evaluate other interval 
merging heuristics



Thank you for your time

Questions or comments?


