
3rd International Workshop on
Analysis Tools and

Methodologies for Embedded
and Real-time Systems

July 10th, 2012, Pisa, Italy

In conjunction with:
The 24th Euromicro Conference on Real-Time Systems

(ECRTS 2012)

July 10-13, 2012

c©Copyright 2012 by the authors

2

Edited by Tommaso Cucinotta and Giuseppe Lipari

WATERS 2012 4

This page has been left intentionally blank.

WATERS 2012 5

Table of Contents

Message from the Program Chairs 6

Program Committee 8

Session A: Simulation 1

hsSim: an Extensible Interoperable Object-Oriented n-Level

Hierarchical Scheduling Simulator

9

João Pedro Craveiro, Rui Ormonde Silveira and José Ru�no

RTMultiSim: A versatile simulator for multiprocessor real-

time systems

15

Anca Hangan and Gheorghe Sebestyen

YARTISS: A Tool to Visualize, Test, Compare and Evaluate

Real-Time Scheduling Algorithms

21

Younes Chandarli, Frédéric Fauberteau, Damien Masson,

Serge Midonnet and Manar Qamhieh

Session B: Design and Analysis

Compositional Performance Analysis in Python with pyCPA 27

Jonas Diemer, Philip Axer and Rolf Ernst

Interoperable Tracing Tools 33

Luca Abeni and Nicola Manica

Advances in the automation of model driven software engi-

neering for hard real-time systems with Ada and the UML

Pro�le for MARTE

39

Julio Medina and Alejandro Perez Ruiz

Enabling Model-Based Development of Distributed Embed-

ded Systems on Open Source and Free Tools

45

Marco Di Natale, Mario Bambagini, Matteo Morelli,

Alessandro Passaro, Dario Di Stefano and Giuseppe Arturi

Session C: Simulation 2

SystemC based Simulation for Virtual Prototyping of Large

Scale Distributed Embedded Control Systems

51

David Ginsberg, Alessandro Mignogna, Marco Carloni,

Francesco Menichelli, Alberto Ferrari, Dang Nguyen and

Eelco Scholte

The Design and Implementation of a Simulator for Switched

Ethernet Networks

57

Mohammad Ashjaei, Moris Behnam and Thomas Nolte

SoOSiM: Operating System and Programming Language Ex-

ploration

63

Christiaan Baaij and Jan Kuper

WATERS 2012 6

Message from the Program Chairs

Research in real-time systems has gone very far from the initial seminal pa-

pers back in the 70s. Many algorithms, design methodologies, techniques and

tools have been proposed, spanning several application areas, from RTOS to

distributed systems, from safety critical to soft real-time systems. However,

unlike other research areas (e.g., networking) there are no widely recognized

reference tools or methodologies for comparing di�erent research works in

the area.

Thus, di�erent authors use di�erent algorithms for generating random

task sets, di�erent application traces when simulating dynamic real-time sys-

tems, di�erent simulation engines when simulating scheduling algorithms.

Instead, research in the �eld of real-time and embedded systems would

greatly bene�t from the availability of well-engineered, possibly open tools,

simulation frameworks and data sets which may constitute a common met-

rics for evaluating simulation or experimental results in the area. Also, it

would be nice to have a possibly wide set of reusable data sets or behavioural

models coming from realistic industrial use-cases over which to evaluate the

performance of novel algorithms. Availability of such items would increase

the possibility to compare novel techniques in dealing with problems already

tackled by others from the multifaceted viewpoints of e�ectiveness, overhead,

performance, applicability, etc.

One of the reasons for such a lack of tools is the fact that scientists

get little recognition for the software they write. As Michael Nielsen points

out in his recent book �Reinventing Discovery: The New Era of Networked

Science�:

Today, scientists who write and release code often get little recog-

nition for their work. Someone who has created a terri�c open

source software program that's used by thousands of other scien-

tists is likely to get little credit from peers. �It's just software� is

the response many scientists have to such work. From a career

point of view, the author of the code would have been better

o� spending their time writing a few minor papers that no one

reads. This is crazy: a lot of scienti�c knowledge is far better

expressed as code than in the form of a scienti�c paper.

When we had the idea of this workshop more than three years ago, our

goals were to recognise the work of those scientists who write software that

is useful for our community; to make these tools more widely known in

our community; and to create a small group of researchers interested in

contributing with new software and tools.

This is the third edition of our workshop. This year the workshop fea-

tures 10 papers divided into 3 sessions: Session A and Session C about

WATERS 2012 7

simulation of real-time and embedded systems; Session B about design and

analysis tools. We also asked the authors to provide their software (or links

to their web page where the software is made available). All this infor-

mation is available through the workshop web page: http://retis.sssup.

it/waters2012/. Also, a mailing list in Google Group has been set up to

distribute information on the workshop themes (https://groups.google.

com/forum/?fromgroups#!forum/ecrts-waters).

We would like to thank the Euromicro organization for having allowed us

to organize this event, and particularly Gerhard Fohler for his prompt and

ready support. We would like to thank all the authors for having submitted

their work to the workshop for selection, the Program Committee members

for their e�ort in reviewing the papers, the presenters for ensuring interesting

sessions, and the attendees for participating into this event. We hope that

interesting ideas and discussions will come out of the presentations, demos

and the questions that will alternate along the day. We hope you will �nd

this day interesting and enjoyable.

The WATERS 2012 Chairs

Tommaso Cucinotta1 and Giuseppe Lipari2

1Tommaso Cucinotta is with Bell Laboratories, Alcatel-Lucent, Dublin, Ireland
e-mail: tommaso.cucinotta@alcatel-lucent.com

2Giuseppe Lipari is with Laboratoire Spéci�cation et Véri�cation, École Normal
Supérieure de Cachan, France
e-mail: giuseppe.lipari@lsv.ens-cachan.fr

WATERS 2012 8

Program Committee

• Luca Abeni (University of Trento, Italy)

• Iain Bate (University of York, UK)

• Laura Carnivali (University of Florence, Italy)

• Marco Di Natale (Scuola Superiore Sant'Anna, Pisa, Italy)

• Laurent George (INRIA Paris-Rocquencourt, France)

• Michael Gonzalez (Universidad de Cantabria, Spain)

• Gernot Heiser (NICTA, Australia)

• Mike Holenderski (Eindhoven University of Technology, The Nether-

lands)

• Thomas Nolte (Mälardalen University, Sweden)

• Stefan Petters (CISTER-ISEP, Porto, Portugal)

• Luca Santinelli (INRIA, Villers-Les-Nancy, France)

• Simon Schliecker (Symtavision GmbH, Braunschweig, Germany)

• Wang Yi (Uppsala University, Sweden)

WATERS 2012 9

hsSim: an Extensible Interoperable Object-Oriented
n-Level Hierarchical Scheduling Simulator

João Pedro Craveiro, Rui Ormonde Silveira, and José Rufino
Universidade de Lisboa, Faculdade de Ciências, LaSIGE

Lisbon, Portugal
Email: jcraveiro@lasige.di.fc.ul.pt, rsilveira@lasige.di.fc.ul.pt, ruf@di.fc.ul.pt

Abstract—Hierarchical scheduling is a recent real-time schedul-
ing topic. It is used to obtain temporal interference isolation in
various scenarios, such as scheduling soft real-time aperiodic tasks
along with hard real-time periodic tasks, as in mixed-criticality
scenarios. Most theory and practice focuses on two-level hierar-
chies, with a root (global) scheduler managing resource contention
by partitions (or scheduling servers), and a local scheduler in each
partition/server to schedule the respective tasks. In this paper we
describe the development of hsSim, an object-oriented hierarchical
scheduling simulator supporting an arbitrary number of levels.
With the goal of openness, extensibility and interoperability in
mind, due care was put into the design, applying known design
patterns where deemed advantageous. We demonstrate hsSim’s
interoperability potential with a case study involving the Grasp
trace visualization toolset.

I. INTRODUCTION

Hierarchical scheduling is a recent topic in the mature real-
time scheduling theory discipline. In one of the first works
on the topic, Abeni and Buttazo [1] present a hierarchical
scheduling framework in which hard real-time tasks are sched-
uled along with a Constant Bandwidth Server (which, for the
scheduler below, behaves exactly has the other periodic tasks);
the CBS is, in turn, responsible for scheduling the jobs of
aperiodic soft real-time tasks. Hierarchical scheduling is also
used in mixed-criticality systems — systems providing multiple
functionalities who differ (i) in how important (“critical”) they
are for the overall welfare of the system, and (ii) in the level of
assurance of each one’s mandatory certification [2]. A common
approach to this certification issue of mixed-criticality sys-
tems is enforcing isolation through time and space partitioning
(TSP) [3], such as in the ARINC 653 specification: tasks are
separated into partitions, which are scheduled by a cyclic exec-
utive (according to a partition scheduling table — PST); in each
partition’s activity time windows, the respective tasks compete
for scheduling based on a priority-based scheduling policy [4],
[5]. Finally, hierarchical scheduling also sees application in
the virtualization field, with nested virtualization for advanced
security purposes evidencing the need to support an arbitrary
number of hierarchy levels [6].

This work was developed in the followup of European Space Agency
ITI project AIR-II (ARINC 653 In Space RTOS, http://air.di.fc.ul.pt). This
work was partially supported by the EC, through project IST-FP7-STREP-
288195 (KARYON, http://www.karyon-project.eu/), and by FCT, through the
Multiannual and CMU|Portugal programs, and the Individual Doctoral Grant
SFRH/BD/60193/2009. This work was partially supported by FCT/Égide
(PESSOA programme), through the transnational cooperation project SAPIENT
(Scheduling Analysis Principles and Tool for Time- and Space-Partitioned
Systems, http://www.navigators.di.fc.ul.pt/wiki/Project:SAPIENT).

In this paper, we present the development of hsSim (pro-
nounced aitch-ess-sim), a simulation tool for the hierarchical
real-time scheduling research community. Due to this target
community, we focus on supporting well-known and widely
used models therein, such as the periodic task model and, in
a near future, compositional analysis abstractions such as the
periodic resource model [7]. hsSim pursues the goal of an open,
reusable, extensible and interoperable tool. As such, we strived
for a modular design and development methodology, aided by
the careful application of the object-oriented paradigm and soft-
ware design patterns. Design patterns are design decisions and
solutions for recurring problems encountered in object-oriented
systems. The employment of these design patterns caters to
the goal of reusing successful past experience in software de-
sign [8]. To demonstrate the interoperability potential of hsSim,
we describe a case study using Grasp, a trace visualization
toolset [9].

Paper outline: In Section II, we present related work on
scheduling simulation, including Grasp. In Section III, we
briefly describe the system model we assume for the first
iterations of hsSim’s development. In Section IV, we detail the
analysis and design steps taken, with emphasis on the main
design patterns from whose application we took advantage.
Section V describes the implementation and tests to the current
version of hsSim, namely the interoperability case study based
on the Grasp toolset. Finally, Section VI closes the paper with
concluding remarks and ongoing work.

II. RELATED WORK

To the best of our knowledge, the current state of the art lacks
a scheduling simulator for hierarchical scheduling frameworks
with an arbitrary number of levels.

Cheddar [10] provides a set of scheduling algorithms and
policies on which it is capable of performing feasibility tests
and/or scheduling simulations for either uniprocessor or multi-
processor environments. In its latest versions, Cheddar already
supports schedulability analysis of ARINC 653-like time- and
space-partitioned (TSP) systems to some extent [10]. However,
Cheddar presents some limitations in its current support thereto.
A partition scheduling table (PST) is defined as an array of
durations; besides presenting less usability, the current imple-
mentation limits the PST to having only one time window per
partition per hyperperiod. Cheddar is designed to be extensi-
ble, and we are currently involved in a collaboration with the
Cheddar team towards more complete hierarchical scheduling

WATERS 2012 10

capabilities, applying, among others, the principles and patterns
identified in the present paper [11], [12].

Grasp [9] is a trace visualization toolset. It supports the
visualization of multiprocessor hierarchical scheduling traces.
Traces are recorded from the target system (by the Grasp
Recorder or any other appropriate means) into Grasp’s own
script-like format, and displayed graphically by the Grasp
Player. The Grasp toolset does not support simulation and
supports only a two-level hierarchy, whereas hsSim simulates
hierarchical systems with an arbitrary number of levels. How-
ever, the Grasp Player reads traces in a simple text-based format
which can be recorded by other tools. In this paper, we demon-
strate our tool’s interoperability features by implementing the
possibility to generate a Grasp trace.

CARTS [13] is an opensource compositional analysis tool
for real-time systems, which automatically generates the com-
ponents’ resource interfaces; it does not perform simulation.
CARTS relies strongly upon some of the authors’ theoretical
results (e.g., [14]) and, while implemented in Java, does not take
advantage of the latter’s object-oriented characteristics (inheri-
tance, polymorphism, encapsulation — especially regarding the
separation between domain and user interface). This makes it
difficult to be extended and, as such, we chose to develop hsSim
from scratch instead of modifying CARTS.

SPARTS [15] is a real-time scheduling simulation focused
on power-aware scheduling algorithms. Its simulation engine
is optimized by replacing cycle-step execution for an event-
driven approach centered on the intervals between consecutive
job releases. Hierarchical scheduling support is not mentioned.

MAST 2 [16] defines a model to describe the timing be-
haviour of real-time systems designed to be analyzable via
schedulability analysis techniques; it is accompanied by a tool
suite including schedulability analysis tools. MAST 2 intro-
duces modelling elements for virtual resources, abstracting
entities that rely on the resource reservation paradigm.

Finally, the Schesim [17] scheduling simulator supports hi-
erarchical limited to two-levels. Simulation is based on models
of the tasks’ implementations, not on task abstractions such as
the periodic/sporadic task models, making it useful for direct
application, but not so for our target real-time scheduling theory
research.

Regarding commercial tools, a mention is due to SymTA/S 1,
a model-based timing analysis and optimization solution with
support to ARINC 653. No specific mention is made to hierar-
chical scheduling, thus we can only assume it supports a two-
level hierarchy. Due to its proprietary nature, we cannot fully
assert its capabilities and it does not serve our purpose for open,
reusable, extensible tools for academic/scientific research.

III. SYSTEM MODEL

In our model, tasks and partitions are both abstracted as
synchronous periodic schedulable entities, characterized by the
periodic task model — τi = 〈Ci, Ti, Di〉, respectively worst-
case execution time (WCET), period, and relative deadline.
Each task or partition generates a potentially infinite sequence

1https://symtavision.com/symtas.html

Fig. 1. Traditional 1-level system domain model

of jobs (or activations) characterized as Ji,k = 〈c′i,k, ri,k, di,k〉,
respectively remaining execution time, release time and ab-
solute deadline time; we assume all tasks are released at the
critical instant, i.e., t = 0. Sporadic tasks are not specifically
addressed, but in our model we may abstract them as periodic
tasks with periods identical to their minimum inter-arrival times.

The system and the partitions have, each, their own scheduler
to schedule their respective children schedulable entities. In
traditional two-level hierarchical scheduling systems, such as
those defined by the ARINC 653 specification [4], the system
scheduler schedules partitions, whereas each partition’s sched-
uler schedules the former’s tasks. Here, we aim for a more
generic model, where more levels can be composed (i.e., a par-
tition can have children partitions, which in turn have tasks) [7],
[14] and tasks can be coscheduled alongside partitions by the
same scheduler [1] — hence the need to abstract tasks and
partitions.

Finally, we assume scheduling over one unit-speed processor
and that task/partition context switching times are either negli-
gible or already accounted for in their temporal characteristics.

IV. OBJECT-ORIENTED ANALYSIS AND DESIGN (OOAD)
The implementation of a tool which we want to be flexible,

extensible and more easily maintainable must be preceded by
careful analysis and design. We will now document the main
analysis and design steps and decisions taken, supported by
Unified Modelling Language (UML) diagrams where deemed
necessary. The overall design classes diagram is ommited due
to paper length constraints.

A. Domain analysis

The traditional real-time system is flat (a 1-level hierarchy).
The UML diagram for such a system’s domain is pictured in
Fig. 1. The system has a flat task set and a task scheduler.

A two-level hierarchical scheduling such as those corre-
sponding to TSP systems [5] can be modelled as seen in
Fig. 2. The system has a set of partitions and a root scheduler
coordinating which partition is active at each instant. Each
partition then has a set of tasks and a local scheduler to schedule
the latters’ jobs. This domain model strategy has two main
drawbacks: it is hard-limited to two levels, and it only allows
homogeneous levels (i. e., partitions and tasks cannot coexist at
the same level).

B. n-level hierarchy: the Composite pattern

The Composite pattern is a design pattern that may be used
when there is a need to represent part–whole hierarchies of

WATERS 2012 11

Fig. 2. 2-level hierarchical scheduling system domain model

Fig. 3. n-level hierarchical scheduling system using the Composite pattern

objects, and allow clients to ignore the differences between
composition of objects and individual objects [8]. Clients ma-
nipulate objects in the composition through a component inter-
face, which abstracts individual objects and compositions.

Figure 3 shows the UML representation of the Composite
pattern as applied to our domain. Applying this pattern to our
model of a hierarchical scheduling framework allows breaking
two limitations: the fixed number of levels in the hierarchy [7],
[14], and the need for the hierarchy to be balanced [1]. The
clients of the AbstractTask interface include schedulers, which
will be able to schedule both tasks and partitions through a
common interface, reducing implementation efforts and allow-
ing extensions through new schedulable entities (e. g., servers).
The application of this pattern triggered further refinements,
such as making the TaskSet the System’s and Partitions’
AbstractTasks container, and merge TaskJobs and partition
activations (PartitionJobs) under a generic Job abstraction.

C. Scheduling algorithm encapsulation: the Strategy pattern

The Strategy (or Policy) pattern is an appropriate solution to
when we want to define a family of algorithms which should
be interchangeable from the point of view of their clients [8].
In designing hsSim, we apply the Strategy pattern to encap-
sulate the different scheduling algorithms, as seen in Fig. 4.
In the Scheduler abstract class, although we use a scheduling
policy to initialize the JobQueue, we leave the obtention of

Fig. 4. Scheduling algorithm encapsulation with the Strategy pattern

the scheduling policy (the getPolicy() method) to the concrete
scheduler classes; this is supported on another well-known
design pattern, the Template Method [8].

The SchedulingPolicy interface extends Java’s Comparator
interface; this way, an instance of a subclass of SchedulingPol-
icy can be used to maintain the scheduler’s job queue ordered
in the manner appropriate for the scheduling algorithm being
implemented.

The available strategies (scheduler types) are stored in a
catalog, and more strategies can be loaded in runtime (provided
the user interface gives a means to it). This is made possible by
Java’s native reflection capabilities.2

D. n-level hierarchy and polymorphism

Due to the design decisions regarding the Composite and
Strategy patterns, most operations can implemented without
having to account for which scheduler (or schedulers) are
present, or for the structure and/or size of the hierarchy (par-
titions and tasks). Taking advantage of subtype polymorphism,
we can invoke methods on Scheduler and AbstractTask ref-
erences instances without knowing of which specific subtype
thereof the instances are.

Let us see how this works with the scheduler tickle operation,
which simulates the advance of system execution by one time
unit. For the time being, we implement hsSim as a cycle-step
execution simulator; an event-driven approach as the one seen

2Since we anticipated using the Java to implement hsSim, this and the
following design decisions take explicit advantage from facilities provided by
the Java libraries.

WATERS 2012 12

Fig. 5. Sequence diagram for the scheduler tickle operation

in SPARTS [15] is planned for future work (see Section VI).
The UML sequence diagram modeling the interactions between
objects in this operation is shown in Fig. 5. The hierarchical
tickle process is started by invoking the tickle operation on
the root scheduler without specific regard for what subtype
of Scheduler it is; the right job to execute will be obtained
because the scheduler’s job queue is maintained accordingly
ordered by an instance of an unknown SchedulingPolicy sub-
type. This job is then tickled, and in turns tickles its parent
AbstractTask without knowing if it is a Task or a Partition. It
is the job’s parent’s responsibility to invoke the right behaviour
according to its type. If it is a Partition instance, this involves
tickling its scheduler; this will cause an identical chain of
polymorphic invocations to take place.

E. Decoupling the simulation from the simulated domain using
the Observer and Visitor patterns

In hsSim, we want to decouple the simulation aspects (such
as running the simulation and logging its occurrences) from the
simulated domain itself. On the one hand, we want changes in
the simulated domain (a system with partitions, tasks, jobs) to
be externally known of, namely by one or more loggers, without
the domain objects making specific assumptions about these
loggers behaviour or interfaces. On the other hand, we want to
be able to create new loggers without tightly coupling them to
the domain objects or having to modify the latter. We found the
Observer and Visitor patterns to be most appropriate to solve
this specific problem.

The Observer pattern defines a publisher–subscriber depen-
dency between objects, so that observers (subscribers) are noti-
fied automatically of the state changes of the subjects they have
subscribed to. The subjects only have to disseminate their state
changes to a vaguely known set of observers, in a way that is
totally independent of how many observers there are and who
they are — in the form of events. The Visitor pattern defines
a way to represent an operation to be performed on an object
hierarchy independently from the latter [8]. In few words, the

Fig. 6. Logger (Observer and Visitor patterns)

Observer pattern guides loggers in choosing from what domain
objects they wish to receive events, and the Visitor pattern helps
each logger define what to do with each kind of event.

Our application of these patterns in hsSim is pictured in
Fig. 6. We take advantage from the simple Observer implemen-
tation provided by Java, with the Logger interface extending the
Observer interface — thus obligating its subclasses’ instances
(the concrete loggers) to provide the method to be called to
notify it of an event. The Logger interface also extends our
EventVisitor interface, which defines methods to process each
type of event. The visit methods are overloaded and every Event
subclass provides the following method:
public <E> E accept(EventVisitor<E> visitor) {

visitor.visit(this);
}

This way, when receiving an event e, a logger only has to
invoke ((Event) e).accept(this) to have the right
visit method called.

We also apply the Observer pattern to establish a dependency
between the system clock and the schedulers, so that the latter
become aware of when to released their tasks’ jobs.

V. IMPLEMENTATION AND USE

For a first approach, we deemed necessary one scheduler for
each of Carpenter et al.’s priority-based categories [18]: Rate
Monotonic (RM) for fixed task priority, Earliest Deadline First
(EDF) for fixed job priority, and Least Laxity First (LLF) for
dynamic priority. We defined the following iteration strategy to
have incrementally more complete prototypes:

1) get the core working with the three chosen schedulers (RM,
EDF, LLF) and predefined input/output;

WATERS 2012 13

Fig. 7. GraspLogger implementing the Logger interface

Listing 1. GraspLogger excerpt (event notification reception)

public void update(Observer o, Object arg) {
String result = ((Event) arg).accept(this);
writeToFile(result);

}

2) implement a concrete logger extending the Logger inter-
face (Section IV-E);

3) read the simulated scenario from an XML file;
4) implement a simple random scenario generator, with the

option of either writing the generated scenario to an XML
file or returning a System instance (and respective associ-
ated domain objects);

5) implement a text-based user interface for scenario data
input and log visualization;

6) implement a graphical user interface for scenario data
input, simulation metrics selection, and log visualization.

At the time of this paper’s writing, we had completed the first
three iterations, implementing both a plain-text logger and a
logger which records traces in the format interpreted by the
Grasp player [9]. We now describe the latter as a case study
for hsSim’s interoperability potential. XML reading is left out
of this paper due to paper length restrictions.

A. Interoperability: a case study with Grasp

Because of our low coupling design for the event logging
(Section IV-E), it is straightforward to trace the simulation to
the format interpreted by Grasp Player [9]. The Grasp logger
is implemented exactly as if it were developed by an external
team, who could even only have access to the core of hsSim as
a library. We implement the Logger generic interface, instanti-
ating its type variable with the String type, since we want the
processing (visit) of events to return the text to be added to the
Grasp trace (Fig. 7).

The visit methods are invoked when an event notification is
received, via the update method (Listing 1). Invocation is done
indirectly through the accept method, so the right visit method
is automatically selected and called.

Along the visit methods, we implement the following map-
ping between hsSim events and Grasp trace content:
• arrival of Job Ji,k (of AbstractTask τi)

1) if τi is a Partition, serverReplenished τi c′i,k
2) if τi is a Task, jobArrived Ji,k τi

• obtention of processor by Job Jp,q (of AbstractTask τp)3

3The obtention of the processor from idle by a job is implemented as a
JobPreemptedEvent with a null preempted job.

Listing 2. GraspLogger excerpt (visit of a job release event)

public String visit(JobReleasedEvent e) {
Job job = e.getJob();
StringBuilder sb = new StringBuilder();
sb.append("plot ");
sb.append(Integer.toString(e.getTime());
sb.append(’ ’);
if (job.getParentTask() instanceof Task) {

sb.append("jobArrived ");
sb.append(job.toStringId());
sb.append(’ ’);
sb.append(job.getParentTask().toStringId());

} else { //Partition
sb.append("serverReplenished ");
sb.append(j.getParentTask().toStringId());
sb.append(’ ’);
sb.append(j.getRemainingCapacity());

}
sb.append(System.getProperty("line.separator"));
return sb.toString();

}

1) if τp is a Partition, serverResumed τp (followed by a
jobResumed log of the task job the partition was last
executing)

2) if τp is a Task, jobResumed Jp,q

• preemption of Job Ji,k by Job Jp,q
1) if τi, τp are Partitions, serverPreempted τi (followed

by a jobPreempted log of the job the preempted par-
tition was last executing, serverResumed τp, and a
jobResumed log of the task job the preempting partition
was last executing)

2) if τi, τp are Tasks, jobPreempted Ji,k -target Jp,q

(followed by jobResumed Jp,q)
• completion of Job Ji,k

1) if τi is a Partition, serverDepleted τi
2) if τi is a Task, jobCompleted Ji,k

In Listing 2, we can see, as an example, the visit method
responsible for processing a JobReleasedEvent event.

Although hsSim’s core supports an arbitrary number of lev-
els, we now show for the sake of simplicity an example using
the current implementation of GraspLogger with a 2-level
hierarchical setting.

B. Example test

The Rate Monotonic is used to schedule partitions and to
schedules tasks in each partition. This examples is of a sample
from the experiments of [19], and the timing characteristics of
the partitions are derived from those of the respective tasks by
applying Shin and Lee’s periodic resource model [7]:

• partition 1 has a capacity of 16 over a period of 75 and
contains 4 tasks (τi = 〈Ci, Ti, Di〉): τ1 = 〈46, 500, 500〉,
τ2 = 〈71, 1000, 1000〉, τ3 = 〈25, 1000, 1000〉, and τ4 =
〈29, 2000, 2000〉;

• partition 2 has a capacity of 5 over a period of 25
and contains 2 tasks: τ5 = 〈32, 250, 250〉 and τ6 =
〈67, 1000, 1000〉;

• partition 3 has a capacity of 5 over a period of 25 and con-
tains 3 tasks: τ7 = 〈27, 250, 250〉, τ8 = 〈109, 2000, 2000〉,
and τ9 = 〈53, 2000, 2000〉.

WATERS 2012 14

Fig. 8. Grasp Player output excerpt

For the trace generated by hsSim’s GraspLogger (omitted
due to paper length constraints), Grasp Player displays the
graphical output partially pictured in Fig. 8. Partitions are traced
as scheduling servers whose budget is consumed while it is
active (independently of the execution of children tasks) and
replenished at the beginning of each new period. The release,
execution, preemption, and finishing of tasks are represented in
a Gantt-like chart for each task.

VI. CONCLUSION AND ONGOING WORK

We have described the development of hsSim, an n-level
hierarchical scheduling simulator. We emphasized the object-
oriented analysis and design decisions, such as the careful appli-
cation of design patterns, through which we pursued the purpose
of yielding an open, reusable, extensible and interoperable tool.
Applying the Composite and Strategy patterns allows imple-
menting system operations independently from, respectively,
the hierarchy’s structure and size and the underlying scheduling
algorithms; furthermore, the application of the Observer and
Visitor patterns allows great flexibility to add new and diverse
simulation loggers, since the simulation and logging aspects
are decoupled from the domain concepts. We demonstrate this
extensibility and interoperability features with a logger to trace
the simulation to the format interpreted by Grasp Player.

Development continues after this submission, so more ad-
vances are expected in time for the WATERS 2012 event. On-
going work includes opensourcing hsSim’s code4, and imple-
menting more types of schedulers (namely those corresponding
to scheduling servers, non-preemptive schedulers, cyclic ex-
ecutive and global/partitioned multiprocessor schedulers). Re-
garding multiprocessor support, much of these features’ design
(supporting homogeneous and heterogeneous multiprocessor
platforms) is already done, but omitted from this paper. Fur-
ther work planned for after supporting multiprocessor includes
adding the option to recursively compute a partition’s timing
requirements from those of its children using compositional
analysis [7], [20], [21] and paying further attention to the
specificities of dealing with aperiodic/sporadic tasks.

We have an ongoing collaboration with the Cheddar team,
and as such some of the advances made in the development

4http://code.google.com/p/hssim/

of hsSim should be ported there to enhance its support to
hierarchical scheduling and compositional analysis [10]–[12].

ACKNOWLEDGMENT

The authors would like to thank our SAPIENT project part-
ners from Lab-STICC/UBO (Brest, France), especially Frank
Singhoff, for useful discussions which helped improve the work
presented in this paper.

REFERENCES

[1] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” in RTSS ’98, Madrid, Spain, 1998, pp. 4–13.

[2] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality jobs,”
IEEE Trans. Comput., 2011, to appear.

[3] J. Windsor and K. Hjortnaes, “Time and space partitioning in spacecraft
avionics,” in SMC-IT 2009, Jul. 2009, pp. 13–20.

[4] AEEC, “Avionics application software standard interface, part 1 - required
services,” Aeronautical Radio, Inc., ARINC Spec. 653P1-2, Mar. 2006.

[5] J. Rufino, J. Craveiro, and P. Verissimo, “Architecting robustness and
timeliness in a new generation of aerospace systems,” in Architecting
Dependable Systems VII, ser. LNCS, A. Casimiro, R. de Lemos, and
C. Gacek, Eds. Springer, Nov. 2010, vol. 6420, pp. 146–170.

[6] B. Kauer, P. Verissimo, and A. Bessani, “Recursive virtual machines for
advanced security mechanisms,” in 1st Int. Workshop on Dependability
of Clouds, Data Centers and Virtual Computing Environments (DCDV
2011), Hong Kong, Jun. 2011.

[7] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in RTSS ’03, Cancun, Mexico, Dec. 2003.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1997.

[9] M. Holenderski, R. J. Bril, and J. J. Lukkien, “Grasp: Visualizing the
behavior of hierarchical multiprocessor real-time systems,” in WATERS
2011, Porto, Portugal, Jul. 2011.

[10] F. Singhoff, A. Plantec, P. Dissaux, and J. Legrand, “Investigating the
usability of real-time scheduling theory with the Cheddar project,” Real-
Time Syst., vol. 43, no. 3, pp. 259–295, Nov. 2009.

[11] J. Craveiro, J. Rufino, and F. Singhoff, “Architecture, mechanisms and
scheduling analysis tool for multicore time- and space-partitioned sys-
tems,” ACM SIGBED Rev., vol. 8, no. 3, pp. 23–27, Sep. 2011, special
issue of ECRTS 2011 WiP session, Porto, Portugal, July 2011.

[12] V. Gaudel, F. Singhoff, A. Plantec, S. Rubini, P. Dissaux, and J. Legrand,
“An Ada design pattern recognition tool for AADL performance analysis,”
in SIGAda ’11, Denver, CO, Nov. 2011, pp. 61–68.

[13] L. T. X. Phan, J. Lee, A. Easwaran, V. Ramaswamy, I. Lee, and O. Sokol-
sky, “CARTS: A tool for compositional analysis of real-time systems,”
in 3rd Workshop on Compositional Theory and Technology for Real-Time
Embedded Systems (CRTS 2010), San Diego, CA, Nov. 2010.

[14] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis framework
using EDP resource models,” in RTSS ’07, Tucson, AZ, Dec. 2007.

[15] B. Nikolic, M. A. Awan, and S. M. Petters, “SPARTS: Simulator for Power
Aware and Real-Time Systems,” in ICESS 2011, Changsha, China, Nov.
2011.

[16] M. Gonzalez Harbour, J. J. Gutierrez Garcia, J. M. Drake Moyano,
P. López Martı́nez, and J. C. Palencia Gutierrez, “Modeling distributed
real-time systems with MAST 2,” J. Syst. Architect., 2012.

[17] Y. Matsubara, Y. Sano, S. Honda, and H. Takada, “An open-source
flexible scheduling simulator for real-time applications,” in ISORC 2012,
Shenzhen, China, Apr. 2012.

[18] J. Carpenter, S. Funk, P. Holman, J. Anderson, and S. Baruah, “A catego-
rization of real-time multiprocessor scheduling problems and algorithms,”
in Handbook on Scheduling: Algorithms, Methods, and Models, J. Y.-T.
Leung, Ed. Chapman & Hall/CRC, 2004.

[19] J. P. Craveiro, J. Rosa, and J. Rufino, “Towards self-adaptive scheduling in
time- and space-partitioned systems,” in RTSS 2011: WiP Session, Vienna,
Austria, Nov./Dec. 2011.

[20] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling framework
for virtual clustering of multiprocessors,” in ECRTS 2008, Prague, Czech
Rep., Jul. 2008.

[21] J. P. Craveiro and J. Rufino, “Heterogeneous multiprocessor composi-
tional real-time scheduling,” in RTSOPS 2012, Pisa, Italy, Jul. 2012.

WATERS 2012 15

RTMultiSim: A Versatile Simulator for
Multiprocessor Real-Time Systems

Anca Hangan, Gheorghe Sebestyen
Computer Science Department

Technical University of Cluj-Napoca
Romania

{Anca.Hangan, Gheorghe.Sebestyen}@cs.utcluj.ro

Abstract— This paper presents a simulation tool that can be used
for the evaluation of real-time behavior for a wide range of
parallel and distributed systems. The simulator is based on a
flexible workload and CPU/execution model that covers different
multiprocessor scenarios, from parallel systems and independent
task sets to distributed environments and task sequences
(transactions). The simulator may be used to verify the real-time
schedulability (RT feasibility) of a task set on a given executing
environment, to measure time parameters of tasks during
execution or to find a feasible task allocation scenario (setup) for
a given set of globally defined parameters.

Keywords: real-time systems; simulation; multiprocessor;
clustered scheduling; task set generation;

I. INTRODUCTION
As multiprocessor systems are becoming the execution

environment for most of today’s real-time applications,
developers need theoretical methods and experimental tools for
evaluating the feasibility and time behavior of such systems. As
showed in many recent papers [1,2], real-time analysis on
multiprocessor systems is not a trivial task, and in the general
case when different restrictions (synchronization, casual
dependencies, data race conditions, etc.) are considered, beside
the time conditions, the problem has a NP complexity.

In order to handle this complexity in a more pragmatic way
we developed a methodology that combines theoretical
feasibility results [3,4] with a simulation process. In this way,
we can evaluate the real-time behavior of a given set of tasks
executed on a multiprocessor execution environment.

Our goal was to develop a real-time simulator that can
cover a multitude of cases from parallel architectures to
distributed ones and from independent task sets to transaction
of tasks or fork-join parallel threads. We also included aspects
of network communication.

The resulting tool called RTMultiSim is a discrete time
simulator that can be used to measure the time parameters of
such systems and in predefined scenarios to demonstrate the
feasibility of a real-time scheduling policy. It can be useful in
evaluating the statistical influence of different parameters (e.g.
CPU utilization, parallelism degree) over the real-time behavior
of multiprocessor system. In addition, we developed a task set
generation tool, which provides input for the simulation tool.

The simulation tool is useful in system modeling and design
phases in order to establish the number of required processors,
the maximum utilization/load factor, the worst-case response

time of critical tasks, or to demonstrate the feasibility of a
given setup.

A. Related Work
In the field of real-time system’s analysis and simulation,

there are a number of solutions and tools, offered as open
source software (e.g. MAST, STORM) or as commercial
products. The first ones are more generic, treating the real-time
behavior of systems at higher abstraction levels; the
commercial ones (e.g Simulink) are more related to some
pragmatic solutions or specific platforms.

The differences between these tools are regarding the
following aspects:

• The workload model used in simulation – types of
executing units (tasks, threads), periodicity of jobs,
processor affinity, clustering, etc.

• The execution environment model – uniprocessor,
parallel or distributed systems, uniform or
heterogeneous execution, with or without
communication (networking).

• The execution and scheduling model – fixed or
dynamic priorities, time-triggered or event-triggered
execution.

• The real-time parameters and restrictions model –
discrete time, global or local time.

• Non-real-time conditions accepted in the model – task
synchronization, causal dependencies, and concurrent
access to common resources.

In our approach, we tried to cover as many scenarios as
possible, allowing seamless variation between different models.
The above-mentioned model types may be obtained as
particular cases through the tool’s parametric configuration.
This is not the case for a number of existing simulation tools,
specialized for a given workload and system model.

The closest tool to our approach is STORM (Simulation
tool for real-time multiprocessor scheduling) [5]. STORM can
handle multiprocessor architectures and data exchange between
periodic tasks. The simulated system’s description is specified
through an XML file. Compared to our tool, this simulator does
not cover intra task parallelism (e.g. multi threading or fork-
join model). It uses only global EDF scheduling strategy and it
does not allow partitioned and clustered scheduling approaches.

WATERS 2012 16

MAST (Modeling and analysis suite for real-time
applications) [6] allows the analysis of uniprocessor,
multiprocessor and distributed systems as well. It uses an
event-triggered execution model with the possibility to handle
complex task dependencies. As scheduling strategy, a fixed
priority approach is used.

FORTAS (Framework for real-time analysis and
simulation) [7] is a real-time system analyzer and simulator. It
offers functionalities for feasibility testing of various
multiprocessor scheduling algorithms as well as for viewing
task schedules. It also provides a task set generation tool.

Compared to MAST and FORTAS, which are focused on
analytical scheduling evaluation, our approach is mainly
concentrated on simulation-based evaluation offering step-by-
step information about the evolution of the system under test.
Our tool implements a clustered scheduling approach and it
allows intra-task parallelism. Moreover, in the same simulated
system, different scheduling strategies can be defined for each
particular executing element (processor, or network).

B. Paper organization
The remainder of the paper is organized as follows: Section

II presents the simulation environment and its concepts.
Simulation execution is described in section III. Section IV
introduces our approach to task set generation. Simulation
examples are presented in section V. Section VI concludes the
paper.

II. THE SIMULATION ENVIRONMENT
The RTMultiSim simulation environment is defined through

the specification of a workload, an execution environment
(platform) and a scheduling strategy. This information,
obtained from user-defined input parameters, is transformed
into components of the simulator as shown in Fig.1. The
simulator executes the task set on the available CPUs according
to the selected scheduling strategy. During the simulation
process, it records relevant time parameters related with the
behavior of the system.

Figure 1. The simulation environment

A. The Workload Model
The main concepts, which define the workload model, are

showed in Fig. 2: transactions, tasks, messages, events,
execution sections and synchronization points.

Transactions are sequences of tasks and messages executed
periodically and which are represented through directed acyclic
graphs (DAGs). Graph edges represent precedence
dependencies. A real-time transaction has the following
defining elements:

• Task graph (G) – a DAG that describes the
dependencies between tasks and messages and
determines the execution order

• Period (T) – the repetition period of a transaction.

• Deadline (D) – the deadline of a transaction, relative to
its release time.

A task in our model has the following parameters:

• Phase (ɸ) – the release time of the first job
(job=execution instance of a task).

• Period (T) – task’s repetition period.

• Deadline (d) – time limit relative to the release of the
job.

• A sequence of execution segments.

• Consumed and produced events.

• CPU affinity – list of processors on which the task can
be executed.

The message is a special type of “task”, which is handled
by a node representing a network segment.

Figure 2. Workload model concepts

Dependencies between tasks or between tasks and messages
are implemented using the producer-consumer model. A task
(or message) can produce events which are consumed by other
tasks (or messages), hence creating an execution dependency
between producer and consumer. Events produced by
executing jobs are stored in the global event queue. Consumer
jobs extract the expected events from the global queue.

A task is composed of one or more execution segments. A
segment may be a sequential portion of a task or one that can
be executed in parallel on a number of processors. An
execution segment has an execution time and a parallelism
value. Between two execution segments, there is a
synchronization point. An execution segment will begin only if

Transactions

Tasks Messages

Events

Execution
segments

Synchr. points

Simulator

Cluster Manager CPUs Workload

Workload Generator

Global Clock Job Queue Event Queue

WATERS 2012 17

the previous execution segment is completed. At the beginning
of each execution segment, a number of parallel threads equal
to the parallelism value will be created. Each thread will have
the execution time of the segment to which it belongs. If a task
contains only one execution section with a parallelism value
equal to 1, its jobs will be single threaded (sequential).

Task phases can be equal to zero or can be chosen at
random from an interval. Tasks have their own predefined
periods when being part of independent task sets. If tasks are
part of transactions, the period is not specified because, by
default, it is equal with the transaction’s period.

The workload model used by RTMultiSim allows the
representation of a variety of real-time tasks such as
independent sequential periodic tasks, dependent tasks, parallel
tasks, fork-join tasks and transactions.

B. The Platform and Scheduling Models
The platform is modeled as a sum of identical processing

units (CPUs). The execution speed of all tasks is the same on
all processors. Delays caused by memory transfers are not
considered. Job context switch time and job migrations can be
taken into consideration as constant values.

The scheduler implements a clustered approach. Processors
are grouped into clusters. In clustered scheduling, job migration
is restricted to a subset of processors. Each cluster has its own
scheduler and job queue. First, tasks are allocated to clusters,
and then each cluster scheduler globally schedules jobs inside
the cluster. It can easily be observed that the global and
partitioned scheduling are instances of clustered scheduling. If
the cluster size is equal to the total number of processors, then
we have global scheduling and if each cluster contains only one
processor (the number of clusters is equal to the number of
processors), we have partitioned scheduling.

The RTMultiSim scheduling model (Fig. 3) contains a cluster
manager and a set of clusters. The cluster manager applies a
partitioning heuristic to assign all tasks to the existing clusters.

Figure 3. The RTMultiSim scheduling model

A cluster contains the assigned task set, the cluster
description (list of CPUs), a global job queue and a scheduler.
A local scheduling algorithm decides the execution order of
jobs. In our model, each cluster can use a different scheduling
algorithm.

The partitioning heuristics available in RTMultiSim are:
Next Fit and Affinity. In Next Fit method tasks are sorted in a
decreasing order according to their utilization factor
(computation time divided with period). Each time, the first
task is assigned to the next available cluster. In Affinity method
tasks with largest utilization factor and the lowest CPU Affinity
number are allocated first. Each task is allocated to the first
available cluster, which contains a CPU from its CPU Affinity
list. New partitioning heuristics can be added by writing
classes, which implement a predefined abstract interface.

The available scheduling algorithms are: Rate Monotonic
(RM), Earliest Deadline First (EDF), Least Laxity First (LLF)
and First In First Out (FIFO). The application may be extended
with user-defined scheduling algorithms by creating classes
which implement a predefined abstract interface.

III. SIMULATION EXECUTION
The simulation is performed for a fixed time interval or

until the feasibility interval is covered. For instance according
to [3,4] the feasibility interval for fixed priority algorithms on
multiprocessor systems is a multiple of the task set hyper-
period.

A. Simulation Time and Workload Generation
The simulation time is modeled as a global clock. All CPUs

are synchronized to this clock. The global clock advances with
one simulation time unit (STU). At each clock tick (transition),
the state of the system is recomputed. There can be new job
releases and, depending on the scheduling strategy, there can
be schedule updates that generate preemptions. A job’s
execution time is equal to an integer number of STUs. In a time
step, each CPU executes exactly one time unit from the total
execution time of a running job.

The workload generator creates new jobs according to the
workload model. After each global clock transition, this
component gets from the workload model all the tasks that
have to release new jobs at the current simulation time. Based
on those tasks, it creates new jobs, which are copied in the
global job queue.

B. Jobs and Threads
In RTMultiSim, jobs inherit all task parameters. The job

release time is set to its creation time. Job execution is
performed according to the task’s sequence of execution
segments.

A job contains a list of threads, which can be started in
parallel. Threads are created at the start of an execution
segment. When all the threads in an execution segment are
completed, the threads for the next segment are created. A
thread can pass through several states during its existence, from
creation to completion. The possible thread states are: ready,
scheduled, running, blocked and completed. In ready state a
thread is prepared for scheduling. If it was chosen by the
scheduler and assigned to a CPU, the thread is in scheduled
state. During execution, the thread is in running state. The
thread is blocked if it waits for an event to be produced, in
order to start or resume its execution.

Cluster Manager

Cluster

CPU List Scheduler Job Queue

1

1...*

Partitioner

Scheduling Algorithm

WATERS 2012 18

C. Scheduling
The cluster manager takes the jobs from the global job

queue and places them in the clusters’ job queues, according to
task partitioning. Then, each cluster’s scheduler chooses the
jobs that will be executed on each of its CPUs, according to the
scheduling algorithm. Threads belonging to the same job have
the same priority. Ready threads that belong to the same job
will not interrupt running threads. A multithreaded job can be
allocated to more than one CPU at the same time.

Figure 4. Simulation execution flowchart

D. Execution
A simulation execution step, as showed in Fig. 4, starts with

workload generation. Generated threads that do not meet the
requirements to enter ready state (e.g. the thread can start only

if a certain event is produced) are blocked. Blocked threads that
meet the requirements to enter the ready state are unblocked.

New jobs, if any, are placed in the clusters’ job queues.
Each cluster scheduler allocates jobs (threads) to its CPUs.
Next, the threads are executed on CPUs. During thread
execution, events can be consumed or produced, execution
time is increased and execution statistics are recorded. If the
thread is completed, it is removed from the jobs’ current
threads list. If the job is completed, it is removed from the
cluster’s queue and placed in the results.

Finally, the simulation time is increased and the simulation
execution moves to the next time step.

E. Simulation Results
Simulation results are periodically written in a database,

until simulation completion. Results for each simulation are
recorded separately. For each released job, the simulator
records the response times and deadline. For each thread,
release time, start time, completed time, execution time,
number of migrations and CPU visitation sequence are
recorded. Based on the recorded raw data a number of
statistical parameters may be computed such as: the number of
successfully finished tasks, number of deadline misses, number
of migrations, effective utilization of CPUs, etc.

IV. TASK SET GENERATION
In order to generate different simulation scenarios that fit to

some globally defined parameters (e.g. processor usage) we
developed a tool for automatic task set generation. The goal is
to establish for every simulation scenario some task parameters
that cover statistically the most relevant cases.

Task sets used for evaluations are generated automatically
in the majority of cases. The method used to generate tasks is
essential, as some task set characteristics like the task set
cardinality, the distribution of task periods or the distribution of
individual task utilizations may influence the evaluation. For
instance, for the same task set utilization factor, we obtained
different schedulability results when we used uniform and
exponential task utilization distribution. For example, on 6
processors, with utilization factor of 4.8 and global EDF
scheduling, task sets generated with a uniform distribution
were better scheduled then those obtained with an exponential
task utilization distribution.

We needed a tool that generates task sets that do not
produce misleading simulation results. The main problem to be
solved is to generate n individual utilization values of which
the sum is equal to U. Even though there are two important
results, which address this problem, the UUnifast-Discard
algorithm [8] and the Randfixedsum algorithm [9], we decided
to use a new approach. We made this decision because, in the
UUniFast-Discard case, the algorithm fails to generate task sets
for particular values of n and U [9], and because Randfixedsum
is very complex and difficult to understand and implement.

To obtain a task set with n independent periodic tasks with
implicit deadlines and utilization equal to U, we developed the
following methodology:

START

Simulation
End

YES
Write

Results

STOP

NO

Partial
Results

YESNO

Generate
Workload

Block/Unblock
Threads

Schedule
Jobs

Execute thread
On CPU

For each CPU

Clock.Time ++

Job
Complete

YES Store Job
in Results

NO

Thread
Complete

YES

Remove
Thread

Remove Job
from Queue

NO

WATERS 2012 19

1. Randomly choose n task periods (Ti) uniformly
distributed in the interval [Tmin, Tmax], having the least
common multiple (LCM) less than a given LCMmax.

2. Generate n random task utilization values (ui) for
which the sum is equal to a given U. Each ui has to be
equal or greater than 1/Ti and less than 1 (because the
computed execution time Ci has to be greater than 0).

3. For each pair (Ti, ui), compute the execution time
Ci=ui*Ti of task i.

4. Verify if the task set satisfies the requested parameters.
If not, the task set is discarded.

For step 2, we propose an algorithm that generates n task
utilization values with the sum equal to U (see Fig. 5). The
algorithm starts with assigning each ui the mean value (U/n).
To obtain a random distribution of the utilization values inside
the task set and keep the total utilization equal to U, at each
iteration step we randomly choose two ui values which will be
modified by adding and subtracting a random value from the
interval [0,U/n]. After a large number of iterations, we obtain
task utilization values, which are well spread in the interval
[1/Ti, 1].

Figure 5. The algorithm which generates n utilization values with the sum

equal to U.

We compared our results with the results of Randfixedsum
and we concluded that the two approaches are equivalent
because they generate similar distributions of individual
utilization values. In terms of execution time, our algorithm is
slightly less efficient, but it produces results in an acceptable
time for less than 100 tasks per task set.

V. SIMULATION EXAMPLES
RTMultiSim can simulate a variety of systems, defined

through configuration parameters, without any changes in the
code. From the platform point of view, these systems can span
from multiprocessor (parallel) to distributed architectures. The
scheduling strategies may be global, partitioned, or clustered.
The workload can be represented as independent parallel and

periodic tasks, distributed transactions, dependent periodic
tasks and fork-join parallel tasks.

The workload is specified in XML or text files and other
simulation parameters such as number of processors, cluster
configuration, scheduling and partitioning strategies are set in
the RTMultiSim GUI.

An independent task set has the following specification:
<Tasks>

 <Task type="periodic" id="1" C="10" T="15" D="12" />

 <Task type="parallel" id="2" C="5,4,6" P="1,3,1" T="15" D="15" />

 …

</Tasks>

Where id is the task identifier, C is the execution time or
list of execution times (for each execution segment), T is the
period, D is the deadline, and P is a list of parallelism values,
one for each execution segment.

A transaction is specified as follows:
;60,60

t1 child m1

m1 child t2

t2 child

Where the first two values are the period and the deadline
t1, t2 are tasks and m1 is a message. For more details regarding
system specification, please refer to the RTMultiSim user help.

Until now, we used RTMultiSim to conduct simulations in
scenarios created for different research objectives, such as:

• Feasibility assessment of a given task set on a specific
platform and scheduling strategy.

• Evaluation of a platform and scheduling strategy for
workloads with variable parameters (e.g. utilization
factor, task set cardinality).

• Assigning time parameters (e.g. intermediate
deadlines, periods) for a given task set in order to
assure schedulability on a specific platform.

 Starting from the theoretical results presented in [3,4] we
developed a feasibility test for a given independent
synchronous periodic task set on a multiprocessor with global
EDF scheduling. The authors of [3,4] demonstrated that for
fixed priority algorithms the interval in which the feasibility
must be tested (called feasibility interval) is a multiple of the
task set hyper-period. If there are no deadline misses in the
feasibility interval, and if the system state is the same at the
beginning and at the end of the interval, then the task set is
feasible. With our simulation tool, we can determine deadline
misses and make a comparison between the system states at the
two ends of the feasibility interval.

Using the simulator, we evaluated the Rate Monotonic
algorithm’s efficiency in the global, partitioned, and clustered
scheduling approaches, in terms of deadline misses and
migration rate [10]. We generated sets of tasks with increasing
total utilization factor. On a platform with multiple processors,

Algorithm: generate n utilization values of sum equal to U.
Input: n, U, T1,T2,…,Tn
Output: u1, u2, …,un

Begin

For(i=1; i<=n){ ui=U/n;}
Repeat n4 times
{
 d = random(0,U/n);
 x = random(1,n);
 y = random(1,n);
 if(x!=y)&&(1/Tx<=ux-d<=1)&&(1/Ty<=uy-d<=1)
 {
 ux = ux+d;
 uy = uy-d;
 }
}

End

WATERS 2012 20

we simulated the task sets in all scheduling approaches and
compared the results. The experiments showed that a modified
clustered solution assures a better result [10].

Our experimental measurements made on different kinds of
task set distributions revealed the dependency between
schedulability, utilization factors and task set cardinality. Task
sets with large cardinalities can be scheduled easier because
individual task utilizations are smaller. Fig. 6 shows the
experimental results obtained through simulation for 8
processors: the number of schedulable task sets as a function of
task set cardinality and task set utilization.

We also analyzed the schedulability of task sets on
multiprocessors, scheduled with global EDF. We showed that
an important gap (un-decidable region) between theoretically
determined necessary and sufficient schedulability conditions,
presented in [2], could be overcome through simulation. We
applied the schedulability test in [11] on a group of task sets
and we conducted simulations in the feasibility interval for the
same group of task sets. After comparing the obtained results in
the two experiments results (see Fig. 6 and 7), we concluded
that the simulation approach finds more schedulable task sets
than the analytical one.

Figure 6. Task set schedulability, function of task set cardinality and task set
utilization on 8 processors, obtained through simulation.

Figure 7. Task set schedulability, function of task set cardinality and task set
utilization on 8 processors, obtained with the schedulability test from [11].

In a recent research work, we used the facilities of the
simulator together with a genetic algorithm in order to
determine suboptimal real-time parameters (e.g. intermediate
deadlines) for sequences of tasks and messages grouped in
transactions. Using the simulation results, we had the
possibility to compute the fitness function of different
combinations of task parameters (chromosomes). The result

was a task set allocation and deadlines assignment that fulfill
the initial real-time requirements.

VI. CONCLUSIONS
The paper presents RTMultiSim, a versatile simulation tool

that covers most of the typical cases of multitasking and
multiprocessor real-time systems. First, we described the
conceptual model of the simulator and its functioning. The
workload model used by the simulator allows representation of
various types of real-time tasks such as independent periodic
tasks, dependent tasks, parallel tasks, fork-join tasks, and
transactions. The scheduling strategy may be global,
partitioned, or clustered. RTMultiSim provides multiple
partitioning and scheduling algorithms and an easy method to
integrate new algorithms. We also presented a methodology for
automatic task set generation, used to generate different
simulation scenarios that fit to some predefined parameters.
Finally we gave short descriptions of research work in which
the simulation tool proved its usefulness.

As future work, we plan to develop a graphical tool for the
representation of simulation results and we intend to implement
more partitioning heuristics and scheduling algorithms.

REFERENCES
[1] R. I. Davis and A. Burns. “A survey of hard real-time scheduling

algorithms and schedulability analysis techniques for multiprocessor
systems. ”techreport YCS-2009-443, University of York, Department of
Computer Science, 2009.

[2] M. Bertogna, S. Baruah, “Tests for global EDF schedulability analysis”,
Journal of Systems Architecture, no. 57, pp. 487–497, 2011.

[3] L. Cucu, J. Goossens, “Feasibility intervals for fixed-priority real-time
scheduling on uniform multiprocessors”, ETFA, Prague, September
2006.

[4] L. Cucu-Grosjean, J. Goossens, “Exact schedulability tests for real-time
scheduling of periodic tasks on unrelated multiprocessor platforms”,
Journal of Systems Architecture, 2011.

[5] R. Urunuela, A. Depaposlanche, and Y. Trinquet, "Storm a simulation
tool for real-time multiprocessor scheduling evaluation," in Emerging
Technologies & Factory Automation (ETFA), 2010 IEEE Conf., pp. 1-8,
Sep 2010.

[6] M. G. Harbour, J. J. G. García, J. C. P. Gutiérrez, and J. M. D. Moyano,
“Mast: Modeling and analysis suite for real time applications,” in 13th
Euromicro Conference on Real-Time Systems, 2001, p. 125.

[7] P. Courbin, L. George, ”FORTAS : Framework for real-time analysis
and simulation”, 2nd International Workshop on Analysis Tools and
Methodologies for Embedded and Real-timeSystems, WATERS 2011.

[8] R. I. Davis and A. Burns, “Priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems,” in
Proceedings of the 30th IEEE Real-Time Systems Symposium (RTSS
2009), December 2009, pp. 398–409.

[9] P. Emberson, R. Stafford and R.I Davis, “Techniques for the synthesis of
multiprocessor tasksets”, 1st International Workshop on Analysis Tools
and Methodologies for Embedded and Real-timeSystems, WATERS
2010.

[10] A. Hangan and Gh. Sebestyen, “Simulation-based evaluation of real-
time multiprocessor scheduling strategies”, in Proceedings of the 2010
IEEE 6th International Conference on Intelligent Computer
Communication and Processing, 2010, pp.375-378.

[11] J. Goossens, S. Funk, S.Baruah, “Priority-driven scheduling of periodic
task systems on multiprocessors”, Real Time Systems 25 (2–3) (2001)
187–205.

WATERS 2012 21

YARTISS: A Tool to Visualize, Test, Compare and
Evaluate Real-Time Scheduling Algorithms

Younès Chandarli∗†, Frédéric Fauberteau‡, Damien Masson∗, Serge Midonnet† and Manar Qamhieh†
Université Paris-Est, LIGM UMR CNRS 8049,

∗ESIEE Paris, 2 bld Blaise Pascal, BP 99, 93162 Noisy-le-Grand CEDEX, France
†Université Paris-Est Marne-la-vallée, 5 bld Descartes, Champs sur Marne, 77454 Marne-la-Vallée Cedex 2, France

‡CEA List, LaSTRE, Point Courrier 94, Gif-sur-Yvette, F-91191 France

Abstract—In this paper, we present a free software written in
Java, YARTISS, which is a real-time multiprocessor scheduling
simulator. It is aimed at comparing user-customized algorithms
with ones from the literature on real-time scheduling. This
simulator is designed as an easy-to-use modular tool in which
new modules can be added without the need to decompress,
edit nor recompile existing parts. It can simulate the execution
of a large number of concurrent periodic independent task
sets on multiprocessor systems and generate clear visual results
of the scheduling process (both schedules and tunable metrics
presentations). Other task models are already implemented in the
simulator, like graph tasks with precedence constraints and it is
easily extensible to other task models. Moreover, YARTISS can
simulate task sets in which energy consumption is a scheduling
parameter in the same manner as Worst Case Execution Time
(WCET).

I. INTRODUCTION

In order to evaluate the efficiency of a new approach in real-
time systems, software simulation against other algorithms
are commonly used. Due to the lack of a standard simu-
lation tool approved by the real-time community, most of
the researchers tend to create their own. This situation raises
some concerns. On one hand, the presented results are hard
to be validated without careful examination of the simulation
tool. So these results might be biased toward the proposed
approach either by adapted generation of testing tasks or by
biased implementation against the compared algorithms. On
another hand, reasons as out-of-date simulation tools or lack of
good documentation can incite researchers to create new tools,
which will lead to repetitive algorithms’ implementations
specially the common ones (e.g. RM, DM, EDF)

while consuming the time and effort of researchers. More-
over, if a standard platform succeeds to emerge, one can com-
pare his own policy with a very complicated one without hav-
ing to understand the very specificity and optimizations of this
one. Finally, the simulation protocols could be standardized,
and more easily describable by the use of such a reference tool.
In this paper, we introduce YARTISS, a new simulation tool
for real-time systems. Genericity is its main feature, by which
we hope to overcome the problems mentioned before. New
users are allowed to add their own implemented algorithms
easily, with no need to understand how the simulator is built
or works. We do not pretend to propose a perfect simulator,
however we tried during its development to learn from our past

tries [1], [2]. YARTISS is written in the Java programming
language, which is very popular nowadays and offers valuable
attributes regarding portability. In order to ensure indepen-
dence between the different features of the simulator and to
reduce the possibilities of massive failures among them, we
used modern programming paradigms, like module oriented
programming and Java unit tests (JUnit) oriented development.
We tried to develop YARTISS keeping in mind that in order
for a simulator to become a reference tool, it should have
the following properties: 1) the software must be available
under an open source license which gives any researcher the
freedom to analyze, verify or modify its implementation ; 2)
the Application Programming Interface (API) of the software
must be well documented and the developer who wants to
add or modify an algorithm should not have to read the entire
source code in order to understand its behavior ; 3) each
part of the simulator (its core, the tasks generator, the results
analyzer, ...) must be independent from each other, and easily
replaceable by an external module ; and 4) the simulator has
to be easy to use in a way that a non-developer researcher
can be able to use it. Due to its generality and modularity, we
hope that YARTISS makes a valuable contribution to the long
process of developing a standard simulation tool recognized
by the real-time scheduling research community. We expose
our motivations in Section II. We review related works in
Section III. Section IV presents the simulator functionalities.
The program architecture is described in Section V. Case
studies which demonstrate the extensibility of the tool are
presented in Section VI. How to get the tool is explained in
Section VII. Future works are discussed in Section VIII and
finally we conclude in Section IX.

II. MOTIVATIONS: A BRIEF HISTORY OF YARTISS

Our first try in writing a real-time system simulator was
called RTSS [1] and developed between 2005 and 2008. The
tool was first developed to test some algorithms to handle
temporal fault tolerance and was later extended in order to
test aperiodic tasks handling algorithms [3], [4]. Lots of mod-
ifications had been made in a hurry with some assumptions
on the behavior of existing classes without documentation.
Then modifying anything could result in errors in another
completely different parts. Moreover, although the tool was
initially programmed in Java, it began to rely more and more

WATERS 2012 22

on bash scripts to be launched and to transform output into
human readable files. Based on this first tool, a second one,
RTMSim [2], was developed between 2008 and 2011 in the
purpose to simulate multiprocessor platforms [5]. The general
key ideas were kept, but the first tool had become such
complicated and unmaintainable that we had to start it over. Of
course, all validated parts of RTSS which were of no interest
at the time, were not reimplemented and so were lost (e.g.
an implementation of DOV ER [6]). A third try was made
in early 2011, RTSS v2 [1], which was basically a rebuild
of RTSS including energy consuming tasks and used for [7].
Unfortunately, even if it is more usable today than the first
RTSS, it suffered from the same problems of documentation,
modularity and usability to simulate and exploit results of
large scale simulations. Moreover, it seems difficult to extend
it to simulate multiprocessor platforms. So we came to the
development of a new software: YARTISS. From the start, we
aimed to produce a tool where the task model, the number
of processors and behavior such as the energy consumption
model are as easy as possible to modify. Another point
on which we focused our attention is the usability of the
user interface to produce human readable traces. Our goal
was to develop a simulator able to produce evaluations as
well as to debug our energy-related algorithms. When we
wanted to use YARTISS for an another purpose, namely the
simulation of directed graph model of real-time tasks which is
a model of tasks with precedence constraints and concurrency
(see [8]), this was done without any problems, validating its
extensibility.

III. RELATED WORKS

There exist a lot of tools to simulate or visualize in-
strumented real-time systems execution traces. Due to space
limitation, we cannot provide here an extensible list of existing
tools. For the instrumented execution analyzer tools, one can
refer to [9], [10]. Among open simulation tools, we can cite
MAST [11], Cheddar [12], STORM [13] and FORTAS [14].
MAST permits modeling distributed real-time systems and
offers tools to e.g. test their feasibility or perform sensitivity
analysis. Cheddar is written in Ada, handles the multiprocessor
case and provides many implementations of scheduling, par-
titioning and analysis algorithms. It also comes with a user-
friendly Graphical User Interface (GUI). Unfortunately, no
API documentation is available to help with the implemen-
tation of new algorithms. Moreover, the choice of the Ada
language reduces the potential additional developers number.
Finally, FORTAS and STORM are tools which, as YARTISS,
are written in Java, had modular architectures and permits us to
simulate task sets on multiprocessor architectures. They both
represent very valuable contributions in the effort to provide
open and modular tools and they are good candidates in our
opinion to be widely used.

Unfortunately, even if it is more usable in its current state
than our previous tools, FORTAS seems to suffer from the
same issues: its development is not open to other developers
for now, we can only download .class files, no documentation

Figure 1. Energy and Multiprocessor Simulation views

is yet provided and it seems that no new version has been
released to public since its presentation last year in WATERS.

IV. FUNCTIONALITIES

The two main features of our simulator are the simulation
of the execution of one task set scheduled by a specific
scheduling policy and the large-scale comparison of several
scheduling policies in different scenarios, which implies its
third feature: the random task sets generation.

A. Single Task Set Simulation

Through the GUI, we can load a task set either from a file,
by random generation or entering its parameters manually. We
can parametrize the desired simulation and run it by the click
of a button. Several views are then proposed. The simulation
parameters are the task set, the number of processors, the
scheduling algorithm and the energy profile.

1) Task Models: YARTISS offers an open architecture that
greatly facilitates the integration of different task models.
The current version proposes two models, the first one is
the Liu and Layland task model augmented with energy
related parameters. All the tasks are independent and one
task is characterised by its WCET Ci, its worst case energy
consumption Ei, its period Ti and its deadline Di. The second
one is the Graph task model which is a common real-time
task model on multiprocessor systems. It is used to implement
systems consisting of number of missions in which there exist
dependencies controlling their execution flow. In this model,
a graph Gi is a collection of real-time tasks {τi,1, τi,2, τi,q},
sharing the same deadline Di and period Pi of the graph,
and they differ in their WCET Ci,j . The directed edges
between the tasks of the graph determine their precedence
constraints, and since each task in the graph might have more
than one successor and predecessor, concurrent execution can
be generated. We will see in Section VI-C that it is easy to
propose other task models.

2) Uniprocessor / Multiprocessor: Using the simulator, one
can implement and test his own multiprocessor algorithms
and partitioning policies. Some multiprocessor scheduling

WATERS 2012 23

algorithms were implemented to test this feature like EDF and
FP.

3) Energy Profile: Unlike many other simulators, this one
permits us to model the production and the consumption of
energy in the system. It permits the user to model an energy
harvester like a battery or a capacitor with limited or unlimited
capacity. It can also model a renewable energy source by a
charging function. The user can implement and use his own
energy profiles. Figure 1 shows the GUI. Note that the view
used to print the energy level can easily be augmented to print
other metrics, such as system slack times for example.

a) Energy Source Model: We have implemented an en-
ergy source profile that models a renewable energy source
represented by a battery with limited capacity and a linear
charging function. This model is not the only possible one,
the user can add his own profile by implementing the interface
and injecting it into the engine of the simulator in few lines
of code and without the need to open packages. An example
is given in Section VI-B.

b) Consumption Model: It is important to note that for
some works, energy consumption of a task must be modeled
independently from its WCET [15]. This is why our simulator
provides the ability to specify a consumption profile for each
task of the system or choose one global profile applied to
all tasks. A consumption model is represented by a function
and must be able to provide the amount of energy consumed
between two dates during the tasks execution i.e. the integral of
the consumption function. Implemented models so far are: Lin-
ear consumption (not realistic but permits establishing some
interesting preliminary conclusions) and Early instantaneous
consumption where all the energy cost of a task is consumed
as soon as a task is scheduled. This later model is assumed to
represent the worst case scenario. As the energy source profile,
a new consumption model can be added without having to
open the simulator packages. An example is given in Section
VI-B.

4) Scheduling Policy: The main purpose of the simulator
is to test scheduling algorithms, compare them and show their
performances and efficiency. Much attention has been focused
on the design of this part of the simulator to make it as
generic as possible so that users can add, override and inject
new scheduling policies easily. There are currently twenty
algorithms implemented including classic algorithms (RM,
DM, EDF uni- and multiprocessor), heuristics for the energy
constrained scheduling problem and policies for precedence
graph model based on Least-Laxity-First (LLF). As with other
parameters of the simulator run-time environment, the user can
add and link his own algorithms in some lines of code without
open core packages. An example is given in Section VI-A.

B. Run Large Scale Simulations

A major utility of the simulator is the large scale comparison
of several algorithms or scheduling policies. It is done in the
same way of a simple single simulation but on a large set
of systems on different scenarios. The comparison is based
on statistics that currently can be the number of failures or

Figure 2. Concurrent large scale simulations: histogram and curves views

missed deadlines, the system lifetime, the amount of time spent
at maximum energy level Emax and minimum level Emin

and the average duration of idle period and busy periods. One
can add his own metrics as demonstrated in Section VI-E.
Multiple simulations are run concurrently by using the java
multi-threading concept and so the duration of simulations is
greatly reduced, taking advantage of hardware parallelism. We
show in Figure 2 examples of charts which can be displayed
with YARTISS.

C. Task Sets Generation

Performing large-scale tests requires a large set of task sys-
tems. To be credible, we have to use sufficiently varied systems
to cover the possible task systems space. The simulator pro-
vides the ability to choose a generator according to desired sce-
narios and algorithms. The current version includes a generator
inspired by the UUniFast-Discard algorithm [16] adapted to
energy constraints. This algorithm generates task sets that re-
spect the CPU utilization (U =

∑ Ci

Ti
) and the energy utiliza-

tion (Ue =
∑ Ei

Ti×PrwherePristherechargingfunction)
imposed by the user. The basic version was not energy aware.
We had to adapt it to produce time feasible and energy feasible
systems. The principle is to distribute the load imposed on the
tasks which compose the system. When we add energy cost to
the task and an energy load to the system we end up with two
parameters to vary and two conditions to satisfy. The algorithm
in its current version distribute U and Ue in the same way on
the tasks then tries to find the pair (Ci, Ei) which satisfies all
the conditions namely Ui, Ue and Pr < Ei

Ci
− Pr < Emax.

The operation is repeated a few times and keeps the pair that
approaches most the imposed conditions, finally, the algorithm
returns a time and potentially1 energy feasible system. The
user can use the described generator as he can write and use
his own.

1Until now there is no feasibility test that takes into account energy
constraints, we hope to have the possibility to present some key ideas to
RTSOPS, conjointly organized with ECRTS and WATERS

WATERS 2012 24

Figure 3. Modules connexion UML Diagram

D. Graphical User Interface

To facilitate the use of the simulator by a large number
of users, we provide our application with a GUI to make
the features mentioned above available in an interactive and
intuitive way. After the simulation of a single system with an
energy profile and a scheduling policy, the user can follow
and analyze the schedule on three different views: a time
chart, a processor view and the energy curve which shows the
evolution of energy (as mentioned before, other data can be
monitored and print on this view). In order to run simulations
and get the results of a comparison of scheduling policies,
the application offers a view that allows the user to select
the scheduling policies to be compared, the energy scenarios
and to run simulations. Thus the user can see the results
as one graph per scenario or per comparison criterion. This
view offers also a debugging tool in which the user can
analyze the result of comparisons system by system and can
optionally display the time chart of each system and in each
scheduling policy. This can help us to detect behaviors that
differ in one algorithm to another. Then this simulator can
produce results on a large scale of randomly generated task
systems in order to evaluate a scheduling policy, but also easily
explore properties of a new algorithm, we can find counter
examples on hypothesis by easily isolating degenerate cases.
For example, in the case of energy scheduling, no optimal
algorithm exists yet. In order to test empirically if a new
algorithm is optimal, an approach consists in running it on
a large number of task systems, and ask the simulator to
present only the systems where this algorithm fails whereas
other heuristics succeed.

V. ARCHITECTURE

To meet the requirements specified in Section II, we have
ensured that the design is as generic and open as possible
by applying the appropriate design patterns and modular pro-
gramming practices. We cut the project in four main modules:
the engine or core module, the service module responsible
for handling input/output with the engine, a module for GUI
and finally a framework module that contains general tools
necessary for the application. This module separation follows
the classical Model-View-Controller design pattern (see Figure
3) which permits us to isolate the core application part from
its presentation and thus permits the engine to be generic and
easily integrable in other tools.

Figure 4. The engine module UML diagram

A. Engine Module

The Simulation class, responsible of running a simulation,
takes as parameters a container which embeds a scheduling
policy, an energy profile and a set of tasks. An UML diagram
of this module is given in Figure 4. The simulator is event-
triggered: on receipt of an event the scheduler is called to
update the running tasks. It then calls the scheduling policy
to choose the tasks to execute and the associated processors.
This module so defines interfaces needed to execute (i.e.
the scheduling policy) the energy source model and task
energy consumption model. The interface implementation is
not directly linked to the simulation object. In order to build
an energy profile, for example, one has to register an instance
of this class in a factory. This factory is responsible of
creating new instances when needed and completely hides
the implementation. This allows anybody to create his own
scheduling policy or his own task consumption model in a
transparent way: one only has to write the model code and
register an instance of his class by calling a method of the
factory in order to make the new class available through
the GUI. Case study are given in Section VI in order to
demonstrate this assertion.

B. Service Module

This module makes the interface between the simulator core
and the user interfaces. It serves the necessary data to the GUI
and gets back the user modifications from it. It also enables
to prepare the simulation parameters, or to set up a large scale
test. This module component has been made in such a way
it permits us to reuse the same classes for an other interface.
(e.g. a textual user interface).

C. Framework Module

This is a toolbox module that contains generic classes and
functions in order to facilitate the code writing. This module

WATERS 2012 25

1 p u b l i c c l a s s MainDemoSP {
p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

3 S c h e d u l i n g P o l i c y F a c t o r y . r e g i s t e r P o l i c y (new LLF ()) ;
DesktopMain main = new DesktopMain () ;

5 main . s e t V i s i b l e (t rue) ;
}

7 }

9 c l a s s LLF ex tends A b s t r a c t M u l t i P r o c S c h e d u l i n g P o l i c y {
@Override p u b l i c S t r i n g ge tPo l i cyName () {

11 re turn "LLF" ;
}

13 @Override p u b l i c I T a s k S e t c r e a t e T a s k S e t () {
re turn new A b s t r a c t T a s k S e t (new Comparator < ITask > () {

15 @Override p u b l i c i n t compare (ITask t1 , ITask t 2) {
long l a x i t y 1 = t 1 . g e t D e a d l i n e () − t 1 . g e t R e m a i n i n g C o s t () ;

17 long l a x i t y 2 = t 2 . g e t D e a d l i n e () − t 2 . g e t R e m a i n i n g C o s t () ;
i n t cmp = (i n t) (l a x i t y 1 − l a x i t y 2) ;

19 i f (cmp==0)
re turn (i n t) (t 1 . g e t P r i o r i t y () − t 2 . g e t P r i o r i t y ()) ;

21 re turn cmp ;
}

23 }) {
@Override p u b l i c S o r t e d S e t < ITask > g e t A c t i v e T a s k s (long d a t e) {

25 S o r t e d S e t < ITask > a c t i v e T a s k s = new TreeSe t < ITask >(c o m p a r a t o r) ;
f o r (ITask t : t h i s)

27 i f (t . i s A c t i v e ())
a c t i v e T a s k s . add (t) ;

29 re turn a c t i v e T a s k s ;
}

31 } ;
}

33
@Override p u b l i c P r o c e s s o r [] chooseNex tTasks (

35 P r o c e s s o r [] p r o c e s s o r s , I T a s k S e t t a s k S e t ,
I E n e r g y P r o f i l e e n e r g y P r o f i l e , long da te ,

37 E v e n t G e n e r a t o r evGen) {
i n t i =0 ;

39 f o r (ITask t a s k : t a s k S e t . g e t A c t i v e T a s k s (d a t e)) {
i f (i < p r o c e s s o r s . l e n g t h) {

41 long h l c e t = e n e r g y P r o f i l e . howLongCanExecute (t a s k) ;
i f (h l c e t <= 0) {

43 evGen . g e n e r a t e E v e n t (" e n e r g y _ f a i l u r e " , t a s k , da t e , n u l l) ;
p r o c e s s o r s [i] . s e t N e x t T a s k (n u l l) ;

45 }
e l s e {

47 evGen . g e n e r a t e E v e n t (" c h e c k _ e n e r g y _ s t a t e " , t a s k , d a t e + 1 , n u l l) ;
p r o c e s s o r s [i] . s e t N e x t T a s k (t a s k) ;

49 }
}

51 i ++;
}

53 f o r (; i < p r o c e s s o r s . l e n g t h ; i ++){
p r o c e s s o r s [i] . s e t N e x t T a s k (n u l l) ;

55 }
re turn p r o c e s s o r s ;

57 }

59 @Override p u b l i c I S c h e d u l i n g P o l i c y n e w I n s t a n c e () {
re turn new LLF () ;

61 }
}

Listing 1. How to add a scheduling policy

makes good use of the Java concurrency API and capacities of
modern multiprocessor to accelerate the execution of several
simulations. It follows the producer consumer design pattern in
order to permit e.g. to run several simulations in the same time,
sending the result of each one to the consumer which computes
statistics and updates the GUI. This is also used for the task set
generation. Several producers can run in concurrency, sending
the produced tasks to consumers which write them in files.
This speeds up the generation and simulation of large scale
tests.

D. View Module

This module contains the necessary classes for the GUI.

VI. CASE STUDIES

We demonstrate in this section that it is easy to tune the
simulator to address specific needs.

A. Adding a Scheduling Policy

To add a new scheduling policy, e.g. LLF, one first needs
to add the simulator’s .jar files to a new project in his favorite

1 p u b l i c c l a s s MainDemo {
p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

3 S c h e d u l i n g P o l i c y F a c t o r y . r e g i s t e r P o l i c y (new LLF ()) ;
C o n s u m p t i o n P r o f i l e F a c t o r y . r e g i s t e r C o n s u m p t i o n P r o f i l e (new LogConsumption ()) ;

5 DesktopMain main = new DesktopMain () ;
main . s e t V i s i b l e (t rue) ;

7 }
}

9
c l a s s LogConsumption implements I E n e r g y C o n s u m p t i o n P r o f i l e {

11 @Override p u b l i c S t r i n g getName () { re turn " l o g " ; }
@Override p u b l i c L i s t <Double > g e t P a r a m e t e r s () { re turn n u l l ; }

13 @Override p u b l i c vo id s e t P a r a m e t e r s (L i s t <Double > params) {}

15 @Override p u b l i c long getConsumed (long wcet , long wcee ,
long romain ingTimeCos t , long d u r a t i o n) {

17 double a = wcet − romain ingTimeCos t ;
double b = a + d u r a t i o n ;

19 i f (b > wcet) b = wcet ;
i f ((b−a) <= 0) re turn 0 ;

21 long r e s u l t = (long) Math . l o g (b / a) ;
i f (r e s u l t > wcee) r e s u l t = wcee ;

23 re turn r e s u l t ;
}

25
@Override p u b l i c I E n e r g y C o n s u m p t i o n P r o f i l e c l o n e P r o f i l e () {

27 re turn new LogConsumption () ;
}

29 }

Listing 2. How to add a new energy profile

IDE and then to provide an implementation of the interface
ISchedulingPolicy. The policies are named to identify them
among all others. The method getPolicyName() must so return
the policy’s name. To permit the scheduling policy factory
to instantiate the new class, one must implement the method
newInstance() that returns a new instance of his policy class.
Then he specifies the task set model by implementing the
method createTaskSet(), giving him the choice to use the
available task models or to create a new one according to
how tasks must be sorted. ITaskSet is an iterable of ITasks
that sorts tasks and returns a sorted set of activated tasks
at time t. For LLF, tasks must be sorted by their laxity. To
decide which tasks to execute and on which processor the
method chooseNextTasks() must be implemented. Listing 1
shows the code needed to use LLF as an external module
with the simulator.

B. Adding an Energy Profile

The same methodology can be applied to add a new energy
consumption profile. Listing 2 shows the code needed to use
a logarithmic consumption profile, still as an external module.

C. Adding a Traffic Model

To add a new task model, one has to implement the interface
ITask and register the class into the Schedulable factory. The
current version of the interface describes a standard Liu and
Layland task. It can be used in its current state to model
another kind of tasks like we do with graph tasks and tasks
with precedences without open or modify the packages. If it is
not sufficient, one can extend it to make it more suitable to his
needs. For example, to implement uncertain task model where
the tasks execution times are specified into an interval, one can
implement the interface ITask and modify the behavior of some
methods to permit the exceeding of WCET by manipulating
the remainingCost() method and the conditions of jobs end.
Due to space limitation, we cannot give the code here, but it
will be added to the demonstration package code suite (see
Section VII).

WATERS 2012 26

D. Using an External Module to Generate Tasks

One of the advantages of the simulator is that it works with
files of standard format like XML. It lets us use external tools
if needed to generate tasks by converting the output file with
XSL transformation to get an input file understandable by our
simulator.

E. Adding More Metrics

If one wants to count the number of preemptions, for
example, he has to modify the class Simulator to check
each tasks begin and end events to detect preemptions and
increment a counter in the statistics container. Then, to show
the new metric on GUI he must modify the class Metric to
add the new one and the necessary algorithms to compute
maximum, minimum and average. Clearly, this is not a good
design. This point is discussed in Section VIII.

VII. DISTRIBUTION

The project is available from the GForge collaborative
development environment hosted at https://svnigm.univ-mlv.
fr/projects/yartiss/. This environment provides a subversion
server allowing anonymous checkouts, documentation hosting,
RSS feeds subscriptions, and public forums. A web page dedi-
cated to YARTISS is also available at http://yartiss.univ-mlv.fr.
In addition to a general presentation of the tool, it proposes
a demo applet version which allows interested readers to try
YARTISS directly from their web browser and an application
form to allow anybody to share external modules.

VIII. FUTURE WORKS

The actual release offers many important and expandable
features but the simulator is still under development. Some
parts of the project have been made in a hurry which has
prevented them to be as clean as they could. For example, the
implementation of comparison metrics is strangely coupled
with simulation classes and if we want to add a new metric
we will be forced to open the engine module and modify
internal classes as described in Section VI-E. This may be
dangerous and not acceptable architecturally. Improvements
are planned to address such weaknesses, like we have done
with energy profiles and scheduling policies. Some other future
works are planned: 1) We want to provide a command line user
interface to allow the use of our simulator without the graphic
environment to permit its use inside automated scripts and/or
through a distant machine. This should be done easily because
of the adopted architecture and responsibilities separation. 2) If
we use XML format mostly in all inputs and outputs in order to
be able to reuse other external tool functionalities, this feature
must be generalized to the simulation results in order to permit
their visualization with an external tool (e.g. GRASP[10]). 3)
An additional work is needed on the description of processors
and we need to add the ability to execute on heterogeneous
and independent processors in terms of computational power,
memory and energy consumption. This could also lead to in-
tegrate research on distributed systems. 4) Finally, concerning
the energy part, we must integrate the Dynamic Voltage and

Frequency Scaling (DVFS) model in order to be compliant
with most recent works in this area.

IX. CONCLUSION

In this paper we presented YARTISS, a real-time mul-
tiprocessor scheduling simulator. A consequent effort has
been made to make it as extensible as possible. To justify
the need for an open and generic tool, we presented the
history of YARTISS development. Then we briefly presented
existing simulation tools. We have described the three main
functionalities of YARTISS: 1) simulate a task set on one
or several processors while monitoring the system energy
consumption, 2) concurrently simulate a large number of task
sets and present the results in a user friendly way that permits
us to isolate interesting cases, and 3) randomly generate a
large number of task sets. Then, in order to demonstrate
the modularity and extensibility of our tool, we presented
its architecture and five case studies that show how to add
functionalities, in most cases without having to open or modify
the project archive. Finally we gave the instructions to test
YARTISS and presented some improvement features we will
implement. We hope that this software can become a first step
toward a widely adopted simulation tool through the real-time
scheduling community.

REFERENCES

[1] D. Masson, “RTSS v1 and v2,” https://svnigm.univ-mlv.fr/projects/
rtsimulator/.

[2] F. Fauberteau, “RTMSIM,” http://rtmsim.triaxx.org/.
[3] D. Masson and S. Midonnet, “Userland Approximate Slack Stealer with

Low Time Complexity,” in Proc. of RTNS, 2008, pp. 29–38.
[4] ——, “Handling non-periodic events in real-time java systems,” in

Distributed, Embedded and Real-time Java Systems, M. T. Higuera-
Toledano and A. J. Wellings, Eds. Springer US, 2012, pp. 45–77.

[5] F. Fauberteau, S. Midonnet, and L. George, “Laxity-Based Restricted-
Migration Scheduling,” in Proc. of the 16th IEEE ETFA. IEEE
Computer Society, 2011, pp. 1–8.

[6] G. Koren and D. Shasha, “Dover : An Optimal On-Line Scheduling
Algorithm for Overloaded Uniprocessor Real-Time Systems,” SIAM J.
Comput., vol. 24, no. 2, pp. 318–339, Apr. 1995.

[7] M. Chetto, D. Masson, and S. Midonnet, “Fixed priority Scheduling
strategies for Ambient Energy-Harvesting embedded systems,” in Proc.
of GreenCom, 2011, pp. 50–55.

[8] M. Qamhieh, S. Midonnet, and L. George, “A Parallelizing Algorithm
for Real-Time Tasks of Directed Acyclic Graphs Model,” in Proc. of
WiP RTAS, 2012.

[9] S. K. Kato, R. R. Rajkumar, and Y. Ishikawa, “A Loadable Real-Time
Scheduler Suite for Multicore Platforms,” Tech. Rep., 2009.

[10] M. Holenderski, M. v. d. Heuvel, R. Bril, and J. Lukkien, “Grasp:
Tracing, visualizing and measuring the behavior of real-time systems,”
in Proc. of WATERS, 2010.

[11] M. G. Harbour, J. J. G. García, J. C. P. Gutiérrez, and J. M. D. Moyano,
“MAST: Modeling and analysis suite for real time applications,” in Proc.
of ECRTS, 2001.

[12] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a Flexible
Real Time Scheduling Framework,” in Proc. of SIGAda, 2004.

[13] R. Urunuela, A.-M. Déplanche, and Y. Trinquet, “STORM: a Simulation
Tool for Real-time Multiprocessor Scheduling Evaluation,” GDR SOC
SIP, p. 1, 2009.

[14] P. Courbin and L. George, “FORTAS: Framework fOr Real-Time Anal-
ysis and Simulation,” in Proc. of WATERS, 2011, pp. 21–26.

[15] R. Jayaseelan, T. Mitra, and X. Li, “Estimating the Worst-Case Energy
Consumption of Embedded Software,” in Proc. of RTAS, 2006, pp. 81–
90.

[16] E. Bini and G. C. Buttazzo, “Measuring the Performance of Schedula-
bility Tests,” Real-Time Syst., vol. 30, no. 1-2, pp. 129–154, May 2005.

WATERS 2012 27

Compositional Performance Analysis in Python
with pyCPA

Jonas Diemer, Philip Axer, Rolf Ernst
Institute of Computer and Network Engineering

Technische Universität Braunschweig
38106 Braunschweig, Germany

{diemer|axer|ernst}@ida.ing.tu-bs.de

Abstract—The timing behavior of current and future embed-
ded and distributed systems becomes increasingly complex. At the
same time, many application fields such as safety-critical systems
require a verification of worst-case timing behavior. Deriving
sound guarantees is a complex task, which can be solved by
Compositional Performance Analysis. This approach formally
computes worst-case timing scenarios on each component of the
system and derives end-to-end system timing from these local
analyses. In this paper, we present pyCPA, an open-source imple-
mentation of the Compositional Performance Analysis approach.
Targeted towards academia, pyCPA offers features such as
support for the most common real-time schedulers, path analysis
for communicating tasks, import and export functionality, and
different visualizations. Thus, pyCPA is a valuable contribution
to the research domain.

I. INTRODUCTION

Embedded applications such as complex, distributed
control-loops and safety-critical sensor-actuator interactions
are subject to hard real-time constraints where it must be
guaranteed that certain functions will finish before their dead-
line. In most cases, it is not straightforward to show that
all timing requirements are satisfied under all circumstances.
Research in the field of real-time performance analysis and
worst-case execution time analysis provided various formal
approaches such as compositional performance analysis (CPA)
[1] to solve this problem. CPA breaks down the analysis
complexity of large systems into separate local component
analyses and provides a way to integrate local performance
analysis techniques into a system-level analysis.

This papaer presents pyCPA1, an easy-to-understand and
easy-to-extend Python implementation of CPA. To our knowl-
edge, pyCPA is the only free (as in speech) implementation of
the CPA approach. pyCPA targets academic use-cases such as
lectures in real-time education, research of further extensions
of CPA, or simple reference benchmarks for novel analysis
methodologies. To ease interaction with other toolkits, pyCPA
offers support for integration through file-based I/O with other
related tools such as SMFF [2], SymTA/S [1] and MPA [3].

The philosophy of pyCPA is to include only a baseline
implementation of research relevant algorithms (e.g. analysis
of fixed-priority schedulers) without puzzling or distracting
add-ons to keep the package as simple and handy as possible.
Thus, contrary to commercial solutions such as SymTA/S,

1http://code.google.com/p/pycpa

pyCPA does not include any industrial scheduling protocols
such as CAN, Flexray, OSEK, and others. Nevertheless, py-
CPA is built in a modular fashion and can easily be extended
to support such protocols, too. pyCPA is not aimed for
maximum performance, and it is not overly fine-tuned to keep
the implementation simple and comprehensible. Only obvious
performance tweaks are included.

The remainder of the paper is organized as follows: In
Section II, we give an overview of real-time analysis ap-
proaches and corresponding analysis tools. Then, in Section
III we elaborate on the system model as used in CPA and
how it is implemented in pyCPA. After the formal foundation
of CPA is introduced in Section IV, we sketch the workflow of
pyCPA by analyzing an exemplary architecture in Section V.
The integration of pyCPA with other toolkits such as SMFF
is presented in Section VI . Finally, we conclude the paper in
Section VII.

II. RELATED WORK

There are different approaches for formal analysis of worst-
case timing behavior on system level. Exact approaches like
Uppaal [7] use model checking techniques to derive the worst-
case timing of a system. This can be very expensive in terms
of run-time and memory for larger (realistic) systems. Holistic
approaches such as [8] have similar issues. Compositional
approaches like Real-Time-Calculus [6] and Compositional
Performance Analysis (CPA) [1] solve this by decomposing
the analysis of the system at component level. They use
abstract event models to describe the interaction of com-
ponents in the worst- and best-case. Event models describe
the maximum and minimum events arrivals for specific time
intervals rather than exact instances in time. This can lead to
pessimism in the analysis, but avoids the state space explosion
from which holistic approaches suffer.

TABLE I
TOOLS FOR WORST-CASE TIMING ANALYSIS

Tool Approach Commercial Free Open-Source
MAST [4] no yes yes
Uppaal [5] yes yes no
MPA Toolbox [6] no yes yes
SymTA/S [1] yes no no
pyCPA [1] no yes yes

WATERS 2012 28

Task

name : String

wcet : Integer

bcet : Integer

sched_param : Integer

deadline : Integer

bind_resource(r : Resource)

get_resource_interferers() : list

Resource

name : String

bind_task(t : Task)

1 resource

1..*

tasks

EventModel

delta_min : Function

delta_plus : Function

eta_min() : Integer

eta_plus() : Integer

0..1

prev_task

0..*

next_tasks

SystemModel

bind_resource(r : Resource)

bind_path(p : Path)

bind_junction(j : Junction)

Path

name : String

Path(tasks : list)

0..*

1..*

tasks

1

1..*

1

1..*

1

1..*

1 1

in_event_model

Scheduler

b_plus(t : Task,q : Integer) : Integer

b_min(t : Task,q : Integer) : Integer

stop(t : Task,q : Integer,w : Integer) : Bool

Junction

name : String

Junction(name : String,mode : String)

0..1 prev_task

1..*next_tasks

1 scheduler

ConstraintManager

check_violations(task_results : dict)

add_backlog_constraint(t : Task,s : Integer)

add_load_constraint(r : Resource,l : Integer)

add_path_constraint(p : Path,d : Integer,n : Integer)

add_wcrt_constraint(t : Task,d : Integer)

1

1 in_event_model
0..*

next_tasks

1..* prev_tasks

1 1

Fig. 1. System model of Compositional Performance Analysis

Most of the proposed approaches have been implemented in
software tools, which are summarized in Table I. With pyCPA,
we present a toolkit which implements the CPA approach
which is also used in the commercially available SymTA/S
tool. pyCPA is publicly available in source-code, like the MPA
Toolbox implementing Real-Time-Calculus.

III. THE CPA SYSTEM MODEL

In CPA, systems are modeled by sets of resources and
tasks (see Figure 1). A resource provides processing time
which is consumed by the tasks mapped to it. The mapping
of tasks to resources is represented by references between
tasks and a resource. Contention for resources with multiple
tasks is resolved according to a scheduling policy (e.g. static
priority preemptive), for which each task may include a
scheduling parameter. The scheduling behavior is specified
within a scheduler class which defines window functions
(b_min() and b_plus()) used in scheduling analysis [9],
see Section IV.

The execution behavior of a task τi is divided into the
following steps: activation, core execution and finally com-
pletion/propagation. After being activated, a task (or job) is
ready to execute and can be scheduled. It is assumed to
require a core execution time in the interval between the
best-case and worst-case execution times [C−i , C

+
i]. Between

activation and completion, tasks may be interrupted by other
tasks running on the same resource, which can be obtained
via get_resource_interferers().

A distributed application consisting of multiple communi-
cating tasks is implicitly described by a directed graph (via the
next_tasks and prev_task attributes) in which nodes
are tasks and edges represent functional data dependencies.
After a task’s execution is completed, the task activates its
dependent tasks (propagation). The application graph consists

0 30 60 90 120 150 180 210 240 270
∆t

0

1

2

3

4

5

6

7

n

η(∆t)

η−(∆t)

η+(∆t)

0 1 2 3 4 5 6 7
n

0

50

100

150

200

250

∆
t

δ(n)

δ−(n)

δ+(n)

Fig. 2. Event model for a periodic activation with a period of P = 30 and
a jitter of J = 60

of task chains, which are called paths in pyCPA. Here,
forks are possible, i.e. one task can activate multiple other
tasks (forming multiple paths). The opposite, i.e. a join, is
represented by a junction, and requires the definition of a
semantic or “mode”. There are two common join-semantics as
discussed in [1]: For an OR-join any incoming event produces
one outgoing event, and for an AND-join, an outgoing event
is produced once events are available on all incoming edges.

Also part of the model are optional constraints, which can
be used to define deadlines for tasks and path response times,
limitations on the load of resources, or activation backlog
(which usually translates to buffer requirements). In pyCPA
all elements which model the system architecture (i.e tasks,
resources, event models, junctions and paths) are distinct
classes, as shown in Figure 1. For easy navigation, all classes
are (redundantly) cross-referenced, e.g. resources keep a list
of all mapped tasks and each task keeps a reference to its
resource.

As discussed above, task activation and completion denote
specific events, which are chained for dependent tasks (i.e.
the completion event of one task is the activation event of
its dependent tasks). Events can also originate from external
sources, such as a timer. The arrivals of activation events of
a task τi are modeled by minimum / maximum arrival curves
η−i (∆t) / η+i (∆t), which return a lower / upper bound on the
number of events that can arrive within any half-open time
window [t, t+ ∆t) [10]. These functions have pseudo-inverse
counterparts, the so-called maximum / minimum distance
functions δ+i (n) / δ−i (n), which return an upper / lower bound
on the time interval between the first and the last event of
any sequence of n event arrivals. Such event models cover all
possible event arrivals of a specific event source as opposed
to a specific trace of events.

For compact representation, standard event models in [10]
use three parameters, event model period P , event model jitter
J and a dmin which specifies the minimum distance between
successive events in case the jitter is larger than the period.

WATERS 2012 29

R1

T11 T12P=30 J=60

Fig. 3. A very simple pyCPA system model: two communicating tasks
stimulated by one event model are mapped to one resource

The δ-functions for such an event model representation are as
follows:

0 ≤ n < 2 : δ+(n) = δ−(n) = 0

n ≥ 2 : δ+(n) = (n− 1)P + J

δ−(n) = max((n− 1)dmin, (n− 1)P − J)

(1)

Figure 2 shows the arrival curves and minimum distance
functions for a periodic task activation with a period of
P = 30, and a jitter of J = 60. In pyCPA, event models are
internally described by their δ-functions, which are represented
as actual function references. There are generator functions
for typical event models, such as periodic with jitter or
periodic bursts. The η-functions, which are needed during
some analysis steps, are derived directly from the δ-functions
by using the following transformation:

∆t = 0 : η+(∆t) = 0

∆t > 0 : η+(∆t) = max
n≥1,n∈N

{n | δ−(n) < ∆t}

η−(∆t) = min
n≥1,n∈N

{n | δ+(n+ 2) > ∆t} (2)

To speed up the event-model transformation, pyCPA lever-
ages the fact that δ-functions are monotonous and implements
a binary search. For further efficiency, δ-functions are cached,
as they are referenced often with the same values (e.g. during
event propagation, see next section). Note that although the
CPA system model was conceived to analyze tasks executing
on processor resources, it can also be used to for different
systems such as Ethernet networks as presented in [11], [12]
as well as CAN-buses as shown in [13]. Due to the CPA
approach, pyCPA performs very fast, with the results being
available within seconds. Even for a large system with over
1700 tasks on over 500 resources and an average load of over
90%, the analysis required only a couple of minutes.

A. Design Entry

Although pyCPA does not provide a GUI, there are rich
ways to enter a system description. The easiest way is to
instantiate the corresponding CPA objects directly in Python.
As an example, consider the system model shown in Figure
3, which represents a small system with one resource R1 and
two dependent tasks T11 and T12. Listing 1 demonstrates how
this system can be represented in pyCPA. At first, a system
object is instantiated which stores further objects. A resource

1 s = model.System()

3 r1 = s.bind_resource(model.Resource("R1",
4 schedulers.SPPScheduler()))

6 t11 = r1.bind_task(model.Task("T11", wcet=5, bcet=5,
7 scheduling_parameter=1))
8 t12 = r1.bind_task(model.Task("T12", wcet=9, bcet=1,
9 scheduling_parameter=2))

11 t11.link_dependent_task(t12)

13 t11.in_event_model = model.EventModel(P=30, J=60)

15 p1 = s.add_path("P1", [t11, t12])

17 s.constraints.add_backlog_constraint(t11, 5)
18 s.constraints.add_wcrt_constraint(t12, 90)

Listing 1. CPA system model directly instantiated in Python

named R1 is added to the system, for which a scheduling
policy is defined by instantiating an SPP scheduler object. The
scheduler object encapsulates scheduling specific functions, as
discussed in Section IV. Both tasks are created and mapped
to resource R1, worst- and best-case timing as well as the
scheduling parameter (in this case a priority) are defined.
Then, both tasks are linked according to the application graph
and an input event model with a period of P = 30 and a
jitter of J = 60 is specified for the first task. Since we are
interested in the end-to-end latency from T11 to T12, we also
define a path which includes the corresponding tasks. During
runtime, pyCPA checks if the entered system description is
well-formed e.g. there are no dangling tasks and no functional
cycles without further external stimuli exist.

Some of the created tasks may exhibit constraints which
either emerge from the underlying physical architecture (e.g.
buffer size constraints) or non-functional timing constaints
of the modeled application such as deadlines. In pyCPA,
constraints are handled by a constraint manager (cf. Figure
1) which is attached to the system object. During analysis,
the pyCPA kernel checks if any constraints are violated
and eventually stops the analysis with an error message. As
discussed, the constraint manager supports a set of constraints,
but additional constraint semantics (e.g. reliability, mode-
change latencies, slack) can be added by deriving from the
pyCPA constraint manager class. In our simple example we
constrain the available buffer size for the input queue of task
T11 to 5 and add a deadline for task T12 of 90 time units.

Since one major focus of pyCPA is the interoperability
with other timing toolkits, it offers a set of import and export
libraries, which either convert a system description of another
tool to the pyCPA model or vice versa. Specifically, pyCPA
provides importers for SMFF [2] and SymTA/S 1.4 [1] as well
as an exporter for MPA [3]. Depending on the complexity of
the model transformation, additional import and export filters
are quite simple to implement. Listing 2 illustrates the import
of a SymTA/S 1.4 model.

WATERS 2012 30

1 loader = symload.SymtaLoader14()
2 s = loader.parse("symta14_test.xml")

Listing 2. Importing a SymTA/S 1.4 system model to pyCPA

IV. COMPOSITIONAL PERFORMANCE ANALYSIS

Once the system model is formulated, we are interested
in its timing properties. A common metric is the worst-case
response time, which is the largest time from activation of a
task to its completion. Obviously, it is not straight forward
to analyze timing for communicating tasks, since some event
models are not know a priori (e.g. the input event model of
T12 in Figure 3). Therefore, CPA uses an hierarchical iterative
approach which is illustrated in Figure 4 to analyze the timing
of such systems.

The general idea of the algorithm is as follows: At first,
input event models for all tasks are initialized to one optimistic
starting point. Naturally, the event model at the start of a path
is an optimistic event model for all tasks on the path. Note,
that later during the analysis, this optimism is resolved. Then,
a local (component-level) analysis is performed for each task.
After all local analyses have been performed, it is possible
to derive output event models for all previously analyzed
tasks. In a second step, newly derived output event models
are propagated to all dependent tasks. If the output event
model of a task has changed compared to the previous iteration
step all tasks which are functionally or non-functionally (i.e.
through resource sharing) influenced by this event model are
re-analyzed.

This way, the two steps (local analysis and propagation) are
alternated until either all event models remain stable or any
constraint that might be specified (e.g. task deadline or path
latency) is violated.

Local
Scheduling Analysis

Input Event Models

Local
Scheduling Analysis

Local
Scheduling Analysis

Output Event Models

Convergence or
Non-Schedulability ?

No

Environment Model

Terminate

Event Model
Propagation

System Model

Fig. 4. The system analysis loop

1 class SPPScheduler(Scheduler):
2 def b_plus(self, task, q):
3 w = q * task.wcet
4 while True:
5 s = 0
6 for ti in task.get_resource_interferers():
7 if ti.scheduling_parameter <= \
8 task.scheduling_parameter:
9 s += ti.wcet * \

10 ti.in_event_model.eta_plus(w)
11 w_new = q * task.wcet + s
12 if w == w_new:
13 return w
14 w = w_new

16 def stop(self, task, q, w):
17 if task.in_event_model.delta_min(q + 1) >= w:
18 return True
19 return False

Listing 3. Simplified SPP scheduler class implementation

A. Local Analysis

The local analysis is based on a busy window approach as
presented by Lehoczky in [14]. For this, we compute a so-
called maximum q-event busy-time B+

i (q) which describes
an upper bound of the amount of time a resource requires to
service q activations of task τi, assuming that all q activations
arrive “sufficiently early” (see [9]). A sufficient condition for
the “sufficiently early” arrival of the q-th event is the arrival
prior to the completion of its preceding event (the (q−1)-event
busy-time). For this computation, a worst-case arrival of all
interfering tasks is assumed. For a static-priority-preemptive
(SPP) scheduler, the maximum busy-time can be computed as
follows [14]:

B+
i (q) = q · C+

i +
∑

j∈hp(i)
η+j (B+

i (q)) · C+
j (3)

where C+
i is the worst-case execution time of task τi, hp(i)

is the set of tasks with a higher-priority than task τi. Note that
in this equation, B+

i (q) appears on both sides, resulting in
an integer fixed-point problem. It can be solved by iteration,
starting from B+

i (q) = q · C+
i .

To find the worst-case response-time, only the first q+i
activations need to be considered, where q+i is defined by a
scheduler-dependent stopping condition. For SPP, the stopping
condition is that all own and higher-priority load must be
serviced. Hence:

q+i = min{q ∈ N+ | δ−i (q + 1) ≤ B+
i (q)} (4)

Note that in pyCPA, the satisfaction of the stopping condition
is evaluated during the search for the worst-case response-time
for every q without the explicit computation of q+i .

In pyCPA, this analysis is implemented in a modular way.
As shown in the example from Listing 1, a scheduler-specific
class object must be given for each resource. This class
contains functions such as B+

i (q) and a stopping condition
which evaluates whether the next activation has to be con-
sidered (q + 1 ≤ q+) or whether the local analysis should
terminate (q + 1 > q+). For an SPP scheduler a simplified

WATERS 2012 31

1 results = analysis.analyze_system(s)

3 for t in [t11, t12]:
4 print("%s: wcrt=%d" % (t.name, results[t].wcrt))

6 bcl, wcl = path_analysis.end_to_end_latency(p1, 5)
7 print("Path latency: [%d,%d]"%(bcl,wcl)")

Listing 4. Analysis of a CPA system model

implementation is shown in Listing 3. Here, the busy-time
function and the stopping condition are straightforward imple-
mentations of Equation 3 and Equation 4. pyCPA comes with
scheduler implementations for the most common scheduling
policies used in the embedded domain (e.g. static priority
preemptive and non-preemptive, round-robin, TDMA, and
earliest-deadline-first).

B. Global Analysis

The global analysis iteration is performed on task-level, i.e.
the event-model propagation is done after the analysis of each
task. For this, pyCPA maintains a set of dirty tasks to which
all dependent tasks are added after the output event model of
a task changes. In order to avoid unnecessary re-analysis of
tasks, pyCPA analyzes tasks with the most dependent tasks
first.

To compute the output event model of a task τi, we first need
to determine its best- and worst-case response times R−i and
R+

i . These can be obtained from the busy windows which were
gathered from the local analysis step. The worst-case response
time can be found among the first q+i busy-windows, whereas
it is a safe assumption, that the best-case response-time equals
the best-case execution time:

R+
i = max

q∈N+ | q≤q+i

(
B+

i (q)− δi(q)
)

(5)

R−i = C−i (6)

The worst-case scheduling jitter Js
i for a task can be

bounded to Js
i = R+

i − R−i . From this, we can compute the
output event model δout,i which adds the scheduling jitter to
the input event model δin,i according to Equation 1.

δ−out,i(n) = max
(
δ−in,i(n)− Js

i , (n− 1)C−i
)

δ+out,i(n) = δ+in,i(n) + Js
i (7)

This way of obtaining an output model is called jitter
propagation in pyCPA. In [15], Schliecker et al. provide a
more sophisticated event-model propagation which constructs
the output event-model by considering the cases of all q+ busy
windows. This busy-window propagation yields tighter results,
and therefore is the default in pyCPA.

V. RUNNING AN ANALYSIS IN PYCPA

Once a pyCPA system model is available, several different
real-time metrics can be derived easily. Listing 4 shows the
necessary steps to analyze the system model which was given
in Listing 1 in Section III. The actual CPA iteration (local

0 5 10 15 20 25 30 35 40 45 50 55
time ∆t

T11

T12
q=1

WCRT=37.0

q=2

WCRT=37.0

q=3

WCRT=37.0

q=4

WCRT=37.0

Fig. 5. Gantt-chart of the worst-case scheduling scenario for task T11

analysis and propagation) as depicted in Figure 4 is performed
in analyze_system(). The analysis results are returned
inside a result object and are available directly after the exe-
cution of analyze_system(). This includes the activation
backlog, which is the largest amount of unprocessed task
activation events, as well the best- and worst-case response-
times. To derive more sophisticated properties of the system,
such as the best- and worst-case end-to-end latency of a path,
is is necessary to call dedicated analysis methods after the
system has been analyzed. In Listing 4, we additionally derive
the best- and worst-case path latency for 5 consecutive events
for path P1.

A. Visualization

Once analysis data is available, the results can be post-
processed and visualized using one of the many existing
Python packages such as matplotlib. Based on this, pyCPA
provides several functions for visualization. The complete
system model can be displayed using PyGraphviz. The system
graph shown in Figure 3 was generated this way. The system
plot is especially useful to visually inspect the entered system
model for larger systems. Also, event models can be plotted
using pyCPA (using matplotlib internally) as the one shown
in Figure 2.

For illustrative purposes, it might be of further interest to
generate one execution trace (Gantt-chart) which leads to the
worst-case response time. For instance, the chart in Figure 5
shows the worst-case response time for task T12 from the
initial example. pyCPA comes with a discrete event simulator
which is built on top of SimPy. To generate the Gantt-chart,
pyCPA simulates the critical instant behavior according to the
specified scheduling policy and stores all preemption- and run-
times of a task. The trace data can then be used to plot the
Gantt-chart as shown in Figure 5 which also highlights the
activation at which the worst-case response time is observed.

VI. INTEROPERABILITY

pyCPA uses a generic system model that is compatible
with that of many other tools. For instance, pyCPA provides
an XML importer for SymTA/S system models. Furthermore,
it can directly read and write system models generated by
the system-models-for-free (SMFF) generator [2]. pyCPA uses

WATERS 2012 32

1.0 1.5 2.0 2.5 3.0 3.5
R+ improvement

0.0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

tiv
e

fre
qu

en
cy

Fig. 6. Relative improvement of the busy-window propagation vs. jitter
propagation

Python’s minidom to parse the XML-based SMFF file-
format and converts the SMFF model to the internal pyCPA
representation. After analysis, the SMFF model can be written
including annotated analysis results such as the worst-case
response time as well as output event models.

To show the convenience and actual applicability of such an
interface, we conduct an experiment in which the busy-window
propagation from [15] is compared with the previously pre-
sented jitter propagation technique. Obviously, the results
highly depend on the actual system model. Therefore, we use
SMFF to generate a large set of representative random systems
consisting of up to 4 resources and 3 paths with 4 tasks which
lead to a resource load of up to 0.8. Actual mapping and
scheduling parameters are randomized according to a heuristic
implemented in SMFF. We have generated 500 systems with
SMFF which were analyzed with pyCPA to derive the rela-
tive improvement of the busy-window propagation over jitter
propagation. Systems, which were not feasible (i.e. WCRT
larger than ten periods), were discarded. Figure 6 shows the
distribution of this improvement. As expected, busy-window
propgation yields a up to 3 times better result compared to
jitter propagation. The analysis runtime for jitter and busy-
window where approximately the same with about 10 ms per
analyzed system. All experiments can be directly carried out
in Python which has the immediate advantage that results can
be post-processed and directly plotted. Thus experiments are
self-contained and can be easily reproduced later.

It is also possible to export the pyCPA system model to
other file-formats. This is useful to compare analysis results
with other frameworks. For this purpose, pyCPA includes a
simple exporter which directly outputs a Matlab description of
the system to be used with the Modular Performance Analysis
(MPA) framework. In our experiments, the analysis results for
static-priority systems were identical with pyCPA and MPA,
which matches our expectations.

VII. CONCLUSION

In this paper, we have presented pyCPA, a Python-based
framework for Compositional Performance Analysis. It can
be used to derive worst-case timing of complex embedded

and distributed real-time systems. We have presented the basic
architecture of pyCPA which is very easy-to-use as we have
demonstrated in this paper by a small example. Furthermore,
pyCPA is open-source and has a modular architecture, so it
can be extended easily to cover different scheduling policies or
implement advanced analysis algorithms. pyCPA also provides
interfaces to existing tool suites such as the system-model
generator SMFF or the Modular Performance Analysis frame-
work. For these reasons, pyCPA is a valuable contribution
to the research community in the field of timing analysis of
embedded real-time systems.

ACKNOWLEDGMENT

This work has been funded by the “Bundesministerium für
Bildung und Forschung” (BMBF), the “Deutsche Forschungs-
gemeinschaft” (DFG) as part of the priority program ”Depend-
able Embedded Systems” (SPP 1500 - spp1500.itec.kit.edu),
the Advanced Research & Technology for Embedded Intel-
ligence and Systems (ARTEMIS) within the project ’RE-
COMP’, support code 01IS10001A, agreement no. 100202 as
well as Intel Corporation.

REFERENCES

[1] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System Level Performance Analysis–the SymTA/S Approach,” IEE
Proceedings-Computers and Digital Techniques, vol. 152, no. 2, 2005.

[2] M. Neukirchner, S. Stein, and R. Ernst, “SMFF: System Models for
Free,” in 2nd International Workshop on Analysis Tools and Methodolo-
gies for Embedded and Real-time Systems (WATERS), Porto, Portugal,
July 2011.

[3] E. Wandeler, “Modular performance analysis and interface-based design
for embedded real-time systems,” Ph.D. dissertation, Swiss Federal
Institute of Technology Zurich, 2006.

[4] M. Gonzalez Harbour, J. Gutierrez Garcia, J. Palencia Gutierrez, and
J. Drake Moyano, “MAST: Modeling and analysis suite for real time
applications,” in Real-Time Systems, 13th Euromicro Conference on,
2001., 2001, pp. 125 –134.

[5] R. Alur and D. Dill, “Automata for modeling real-time systems,”
Automata, languages and programming, pp. 322–335, 1990.

[6] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in ISCAS, vol. 4, 2000.

[7] K. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” International
Journal on Software Tools for Technology Transfer (STTT), vol. 1, no. 1,
pp. 134–152, 1997.

[8] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and microprogram-
ming, vol. 40, no. 2-3, 1994.

[9] S. Schliecker, “Performance analysis of multiprocessor real-time systems
with shared resources,” Dissertation, Technische Universität Braun-
schweig, 2011, submitted 2010.

[10] K. Richter, “Compositional scheduling analysis using standard event
models,” Ph.D. dissertation, TU Braunschweig, 2005.

[11] J. Rox and R. Ernst, “Formal Timing Analysis of Full Duplex Switched
Based Ethernet Network Architectures,” in SAE World Congress, vol.
System Level Architecture Design Tools and Methods (AE318). SAE
International, Apr 2010.

[12] J. Diemer, J. Rox, and R. Ernst, “Modeling of Ethernet AVB Networks
for Worst-Case Timing Analysis,” in MATHMOD, Austria, 2012.

[13] P. Axer, M. Sebastian, and R. Ernst, “Probabilistic response time
bound for can messages with arbitrary deadlines,” in Proc. of Design,
Automation and Test in Europe, Dresden, Germany, 2012.

[14] J. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in Proceedings of the 11th Real-Time Systems
Symposium, 1990.

[15] S. Schliecker, J. Rox, M. Ivers, and R. Ernst, “Providing Accurate Event
Models for the Analysis of Heterogeneous Multiprocessor Systems,” in
CODES-ISSS, oct 2008.

WATERS 2012 33

Interoperable Tracing Tools

Luca Abeni, Nicola Manica

DISI - University of Trento, 38100 Trento, Italy

luca.abeni@unitn.it, nicola.manica@disi.unitn.it

Abstract—In order to provide reliable system support for real-
time applications, it is often important to be able to collect
statistics about the tasks temporal behaviours (in terms of
execution times and inter-arrival times). Such statistics can, for
example, be used for schedulability analysis, or to perform some
kind of on-line adaptation of the scheduling parameters (adaptive
scheduling, or feedback scheduling). This paper presents a set of
software filters to extract such information from execution traces
generated by different kinds of software. The presented software
can be used to evaluate the real-time performance of a system or
an application, to debug real-time applications, and/or to infer the
temporal properties (for example, periodicity) of tasks running
in the system.

I. INTRODUCTION

Real-time systems are designed to respect some temporal

constraints (generally expressed as deadlines) characterising

the applications running in the system. This can be done in

different ways, for example by providing a-priori schedulabil-

ity guarantees (based on mathematical proofs that the temporal

constraints will be respected), by analysing the system through

simulations, by instrumenting a prototype of the system, or

by performing some on-line dynamic adaptation of the sched-

uler behaviour. In general, all these approaches require some

knowledge about the tasks behaviours or about important tasks

parameters (execution times, inter-arrival times, dependencies

between tasks, etc...), or require some kind of instrumentation

or run-time monitoring of the tasks.

Such information are generally collected in the form of

execution traces: sequences of various scheduling-relevant

events associated to time, tasks, and CPUs. Execution traces

can be generated by various tools (for example, by the

operating system kernel, by a scheduling simulator, or by

some user-space applications) and can be used for different

purposes: for example, to check the correctness of a scheduling

algorithm implementation, to infer the tasks behaviour, to

collect statistics about the tasks, or to evaluate the system

performance.

As an example of traces generated by the operating system

kernel, the Linux kernel provides the Ftrace - function tracer

- subsystem [1] that can generate configurable textual traces

containing some relevant kernel events. This subsystem can

be used to collect some statistics about the tasks execution,

usable as an input for the schedulability analysis, or to infer

information about the tasks temporal behaviour (for example,

The research leading to these results has received funding from the Eu-
ropean Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement n◦ ICT-2011-288917 “DALi - Devices for Assisted Living”.

about task periodicity) [2]. The collected information can

also be used for evaluating the performance of a real-time

system (in terms of kernel latencies) or of a scheduling

algorithm (in terms of tasks’ response times), or to generate

graphs describing the tasks’ schedule. Tracing subsystems

like Ftrace can be implemented in different operating system

kernels (even µkernels such as Fiasco [3]), or in user-space

applications such as the X server, to obtain information about

how the clients’ requests are scheduled [4].

Similar traces can be generated by scheduling simulators

such as rtsim [5]. In this case, the traces are used to graphically

visualise the scheduler’s behaviour, or for evaluating the

scheduler’s performance. Statistics about the tasks parameters

(eventually extracted from traces generated by an OS kernel)

can be used as an input by the simulator.

Unfortunately, there is not a widely used tracing format,

and different tools can generate different kinds of traces using

different syntaxes (for example, Ftrace generates traces in text

format, rtsim uses its own binary format, etc...). Even the

same tool can change the tracing syntax in an non backward

compatible way from release to release (for example, Ftrace

recently changed the textual format of its generated traces,

with the removal of the ”sched_switch” tracer). Hence,

some tool able to convert event traces between different

formats is needed to increase the interoperability between the

various tools. This paper presents TRCUTILS: a set of trace

filters which allow to manipulate traces in different formats,

converting them and extracting some useful information and

statistics. For example, TRCUTILS allow to import Linux

kernel traces in the rtsim visualiser, or to extract execution

times and inter-arrival times probability distributions, to be

used for stochastic analysis using some other tools.

The presented tools and methodology can be used either

for collecting data to be analysed off-line (for example, for

obtaining data to be used as input for an a-priori schedulability

analysis), or for on-line adaptation (for example, for observing

the scheduler behaviour in a feedback-scheduling system).

These two use-cases will be described in this paper as off-

line mode and on-line mode1.

Off-line mode is generally used in 2 different ways:

1) the real-time tasks are run during the system design

phase to profile them by dumping the scheduler’s ac-

tivities through the tracer, and extracting information

about the execution and arrival times. Such information

1The on-line mode generally makes sense only for traces generated by an
OS kernel.

WATERS 2012 34

are saved and used in a second time by some analysis

tools that allow to properly design the system, using the

correct scheduling algorithm and properly dimensioning

the scheduling parameters [6].

2) the scheduler is simulated using a tool such as rtsim,

and its activities are recorded in a trace. Such a trace

can be post-processed to generate gannt diagrams of the

tasks schedule, to compute tasks response times, or to

evaluate some kind of system performance metric.

When working in on-line mode, the tracer and the tools

which parse the traces are run in parallel with the real-

time applications2, and the generated data can be immediately

used to identify real-time tasks and to adapt the scheduling

parameters [7].

The rest of the paper is organised as follows: Section II

briefly summarises the problems encountered when working

with different tracing tools, Section III describes some related

tools, Section IV introduces the TRCUTILS filters and the trac-

ing pipeline, Section V presents some examples of TRCUTILS

usage, and Section VI states the conclusions.

II. DIFFERENT KINDS OF EXECUTION TRACES

In general, a trace of the scheduler activities is a sequence

T = {ei} of events ei (describing the tasks’ execution)

associated to various attributes describing the event type, the

time when the event happened, the entities affected by the

event, etc... These events are encoded in the trace according

to a syntax which depends on the tool that generated the trace.

The differences between traces generated by different tools

are not limited to the syntax only:

• each tracing tool produces different kinds of events

described by different attributes, and hence containing

amounts of information that depend on the specialisa-

tion of the tool. For example, a general-purpose OS

kernel (such as Linux) can generate events about task

creation/termination, context switches between tasks, task

blocking/wakeup, and tasks migration, but has no in-

formation about job arrivals and job finishing. On the

other hand, a scheduling simulator such as rtsim, being

dedicated to handling real-time tasks, can generate events

at job arrival times and job finishing times

• different tools can associate different amounts of informa-

tion (in the form of attributes) to the same kind of event.

For example, the ”task wake up” events generated by

the Linux kernel (through Ftrace) have a ”CPU” attribute

(indicating in which runqueue the task has been inserted

when waking up), while rtsim does not associate any CPU

to tasks wake ups

• some tools react to some scheduler actions by generating

multiple events, whereas other tools generate one single

event as a reaction to the same scheduler action. For

example, in case of context switch between two tasks

the Linux kernel (using Ftrace) generates a “context

2Notice that the tracing tools can be scheduled at a priority lower than the
priority of all the real-time tasks, to avoid interfering with their schedule.

switch” event (characterised by the “prev task” and “next

task” attributes), whereas rtsim generates two different

“preemption” and “dispatch” events.

As a result,

• there is not a 1 ↔ 1 relationship between the events

contained in two traces generated by different tools

• when converting traces between different formats, infor-

mation can be lost, or have to be guessed

TRCUTILS address these issues by using an intermediate

internal format, which stores a maximum common denomina-

tor of all the information stored by different tracing formats.

For example, the internal TRCUTILS format associates a

“CPU” attribute to all of the events (so that information

stored in Ftrace “wake up” events are not lost) and provides

two different dispatch and preemption events (so that it is

possible to model the amount of time spent by an OS kernel

between preempting a task and scheduling the next one).

When importing traces generated by Ftrace, a single “context

switch” event generated at time t is converted in 2 events:

“preemption” and “dispatch”, both happening at the same time

t.
The events stored in TRCUTILS traces are:

• task creation

• task dispatching

• task preemption

• job arrival

• job termination

• deadline assignment

• deadline modification

Tasks migrations are not associated to any specific event,

because they can be inferred by looking at the “CPU” attribute

of the dispatch events).

Each event is associated to the following attributes:

• The event type

• The task τi to which the event is referred (described by

an integer number: the task identifier)

• The event time

• The CPU on which the event happens

The task creation events also store the task name, and the

deadline-related events store the deadline values.

The TRCUTILS traces have no global header at the begin-

ning of the trace, so that even fragments of traces can be

correctly decoded and traces are suitable for streaming. Of

course, incomplete traces can contain inconsistent sequences

of events, but TRCUTILS can fix them: for example, if two

consecutive “job arrival” events are received for the same task,

it means that some events (such as the “job end” event) have

been lost, and TRCUTILS introduce the missing events to make

the trace consistent.

III. EXISTING TRACING TOOLS

There are various tools to trace and analyse the tasks

execution, but none of them is particularly designed for

interoperability between different tracing formats.

WATERS 2012 35

RTDruid [8] is a development environment for ERIKA,

composed by some Eclipse plugins. It allows the estimation

of the worst case response time for different scheduling

algorithms, and it includes an importer/exporter for various

formats such as AUTOSAR XML. WindView [9] is specific

for VxWorks and allows to collect and to visualize information

about the execution of tasks. Feather-Trace [10] is a tool

specific for the LITMUS project. It exports events to a trace

files which can be analyzed by the unit-trace3, which can

perform a global-edf test, but no statistics are provided.

In [11] the authors developed a Linux kernel module able

to store information about the current executing task in the

system every scheduler tick. In this way is possible to measure

and to understand the execution of the various tasks in the

system. Few lines of the Linux kernel code must be modified

to utilize the module.

Some TRCUTILS feature are currently under development

to import and export data from and to some of the open-source

tools mentioned above.

Other more generic tools are commercial, and are not a

target for TRCUTILS interoperability. symTA/S4 is a commer-

cial scheduling analysis tool suite for different targets, like

processors, buses, networks, ... The capabilities of the suite

is tracing, statistical analysis of the trace and graphical report

of the results. chronVAL5 is a graphical tool which allows to

analyze and validate embedded systems using the worst-case

scenarios.

IV. THE TRACING PIPELINE

TRCUTILS provide a set of trace filters, organised in a

pipeline as shown in Figure 1.

The first stage of the pipeline (the import filter) transforms

the traces exported by external tools in the TRCUTILS internal

format, which is used by the other stages of the pipeline.

Currently, this filter is able to import traces generated by recent

Linux kernel through Ftrace, traces in the old Ftrace format,

rtsim traces, traces generated by an experimental version of

the X server [4], and traces generated by the Fiasco µkernel

through a patch provided by TRCUTILS. The import filter

is able to process events as soon as they are generated, and

can be used both in on-line and off-line mode.

The next stages of the TRCUTILS pipeline are composed

by second set of filters that can:

• export traces in different formats (currently, only the rtsim

format is supported as an export output), through the

export filter;

• parse the internal format to gather statistics about execu-

tion times, inter-arrival times, response times, and system

utilisation, through the stats filter;

• generate a chart (in xfig format) displaying the CPU

scheduling;

• periodically display tasks statistics on the screen (like the

“top” utility), through the visual filter;

3http://cs.unc.edu/∼mollison/unit-trace
4http://www.symtavision.com/symtas.html
5http://www.inchron.com

• infer some of the tasks temporal properties, identifying

(for example) periodic tasks.

When working in off-line mode, the filters read data from

files and output the results to one or more files. In on-line

mode, the filters communicate through standard Unix FIFOs

(named pipes) and can be combined in different ways, to

collect different kinds of information. For example, when

working in on-line mode, the visual filter, which period-

ically displays important statistics for selected tasks (similarly

to the standard “top” program) can be inserted in the pipeline.

When working in off-line mode, the collected values are

generally saved to files to be processed in a second time, but

they can also be summarised by some statistics that are saved

instead of the raw sequence of values, to save some disk space.

Since connecting the different tools in a correctly working

pipeline (creating all the needed FIFOs, etc...) can sometimes

be difficult, some helper scripts have been developed.

The final stages of the TRCUTILS pipeline shown in Fig-

ure 1 generate some useful output from the internal trace

(stored in TRCUTILS format) produced by the import filter.

The export filter can transform the trace in an xfig

file displaying the schedule. This can be useful for visually

analysing the scheduler’s behaviour, and can be easily im-

ported in various kinds of documents; for example, it has been

previously used in various papers (for example, [4], [12]).

On the other hand, the stats filter can generate a table of

values containing the average, standard deviation, minimum,

and maximum values for standard metrics such as the execution

time, inter-arrival time, response time, etc... The same filter

can be used for generating various kinds of statistics, and the

Probability Mass Function (PMF) of some observed values.

Such PMFs are stored in an output format which is compatible

with tools that allow to compute the probability to respect a

deadline6 [13].

Another filter, which periodically publishes some statistics

through a Unix socket, is under development to be used as

a server by programs performing dynamic adaptation of the

QoS or of the scheduling parameters. Other filters which are

currently under development allow the on-line identification

of periodic processes.

Some of the filters are still under development, but a

preliminary version of TRCUTILS has been released as open-

source software (under the GPL) and is usable for researchers.

Visit the TRCUTILS home page for more information and

updates: http://www.disi.unitn.it/∼abeni/TrcUtils.

V. EXAMPLES

This section shows some possible usages of TRCUTILS

through some simple examples.

In the first example, the export filter is used to gener-

ate a diagram representing the tasks’ schedule. If the input

trace is produced by an OS kernel, the diagram can be

used to analyse the scheduler’s behaviour. In this example,

Linux kernel traces (generated by Ftrace) are imported in

6See http://www.disi.unitn.it/∼abeni/gamma-bound.tgz

WATERS 2012 36

RTSim

Import
Filter

Stats
Filter

Times statistics

Probability distributions
Visual
Filter

Export
Filter

RTSim trace

TrcUtils trace

xfig diagram

Fiasco

X Server

FTrace

TrcUtils

Figure 1. The TRCUTILS pipeline

the TRCUTILS format and exported to xfig or to rtsim (after

eventually filtering the trace to select the relevant tasks and

time interval) to generate the scheduling diagram. Three

periodic tasks τ1 = (30ms, 250ms), τ2 = (20ms, 50ms), and

τ3 = (10ms, 100ms)7 have been scheduled on a dual proces-

sor system running the Linux kernel, capturing a scheduling

trace through Ftrace and the scripts provided TRCUTILS. First,

the trace has been converted in a TRCUTILS trace through

the import filter and converted in a scheduling diagram (in

xfig format) using the export filter. The resulting diagram

is displayed in the top of Figure 2. Note that in this example

the PID filtering feature of the import filter has been used to

trace only the three periodic tasks (with PIDs 20461, 20462,

and 20463) and the idle task: all the events associated

to tasks that are not selected by the PID filter have been

associated to the idle task (also note that there is one idle

task per CPU). The figure shows that all the tasks are started

on CPU 0, and after a short time task τ2 is migrated to CPU

1. After this, all the tasks are scheduled reasonably.

The same trace has been also exported to the rtsim format

and displayed using the rtsim trace visualiser, as shown in

the bottom of Figure 2. Since Ftrace produces times in µs
and rtsim has problem to cope with such large numbers, the

export filter converted times from µs to ms, dividing them

by 1000.

In the second example, the stats filter has been used

instead of the export filter, to collect some information and

statistics for performance evaluation. The average, standard

deviation, maximum value and minimum value of the inter-

arrival, execution, and response times of the three tasks shown

in Figure 2 have been computed, and are shown in Table I.

From the table, it is possible to see that the kernel is pretty

good at activating the tasks at the correct times (the average

inter-arrival times match the expected values, and teir standard

deviation is pretty small), but there is a large variation in the

response times. Such a large variation is due to the fact that the

three tasks have not been scheduled with real-time priorities.

To better highlight this effect, the Cumulative Distribution

Functions (CDFs) of the response times for the three tasks

have been measured (by using a different option of the stats

filter) and are displayed in Figure 3. All the results presented

up to now can be obtained by just changing the latest stage

of the processing pipeline.

Repeating the experiment with the proper real-time priori-

7τi = (Ci, Pi) means that task i has worst case execution time Ci and
period Pi

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000

P
 {

R
e
s
p
o
n
s
e
 T

im
e
 >

 t
}

t

Task 1
Task 2
Task 3

Figure 3. CDFs of the response times for 3 periodic tasks.

Table II
INTER-PACKET TIMES AS MEASURED IN THE SENDER. TIMES ARE IN µs.

Test Average Std Dev Max Min

T1 1190 29 1569 1040
T5 5198 22 5278 5058
T10 10195 22 10277 10062
T50 50207 27 50298 50081
T100 100207 25 100290 100093

ties (computed according to RM), the response times computed

by the stats filter also matched the expected values.

A similar usage of TRCUTILS has been useful in the past to

collect timing information about the IRQ threads in Preempt-

RT [14]. This information have been used in previous works to

properly dimension a CPU reservation to schedule such IRQ

threads [15]. The third example shows this kind of TRCUTILS

usage. First of all, the reliability of the information about

IRQ threads gathered through TRCUTILS has been tested

by sending a periodic stream of UDP packets between two

computers, and measuring the inter-packet times in the sender

(Table II) and in the receiver (Table IV). The tables report the

results of 5 tests (T1, T5, T10, T50, and T100), where test

Tx indicates that the sender sends an UDP packet every x ms
(note that the times in the tables are expressed in µs). Then,

TRCUTILS have been used to extract the inter-arrival times of

the network IRQ thread in the receiver machine, summarised

in Table III. By comparing Table IV and Table III, it is possible

to verify the correctness of the collected data.

After verifying the reliability of the measurements, some

WATERS 2012 37

CPU 0

idle*0

periodic_task*20462

periodic_task*20463

1
0

0
0

0

2
0

0
0

0

3
0

0
0

0

4
0

0
0

0

5
0

0
0

0

6
0

0
0

0

7
0

0
0

0

8
0

0
0

0

9
0

0
0

0

1
0

0
0

0
0

1
1

0
0

0
0

1
2

0
0

0
0

1
3

0
0

0
0

1
4

0
0

0
0

1
5

0
0

0
0

1
6

0
0

0
0

1
7

0
0

0
0

1
8

0
0

0
0

1
9

0
0

0
0

2
0

0
0

0
0

2
1

0
0

0
0

2
2

0
0

0
0

2
3

0
0

0
0

2
4

0
0

0
0

2
5

0
0

0
0

2
6

0
0

0
0

2
7

0
0

0
0

2
8

0
0

0
0

2
9

0
0

0
0

3
0

0
0

0
0

3
1

0
0

0
0

3
2

0
0

0
0

3
3

0
0

0
0

3
4

0
0

0
0

3
5

0
0

0
0

3
6

0
0

0
0

3
7

0
0

0
0

3
8

0
0

0
0

3
9

0
0

0
0

4
0

0
0

0
0

4
1

0
0

0
0

4
2

0
0

0
0

4
3

0
0

0
0

periodic_task*20461

CPU 1

idle*0

1
0

0
0

0

2
0

0
0

0

3
0

0
0

0

4
0

0
0

0

5
0

0
0

0

6
0

0
0

0

7
0

0
0

0

8
0

0
0

0

9
0

0
0

0

1
0

0
0

0
0

1
1

0
0

0
0

1
2

0
0

0
0

1
3

0
0

0
0

1
4

0
0

0
0

1
5

0
0

0
0

1
6

0
0

0
0

1
7

0
0

0
0

1
8

0
0

0
0

1
9

0
0

0
0

2
0

0
0

0
0

2
1

0
0

0
0

2
2

0
0

0
0

2
3

0
0

0
0

2
4

0
0

0
0

2
5

0
0

0
0

2
6

0
0

0
0

2
7

0
0

0
0

2
8

0
0

0
0

2
9

0
0

0
0

3
0

0
0

0
0

3
1

0
0

0
0

3
2

0
0

0
0

3
3

0
0

0
0

3
4

0
0

0
0

3
5

0
0

0
0

3
6

0
0

0
0

3
7

0
0

0
0

3
8

0
0

0
0

3
9

0
0

0
0

4
0

0
0

0
0

4
1

0
0

0
0

4
2

0
0

0
0

4
3

0
0

0
0

periodic_task*20462

Figure 2. The Linux scheduler serving 3 periodic tasks, visualised by xfig and by the rtsim tracer.

Table III
INTER-ARRIVAL TIMES FOR THE NETWORK IRQ THREAD. TIMES ARE IN

µs.

Test Average Std Dev Max Min

T1 1210 32 1424 59
T5 5222 117 5385 63
T10 10264 60 10353 10093
T50 50832 627 50353 50082
T100 100424 9342 100313 76

information about the network IRQ thread execution times

(needed to perform some kind of performance analysis of

the system) have been collected and are shown in Table V.

Then, the netperf8 tool has been used to produce a huge

UDP traffic, and TRCUTILS have been used to measure the

8http://www.netperf.org

Table IV
INTER-PACKET TIMES AS MEASURED IN THE RECEIVER. TIMES ARE IN µs.

Test Average Std Dev Max Min

T1 1207 1011 14336 0
T5 5212 1019 6144 4096
T10 10210 271 12288 8192
T50 50229 1023 51200 49152
T100 100204 530 100352 98304

probability distributions of the execution inter-arrival times for

the network IRQ thread. The Probability Mass Functions for

such times are presented in Figures 4 and 5.

VI. CONCLUSIONS

This paper describes TRCUTILS, a set of trace filters that

can be used to convert execution traces between different

WATERS 2012 38

Table I
STATISTICS ABOUT THE THREE PERIODIC TASKS. TIMES ARE IN µs.

Task
Execution Time Inter-Arrival Time Response Time

Avg Std Dev Min Max Avg Std Dev Min Max Avg Std Dev Min Max

Task 1 31053 4.910 31047 31060 249875 3.244 249870 249879 37065 6967.998 31051 58047

Task 2 20727 8.024 20687 20748 49974 1.351 49969 49981 21138 2480.460 20710 43661

Task 3 10367 10.233 10345 10380 99949 2.380 99947 99954 12303 3755.381 10374 26344

Table V
STATISTICS ABOUT THE EXECUTION TIMES OF THE IRQ THREAD. TIMES

ARE IN µs.

Test Average Std Dev Max Min

T1 15 5 63 9
T5 19 1 68 18
T10 14 1 29 13
T50 16 2 28 15
T100 21 3 23 12

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200

P
{I

n
te

r-
A

rr
iv

a
l
=

 t
}

t (microseconds)

Figure 4. PMFs of the inter-arrival times for the network IRQ thread.

format, and to extract temporal information from such traces.

The various filters are still under active development, and will

be released soon under an open-source license.

While the software has not been officially released yet, it

is reasonably stable and is able to successfully convert traces

generated by various tools and to extract statistics from such

traces.

More import and export filters are currently under develop-

ment, and will be available in the first release of TRCUTILS.

REFERENCES

[1] S. Rostedt, “Finding origins of latencies using ftrace,” in Proceedings of

the Eleventh Real-Time Linux Workshop, Dresden, Germany, September
2009.

[2] P. Rallo, N. Manica, and L. Abeni, “Inferring temporal behaviours
through kernel tracing,” DISI - University of Trento, Tech. Rep., 2010.

[3] M. Hohmuth and H. Härtig, “Pragmatic nonblocking synchronization
for real-time systems,” in USENIX Annual Technical Conference, 2001.

[4] N. Manica, L. Abeni, and L. Palopoli, “Qos support in the x11 windows
system,” in Proceedings of the 14th IEEE Real-Time and Embedded

Technology and Applications Symposium, (RTAS 2008), St. Louis, MO,
April 2008.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100

P
{E

x
e
c
u
ti
o
n
 T

im
e
 =

 t
}

t (microseconds)

Figure 5. PMFs of the execution times for the network IRQ thread.

[5] L. Palopoli, G. Lipari, G. Lamastra, L. Abeni, G. Bolognini, and
P. Ancilotti, “An object-oriented tool for simulating distributed real-time
control systems,” Software: Practice and Experience, vol. 32, no. 9, pp.
907–932, 2002.

[6] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” 1993, pp. 182–190.

[7] T. Cucinotta, L. Abeni, L. Palopoli, and F. Checconi, “The wizard of os:
a heartbeat for legacy multimedia applications,” in Proceedings of the

7th IEEE Workshop on Embedded Systems for Real-Time Multimedia

(ESTIMedia 2009), Grenoble, France, October 2009.
[8] P. Gai, G. Lipari, M. Di Natale, N. Serreli, L. Palopoli, and A. Ferrari,

“Adding timing analysis to functional design to predict implementation
errors,” 2007.

[9] D. Wilner, “Windview: a tool for understanding real-time embedded
software through system vizualization,” ACM Sigplan Notices, vol. 30,
no. 11, pp. 117–123, 1995.

[10] M. Mollison, B. Brandenburg, and J. Anderson, “Towards unit testing
real-time schedulers in litmusrt,” in Proceedings of the 5th Workshop

on Operating Systems Platforms for Embedded Real-Time Applications,
2009, pp. 33–39.

[11] M. Asberg, T. Nolte, O. Perez, and S. Kato, “Execution time monitoring
in linux,” in Emerging Technologies & Factory Automation, 2009. ETFA

2009. IEEE Conference on. IEEE, 2009, pp. 1–4.
[12] L. Abeni, L. Palopoli, C. Scordino, and G. Lipari, “Resource reservations

for general purpose applications,” IEEE Transactions on Industrial

Informatics, 2009.
[13] L. Abeni, N. Manica, and L. Palopoli, “Efficient and robust

probabilistic guarantees for real-time tasks,” Journal of Systems

and Software, 2012. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0164121211003232

[14] S. Rostedt, “Internals of the rt patch,” in Proceedings of the Linux

Symposium, Ottawa, Canada, June 2007.
[15] N. Manica, L. Abeni, and L. Palopoli, “Reservation-based interrupt

scheduling,” in Proceedings of the 16th IEEE Real-Time and Embedded

Technology and Applications Symposium, (RTAS 2010), Stockholm,
Sweden, April 2010.

WATERS 2012 39

Abstract

The traditional application of model based development
techniques in the design of real-time systems comprises usu-
ally the generation of code from both structural and behav-
ioral models. This work describes recent advances in a tool-
aided methodology that enables the assembly and transfor-
mation of such design intended models into schedulability
analysis models that match the corresponding automatical-
ly generated implementation code. Both, the analysis mod-
els and the code are generated by means of model transfor-
mations from the high-level architectural formalisms
provided by the UML Profile for MARTE standard. As a
novelty the Ada code generator uses not only the typical in-
formation provided in structural models, which is used to
create the skeleton of the classes and procedures, but also
its activities, whose scenario based behavioral information
is used to fill the code inside the procedures and functions
there contained. From the perspective of the real-time prac-
titioner, the use of activities instead of state machines helps
significantly to keep in tune the two fundamental views of
the system: the implementation code, and its corresponding
schedulability analysis model.

1. Introduction1

Model-based software development is progressively
taking momentum in industry as one of the most promising
software engineering approaches. It helps to create and
keep assets of many kinds along the development process.
It facilitates the separation of concerns, increasing the
process efficiency, and finally empowering the quality of
software.

For real-time applications, a model-based methodology
can also help to simplify the process of building the tempo-
ral behavior analysis models. These models constitute the
basis of the real-time design and the schedulability analysis
validation processes. With that purpose, the designer must

generate, in synchrony with the models used to generate
the application’s code, an additional parameterizable
model, suitable for the timing validation of the system
resulting out of the composition of its constituent parts.
The analysis model for each part abstracts the timing
behavior of all the actions it performs, and includes all the
scheduling, synchronization and execution resources infor-
mation that is necessary to predict the real-time qualities of
the applications in which such part might be integrated. In
the approach here presented, these analysis models are
automatically derived from high level design models anno-
tated with a minimum set of real-time features taken from
the requirements of the application in which they are to be
used. Following the generation of the application’s code as
a composition of the code of its constituent parts, the com-
plete real-time analysis model of the application can also
be automatically generated from the composition of the set
of real-time sub-models that form it.

A discussion of such process used for the design of the
real-time characteristics in a strict component-based devel-
opment methodology may be found in [1].

The research effort that this paper presents considers the
definition of schedulability analysis models as part of the
chain of tools and techniques used in a model driven engi-
neering approach. At this abstraction level, the concrete
modeling paradigm used to conceive and elaborate the sys-
tem is not specified, but for practical purposes we assume it
is able to be expressed in UML[16]. This is a general pur-
pose modeling language but we will use with it its stand-
ardized extensions for Modeling and Analysis of Real-
Time and Embedded systems, namely the UML Profile for
MARTE [13].

The very basic use of model based development tech-
niques, not only in the design of real-time systems but in
the software domain in general, comprises usually the gen-
eration of code from structural models like class diagrams.
With those automations an initial set of skeletons of the
classes and structural packages that form an application is
usually easy to obtain. Also some form of reverse engineer-
ing is available through the usage of specially formatted
“comments” placed as textual marks surrounding the space

1. This work has been funded by the European Union under contract
FP7/NoE/214373 (ArtistDesign); and by the Spanish Government under
grant TIN2011-28567-C03-02 (HI-PARTES). This work reflects only the
author’s views; the EU is not liable for any use that may be made of the
information contained herein.

Advances in the automation of model driven software engineering for hard real-
time systems with Ada and the UML Profile for MARTE

Julio L. Medina and Alejandro Pérez Ruiz

Departamento de Electrónica y Computadores, Universidad de Cantabria, 39005-Santander, SPAIN
{julio.medina, alejandro.perezruiz}@unican.es

WATERS 2012 40

for the real code. The final implementation code is then
inserted (usually typed by hand) between the marks man-
aged by the code generators. A further refinement that gen-
erates both, specifications and bodies, in the modeling side,
are code generators that use state machines for modeling
the behavior of the classes. This mechanism uses the opera-
tions of a class as messages handlers that trigger the events
between states. That way the messages from other objects
can interact with the automaton of the class, though in a
non-predictable order. Then, this kind of code generators is
not consistent with the required wosrt case scenario-based
description of activities used for schedulability analysis.
For this reason a different approach to the code generation
is necessary if we want to keep both models in tune.

The mechanism for code generation that may be used to
fill the code inside the marks of the structural skeletons is
the use of the behavioral models given for each operation
of the class. These models are usually made for explana-
tory or documentation purposes, but they are well suited
for specification. For this labor the proper modeling ele-
ments are activity diagrams. The formalization of the
“code” inside actions may be either the standardized action
language [17] of the OMG, or specific annotations in the
target language with the actions to be performed.

This paper presents some advances in the methodology
proposed and reports as a relevant contribution the defini-
tion and implementation of a new kind of code generator. It
does not only generate the classical skeletons from UML
classes and operations, but also fills the bodies of those
operations with code generated from the interpretation of
UML activities. The activities are graphically described
using activity diagrams.

The paper is organized as follows: Section 2 presents a
global view of the approach and situates the research
efforts undertaken in its perspective. It also makes a brief
summary of the challenges, and presents some related
efforts as well as the basis of the modeling languages used
for it. Section 3 summarizes the concrete rules for the code
generation. It describes and identifies the intermediate for-
malisms in the modeling language for the generation of the
implementation code and points out the technologies used
for its automation. Section 4 presents a usage example that
assesses the code generation features and illustrates the
available results. Finally some conclusions and the defini-
tion of our next steps in the completion of the envisioned
model driven engineering approach.

2. The approach
The approach that supports the efforts here described

uses UML as modeling language. The UML standard
extensions proposed by MARTE [13] for the modeling and
analysis of real-time and embedded systems are used with

it. It complements UML to enable the specification of the
necessary real-time features in the models. A synthetic
view of the approach is shown schematically in Figure 1.

The initial model used to describe the application and its
real-time features is constructed using the MARTE exten-
sions for high level application modeling (HLAM). From
this formalisms, two model-to-model (M2M) transforma-
tions are used. One, M2M_A, is used to create the UML
representation of the analysis model. This transformation is
used to create a model for each real-time situation under
analysis together with the model of the processing
resources, and the workload to consider. For this model the
schedulability analysis modeling capabilities of MARTE
(SAM) are used. The other, M2M_C, is used to generate an
intermediate model useful for the code generation. In this
methodology the target implementation language is Ada
and the intermediate model, called UMLforCode in Figure
1, is a typical UML object oriented generic model that
comprises structural as well as behavioral information. The
behaviors of the operations in this model are expressed by
means of activity diagrams.

The model-to-text transformation, denoted as M2T_M
in Figure 1, is needed to generate the final schedulability
analysis models in this approach, and it is part of our previ-
ous work [2]. An eclipse based tool [15] is provided for the
generation of analysis models, the invocation of the analy-
sis tools, and the retrieval of results back into the modeling
analysis context. The tool then converts SAM models into
the formalisms used by MAST [12] and then recovers its
results back into the UML+MARTE model.

This paper presents the advances achieved in the tech-
niques and tools used to generate the Ada implementation
code from the UMLforCode object oriented generic model.
This is a model-to-text transformation, called ACG (stand-
ing for Ada Code Generation) in Figure 1. The code imple-
mented out of the combination of M2M_C and ACG is
consistent from the execution semantics point of view with
the analysis models generated out of the combination of
M2M_A and M2T_M. Instrumented versions of the code
will serve to meassure actual execution times (WCET) for

HLAM

SAM

UMLforCode ADA

MAST

ACG

M2M_C

M2M_A

Figure 1. Models & transformations used in this approach

UML+MARTE

M2T_M

Conf.WCET

WATERS 2012 41

the SAM model. Once the analysis is performed, schedul-
ing results are back annotated to the SAM models. These
real-time configuration data include priorities (or relative
deadlines) for the concurrent units, and priority ceilings (or
preemption levels) for shared resources. Then, these data,
denoted as Conf. in Figure 1, is used as part of the configu-
ration information in the UMLforCode generation model.

2.1. The need for a new code generation technique
Following previous efforts that have studied the design

of real-time systems using object oriented formalisms, we
observe that most of them include the specification of the
concurrency using structural models, usually at the design-
for-implementation level. These dual structural-behavioral
formalisms are made in the aim that this will help to realize
schedulability analysis with the simple tasking model in
mind and basic RMA techniques later on. Unfortunatly the
complexity of the mechanisms used to generate the code
makes this assumption not realistic, such as in ROOM [3]
[4], Octopus/UML [8], ACCORD/UML [10] [11], Comet
[7], or the design model extremely constrained and mono-
lithic such as in HRT-HOOD [5], OO-HARTS [6].

Being a syncretism of all those mentioned, and in order
to ease the application of simple schedulability analysis
techniques, the high level application modeling constructs
in MARTE (see its HLAM section in [13]) also facilitate
the use of structural models for the specification of the con-
currency. But the interactions between them (including dis-
tribution) may take complex patterns that require a richer
model for the analysis. The offset based analysis tech-
niques scale better to deal with this scenarios than the basic
tasking model. HLAM proposes two basic building blocks,
the real-time unit: RtUnit and the passive protected unit:
PpUnit. As for the behaviors in them (the code inside the
marks), due to its natural complexity it is usually not just
passive linear code that can be modeled as a computation
time; instead they include delays, and interactions among
objects and nodes, mostly when they become formed out of
a composition of distributed operations (behavioral mod-
els). In these cases a state machine is not directly trans-
formable into an analysis model.

From the analysis perspective, the models that are
required to apply the modern offset based analysis tech-
niques, are fundamentally scenarios. A scenario is an
expression of the (worst case) expected or observable man-
ifestation of the design intents (coded behaviors). This is
the basis for coping with complexity that distinguishes
RMA schedulability analysis techniques from those other
strategies based on timed automata or synchronous lan-
guages.

As a modeling language for this domain, the scheduling
analysis modeling section of MARTE (SAM) is also able

to express that kind of scenario models, and then it is an
adequate formalism to feed the corresponding analysis
tools. Unfortunately these scenarios are not necessarily part
of the initial specification of the system behavior. They are
a means to express: the expected stimuli, the high level
expected workload, and the end-to-end timing require-
ments, but they are usually not the basic data used for
design intent or code generation drawn by the designers.

The creation of these (usually worst case) analysis ori-
ented scenarios in tune with the final code is actually the
main duty and a high responsibility of the real-time practi-
tioner. In order to help in this labor the automation tools
need the model used for code generation to have the behav-
iors of its operations expressed as scenarios. For this reason
the adequate input models for the generation of the code
inside the operations in the UMLforCode model are UML
activities. Then the tool that fills the code for the proce-
dures and functions associated to the classes retrieves it
from activity diagrams.

The use of scenarios has an additional benefit. This
method helps to support the design of applications in terms
of composable parts, which are closer in granularity to the
concept of real-time objects than to the fully CBSE inter-
pretation of components. In a fully component-based
approach, the creation of the analysis models would have
to be made as a combination of both, structural elements
plus their deployment. In a model-driven approach, this
later strong form of composability is in a higher level of
abstraction, but still may benefit of the approach here
described in order to assess a variety of non-functional
properties, in our case of course the assesment of its timing
properties by means of schedulability analysis.

3. The UMLforCode (meta)model
The purpose of having this intermediate model is basi-

cally to have a UML object oriented representation of the
system that allows us to have the behaviors expressed in a
way as close as possible to the way it is expressed its
schedulability analysis model. Also this model must serve
to implement the system in potentially different target pro-
gramming languages. As a starting point for its practical
implementation we have considered Ada as the target lan-
guage.

In this section we describe the elements of UML that
have been selected for the creation of these models, and the
way they are used to generate Ada code. Instead of using a
full metamodel, or a reduced version of the UML meta-
model to formalize this description, we prefer to present it
by identifying the capacities of the object oriented mode-
ling/programming that are supported.

The technologies used for this automation are those pro-
vided by PapyrusUML as graphical tool, the UML2 plug-in

WATERS 2012 42

as model repository, and the Acceleo plug-in for the extrac-
tion of text from the UML2 models. As in marte2mast
(M2T_M) [15], also here a number of Java functions have
been necessary to implement the code generation.

3.1. Structural elements
The structural object oriented elements currently sup-

ported are Classes, Packages, and Interfaces. They are
modeled in Class Diagrams.
•Packages may contain classes and have dependencies

among them. Dependencies are implemented by means
of with clauses between the ada package construct.

•Classes are the basic building blocks of code in an object
oriented language. In Ada they are implemented by
means of what Ada calls tagged types. These con-
structs support the inheritance and polymorphism, and
hold in a natural way the UML concepts of object prop-
erty (attribute) and operation (method). Static attributes
and methods are declared out of the tagged type, so to
keep them together they need to be hold by a wrapping
Ada package in which the tagged type is also defined.
This mechanism allows us to implement in Ada also the
dependencies between classes and the visibility (accessi-
bility) restrictions of the properties and operations. The
inheritance and the realization of interfaces are imple-
mented natively by Ada in the tagged types definition.
Figure 2 shows how the Ada wrapping package visibility
scopes match the visibility of the class members.

•Interfaces are directly implemented by using the corre-
sponding Ada concept, which supports the definition of
object methods. Static methods and attributes (including
constants) are implemented like in classes by generating
the corresponding code in the wrapping package. Inter-
face object attributes are not supported.
Next we present some limitations of the tool, and mode-

ling constraints for UMLforCode models. The tool is able
to detect them and warn the user about their occurrence:
1. For members of a Class (properties and operations) the

visibility clause package will not be enforced by the
Ada language. They will be public and consistently
renamed with the prefix package_ .

2. Other visibility clauses (public, protected, and
private) are supported as indicated in Figure 2.

3. Attributes need to have a name and a type.
4. Operations need to have a name and a type. Also each

parameter needs: a name, the direction of assignment
(in, out, or inout), and a type.

5. Classes and Interfaces need to have public visibility.
6. Nested classes are not supported.
7. Multiple inheritance is not supported in Ada. Interfaces

realization is suggested to overcome this issue.
In order to handle inheritance, classes contained inside

packages, and do so respecting the visibility defined by the
modeler, three possible solutions where studied: (a) use the
containing package directly as the wrapper, (b) use the
class wrapping package as a child package of the container,
(c) use the containing-contained relationship only as a
mechanism to define the name of the wrapping packages
for the class. The chosen solution was (c).

To see this, consider the example in Figure 3. The wrap-
ping package for class B will be denominated PackageS_B,
correspondingly, the wrapping package for class A will be
denominated PackageR_A. The fully qualified name of
class B is PackageS_B.B and inherits from PackageR_A.A.

3.2. Behavioral models
Following the structure of SAM models described in

previous research efforts [2] [14], MARTE provides con-
cepts to organize the analysis models using three main cat-
egories: the platform resources, the elements describing the
logical behavior of the system constituent parts, and finally
the real-time situations (scenarios) to be analysed.

Scenarios are expressed usually by the annotation of
SaSteps (SaCommStep, ResourceUsage or GaScenario) in
sequence charts or activity diagrams. In marte2mast [15],
scenarios may also be constructed from the lists of steps
that are implicit in the chain of internal sub steps of a SaS-
tep. These are expressed using the sub-usages list, hence
using a structural element of the MARTE profile. This
helps the tools to extract the analysis model in a more effi-
cient way. But to express the high level end-to-end flows
scenarios, sequence charts or activity diagrams are used
instead.

Figure 2. Class members visibility in the wrapping package

Figure 3. Inheritance among classes in different packages

WATERS 2012 43

The elements that are currently used for the generation
of the code inside class operations (bodies of the methods)
are activities described by means of activity diagrams. The
concrete modeling elements used in the diagrams are:

Initial nodes / Control Flow /Guards / Decision nodes /
Opaque actions / Final nodes

These elements may be considered intuitively as corre-
sponding to the basic assembly instructions for an Eckert-
Mauchlyin architecture (also called Von Neuman architec-
ture). With them the tool is able to extract out of the dia-
grams: regular sentences, invocations, simple while loops
as well as if-then-elseif-else conditional branches (see the
example in Figure 4). These basic constructs are the mini-
mum required to describe scenarios, but they are sufficient
for the general case; specially considering that, in the scope
of the full approach, UMLforCode models are to be auto-
matically generated by M2M_C from HLAM structural
and behavioral models.

From its implementation point of view, in order to make
code from activities, ACG has required much more than
the basic automations provided by Acceleo. In particular
due to the difficulties to handle variables inside the
Acceleo scripts. The use of Java code inside the scripts,
and the UML2 Java library created by the eclipse commu-
nity, have been necessary to overcome this problem.

4. Study example
In order to show the capabilities of this tool we propose

as an example the structural and behavioral models shown
in Figure 4. They represent a very simplified extract of a
car class and the activity model of an operation to start it.

Two pieces of code extracted from that model are shown
next: the specification, and an extract of the implementa-

tion body of the DieselCar class. The implementation
body shows the code for the function start.

The obtained Ada specification is:
with StudyExample_Vehicle.Vehicle;
with StudyExample_Tachometer.Tachometer;
package StudyExample_DieselCar is

type Public_Part is abstract new StudyExample_Vehicle.Vehicle
and StudyExample_DieselEngine.DieselEngine with record

seats : Integer;
myTachometer : StudyExample_Tachometer.Tachometer;

end record;

-- Complete_type
type DieselCar is new Public_Part with private;

-- Public methods:
procedure startIgnition (Self : DieselCar'Class);
procedure setNormalMode (Self : DieselCar'Class);
procedure setStartingMode (Self : DieselCar'Class);
overriding procedure start (Self : DieselCar'Class);
overriding procedure stop (Self : DieselCar'Class);

private
 -- Protected attributes
type DieselCar is new Public_Part with record

automatic : Boolean;
end record;

end StudyExample_DieselCar;

The Ada body obtained for the start function inside
DieselCar Class is:
package body StudyExample_DieselCar is

--Methods

overriding procedure start (Self : DieselCar'Class) is
begin

 error:=autoTest();
 if error/=0 then
 raise Autotest_Failed;
 elsif(error=0) then
 engineHeater.start();

setStartingMode();
starter.On();

 while myTachometer.value()<400 loop
 delay(0.1);

 starter.checkTimeOut();
 end loop;
 starter.off();

setNormalMode();
 end if;

Figure 4. Structural and behavioral models used in the study example.

WATERS 2012 44

end start;
--Methods

procedure setStartingMode (Self : DieselCar'Class) is
begin
 -- (AP) Generated: replace with real body!

pragma Compile_Time_Warning (True, "setStartingMode
unimplemented");

raise Program_Error;
return setStartingMode (Self);

end startIgnition;

...

end StudyExample_DieselCar;

5. Conclusions and future work
This work has presented the recent advances in a tool-

aided methodology that enables the assembly and transfor-
mation of high level design intended UML models into
schedulability analysis models that match the correspond-
ing automatically generated implementation code. Both,
the analysis models and the code are generated by means of
model transformation from the high-level architectural for-
malisms provided by the UML Profile for MARTE stand-
ard. As a novelty this paper presents a new kind of Ada
code generator that generates not only the skeleton of the
classes, but also the code inside the procedures and func-
tions there contained. It uses activity diagrams to fill them.

The necessity of this way of generating code lays in the
fact that the UML+MARTE schedulability analysis spe-
cific models are described by means of scenarios. The crea-
tion of this (usually worst case) analysis oriented scenarios
is actually the main duty of the real-time practitioner. Then,
in order to automate the consistency between the code
structure and the analysis model, both need to be expressed
as scenarios, instead of state machines behaviors. From the
real-time and embedded systems research community per-
spective, this effort constitutes another step to get the effec-
tive exploitation of the capabilities of the available analysis
and verification techniques, which despite the efforts in
dissemination, have not yet reached an audience large
enough to reward the many years of work in the field. The
modelling strategy and tools proposed in this work are
another step in this direction.

References
[1] López P., Drake J.M., and Medina J.L., Enabling Model-

Driven Schedulability Analysis in the Development of
Distributed Component-Based Real-Time Applications. In
Proceedings of 35th Euromicro Conference on Software
Engineering and Advanced Applications, Component-
based Software Engineering Track, Patras, Greece, August
2009, IEEE, ISBN 978-0-7695-3784-9, pp. 109-112.

[2] J. Medina and A. Garcia Cuesta. Model-Based Analysis
and Design of Real-Time Distributed Systems with Ada
and the UML Profile for MARTE. In Proc. of the 16th
International Conference on Reliable Software

Technologies-AdaEurope 2011, LNCS 6652, pp 89-102,
ISSN 0302-9743

[3] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-time
Object Oriented Modeling. ISBN 0-471-59917-4, John
Wiley & Sons, Inc., USA, 1994

[4] Bran Selic and Jim Rumbaugh. Using UML for Modeling
Complex Real-Time Systems. Rational white papers, http://
www.rational.com/products/whitepapers/UML-rt.pdf,
March 1998

[5] Alan Burns, Andy Wellings. HRT-HOOD, a structured
design method for hard real-time ADA systems. ISBN 0
444 82164 3. Elsevier, Amsterdam, 1995

[6] Mazzini S., D'Alessandro M., Di Natale M., Domenici A.,
Lipari G. and Vardanega T. HRT-UML: taking HRT-HOOD
into UML. In Proceedings of 8th Conference on Reliable
Software Technologies Ada Europe, 2003

[7] Hassan Gomaa. Designing Concurrent, Distributed and
Real-Time Aplications with UML. ISBN 0-201-65793-7,
Addison-Wesley, USA, 2000

[8] E. Domiczi, R. Farfarakis and J. Ziegler. Octopus
Supplement Volume 1. Nokia Research Center. http://
www-nrc.nokia.com/octopus/supplement/index.html, 1999

[9] Laila Kabous. An Object Oriented Design Methodology for
Hard Real Time Systems: The OOHARTS Approach.
Doctoral Theses, School Carl von Ossietzky, Universität
Oldenburg. 2002

[10] F. Terrier, G. Fouquier, D. Bras, L. Rioux, P. Vanuxeem and
A. Lanusse. A Real Time Object Model. Presented in
TOOLS Europe'96. Paris, France. Prentice Hall, 1996

[11] A. Lanusse, S. Gerard and F. Terrier. Real-Time Modeling
with UML: The ACCORD Approach. In Selected papers
from the First International Workshop on The Unified
Modeling Language "UML"'98: Beyond the Notation.
Mulhouse, France, June 3-4, 1998. Pp. 319-335. ISBN:3-
540-66252-9. Springer-Verlag London, UK 1998.

[12] M. González Harbour, J.J. Gutiérrez, J.C.Palencia and
J.M.Drake, MAST: Modeling and Analysis Suite for Real-
Time Applications, in Proc. of the Euromicro Conference
on Real-Time Systems, June 2001.

[13] Object Management Group, UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems,
version 1.1, OMG doc. formal/2011-06-02, 2011.

[14] J.L.Medina, M.González Harbour and J.M. Drake, Mast
Real-Time: A Graphic UML Tool for Modeling Object-
Oriented Real-Time Systems, in Proc of the 22nd IEEE
Real-Time System Symposium (RTSS 2001), pp 245-256,
2001.

[15] http://mast.unican.es/umlmast/marte2mast
[16] Object Management Group. Unified Modeling Language

version 2.4.1, OMG document formal/2011-08-06, 2011
[17] Object Management Group. Action Language for

Foundational UML (Alf), Concrete Syntax for a UML
Action Language. OMG document ptc/2010-10-05, 2010.

WATERS 2012 45

Enabling Model-Based Development of Distributed Embedded Systems on Open
Source and Free Tools

M. Di Natale, M. Bambagini, M. Morelli
Scuola Superiore Sant’Anna, Italy

A. Passaro, D. Di Stefano, G. Arturi
Evidence Srl, Italy

Abstract

Model-Based Design brings the promise of an improved
quality and productivity in the development of embedded
systems and software. Flows based on commercial tools
are today used in the industrial practice, albeit with several
limitations. Furthermore, the analysis of the time properties
considering scheduling and communication delays requires
the addition of custom blocks to functional models, violat-
ing a desirable separation of concerns between the func-
tional and the platform designs. Finally, to get full control
at all stages in the modeling of systems and the automatic
generation of implementations, it would be desirable that
the toolchain is available as open source in all its com-
ponents. We outline the initial steps in the development
of a framework, largely based on the Scicos and Eclipse
EMF open frameworks, that aims at providing support for
the modeling, simulation, analysis and automatic genera-
tion of implementations of embedded functions on complex,
distributed architectures.

1 Introduction

The use of models for the advance analysis of the system
properties and verification by simulation, the documenta-
tion of the design decisions and possibly the automatic gen-
eration of the software implementation is an industrial re-
ality, backed by several commercial products. The Model-
Based Design approach (MBD) prescribes models based on
a synchronous (reactive) execution model. Examples of
available commercial tools are Simulink [5] and SCADE
[7]. These tools are feature-rich and allow the modeling
of continuous-, discrete-time, and also hybrid systems in
which functionality is represented using an extended finite-
state machine formalism.

However, MBD commercial tools lack in the capabil-
ity of modeling physical computing architectures (and to
some degree also task and resource architectures), as well
as computation and communication delays that depend on
the platform. Also, available commercial code generators

typically provide implementations only for code to be de-
ployed on a single CPU (exceptions are the Rubus Com-
ponent Model and the accompanying tools [2]). AADL
languages also supports execution platform modeling [3],
but the tools originating from these languages seldom allow
for simulation and automatic code generation (one example
is [4]). To fill this gap, designers provide an implementa-
tion for a distributed execution platform by adding custom-
developed communication code and performing the appli-
cation partitioning by hand.

The analysis of computation and communication delays
can be performed using the Truetime blockset in Simulink
and the generation of platform-dependent code (including
the task structure, the I/O and the communication code) can
be obtained with custom blocks (for example, a well-known
solution in the automotive domain is the RTI blockset
from DSpace). However, both solutions create a model in
which the functional solution is interspersed with platform-
specific implementation blocks. If the implementation plat-
form, or the task placement, or in general the task configura-
tion is modified, the user must change all the affected blocks
inside the model. Furthermore, code generation blocks for
I/O and communication tend to be platform-specific.

Separation of the functional and platform models is ad-
vocated by many: examples from the academia are the Y-
chart [15] and the Platform-based design [17] approaches.
The OMG (a standardization organization) in its Model-
Driven Architecture (MDA) [8] defines a three stage process
in which a Platform-Independent Model or PIM is trans-
formed in a Platform-Specific Model or PSM by means of a
Platform Definition Model (PDM). Finally, the automotive
industry AUTOSAR standard [1] defines a virtual integra-
tion environment for platform-independent software com-
ponents and a separate model for the (distributed) execution
architecture, later merged in a deployment stage (supported
by tools). Unfortunately, the AUTOSAR metamodel is pub-
lic but not open (use is only authorized to members of the
consortium). Similarly, the Eclipse EMF-based Artop tool
that provides the basic support for the AUTOSAR meta-
model and its serialization is open but restricted for con-
tributions and use to the consortium members. Most impor-

WATERS 2012 46

tant, AUTOSAR does not have any feature for modeling the
behavior of the functions. Therefore, an exetrnal tool or the
actual code is needed for functional modeling.

An open source or free framework can be constructed
leveraging the following toolsets:

• Scicos [6] can be used for the functional model-
ing. The graphical language of Scicos is based on
a synchronous semantics that is close to the one of
Simulink. The toolset is open, offers a scripting lan-
guage interface and a TCL-based graphical front-end.
Unfortunately, Scicos currently does not support the
modeling of Finite State Machine blocks. In addition,
the code generation available for the dataflow part of
Scicos has several limitation: it generates one function
call for each block, does not provide support for all
datatypes, and only generates single-task implementa-
tions for single rate models. In addition, the generated
code is derived from the code used by the simulator
with the overhead for all the hooks and data structures
that are useful at simulation time but not needed on the
target.

• The Platform model, as well as the model of the tasks
and messages, can be generated using the Eclipse EMF
modeling framework [11]. EMF offers the possibility
of defining custom metamodels using its Ecore facil-
ity. Alternatively, several tools leveraged the EMF to
build UML or SysML [9, 10] modeling environments.
The most popular among them are Topcased and Pa-
pyrus. SysML modeling has the advantage of being
conformant to a standard, with graphical editors and a
number of additional tools for supporting the manage-
ment of models. Unfortunately, SysML (and UML)
are generic modeling languages, with little support
for (embedded) domain-specific definitions. There-
fore, a specialized profile is needed before it can be
used for modeling embedded platforms and systems.
Such a profile is currently available from the OMG,
as MARTE (Modeling and Analysis of Real-Time and
Embedded systems) [16]. However, MARTE is of dif-
ficult use, often cumbersome and lacking in the avail-
ability of concepts for modeling physical communica-
tion devices, as well as messages.

• A code implementation can be generated from EMF
models (Ecore, or the UML/SysML models of tools
that are based on Ecore) using model-to-text gen-
erators (of which model-to-code is a special case).
Among them, the Acceleo toolset [12] is open, based
on OMG standards, and allow to write code generator
templates that query the model using statements in the
standard OCL language.

The resulting methodology is a merger of the MBD and

MDA paradigms. The overall tool flow is represented in
Figure 1. The functional modeling, simulation and possi-
bly verification of functional properties is performed using
Simulink or Scicos. when simulink is used, the correcial
code generators from Mathworks can be used to produce the
behavioral code. Alyternatively, the functional model is ex-
ported in the Ecore XMl format and inported in the Eclipse
EMF. Here, it can be extended with the platform and map-
ping models (in Ecore or using SysML) and the platform-
dependent portions of the code produced. In the following
sections we provide more details on the technologies and
tools that have been developed for this purpose.

Figure 1. Exchange of information and code
generation by the framework tools.

2 A Finite State Machine modeling tool for
Scicos

To provide Scicos with the capability of modeling and
simulating Finite State Machines, Evidence srl developed
a modeling front-end, a simulation engine, a custom block
which connects a Scicos model to the simulation engine,
and a code genarator from a FSM specification.

The modeling tool (a snapshot is shown in Figure ??)
allows the specification of hierarchical (extended) Syn-
chronous FSMs. Compared with commercial alternatives,
or even UML/SysML State Diagrams, the model has sev-
eral limitations. For example, no exchange of events among
concurrent states, no join transitions, no inner or outer tran-
sitions and no access to internal variables from possibly
concurrent states are allowed. This is done on purpose, to
keep the FSM semantics concise and simple, thereby sim-
plifying the code generation and possibly the verification of
the behavior.

The tool produces an XML output describing the state
machine structure and a stub for the creation of a custom
Scicos block, representing the FMS in a larger model. An

WATERS 2012 47

executable reads the XML description and provides a sim-
ulation stub that can be connected to the Scicos simulator
through the custom block to co-simulate the FSM in the
context of the Scicos model.

2.1 Code generation from FSM blocks

A code generator produces an implementation of the
FSM for execution on an embedded platform, consisting of
an initialization function, and a step function to be executed
at runtime (realizing the output update and the state update
functions). The current generator produces an implemen-
tation based on a single step function. The code genera-
tor only accepts FSMs with periodic activation events and
the step function that realizes the FSM behavior runs at the
greatest common divisor of the activation events. However,
in the future, we plan to extend the generator options to in-
clude a possibly more efficient partitioning of reactions in
multiple functions to be scheduled at different periods [21].

3 Importing the functional model in the
Eclipse EMF

The core of the modeling framework is implemented in
the Eclipse EMF. Here, the functional model is matched
with a platform model. A task, message and resource in-
termediate model is created in the process.

The functional model is created by importing in EMF the
Scicos model (Alternatively, an input from Simulink is also
possible). An Ecore metamodel has been defined for the
import process (Figure 2)

This metamodel is not too dissimilar from the one pro-
posed in the GeneAuto project [20] (actually, a simplified
version of it). Contrary to GeneAuto, our metamodel is im-
mediately available as an Ecore definition and it is only the
starting point for a code generation process. GeneAuto has
the objective of building an open-certified code generator,
but does not handle distributed systems (and of course, nei-
ther the separation of functionality and task model) and does
not generate platform-specific code.

In order to provide a code generator of industrial quality
(with signal typing, code inlining and port variable fold-
ing) the functional model is then processed by a set of Ac-
celeo code generation templates that produce the code that
is functionally equivalent to the model.

At this stage, the generated code is strictly functional.
Two generation modes are offered. In the first, a single-
task implementation for the entire system is produced. The
second mode allows for a multitask code implementation.
When this mode is selected, we require that the designer
partitions its model (at some level in the design hierarchy)
in a set of superblocks (equivalent to Simulink subsystems)

Figure 2. The Ecore metamodel for the func-
tional part.

for which the execution is controlled by a single discrete-
time clock. The superblocks are the units of execution for
the code generation process. Each of the superblocks trans-
lates into a C function. Inside, the code implementing the
blocks behavior (output update and state update) is gener-
ated and inlined, serialized according to the execution order
generated by the Scicos modeler.

At runtime, access to the superblock ports does not hap-
pen in the way that is conventionally used by code gener-
ators. For example, the Simulink code generator project
allows for several options, of which the most popular are to
include the port variables in the signature of the Step func-
tion, or to use a set of global variables for the interface ports.
Our generated code accesses the ports using a middleware-
level API. Input or output ports are accessed using a simple
and generic interface

EMW_read(sblock_id, port_id, port_type *read_var)
EMW_write(sblock_id, port_id, port_type write_expr)

This API eases the generation of the communication
among superblocks in the case when these superblocks are
mapped into different tasks or even remote nodes.

4 Matching the functional model with the
platform model

Given that the functional model is produced by import-
ing a description from Scicos, there is the need of a suitable

WATERS 2012 48

model (and metamodel) for the representation of the execu-
tion platform and the task and messages models. There are
several options for the selection of such metamodels. In the
following, we describe our current implementation, based
on a set of custom metamodels, and then we outline another
option, possibly more appealing for future work, in which
the platforms and mapping models are generated by a cus-
tomization of SysML.

4.1 Platform and mapping models based on cus-
tom Ecore metamodels

In our current implementation, the execution platform
meta-model, shown in Figure 3, defines the hardware and
software resources available in the system. The execution
platform model needs to be modular and to support the con-
cept of component libraries.

The main architectural elements that are used by the ex-
ecution architecture designer are the following:

• Embedded Control Unit (ECU), which is a set of
electronic boards, connected through communication
links;

• Board, which may host several Controllers and De-
vices;

• Controller, which may include several Cores and Pe-
ripherals;

• Core, representing a computational unit;

• Peripheral, representing an electronic component
which extends the Controller’s functionalities;

• Devices, which represent I/O devices using a set of pe-
ripherals. So far, the meta-model supports buttons,
touch screens, leds, lcd displays and servo motors.
Communication units belong to a special class of de-
vices, handled separately;

• Real-Time Operating System (RTOS), which may run
on Cores.

The platform meta-model is completed by the project-
specific definitions, showing the elements of the hardware
and software architecture deployed for supporting the exe-
cution of the functions in one specific project instance. The
main entities at this level are ECU instances (ECUDeploy-
ment), with the RTOSs executing on them (RTOSDeploy-
ment) and the communication buses (Bus). Each Bus object
references the connected ECUs and the associated commu-
nication devices.

Figure 5 shows a screenshot of the developed Eclipse
plug-in which defines the platform execution model out of
the library components.

Figure 3. The meta-model for the library com-
ponents that are used to construct the execu-
tion platform.

Figure 4. Meta-model of the objects that are
used to build the project-specific execution
architecture.

Once the system execution architecture is defined, a
mapping model associates functional elements to tasks and
then tasks to the (HW) processing elements, following the
schema of Figure 6. The communication signals of the
functional view are mapped (when needed) to messages and
in turn, messages onto the physical links of the execution
platform.

The task is the unit of concurrent execution that can run
on one of the system cores, under the control of an operating
system. The information about which RTOS hosts a specific
task is handled by an association between the Task objects
(Figure 6) and the RTOSDeployment (Figure 4). The Step
methods of the functional subsystems are executed in the
context of one of the task defined in the mapping model.
More precisely, a list of Superblocks (defined as ProcMaps
in the block-to-task mapping), sorted according to an execu-
tion order, belongs to each task. Each mapped Superblock
refers to the appointed Step method. Moreover, design-
ers must specify all the information concerning task times
(such as period and deadline) and scheduling (priority and

WATERS 2012 49

Figure 5. The editor used to construct the
model of the execution platform.

reserved stack). The mapping of the functional subsystems
(Procs) into tasks is subject to constraints and validation.

VarMap, the second important class into the Mapping
package, concerns the mapping of signal variables or Vars
(representing communication or I/O links, depending on the
mapping). As shown in Figure 6, VarMap is a generic in-
terface and four possible derived classes are instantiable:
VarDevice is used to map custom devices to real devices
and the other three to model all the possible communica-
tion scenarios according to the placement of the methods of
Procs into tasks. IntraTaskVar communication takes place
when two communicating procs are mapped into the same
task (implemented using variables local to the task). Inter-
TaskVar communication occurs between two tasks on the
same Core. In this case, a suitable protection mechanisms
for shared resources, provided by the operating system (part
of the platform model) is used. The most complex case hap-
pens when the communication needs to be established be-
tween two remote tasks executing on different cores, or pro-
cessors, connected by either an intra-chip network, a field
bus or another network. An InterECUVar mapping object
is automatically generated to represent this kind of com-
munication, linking a Var to a specified portion of a Frame.
Frames are periodic communication messages which are ex-
changed between two nodes through a shared bus.

4.2 Platform and mapping models based on
SysML profiles and MARTE

A possibly more appealing option for the definition of
the platform model and the mapping between functional
subsystems and communication links and platform cores
and communication or I/O interfaces consists in the use of
a customized extension of the SysML metamodel. This al-

Figure 6. Meta-model for the definition of the
mapping of functional components into tasks
and connections among them.

lows us to use modeling tools with graphical editors, model
checkers and processors, and possibly other standard tools.
In this case, a stereotype of the standard SysML block con-
cept could be used to represent Synchronous reactive sub-
systems and the standard SysML block definition diagrams
(or bdd) and internal block diagrams (or ibd) could repre-
sent the block dependencies and the topology of communi-
cation. These models and diagrams, equivalent to the source
Scicos or Simulink models, can be generated automatically
starting from the Ecore model of the system functions, us-
ing a QVT transformation [19].

Next, the platform model could be constructed lever-
aging another set of SysML diagrams, using the MARTE
stereotypes for computing nodes (cores), operating systems
and computing resources, and suitable extending it for the
model of the communication networks and protocols.

Finally, the mapping relationship can use the allocation
tables of SysML, possibly complemented by an additional
set of stereotypes to define the mapping of functional sub-
systems (their step functions) onto tasks and of signal data
onto messages. Once again, MARTE provides standard
stereotype concepts for representing tasks, shared resources
and the attributes that are required by the most popular real-
time analysis techniques.

5 Code generation and Example

The code generation of the platform-dependent code, in-
cluding the tasking model and the communication code can
be performed by processing the platform and mapping mod-

WATERS 2012 50

els using Acceleo (model-to-text) transformation templates.
Acceleo is an open tool and allows great flexibility in the
generation of the program implementation. In our current
implementation, we are assuming an OSEK interface for
the generation of the task model and the operating system-
level API for task management and an AUTOSAR interface
for I/O management. The tasks code is generated as a se-
quence of calls to the step methods of the functional sub-
systems mapped into it. Calls are sequentialized according
to the mapping order, which must be consistent with the
partial order of execution specified by the semantics of the
functional model. Each invocation of the step method is
preceded/followed by the respective middleware read/write
functions implementing the functional data flows.

The code implementation of the middleware read/write
functions, representing the communication links (Vars), de-
pends on the task and core mapping of the blocks at the two
endpoints of the communication.

For each communication signal, the Acceleo scripts can
generate four different implementations. When the Var
mapping is an instance of IntraTaskVar, the access func-
tions execute read/write operations to a shared variable. If
the endpoints are located on different tasks managed by
the same operating system (InterTaskVar), read and write
accesses to the shared variable are realized using a lock-
free access protocol. The third case, which occurs when
the sender and the receiver are on different processors (In-
terECUVar), is handled by using a middleware implementa-
tion wrapping a network communication API. Finally, com-
munications between controller subsystems and the plant
model can be mapped into I/O primitives.

A simple test case for the proposed methodology has
been implemented by realizing a ball-and-plate controller
with the same functional model (a PID controller) and two
distributed implementations: one as a single node, and the
other as a distributed platform (two nodes connected by a
radio link). The two implementations have been obtained
by changing the platform instance and the mapping specifi-
cation and without writing a single line of code.

6 Conclusion

In this paper, we presented the overall architecture for
a set of tools supporting a model-based development pro-
cess for complex-distributed systems, from the system-level
modeling of functions to the generated code

References

[1] The AUTOSAR Standard, specification version 4.0, the AU-
TOSAR consortium, web page: http://www.autosar.org.

[2] K. Hänninen, J.M. Turja, M. Nolin, M. Lindberg, J. Lund-
bäck, K.L. Lundbäck, The Rubus Component Model for Re-

source Constrained Real-Time Systems, 3rd IEEE Interna-
tional Symposium on Industrial Embedded Systems, Mont-
pellier, France

[3] G. Raghav, S. Gopalswamy, K. Radhakrishnan, J. Hugues
and J. Delange, Model based code generation for distributed
embedded systems, European Congress on Embedded Real-
Time Software, 19-21 May 2010, Toulouse, France.

[4] Hugues J., Zalila B., and Pautet L. Rapid prototyping of dis-
tributed real-time embedded systems using the aadl and oca-
rina. In 18th IEEE/IFIP International Workshop on Rapid
System Prototyping (RSP’07), Brazil, 2007.

[5] “The Simulink product web page,”
http://www.mathworks.it/products/simulink/index.html.

[6] “The Scicos project web page,” http://www.scicos.org/.

[7] “Scade product web page,” http://www.esterel-
technologies.com/products/scade-suite/.

[8] “The OMG Model Driven Architecture initiative,” web
page, http://www.omg.org/mda/.

[9] “The Unified Modeling Language (UML),”
http://www.uml.org/.

[10] “The OMG Systems Modeling Language (SysML),”
http://www.omgsysml.org/.

[11] “Eclipse Modeling Framework (emf),”
http://www.eclipse.org/modeling/emf/.

[12] “The Acceleo model-to-text language and tool web page,”
http://www.acceleo.org/.

[13] “Real-time workshop/embedded coder,”
http://www.mathworks.com/products/matlab-
coder/index.html.

[14] Y. Vanderperren and W. Dehaene, “From uml/sysml to mat-
lab/simulink: current state and future perspectives,” in Pro-
ceedings of the conference on Design, automation and test
in Europe: Proceedings, ser. DATE ’06.

[15] B. Kienhuis, E. F. Deprettere, P. v. d. Wolf, and K. A. Vis-
sers, “A methodology to design programmable embedded
systems - the y-chart approach,” in Embedded Processor
Design Challenges: Systems, Architectures, Modeling, and
Simulation - SAMOS, 2002.

[16] “The OMG Marte Profile web page,”
http://www.omgmarte.org/.

[17] F. Balarin, L. Lavagno, C. Passerone, and Y. Watanabe,
“Processes, interfaces and platforms. embedded software
modeling in metropolis,” in Proceedings of the Second Inter-
national Conference on Embedded Software, ser. EMSOFT
’02, 2002.

[18] “The eclipse modeling project,”
http://www.eclipse.org/modeling/.

[19] “The QVT transformation language,”
http://www.eclipse.org/qvt/.

[20] “The Gene-Auto project web site,”
http://geneauto.gforge.enseeiht.fr/.

[21] M. Di Natale, H. Zeng“Task Implementation of Syn-
chronous Finite State Machines,” DATE conference 2012.

WATERS 2012 51

SystemC based Simulator for Virtual Prototyping of

Large Scale Distributed Embedded Control Systems

Alberto Ferrari, Marco

Carloni, Alessandro

Mignogna

Francesco Menichelli
ALES, Rome, Italy

{name.surname}@ales.eu.com

David Ginsberg
United Technologies Research

Center

East Hartford, CT, USA

david.ginsberg@utrc.utc.com

Eelco Scholte
Hamilton Sundstrand

Windsor Locks, CT, USA

eelco.scholte@hs.utc.com

Dang Nguyen
Otis Elevator Company

Farmington, CT, USA

dang.nguyen@otis.com

Abstract—In this paper we present DESYRE, a SystemC-based

virtual prototyping framework, that we have developed to build

the simulator of a modern elevator system designed by Otis

Elevator Company for large scale buildings. DESYRE aims at the

simulation of industrial large-scale real-time distributed

embedded systems and allows: the verification of the system

functionality, taking into account the distribution over the

network, the prediction of the performance, such as end-to-end

latency, and the usage of the communication and computation

resources for the entire range of scalability of the system. In the

paper, we describe the framework details and its application to

the construction of the virtual prototype of a scalable elevator

system based on the CAN communication protocol. We show the

tuning and validation of the simulated model against a test

system composed of 24 physical nodes, linked to network and

logic analyzers. We finally present results on the simulation of

significant case studies (up to 20 floors and 8 cars, that

corresponds to hundreds of interconnected nodes, having about

10 subcomponents each) to predict the scalability performances

of the shared communication resources.

Keywords - Distributed Systems, SystemC, Platform Based

Design, Real-Time Systems, Virtual Prototyping

I. INTRODUCTION

Large distributed embedded control systems are becoming
common even in consolidated and mature applications such as
elevator systems. Elevator systems in very large buildings can
contain tens of elevator cars servicing more than one hundred
floors and can consist of several thousand networked electronic
control units (ECU), each containing microcontrollers,
input/output devices, actuators, network interfaces, and
communicating over several shared communication busses [1].
Elevator system architectures sometimes need to be updated in
order to realize the benefits which can be achieved through the
incorporation of new technologies. However, it is likely that
scaling limitations exist in any system architecture, and as a
result there is a risk associated with committing to any
particular new architecture without fully understanding these
boundaries. To avoid expensive and time consuming
modifications, it is crucial that the elevator system designer is
confident that the elevator system can achieve correct operation
prior to installation. In this work we describe a set of virtual
prototyping tools which provide that ability, and allow the
system designer to quickly perform cost optimization through
evaluation of architectural tradeoffs while ensuring that all

requirements are met. In the scientific literature a large body of
work exists which describes the benefits of systems
development in a virtual environment [2][3][4][5]. Recently,
numerous works describe simulation environments for
embedded systems. In [6] a set of tools called Embedded
System Environment (ESE) is presented, especially developed
for multi-processor embedded systems, based on SystemC
transaction level models. The importance of virtual platforms
unifying functional and robustness analysis of embedded
designs is shown in tools as the one described in [7], where a
simulation environment for the LEON3, a 32bit SPARC CPU
used by the European Space Agency is presented. The model is
TLM based and unifies simulation functionalities with fault
injection capabilities. Another important aspect in the
simulation of embedded systems is the verification of real time
constraints. In [8], for example, the issues regarding the
combination of TLM hardware models and real-time software
models are analyzed. Available virtual prototyping tools can be
specialized toward specific applications [9] or generally suited
to SoC designs [10][11]. Some of these are based on SystemC
[12][13], because of its ability to integrate hardware and
software together in a common language, making it a very
attractive prototyping language to system designers. These
tools traditionally focus on system-on-chip designs, and their
primary target is not the simulation of large, distributed and
interconnected embedded systems. On the other hand, while
network simulators for large systems are widely available
[14][15][16][17], they generally approach the modeling
problem from a high level of abstraction [18], lacking the
possibility to model delays due to limited software computation
power, interrupt latencies, hardware resources sharing. In our
case, virtual prototyping simplifies the effort required to build
and test a wide range of potential system configurations under
estimated worst case conditions very early in the design
process, potentially saving the costs of construction and testing
on a very large system, but requires a good level of accuracy at
the node level, especially regarding software processing delays
and hardware resource capabilities. To achieve these results we
improve the DESYRE simulation framework to realize a
virtual prototype of the system, which is able to simulate the
network resources and the control/application functionalities,
including timing information. The element of novelty of this
work is the combination of its dimensions (can scale to the
order of thousand of embedded nodes), the level of accuracy in
the description of each node (simulation of the hardware

WATERS 2012 52

network components together with the protocol/application
embedded software), the validation of the functional and timing
simulation models against a physical test system.

The paper is organized as follows. In Section II we expose
the details of the design problem, in Section III we describe the
approach followed to simplify the modeling problem, based on
the creation of a hierarchy of layers. In Section IV the
DESYRE simulation framework, used to model all the
components of the systems, is presented. Section V describes
the back-annotation feature implemented in DESYRE for
timing simulations. In Sections VI test cases, built both
physically and virtually, are executed to validate the simulation
model. Section VII reports the design space exploration
analysis on system scaling. Finally Section VIII summarizes
the obtained results.

II. PROBLEM FORMULATION

The elevator system in this paper we are referring to is highly

scalable for being applied to a large variety of building

configurations. To reduce cost and materials, dedicated point-

to-point links are replaced with a shared communication bus.

As a consequence, the system presents uncertainty in its

communication performance due to scalability and adoption of

shared resources.
A communication bus which is commonly used throughout

the transportation industry including elevator systems is the
Controller Area Network (CAN) bus [19]. This bus is used for
inter-node communication on which only one node can
transmit at any given time, causing variability in the end-to-end
latency of messages. Much work is done focusing on the
timing characterization of periodic CAN messages in [20],
[21]. However, the Otis Elevator system which is being
modeled contains a mixture of periodic and event triggered
messages. The infrequent, soft-deadline nature of the latter
makes possible to share network resources to an extent which is
not previously realized. However, the event-based messaging
scheme comes with the disadvantage of increased complexity
and processing time with a potentially serious impact to the
delivery of other time critical messages. In [24] mechanisms
are proposed to mitigate this performance decrement but these
are not achieved without additional costs in terms of processing
and bandwidth. Due to the large range of conceivable
configurations, the designer has the difficult job of ensuring
that the same timing requirements are met whether there are ten
or ten-thousand ECUs in the system. Traditionally, these
systems must be constructed and tested before any performance

metrics can be collected to determine whether or not the timing
requirements are satisfied. Clearly, this can be very costly and
time consuming due to the size and number of possible
configurations.

III. DESIGN AND SIMULATION METHODOLOGY

We use a Platform-Based Design (PBD) [23] approach to
develop a set of SystemC-based simulation models which can
be composed into a virtual prototype of our complete elevator
system. Each node of our elevator system model respects the
architecture of a physical node and is composed of two primary
layers, (a) the application behavior layer and (b) the network
communication layer. These layers are present across all
physical nodes in the system, and are illustrated in Figure 1.
PBD adoption allows the verification of the functionality of the
system independently of the network layer. This is achieved by
the simulation of the application layer only with the assumption
of an ideal network. The ideal network is then refined into the
different layers and the physical topology without any needs to
change the application interface. For each physical node the
functionalities are partitioned between software and hardware.
We chose to model the functionalities implemented by
software layers (Application and Proprietary Network protocol)
at behavioral level, while hardware functionalities (CAN Bus,
CAN Controller and CAN Driver) are modeled accurately and
include exact timing computation. Latencies due to software
are introduced in the simulation recurring to annotation of
computational delays obtained by measures from the test
system described in Section V.

IV. DESYRE: A SIMULATION FRAMEWORK USING

SYSTEMC

The models are developed in the DESYRE
1
framework, a

SystemC-based virtual prototyping environment supporting,
among others, the PBD methodology and developed in several
European projects [26], [27], and [28]. In this framework, the
virtual prototype is composed of:

1) Functional components, written in SystemC, and/or
automatically imported from other authoring tools, such as
Simulink [24], and executing in zero time;

2) Architectural components refining at the transaction-
level the communication and computation. They include a
Real Time Operating System (RTOS) model and
communication models (network protocols), exposing the
effects of the resource sharing and constraints of the
selected architectures;

3) Mapping components composing the previous two sets
of models appropriately to create the virtual prototype of
the system.

The models are organized in libraries belonging to a
workspace, which defines the context where the simulation or
the design space exploration, based on scenarios, take place.

1 DESYRE - Design Environment for distributed Real-time Embedded

SYstem (c) ALES S.r.l.

Figure 1. Layered Architecture of a physical node.

WATERS 2012 53

The virtual prototype is specified as a hierarchical network
with a set of parameterized configuration input files, compliant
to the IP-XACT format [25]. These files define and instantiate
the simulation components, representing both hardware and
software elements, and connecting them together to specify the
model of the entire system. To facilitate the generation of the
system netlists for complex designs and for the design space
exploration, DESYRE provides an exploration language (EL)
to describe in a more concise form, as parameter sets and
parameter relations, the different configurations to be
simulated. The EL specification is used to automatically
generate and parameterize the IP-XACT file sets, representing
the selected scenarios. The designer has the freedom to run
selectively the simulation of a scenario or of all scenarios as a
batch exploration. A simulation is performed in three phases
(see Figure 2.):

1) Netlist elaboration and component loading;

2) Simulation run;

3) Data post-processing and visualization.

The first two phases are repeated for each of the chosen
scenarios. In the elaboration and loading phase, according to
the designer’s netlists, the model builder of DESYRE
dynamically creates in memory the system model by parsing
the IP-XACT files and loading, through a component factory,
the required SystemC models (compiled and present in the
library). In the simulation run phase, the created system model
is executed and the output traces are produced. In the data post-
processing phase, traces are analyzed to aggregate and/or verify
the performance and the functional data.

The dynamic technique for the model creation facilitates
the design space exploration by 1) removing the need for the
compilation of the different SystemC netlists (the flow is
compiler free); 2) enabling the designer to quickly derive
additional scenarios by parameterize the EL or IP-XACT files.

Figure 2. DESYRE Simulation Framework

During the development of this work, several optimizations
to the framework are made to improve the level of automation
in the process of modeling and executing the system.

V. BACK-ANNOTATION FEATURE FOR TIMING

SIMULATIONS

The DESYRE framework described above is used to construct
a virtual prototype of a complete elevator system according to a
set of parameters including elevator system size and the

specification of system inputs. Working on the accuracy of the
simulator, we enhance DESYRE by adding back-annotation
properties to the models, with a granularity of function calls,
giving to the user the feature of setting timing parameters. In
order to provide representative timing information of the actual
system, we observe some important performance metrics and
use these to configure the simulation models. Each software
component in our model represents embedded software running
on a microcontroller which requires a non-zero amount of time
to execute. This time delay is measured on a test system and is
captured in the models by associating a fixed computational
delay for the specified action. This process of back-annotation
is repeated for each transaction which can be performed by
each software component. After the simulation model is
annotated with estimates for computational delay, we simulate
the complete elevator system, examine, and validate system-
wide metrics including signal latency.

A. Test System Configuration

A scalable test system architecture is shown in Figure 3. To
validate the models, a test elevator system is constructed which
consists of 24 physical nodes interconnected via 3 CAN-
busses. Two nodes are able to communicate on multiple CAN-
busses. An identical system is constructed in our virtual
prototype which we validate against the behavior and
performance of the test system. We instrument the test system
with a data acquisition system (DAQ) consisting of CAN-bus
analyzers, logic analyzers, signal generators and signal
recorders in a synchronous fashion such that a complete picture
of the state of the entire system can be reconstructed at any
given instant from the collected measurements. The simulation
models are easily capable of providing the complete system
state at all times, and we compare these to our measurements.
For the measurements the following setup are used:

 CAN-bus Analyzer, to record the time and contents of each
message;

 Logic/State Analyzer, to profile the execution of code on the
microcontroller;

 Signal Generator and Signal Recorder, to provide pre-
defined input signals and track system outputs.

Figure 3. Scalable Test System Architecture.

WATERS 2012 54

B. Back-Annotation

We configure the test system described above to automatically
generate inputs to the system, and collect measurements of the
computational delay for each of the functions which implement
the behavior of the network stack. The input profile is selected
such that it keeps the CAN-bus traffic low to reduce the
number of CAN-interrupts and opportunities for bus
contention, because both can have some impact on program
flow and computational delay. After measurements are
collected, the appropriate function delays are extracted and
combined to produce the total software delay for each
transaction of each layer of the network stack

2
. With this data

we characterize how much variability is present in each of
these computational delays, and identify a single fixed value to
apply to the components in the simulation model. This process
is repeated for each transaction at each of the layers of the
network stack. This is done so that an accurate profile of
computational delays can be constructed throughout the entire
network stack.

Figure 4. Measurements of Proprietary Network Computational Delay.

Figure 5. Measurements of CAN Driver Interrupt Computational Delay.

Figure 6. Measurements of CAN Driver Computational Delay.

2 We remind that back-annotation is required only for software latencies,

while network latencies due to transmissions, contention, retransmission, etc.
are accurately modeled in the simulator and do not require back annotation.

The data collected at the proprietary network layer is shown
in Figure 4. The data indicate that the processing delay at this
component level is not constant for every transaction. We find
two major reasons for this variation in delays:

 Task Preemption. The processing of a message is sometimes
preempted by an ISR or another high priority task. When this
occurs, some additional delay is added to the measurement of
the processing delay. The amount of additional delay can vary
widely depending on the duration of the higher priority event.
For the measurements shown in Figure 4. this is observed to
occur in about 1 in 10 message transactions, and accounts for
the slowest 10% of messages.

 Message Size. Not all messages are the same size, and as a
result the processing delay for each message can vary. All
messages of the same size are observed to have a nearly
constant processing delay. When a cumulative distribution
function (CDF) is produced of all individual message
processing times, we observe steps in the curve at the points
corresponding to the different size messages.

We select a single value to configure the simulation model
for the proprietary network transmit and receive processing
delays. While selecting a value we reject the portion of
messages found to be affected by preemption because the
simulation model includes this behavior, and this can be
counted twice if it is included here. The value selected to
configure the simulation model is the slowest of the non-
preempted messages, providing an approximation of the worst-
case to be used as an abstraction of the processing delay of the
proprietary network component during simulation. The
processing delay through the CAN driver is split into two
pieces which are not usually executed adjacent to each other in
time: an ISR that services the hardware after each message
transaction; and a conventional task which manages messages
in a software queue. This non-adjacent task behavior is
included in the simulation models with the implementation of a
real time scheduler. Measurements are taken of both and are
shown in Figure 5. and Figure 6. The same general features can
be identified in the CAN Driver which is seen in the
proprietary network in terms of the impact of message size and
preemption on the total delay of a transaction with a couple of
exceptions. The receive transaction has very little variability
due to message size, and nearly all the variability comes from
preemption. The transmit transaction is just the opposite in that
it has very little preemption so nearly all the variability here
comes from the message size. We repeat this analysis on the
CAN Driver interrupts to identify the appropriate
computational delays to be used during simulation. Just as
with the CAN Driver receive transaction, the duration of the
CAN Driver interrupt receive does not significantly depend on
the size of the message. These interrupts are very rarely
preempted, so the variations are entirely due to the message
size or number of messages to process. The procedure for
selecting the fixed values for the processing delay of the CAN
driver component in the simulation model is also similar to that
which is used for the proprietary network. The values selected
are the largest of those that represent a single message
transaction. This again provides an approximation of the worst-
case to be used as an abstraction of the processing delay of the
CAN driver component during simulation.

WATERS 2012 55

VI. SYSTEM VALIDATION

After the model is annotated with estimates for
computational delay, we can proceed to simulate the complete
elevator system to examine and validate system-wide
performance metrics in order to assess the accuracy of our
simulation model and provide context for any system-wide
simulation results which are generated. In this section, we
examine the performance of the test system and compare this to
the performance seen in the simulated system. This comparison
is performed on the same 24-node 3-bus test system we use for
back-annotation of the model. We define input profiles for
system inputs to provide identical inputs to both the test system
and the virtual system. These input profiles are drastically
different from the ones used during the measurements for time
back-annotation. There are both event-based and periodic
messages present in the elevator system. Some nodes generate
an event-based message in response to a change in an input
signal, and some nodes generate event messages in response to
other event messages. Our pre-defined input profiles allow us
to provide a variety of repeatable inputs to the system which
cause the event-based messages to be generated according to
the specified profile. The variety of input profiles allows us to
evaluate performance under various loading conditions. For
each input profile provided to the signal generators, we collect
measurements from the CAN-bus analyzers, logic analyzers,
and signal recorders to reconstruct message latency, bus
utilization, and queue utilization. Message latency is ultimately
dependent on several other system states, including task
execution state, bus utilization and queue utilization. We
examine the latency of round trip messages which are
configured such that they have to traverse two CAN busses.
Once received on the opposite end, these messages are
processed by a task which then forms a new message as a
response that must also traverse the same two busses and return
to the node that generated the original message. For round-trip
messages, the message latency is the total time from when the
first message is transmitted until the last message is received.
The latency of a particular message varies each time a message
is transmitted due to many factors including network delay and
processing delay, so it is useful to examine the statistical
properties of a set of messages as opposed to any individual
message. Ten measurements are collected with a given input
profile, and significant variability seen between each set of

measurements. This variability is caused by the variation in
task activation times due to the asynchronous behavior of tasks
on multiple ECUs in the system. In order to take this
asynchronous task behavior into account in the simulation, a
range of simulations is run which varies relevant task activation
offsets to cover the range of possible operation in the test
system.

Table I. MESSAGE LATENCY COMPARISON

Method
Message Latency

Minimum (ms) Maximum (ms) Average (ms)

Simulation 40.6 115.1 69.6

Measurement 54.6 104.7 68.9

The simulation are found to cover a wider range than is
observed during measurement, as reported in Table I.
Therefore, the simulation model is capable of identifying more
extreme message latency values than can easily be measured on
a test system. The average is expected to be slightly higher in
the simulation because the worst-case computational delay is
back-annotated to the simulation model. This effect is then
multiplied as each message encounters the worst case
processing delay several times while in transit, which
ultimately can be seen as a higher average latency. Each
measurement and simulation run is combined into a CDF, and
all are plotted together in Figure 7.

VII. DESIGN SPACE EXPLORATION

We improve the DESYRE virtual prototype to
automatically explore potential elevator system configurations,
and identify what, if any, are the limits of scalability, offering
valuable information to the system designers. Simulations are
performed on systems of various sizes and configurations,
sometimes containing as many as 2400 nodes. In this section
we describe an example in which we explore the scalability of
the system along two dimensions, system size and input event
frequency. We start with a small system configuration and
gradually increase the size by adding additional elevator cars.
We implement the process of automatically scaling the system,
such as configuring, building, and running the system, with
respect to some defined patterns. For each instantiation of a
given size we examine the overall system behavior as we
increase the average frequency of events across all system
inputs. Events are applied to all system inputs independently,
with timing between events determined by a uniform
distribution. At some point during this set of tests, we expect
to find that the system is overloaded, and no longer behaves
according to specifications, indicating that a scaling limitation
for the given system architecture is identified. As expected, this
exploration identifies a scaling limit which is caused by the
exhaustion of available communication resources on the CAN
bus. The amount of information which must be carried over the
network increases as the number of nodes on that network
increases, and the CAN bus eventually becomes fully loaded.
As the bus utilization reaches this limit, message queues begin
to accumulate significant numbers of messages, and eventually
run out of space. This represents a scaling limit due to the fact
that messages are lost and correct system behavior cannot be
maintained. The average event rate for the entire system and
for each individual input is shown against system size in Figure
8. and Figure 9. In these plots the system behaves correctly

Figure 7. Message Latency Comparison for High Load Configuration.

WATERS 2012 56

everywhere below the indicated line with no events or
messages lost. For example, Figure 8. shows that the system
behaves correctly considering a 5-floor 4-car scenario if each
node transmits less than about 33events/sec; in case of a
20floors 4-cars configuration, the maximum event rate per
input drops to 4events/sec. Figure 9. shows instead the
maximum overall number of events transmitted on the system,
obtained summing the events produced by each node. The plot
has a maximum, because increasing the number of cars initially
produces an increment in the number of nodes (transmitters)
but also in bus resources (dedicated CAN lines). However, for
systems with more than 4 cars, in these examples, the CAN
lines shared between cars start saturating and become the
bottleneck.

Figure 8. Exploration of Event Frequency and System Size

Figure 9. Exploration of Event Frequency and System Size

VIII. CONCLUSION

We have developed a virtual prototype of a scalable
elevator system along with the required analysis tools in
DESYRE. The behavior and timings given by the simulations
are validated against a test system to ensure that the models
include sufficient fidelity and the selected levels of abstraction
are appropriate. The simulation models are capable of
discovering best and worst-case behaviors which are not easily
produced in the test system. A design space exploration
analysis has reported significant results regarding the correct
behavior when system scales up. Ultimately, the DESYRE
simulator helps system designers to perform automatic design
space exploration by identifying the characteristics of
scalability prior to implementation, and ensuring that the set of
expected system configurations is compliant with timing
requirements.

REFERENCES

[1] OTIS Elevator Company, website http://www.otisworldwide.com

[2] G. D. Micheli, R. Ernst, and W.Wolf, “Readings in Hardware/Software
codesign”. San Francisco: Morgan Kaufmann publishers, Academic
Press, 2002. ISBN 1-55860-702-1.

[3] D. Gajski, S. Narayan, F. Vahid and J. Gong “Specification and Design
of Embedded Systems”. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[4] E.M. Petriu, M. Cordea, D.C. Petriu, “Virtual prototyping tools for
electronic design automation”, Instrumentation & Measurement
Magazine, IEEE, Jun 1999, Volume 2 , Issue 2, p. 28, ISSN : 1094-
6969.

[5] T. Borgstrom, E. Haritan, R. Wilson, D. Abada, R. Chandra, C. Cruse,
A. Dauman, O. Mielo, A. Nohl “System prototypes: Virtual, hardware or
hybrid?”, Design Automation Conference, 46th ACM/IEEE, San
Francisco, CA, 26-31 July 2009.

[6] S. Abdi, I. Yonghyun Hwang Lochi Yu Hansu Cho Viskic, D.D Gajski
“Embedded system environment: A framework for TLM-based design
and prototyping”, Rapid System Prototyping (RSP), 2010 21st, IEEE
International Symposium on, Fairfax, VA, 8-11 June 2010 .

[7] A. Silva, S. Sanchez “LEON3 ViP: A Virtual Platform with Fault
Injection Capabilities”, Digital System Design: Architectures, Methods
and Tools (DSD), 2010 13th Euromicro Conference on, p. 813, Lille, 1-3
Sept. 2010 .

[8] N. Ke Yu Audsley “Combining Behavioural Real-time Software
Modelling with the OSCI TLM-2.0 Communication Standard”,
Computer and Information Technology (CIT), 2010 IEEE 10th
International Conference on, p. 1825, Bradford, June 29 2010-July 1
2010.

[9] A. Zhonglei Wang Herkersdorf, W. Haberl, M. Wechs, “SysCOLA: A
framework for co-development of automotive software and system
platform”, Design Automation Conference, DAC '09, 46th ACM/IEEE,
p. 37 San Francisco, CA, 26-31 July 2009.

[10] Cadence Design Systems, System Design and Verification products,
http://www.cadence.com

[11] Synopsys, System-Level Design Solutions products,
http://www.synopsys.com

[12] Open SystemC Initiative, http://www.systemc.org

[13] D. Black, J. Donavan, SystemC: From the Ground Up. Springer
Science+Business Media, Inc. 2004

[14] NS-2 Network Simulator, available online: http://www.isi.edu/nsnam/ns/

[15] OMNeT++, Network Simulation Framework, available online:
http://www.omnetpp.org/

[16] OPNET Network Simulator, available online: http://www.opnet.com

[17] NetSim Network Simulator, available online:
http://tetcos.com/software.html

[18] E. Weingartner, H. vom Lehn, K. Wehrle “A Performance Comparison
of Recent Network Simulators”, Communications 2009, IEEE
International Conference on, pp. 1-5, Dresden, 14-18 June 2009

[19] Robert Bosch GmbH, CAN Specification, 1991.

[20] K. Tindell, A. Burns, and A.J. Wellings, "Calculating Controller Area
Network (CAN) Message Response Times", Control Eng. Practice, 3(8),
1995, pp. 1163-1169.

[21] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. “Controller Area
Network (CAN) Schedulability Analysis: Refuted, Revis-ited and
Revised”. Real-Time Systems, Volume 35, Number 3, pp 239-272. April
2007.

[22] K. M. Zuberi and K. G. Shin, “Non-preemptive scheduling of messages
on Controller Area Network for real-time control applications,” in Proc.
Real-Time Technology and Applications Symposium, pp.240–249,May
1995.

[23] L. Carloni, F. D. Bernardinis, C. Pinello, A. Sangiovanni-Vincentelli,
and M. Sgroi. Platform-based design for embedded systems. In The
Embedded Systems Handbook. CRC Press, 2005.

[24] Simulink © The Mathworks, www.mathworks.com

[25] The SPIRIT Consortium's ESL-based IP-XACT 1.4 specification.
[Online]. Available: http://www.spiritconsortium.org/.

[26] HYCON Project. [Online]. Available: http://www.ist-hycon.org/

[27] SPEEDS IST European Project. IP Contract No. 033471. [Online].
Available: http://www.speeds.eu.com.

[28] RI-MACS - Radically Innovative Mechatronics and Advanced Control
Systems. [Online]. Available: http://www.ist-
world.org/ProjectDetails.aspx?ProjectId=058a4a31cf604869ba0825e074
17a065

WATERS 2012 57

The Design and Implementation of a Simulator for
Switched Ethernet Networks*

Mohammad Ashjaei, Moris Behnam, Thomas Nolte
Mälardalen University, Västerås, Sweden

{mohammad.ashjaei, moris.behnam, thomas.nolte}@mdh.se

Abstract—In the context of Switched Ethernet, the Flexible
Time-Triggered Switched Ethernet protocol (FTT-SE) was pro-
posed to overcome the limitations and related problems of using
COTS switches in real-time networks, such as overflow of switch
queues due to uncontrolled arrival of packets. Although the
FTT-SE protocol has been validated by several experiments on
real applications, evaluation of different architectures as well
as evaluation of large scale networks is not straightforward.
Therefore, a simulator to evaluate different network architectures
based on the FTT-SE protocol is useful. In this paper we
present such a simulator. We address the extended FTT-SE
protocol using multiple switches and we present a modular
simulator based on Simulink/Matlab that allows us to visualize
message transmissions and to evaluate end-to-end delay bounds
of messages.

I. INTRODUCTION

Recently, there has been a growing interest in using the
Switched Ethernet technology even for hard real-time dis-
tributed systems as it provides means to improve global
throughput compared with other technologies. Moreover,
Switched Ethernet also provides traffic isolation and it elimi-
nates the impact of the non-determinism due to CSMA/CD
arbitration that the original Ethernet was suffering from.
Among several different switch types that have been proposed
to support real-time traffic communication, Commercial Off
The Shelf (COTS) technologies are becoming more attractive
as they reduce the development costs and simplify the main-
tenance process compared with solutions that use dedicated
switches. However, using COTS switches in real-time appli-
cations is challenging due to the following limitations; the size
of the memory of COTS Ethernet switches is limited, hence
it may not be possible to buffer unsynchronized simultaneous
traffic from different sources which may cause packet drops
that in turn affects the timeliness behavior of the network. In
addition, the COTS Ethernet switches have a limited number
of priorities to schedule the traffic inside switches.

One solution for the mentioned problem with respect to the
COTS switch is to use a master/slave approach where one
certain node will be responsible for control over the traffic
communication across the network and thereby guaranteeing
the real-time requirements of the traffic. In this paper, we
focus on the FTT-SE protocol [1] that uses the master/slave
approach to enforce global coordination among streams by

*This work is supported by the Swedish Foundation for Strategic Research,
via Mälardalen Real-time Research Center (MRTC) at Mälardalen University.

using a dedicated node called the master, thus controlling
the load submitted to the switch at each instant in time
and thereby avoiding the potential queue overflow problem.
Moreover, the FTT-SE protocol handles different traffic types
including real-time periodic, real-time aperiodic and non-real-
time messages by defining a specific bandwidth for each type
of message. This protocol was investigated and validated by
several experimental results in [1]. Moreover, a method is
proposed in [2] to deal with the scalability of the protocol,
using multiple switches along with multiple master nodes.

In this paper, we focus on the design and implementation
of a modular simulator that can be used to simulate different
design options of the FTT-SE protocol for both small and large
scale networks. This simulator is based on Simulink/Matlab
which makes it modular and allows us to create several models
according to arbitrary architectures based on the protocol.

The rest of the paper is organized in the following manner.
The next section discusses some related work on modeling
and simulation of protocols, Section III describes the FTT-SE
protocol and the extended solution. Then, Section IV presents
the simulator design while Section V validate the simulator
using some experiments. Finally, Section VI concludes the
paper and presents the future work.

II. RELATED WORK

Several techniques have been proposed to model and sim-
ulate the Ethernet protocol using different tools and modeling
algorithms. In [3], models are proposed for nodes, switches
and traffic according to the Switched Ethernet protocol. More-
over, an evaluation is performed to validate the performance
of the modeling method by comparing the simulation results
with the collected data from a specific network application.

In the area of embedded avionics networks, a simulation
model considering the Avionics Full Duplex Switched Ethernet
(AFDX) is proposed in [4]. The end systems (nodes), switch,
different queues for switch and end systems, and the mea-
surement unit were modeled. Moreover, the validation of the
modeling algorithm is performed for the specific architecture
and the performance of that is compared with the results
supplemented by Network Calculus. However, the simulator
was developed only for a particular application and it is not
implemented as a general simulator.

Furthermore, a simulation algorithm was proposed in [5] to
evaluate the end-to-end upper bound delay in AFDX networks.
Finding an upper bound end-to-end delay for each message

WATERS 2012 58

using simulation requires us to investigate a huge number of
possible scenarios. Thus, an approach to reduce the number
of possible scenarios was proposed in [5].

In addition, different network simulation systems were
designed based on available simulation tools. For instance, a
network simulator system for AFDX networks was designed
and implemented in [6], in which Network Simulation (NS2)
as a tool to simulate TCP, routing over wired and wireless
networks, was considered for the main platform, however, NS2
supports limited protocols.

Furthermore, there are many tools which have been de-
veloped for network simulation, such as TrueTime [7], OM-
NET++ [8] and OPNET [9]. TrueTime is a toolbox developed
for Simulink/ Matlab. The switched Ethernet protocol as a
network block has been supported by the TrueTime toolbox.
However, adding new protocols such as FTT-SE need a lot of
modifications and changes on the kernel of the tool which is
not easy. Moreover, the output results that can be generated
from the TrueTime blocks are limited and they need to
be modified to allow for calculation of response times of
messages. Another tool called OPNET is used to evaluate
the performance of a network, specially for evaluation of
Internet, however, this tool is a commercial tool. OMNET++
is another component-based and modular simulator which
is mainly used for sensor networks, internet protocols and
performance modeling. As a result, neither of them can be
used directly to include the FTT-SE protocol.

III. FTT-SE BASICS

The FTT-SE protocol [1] is a real-time communication
protocol that combines the master/slave technique with the
Flexible Time-Triggered (FTT) paradigm. A dedicated node,
called the master node is used to control the traffic in the
network by broadcasting a specific message called the Trigger
Message (TM). The master node schedules the ready messages
according to an on-line scheduling policy, and encodes the
scheduled messages into the TM. The scheduling is performed
every predefined time interval called an Elementary Cycle
(EC), in which the master broadcasts the TM to all slave
nodes at the beginning of each EC. Then, the slave nodes
receive the TM, encode it and send the scheduled messages
for transmission in the current EC.

According to the FTT-SE protocol, the data transmission
bandwidth in each EC is divided into two sub-bandwidths
(windows) to handle synchronous (periodic) traffic within
the Synchronous Window (SW) and asynchronous (aperiodic)
traffic, within the Asynchronous Window (AW), as depicted in
Figure 1. The time that the slave nodes need to decode the TM
is called the turn around time. Moreover, the input and output
ports of the switches are called the uplinks and the downlinks
respectively.

Furthermore, to handle the asynchronous traffic, each slave
node sends a request message, which is called signaling
message (SIG), to the master node whenever an asynchronous
message is activated. The master node then schedules the
asynchronous traffic for upcoming ECs [10]. As illustrated

Time
Master

TM

SW
EC

Turn around AW

Slave1

Slave2

TM

TM

A

B

A

SM1 AM1

AM1

Slave3
TM

C

B C

uplink

downlink

uplink

downlink

uplink

downlink

uplink

downlink

SM1

SM2

SM2 AM1

Fig. 1. The FTT-SE Elementary Cycle

in Figure 1, A, B and C are the aperiodic requests from the
slave nodes. Moreover, aperiodic messages can be activated at
any time during the EC. The worst case scenario occurs when
an aperiodic message is activated exactly after a request has
been sent to the master node. In such a scenario, the aperiodic
signaling request will be sent to the master in the next EC
and the master node will schedule that request at earliest in
the following EC, i.e. within three ECs.

The scalability of the FTT-SE protocol using multiple
switches was investigated in [11] and [2] based on two
approaches. In both solutions, multiple switches are connected
together directly forming a tree shaped topology.

In the first solution, a single master node is used to coor-
dinate the traffic transmission in the network. The bandwidth
assigned for synchronous and asynchronous traffic is similar
to the single switch FTT-SE protocol as depicted in Figure 1.
Moreover, the TM is generated and broadcasted to all nodes in
the network. Also, to deal with asynchronous messages, slave
nodes send the request messages to the master node.

In the second approach, a network architecture consisting of
multiple switches with a master node connected to each switch
is considered. An example of such an architecture is depicted
in Figure 2, where the switch SW1, the master node M1 and
nodes A and B are grouped into one sub-network (SN1). The
sub-network SN1 is a parent sub-network for SN2 and SN3.
Moreover, a cluster is defined such that it contains all sub-
networks with the same parent sub-network. For instance, in
Figure 2, SN4 and SN5 are grouped as one cluster for which
SN2 is the parent sub-network.

SW1

SW2SW3

M1

M3

M4

AB

D C

M2

M5

SW4

SW5 E

F

Fig. 2. An example of network

WATERS 2012 59

To handle the traffic in such a network, two categories of
traffic are defined as local and global. The traffic which is
transmitted between the nodes inside one sub-network is called
local, otherwise the traffic is called global. To handle the
synchronous and asynchronous traffic, the data transmission
within an EC is divided among the traffic types as depicted in
Figure 3, where SW is the synchronous window and AW is
the asynchronous window. The local synchronous and asyn-
chronous traffic handling is carried out similar to the single
switch FTT-SE protocol within their specified bandwidth.
However, all master nodes schedule all global messages in the
network in parallel, based on the allocated bandwidth for such
types of traffic. To schedule the global asynchronous messages,
the global asynchronous window is divided per cluster and the
parent master node of the cluster is responsible to schedule the
global aperiodic messages inside that cluster.

Furthermore, the ECs of all master nodes are time synchro-
nized using a particular message which is called the Global
Trigger Message (GTM). The root master sends the GTM to
all master nodes and they will wait to receive this message
before broadcasting their local TM.

Time
Masters

TM1

SW

uplink

downlink

Global Local Local

AW

CL1 CL2

Global

Fig. 3. EC considering local and global traffic

IV. SIMULATOR DESIGN

Using Simulink/Matlab we have developed a simulator to
evaluate the timing behavior of the messages in a network
based on the FTT-SE protocol for small and large scale
networks. We have used Simulink/Matlab due to its modular
features along with custom blocks and graphical interfaces.
The core of the simulator is a cycle-based which starts by
sending TM to the slaves, i.e. the simulator is designed in
several states such that each state is allowed to execute only
after finishing of the previous state. However, the master block
keeps track of the EC duration as well. We have developed
three basic models using the S-Function block in Simulink
to simulate the functionality of the master node, slave nodes
and switch models respectively. These blocks are stored in
a Simulink library file. To simulate the parallel execution of
blocks in a model, we have divided each EC into 100 time
slots and in each of them all the functions are executed. The
number of time slots shows the resolution of simulation which
is not fixed and can be changed in the configuration of the
simulator. However, by increasing the number of time slots, the
simulation time will increase due to the number of functions
that need to be execute in each time slot. On the other hand,
decreasing the time slots number can affect on the accuracy of
the results. Therefore, we have chosen 100 time slots in this
trade-off as an engineering experiment. Note that, the function
of blocks in Simulink executes in sequential order which is
automatically specified by Matlab in advance. Therefore, the
input data of each block is guaranteed to be available before
the execution of that block.

A. Ready Queues Management

For the case of multiple master nodes, each master contains
four ready queues to support local and global periodic as well
as local and global aperiodic messages. Scheduling of global
messages is performed in parallel in all master nodes at the
same time. The ready queues are sorted based on the priority of
messages in which the highest priority messages are inserted
at the head of the queues, we used the Fixed Priority/Highest
Priority First Scheduling Policy for on-line scheduling in the
simulator. Messages with the same priority are sorted in the
queues based on the First Come First Serve (FCFS) policy
for local messages, whereas for global messages, messages
having the same priority are sorted based on the id number of
messages.

For management of the ready queues, we have developed
three functions to handle queue updating before scheduling
the messages by master nodes. These functions, which are
implemented in Matlab m-files, are the following:

Get head message. This function returns the first message
in the ready queue which is always the highest priority mes-
sage among all messages in the ready queue in this simulation.

Remove a message. If the scheduler checks a message and
it selects that message to be transmitted in the current EC, the
message should be removed from the ready queue. Therefore,
this function removes a message defined by its id together with
the ready queue in which the message is residing. The output
of this function is the updated ready queue sorted according
to the priorities of all messages in the queue.

Insert a message and sort in ascending format. Whenever
a message becomes ready, it should be inserted in the correct
ready queue, which is performed by this function. This func-
tion inserts a message in a queue according to its priority and
it re-sorts the queue according to the priorities of messages in
which the highest priority message is assigned at the head of
the queue.

For the single master case, two queues are used to schedule
both synchronous and asynchronous messages, one specific
for each type of messages. Therefore, the queue management
functions are applicable for these two ready queues.

B. Master Block Design

The master block is divided into two sub-blocks dealing
with sender and receiver functions. We have defined an array
structure for the master node to store its variables and param-
eters. In the solution with multiple master nodes, each master
node in the network may have different parameters depending
on its local configuration such as local message numbers and
local slave node properties. All master blocks in the model are
connected to a single m-file function which is distinguished
with a mask block parameter number.

For each master input (receiver) and output (sender) blocks
two separate functions are implemented, however the master
function is developed based on a state flow that each of them
should run in order. The master function has three states which
are depicted in Figure 4. Each state, is allowed to run when the
previous state has executed only. The first state is broadcasting

WATERS 2012 60

the TM to all slaves. The next state is receiving aperiodic
requests from the slave nodes during the TM window. The
last state is performing the scheduling function for all kind
of messages, including local and global aperiodic messages
and generating a TM for the upcoming EC. State 1 and 3
are executed in the master sender function, whereas state 2 is
executed in the receiver function. For input and output signals,
we implemented separate scope output functions due to the
flexibility of the graphical interface.

State1:
TM

broadcast

State2:
Wait for

aperiodic
requests

State3:
Schedule the

ready
messages,

generate TM
for next EC

Fig. 4. Master function state flow

In state 2 of the master function, which is executed in
the master receiver sub-block, the master polls the aperiodic
requests from the slave nodes. This state finishes and moves
to the next state when all signal messages are received. The
aperiodic requests which are received during this state are from
local slave nodes or from children slaves for global aperiodic
requests. In both cases, the requests are stored and the master
schedules them for the next EC. The local aperiodic sched-
uled messages are encoded inside the TM along with other
periodic messages, however the global scheduled aperiodic
messages are encoded in a different trigger message called
the asynchTM, which is sent to children slave nodes directly.

In state 3, the master function looks up the message struc-
ture and checks whether any periodic message becomes ready.
The scheduler inserts all ready messages, including aperiodic
messages, which are requested from the slaves into the related
ready queues. Moreover, the ready time of each message
is stored in the related variable of message. Consequently,
scheduler function checks bandwidth for the ready message
transmission according to their destination and rout. The
scheduled messages are encoded inside the TM to be sent
at the beginning of the next EC.

To support the single master FTT-SE network, the master
block is developed such that it schedules the traffic and
broadcasts the TM to the entire network. Moreover, each slave
node sends the aperiodic request to the master node which is
connected to the top switch.

C. Switch Model Design

Similar to the master block, the switch is modeled with a
Matlab S-Function associated using a particular m-file. Four
kinds of connections are defined for the switch models i) the
master connection identified in port 1, ii) the parent switch
connection is dedicated to port 2, iii) two children connections
for the children sub-networks as port 3 and 4, and finally

switch structure description
port nbr The number of ports for switches.
inBuffer The input buffer for all input ports individually.
outBuffer The output buffer for all output ports individually.

TABLE I
THE SWITCH STRUCTURE

iv) five connections for the slave nodes. Therefore, 9 ports
are assumed for switches in this version of the simulator.
Moreover, for each input and output link a specific buffer is
assigned to store receiving and sending data. The buffers are
sorted according to the First In First Out (FIFO) policy. The
general structure of the switch model is to poll the input data
and to process the destination address of them, and in turn,
to insert into the related output buffer. The switch parameters
including the input and the output buffers are stored in an
array structure which is shown in Table I.

D. Slave Block Design

Similar to the master block, the slave block is divided
into two sub-blocks denoted sender and receiver sub-blocks.
The slave function is executed based on the state flow which
indicates the current state of each slave node. The slave
function composes of four individual states started by the TM
reception. The state flow of the slave function is depicted in
Figure 5.

After receiving the asynchTM and TM messages from the
parent master and the main master respectively, the slave
checks if any local aperiodic messages are ready to be trans-
mitted. The same check is performed for the global aperiodic
messages. For aperiodic messages, the sporadic model is
used to model this type of traffic in which the minimum
inter-arrival time is defined for each message, however in
this simulator a dynamic activation for aperiodic messages
is developed to simulate the unpredictable arrival time of
aperiodic messages. Moreover, the aperiodic message may
become ready at anytime during the EC window. To simulate
this behavior of aperiodic messages, we assume the worst case
in which the message always becomes ready after the TM
broadcasting window.

The third state of the slave function, which is executed in
the sender block, is decoding the TM and transmitting the
messages which are scheduled by master node. This state
includes all local/global periodic and aperiodic messages.
However, the message transmission starts with local and
global periodic messages and continues with local and global
aperiodic messages.

After sending the scheduled messages, the last state is to
wait for message receiving. The slaves read their inputs until
the EC time window is finished. When a message is received
from the slave node, the receiving time is stored in the related
message variable. The time interval between the ready time
and the receiving time of the messages shows the end-to-end
transmission time. For setting the receiving time, the store-and-
forward switch delay and order of messages are considered
to simulate as accurately as possible. Since the bandwidth
capacity was checked in the scheduler, then all scheduled

WATERS 2012 61

messages should be received in the current EC without any
deadlines being missed. In case of a deadline miss or a failure
in receiving of message, the output report of the simulator will
show it.

State1:
TM and

asynchTM
receiving

State2:
Check local/global

aperiodic
messages and
send aperiodic
request to the

master

State4:
Receive the

messages until
the end of
current EC

State3:
Decode TM and
asynchTM and

send the
scheduled
messages

Fig. 5. Slave function state flow

For generating the scope output signals to cover both
receiving and sending messages, the scope functions store
the messages which are sent and received. The messages are
scoped according to their transmitting time. Each message is
indicated by its identification number which is unique in the
entire network.

E. Settings and Report

In order to set the configuration of network example, such
as the EC size and the bandwidth allocations, a database
which is developed in Matlab m-file is prepared. For each
network model, different configuration can be determined to
assess the performance of the example in different bandwidth
assignments.

Moreover, to present the end-to-end delay of messages, after
finishing the simulation, a function is developed to generate the
output reports. These reports provide information including the
network parameters such as number of switches and masters,
EC configuration and end-to-end delays including minimum,
average and maximum that has been measured during the
simulation.

V. EXAMPLES

In this section, we present an example of a network that con-
sists of 5 switches (sub-networks) as depicted in the Simulink
model in Figure 6. This network composes of 16 slave nodes in
which 2-4 nodes are connected to each sub-network. The net-
work parameters for this example are EC = 4ms, T M = 12µs,
SIG = 6µs and the transmission speed of the Ethernet network
is considered as 100Mbps and 40 messages are generated
randomly. The Fixed Priority Scheduling Policy is assumed
in this example and the priority of messages is selected
according to the Rate Monotonic priority assignment. Note
that, the simulator can support higher amount of messages
if all messages are schedulable (meet their deadlines) in the
network architecture. In this example we have experimented
40 messages to present the results considering the space limit.

A. Multiple Masters Network

In the multiple masters architecture, each switch is con-
nected to a single master, i.e., five master nodes are created
in Simulink, for illustration purpose we explain the root
sub-network model in Figure 7. Moreover, the transmission
bandwidth in each EC is divided as follows. The synchronous
local and global scheduling windows are selected to have 1ms
equally, the asynchronous local scheduling window is 800µs
and finally the asynchronous global scheduling window is
700µs. In the example, the network is composed of two clus-
ters and the bandwidth of the asynchronous global scheduling
window is further divided equally among them, i.e., 350µs.

sub‐network4

seg4‐in seg4_out

sub‐network3

seg3_in seg3_out

sub‐network2

seg2_in

seg3_in

seg4_in

seg2_out

seg3_out

seg4_out

sub‐network1

seg1_in seg1_out

root sub‐network

seg1_in

seg2_in

seg1_out

seg2_out

Fig. 6. Evaluation example

seg2_out
2

seg1_out
1

Switch1

M_in
P_SW
C_SW1
C_SW2
P1
P2
P3
P4
P5

M_out
P_SW
C_SW1
C_SW2

P1
P2
P3
P4
P5

Slave3

S_in

S_out

scope_in

scope_out

Slave2

S_in

S_out

scope_in

scope_out

Slave1

S_in

S_out

scope_in

scope_out

Scope4

Scope3

Scope2

Scope1

Master1

M_in

M_out

scope_in

scope_out

seg2_in
2

seg1_in
1

Fig. 7. Root sub-network model

The simulation for this example is performed for time
duration of 500 ECs of simulation time. To visualize the
message transmission, an ordinary Scope block of Simulink is
attached to the respective scope ports of the master and slave
blocks. For instance, the messages transmitted and received
by slave node 6 in the root sub-network are illustrated in
Figure 8, where the x-axis presents time and y-axis shows the
message id. In this example the messages m21, m23 and m33,
which are transmitted from slave node 6, are periodic with
the priority equal to 4, 4 and 1 respectively (higher numbers
represent higher priority). Also, this slave node receives the
messages m20 and m22 which are periodic as well. The

WATERS 2012 62

message id Min. RT Avg. RT Max. RT
20 2 2 2
21 2 2 2
22 2 2 2
23 2 2 2
33 2 2 2

TABLE II
MESSAGE RESPONSE TIMES

transmission time of each message is depicted in the scope
with respect to the declaration of the messages. Moreover, the
end-to-end delay of all messages in the model can be reported
after the simulation time is finished. The minimum, average
and maximum response time, which are measured during the
simulation, for the mentioned messages are shown in Table II
(the unit used is multiples of ECs).

Fig. 8. Scope input/output of slave number 6 in example 1

B. Single Master Network

In this section, we present the results of applying the
approach of a single master on the example presented in
the previous section. The master node is connected to the
Switch 1. The synchronous window and the asynchronous
window are selected to have 2ms and 1.5ms respectively.
Similar to the previous example, the simulator is executed
for 500 ECs of simulation time. Figure 9 shows the message
transmissions in the slave number 7.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the FTT-SE protocol and the
extended FTT-SE protocol to support large scale networks
using multiple switches along with multiple master nodes.
Moreover, we presented the design of a simulator based on
Simulink/Matlab. The simulator contains three basic models
representing master, switch and slaves, all implemented as S-
Function blocks in Simulink to make the simulator modular.

Moreover, two examples consisting of five sub-networks
are created in the simulator to evaluate both the FTT-SE
approaches. Different output scopes of message transmissions
are presented along with end-to-end delay reports using both a
single master as well as multiple masters. We have presented
this tool that allows us to perform detailed analysis of the
protocols in a way that before needed implementation with

Fig. 9. Scope input/output of slave number 7 in example 2

all its complexity. This version of the simulator is designed
and implemented considering some restriction assumptions,
e.g. the switch model is limited to support two children sub-
networks. However, the extension of the simulator is currently
ongoing.

Furthermore, this tool is extensible in the sense that we can
easily accommodate other Ethernet protocols for comparison,
since the core of the simulator is already implemented. More-
over, we are planning on making the tool available for public
as a downloadable plug in to Simulink/Matlab.

REFERENCES

[1] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time communi-
cation over cots ethernet switches,” in 6th IEEE International Workshop
on Factory Communication Systems (WFCS’06), June 2006.

[2] M. Ashjaei, M. Behnam, T. Nolte, L. Almeida, and R. Marau, “A com-
pact approach to clustered master-slave ethernet networks,” 9th IEEE
International Workshop on Factory Communication Systems (WFCS’12),
May 2012.

[3] Z. Huang, Y. Zhang, and H. Xiong, “Modeling and simulation of
switched ethernet,” in 2nd International Conference on Computer Mod-
eling and Simulation (ICCMS’10), vol. 3, January 2010.

[4] H. Charara and C. Fraboul, “Modeling and simulation of an avion-
ics full duplex switched ethernet,” in Advanced industrial conference
on telecommunications/service assurance with partial and intermittent
resources conference/e-learning on telecommunications workshop, July
2005.

[5] J.-L. Scharbarg and C. Fraboul, “Simulation for end-to-end delays
distribution on a switched ethernet,” in 12th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA’07),
September 2007.

[6] S. Dong, Z. Xingxing, D. Lina, and H. Qiong, “The design and
implementation of the afdx network simulation system,” in International
Conference on Multimedia Technology (ICMT’10), October 2010.

[7] D. Henriksson, A. Cervin, and K.-E. Årzén, “TrueTime: Real-time
control system simulation with MATLAB/Simulink,” in Proceedings of
the Nordic MATLAB Conference, Copenhagen, Denmark, October 2003.

[8] “Omnet++: Component-based c++ simulation library, available at
http://www.omnetpp.org.”

[9] “Opnet: Application and network performance, available at http://www.
opnet.com.”

[10] R. Marau, P. Pedreiras, and L. Almeida, “Asynchronous traffic signaling
over master-slave switched ethernet protocols,” in 6th International
Workshop on Real Time Networks (RTN’07), July 2007.

[11] R. Marau, M. Behnam, Z. Iqbal, P. Silva, L. Almeida, and P. Portugal,
“Controlling multi-switch networks for prompt reconfiguration,” in Proc.
of 9th Int. Workshop on Factory Communication Systems (WFCS’12),
May 2012.

WATERS 2012 63

SoOSiM: Operating System and
Programming Language Exploration

Christiaan Baaij, Jan Kuper
Computer Architecture for Embedded Systems,
Department of EEMCS, University of Twente,

Postbus 217, 7500AE Enschede, The Netherlands
Email: {c.p.r.baaij;j.kuper}@utwente.nl

Lutz Schubert
HLRS – University of Stuttgart,

Department of Intelligent Service Infrastructures,
Nobelstr. 19, D-70569 Stuttgart, Germany

Email: schubert@hlrs.de

Abstract—SoOSiM is a simulator developed for the purpose
of exploring operating system concepts and operating system
modules. The simulator provides a highly abstracted view of
a computing system, consisting of computing nodes, and compo-
nents that are concurrently executed on these nodes. OS modules
are subsequently modelled as components that progress as a
result of reacting to two types of events: messages from other
components, or a system-wide tick event. Using this abstract
view, a developer can quickly formalize assertions regarding the
interaction between operating system modules and applications.

We developed a methodology on top of SoOSiM that enables
the precise control of the interaction between a simulated
application and the operating system. Embedded languages are
used to model the application once, and different interpretations
of the embedded language constructs are used to observe specific
aspects on application’s execution. The combination of SoOSiM
and embedded languages facilitates the exploration of program-
ming language concepts and their interaction with the operating
system.

I. INTRODUCTION

Simulation is a commonly used tool in the exploration of
many design aspects of a system: ranging from feasibility
aspects to gathering performance information. However, when
tasked with the creation of new operating system concepts,
and their interaction with the programmability of large-scale
systems, existing simulation packages do not seem to have
the right abstractions for fast design exploration [1], [2] (ref.
Section IV). The work we present in this paper has been
created in the context of the S(o)OS project [3]. The S(o)OS
project aims to research OS concepts and specific OS modules,
which aid in scalability of the complete software stack (both
OS and application) on future many-core systems. One of
the key concepts of S(o)OS is that only those OS modules
needed by a application thread, are actually loaded into the
(local) memory of a Core / CPU on which the thread will
run. This execution environment differs from contemporary
operating systems where every core runs a complete copy of
the (monolithic) operating system.

A basic requirement that the S(o)OS project has towards any
simulator, are the facilities to straightforwardly simulate the
instantiation of application threads and OS modules. Aside from

This work is supported through the S(o)OS project, sponsored by the
European Commission under FP7-ICT-2009.8.1, Grant Agreement No. 248465.
SoOSiM is available on: http://hackage.haskell.org/package/SoOSiM

the fact that the S(o)OS-envisioned system will be dynamic as
a result of loading OS modules on-the-fly; large-scale systems
also tend to be dynamic in the sense that computing nodes can
(permanently) disappear (failure), or appear (hot-swap). Hence,
the simulator has to facilitate the straightforward creation and
destruction of computing elements. The current need for a
simulator rests mostly in formalizing the S(o)OS concept, and
examining the interaction between the envisioned OS modules
and the application threads. As such, being able to extract
highly accurate performance figures from a simulated system
is not a key requirement. It should however facilitate the ability
to observe all interactions between application threads and OS
modules should. Additionally, a user should able to zoom in
on particular aspects of the behaviour of an application: such
as memory access, messaging, etc.

This paper describes a new simulator, SoOSiM , that meets
the above requirements. We elaborate on the main concepts of
the simulator in Section II, and show how OS modules interact
with each other, and with the simulator. Section III describes
the use of embedded languages for the creation of applications
running in the simulated environment. The simulation engine,
the graphical user interface, and embedded language environ-
ment are all written in the functional programming language
Haskell [4]; this means that all code listings in this paper
also show Haskell code. Due to limitation in the number of
pages, we are not be able to elaborate every Haskell notation;
the code examples are intended to support the validity of the
presented concepts. Section IV compares SoOSiM to existing
simulation frameworks, and lists other related work. Section V
enumerates our experiences with SoOSiM, and Section VI
discusses potential future work.

II. ABSTRACT SYSTEM SIMULATOR

The purpose of SoOSiM is mainly to provide a platform
that allows a developer to observe the interactions between OS
modules and application threads. It is for this reason that the
simulated hardware is highly abstract. In SoOSiM, the hardware
platform is described as a set of nodes. Each node represents
a physical computing object: such as a core, complete CPU,
memory controller, etc. Every node has a local memory of
potentially infinite size. The layout and connectivity properties
of the nodes are not part of the system description.

WATERS 2012 64

Node (#0) Node (#1) Node (#2)

Thread (#2)

Memory

Scheduler (#0)

Thread (#4) Thread (#6)

Manager (#1)

Local Memory Local Memory Local Memory

Memory
Manager (#3)

Memory
Manager (#5)

Fig. 1. Abstracted System

Each node hosts a set of components. A component repre-
sents an executable object: such as a thread, application, OS
module, etc. Components communicate with each other either
using direct messaging, or through the local memory of a node.
Having both explicit messaging and shared memories, SoOSiM
supports the two well known methods of communication.
Components have a (hidden) message queue, because:

• Multiple components can send messages to the same
component concurrently.

• A component can receive messages while it is waiting for
a response from another component.

All components in a simulated system, even those hosted
within the same node, are executed concurrently (from the
component’s point of view). The simulator poses no restrictions
as to which components can communicate with each other, nor
to which node’s local memory they can read from and write
to. A schematic overview of an example system can be seen
in Figure 1.

The simulator progresses all components concurrently in one
discrete step called a tick . During a tick, the simulator passes
the content that is at the head of the message queue of each
individual component. If the message queue of a component is
empty, a component will be executed with a null message. If
desired, a component can inform the simulator that it does not
want to receive these null messages. In that case the component
will not be executed by the simulator during a tick.

A. OS Component Descriptions

Components of the simulated system are, like the simulator
core, also described in the functional programming language
Haskell. This means that each component is described as a
function. In case of SoOSiM, such a function is not a simple
algebraic function, but a function executed within the context of
the simulator. The Haskell parlance for such a computational
context is a Monad [4, Chapter 14], the term we will use
henceforth. Because the function is executed within the monad,
it can have side-effects such as sending messages to other
components, or reading the memory of a local memory. In
addition, the function can be temporarily suspended at (almost)
any point in the code. SoOSiM needs to be able to suspend
the execution of a function so that it may emulate synchronous

messaging between components, a subject we will further
elaborate later on.

We describe a component as a function that, as its first
argument, receives a user-defined internal state, and as its
second argument a value of type Event a . The result of this
function will be the (potentially updated) internal state. Values
of type Event a can either be:

• A message from another component, where ‘a’ represents
the datatype of the content of the message.

• A null message.
We thus have the following type signature for a component:

component :: State → Event a → Sim State

The Sim annotation on the result type means that this function
is executed within the simulator monad. The user-defined
internal state can be used to store any information that needs
to perpetuate across simulator ticks.

To include a component description in the simulator, the
developer will have to create a so-called instance of the
ComponentInterface type-class. A type-class [4, Chapter 6]
in Haskell can be compared to an interface definition as those
known in object-oriented languages. An instance of a type-class
is a concrete instantiation of such an interface. SoOSiM users
should use a singleton datatype to uniquely label the interface
description of a component. The ComponentInterface consists
of the following values to completely define a component:

• The datatype representing the internal state.
• The datatype of the received messages.
• The datatype of the send messages.
• The initial internal state of the component.
• The unique name of the component.
• The monadic function describing the behaviour.
We stress again that we are aiming at a high level of

abstraction for the behavioural descriptions of our OS modules,
where the focus is mainly on the interaction with other OS
modules and application threads.

B. Interaction with the simulator

Components have several functions at their disposal to
interact with the simulator and consequently interact with other
components. The available functions are the following:

• createComponent instantiates a new component on a
specified node.

• invoke sends a message to another component, and waits
for the answer. Whenever a component uses this function it
will be suspended by the simulator. Several simulator ticks
might pass before the callee sends a response. Once the
response is available the simulator resumes the execution
of the calling component.

• invokeAsync sends a message to another component,
and registers a handler with the simulator to process the
response. In contrast to invoke, using this function will
not suspend the execution of the component.

• respond sends a message to another component as a
response to an invocation.

WATERS 2012 65

• yield informs the simulator that the component does not
want to receive null messages.

• readMem performs a read at a specified address of a
node’s local memory.

• writeMem writes a value at a specified address of a node’s
local memory.

• The componentLookup function performs a lookup of
the unique identifier of a component given a specified
interface.

Components have a ComponentId that is a unique number
corresponding to a specific instance of a component. The
knowledge of the unique ComponentId of the specific instance
is needed to invoke a component. To give a concrete example,
using the system of Figure 1 as our context: Thread(#6) wants
to invoke the instance of the MemoryManager that is running
on the same Node (#2). As Thread(#6) was not involved with
the instantiation of that OS module, it has no idea what the
specific ComponentId of the memory manager on Node #2
is. It does however know the interface-label of the memory
managers, so it can use the componentLookup function to find
the MemoryManager with ID #5 that is running on Node #2.

C. Example OS Component: Memory Manager

This subsection demonstrates the use of the simulator API,
taking the Read code-path of the memory manager module as
an example. The memory manager takes care that the reads or
writes of a global address end up in the correct node’s local
memory. As part of its internal state the memory manager keeps
a lookup table. This lookup table states whether an address
range belongs to the local memory of the node that hosts the
memory manager, or whether that address is handled by a
memory manager on another node. An entry of the lookup
table has the following datatype:

data Entry = EntryC
{base :: Int
, scope :: Int
, scrId :: Maybe ComponentId
}

The fields base and scope together describe the memory address
range defined by this entry. The srcId tells us whether the
range is hosted on the node’s local memory, or whether another
memory manager is responsible for the address range. If the
value of scrId is Nothing the address is hosted on the node’s
local memory; if srcId has the value Just cmpId , the memory
manager with ID cmpId is responsible for the address range.

Listing 1 highlights the Haskell code for the read-logic of
the memory manager. Lines 1, 2, and 3 show the type signature
of the function defining the behaviour of the memory manager.
On line 4 we use pattern-matching, to match on a Message
event, binding the values of the message content, and the
identification of the caller, to content and caller respectively.
We examine the content on line 4, and only continue when it is
a Read message (indicated by the vertical bar |). If it is a Read
message, we bind the value of the address to the name addr . On
line 7 we lookup the address range entry which encompasses

addr . Line 8 starts a case-statement discriminating on the
value of the srcId of the entry. If the srcId is Nothing (line
9-12), we read the node’s local memory using the readMem
function, respond to the caller with the read value, and finally
yield to the simulator. When the address range is handled by a
remote memory manager (line 13-17), we invoke that specific
memory manager module with the read request and wait for a
response. We remark that many simulator cycles might pass
between the invocation and the return, as the remote memory
manager might be processing many requests. Once we receive
the value from the remote memory manager, we respond to
the original caller forwarding the received value.

Note that the functions invoke and respond each receive,
as their first argument, the singleton-datatype that was used
to label the memory manager interface. This label is used to
access the Receive and Send datatype fields of the interface,
and statically ensures that we only send and receive datatypes
that correspond to the interface of the memory manager.

Listing 1 Read logic of the Memory Manager

memoryManager :: MemState 1
→ Event MemCommand 2
→ Sim MemState 3

memoryManager s (Message content caller) 4
| (Read addr)← content 5
= do 6

let entry = addressLookup s addr 7
case (srcId entry) of 8

Nothing → do 9
addrVal ← readMem addr 10
respond MemoryManager caller addrVal 11
yield s 12

Just remote → do 13
response ← invoke MemoryManager 14

remote content 15
respond MemoryManager caller response 16
yield s 17

| (Write addr val)← content 18
= do 19
... 20

D. Simulator GUI
The state of a simulated system can be observed using the

SoOSiM GUI, of which a screenshot is shown in Figure 2.
The GUI allows you to run and step through a simulation at
different speeds. On the screenshot we see, at the top, the
toolbar controlling the simulation, in the middle, a schematic
overview of the simulated system, and specific information
belonging to a selected component at the bottom. Different
colours are used to indicate whether a component is active,
waiting for a response, or idle. The Component Info box shows
both static and statistical information regarding a selected
component. Several statistics are collected by the simulator,
including the number of simulation cycles spent in a certain
state (active / idle / waiting), messages sent and received, etc.

WATERS 2012 66

Fig. 2. Simulator GUI

These statistics can be used to roughly evaluate the per-
formance bottlenecks in a system. For example, when OS
module ’A’ has mostly active cycles, and components ’B’-’Z’
are mostly waiting, one can check if components ’B’-’Z’ were
indeed communicating with ’A’. If this happens to be the case,
then ’A’ is indeed a bottleneck in the system. A general rule-
of-thumb for a well performing system is when OS modules
have many idle cycles, and application threads have mostly
active cycles.

III. EMBEDDED PROGRAMMING ENVIRONMENT

One of the reasons to develop SoOSiM is to observe the
interaction between applications and the operating system.
Additionally, we want to explore programming language
concepts intended for parallel and concurrent programming,
and how they impact the entire software stack. For this purpose
we have developed a methodology on top of SoOSiM, that
uses embedded languages to specify the applications. Our
methodology consists of two important aspects:

• The use of embedded (programming) languages to define
an application.

• Defining different interpretations for such an application
description, allowing a developer to observe different
aspects of the execution of an application.

A. Embedded Languages

An embedded language is a language that can be used from
within another language or application. The language that is
embedded is called the object language, and the language
in which the object language is embedded is called the host
language. Because the object language is embedded, the host
language has complete control over any terms / expressions
defined within this object language. There are multiple ways

of representing embedded languages, for example as a string,
which must subsequently be parsed within the host language.

Haskell has been used to host many kinds of embedded
(domain-specific) languages [5]. The standard approach in
Haskell is not to represent object terms as strings, but instead
use data-types and functions. To make this idea more concrete,
we present the recursive Fibonacci function, defined using one
of our self-defined embedded functional languages, in Listing 2.

Listing 2 Call-by-Value Fibbonaci

fib :: Symantics repr ⇒ repr (IntT � IntT) 1
fib = fix $ λf → 2

fun $ λn → 3
nv 0 $ λn1 → 4
nv 0 $ λn2 → 5
nv 0 $ λn3 → 6

n1 =: n ‘seq‘ 7
if (lt (drf n1) 2) 8

1 9
(n2 =: (app f (drf n1 − 1)) ‘seq‘ 10
n3 =: (app f (drf n1 − 2)) ‘seq‘ 11
drf n2 + drf n3 12
) 13

All functions printed in bold are language constructs in our
embedded language. Additionally the =: operator is also one of
our embedded language constructs; the numeric operators and
literals are also overloaded to represent embedded terms. To
give some insight as to how Listing 2 represents the recursive
Fibonacci function, we quickly elaborate each of the lines.

The type annotation on line 1 tells us that we have a function
defined at the object-level (�) with an object-level integer
(IntT) as argument and an object-level integer (IntT) as result.

WATERS 2012 67

Line 2 creates a fixed-point over f , making the recursion of our
embedded Fibonacci function explicit. On line 3 we define a
function parameter n using the fun construct. We remark that
we use Haskell binders to represent binders in our embedded
language. On line 4-6 we introduce three mutable references,
all having the initial integer value of 0. We assign the value of
n to the mutable reference n1 on line 7. On line 8 we check
if the dereferenced value of n1 is less than 2; if so we return 1
(line 9); otherwise we assign the value of the recursive call of
f with (n1 − 1) to n2 , and assign the value of the recursive
call of f with (n1 − 2) to n3 . We subsequently return the
addition of the dereferenced variables n2 and n3 .

We must confess that there is some syntactic overhead as a
result of using Haskell functions and datatypes to specify the
language constructs of our embedded language; as opposed to
using a string representation. However, we have consequently
saved ourselves from many implementation burdens associated
with embedded languages:

• We do not have to create a parser for our language.
• We can use Haskell bindings to represent bindings in our

own language, avoiding the need to deal with such tricky
concepts as: symbol tables, free variable calculation, and
capture-free substitution.

• We can use Haskell’s type system to represent types in
our embedded language: meaning we can use Haskell’s
type-checker to check expressions defined in our own
embedded language.

B. Interpreting an Embedded Language

We mentioned the concept of type-classes when we discussed
the process of including a component description in the
simulator. Following the final tagless [6] encoding of embedded
languages in Haskell, we use a type-class to define the language
constructs of our mini functional language with mutable
references. A partial specification of the Symantics (a pun on
syntax and semantics [6]) type-class, defining our embedded
language, is shown in Listing 3.

Listing 3 Embedded Language - Partial Definition. Viz. [6]

class Symantics repr where 1
fun :: (repr a → repr b)→ repr (a � b) 2
app :: repr (a � b)→ repr a → repr b 3

drf :: repr (Ref a)→ repr a 4
(=:) :: repr (Ref a)→ repr a → repr Void 5

We read the types of our language definition constructs as
follows:

• fun takes a host-level function from object-type a to
object-type b (repr a → repr b), and returns an object-
level function from a to b (a � b).

• app takes an object-level function from a to b, and applies
this function to an object-term of type a , returning an
object-term of type b.

• drf dereferences an object-term of type ”reference of” a
(written in Haskell as Ref a), returning an object-term of
type a .

• (=:) is operator that updates an object-term of type
”reference of” a , with a new object-value of type a ,
returning an object-term of type Void .

To give a desired interpretation of an application described
by our embedded language we simply have to implement an
instance of the Symantics type-class. These interpretations
include pretty-printing the description, determining the size of
expression, evaluating the description as if it were a normal
Haskell function, etc.

In the context of this paper we are however interested in
observing (specific parts of) the execution of an application
inside the SoOSiM simulator. As a running example, we show
part of an instance definition that observes the invocations of
the memory manager module upon dereferencing and updating
mutable references:

Listing 4 Observing Memory Access - Partial definition

instance Symantics Sim where 1
drf x = do 2

i ← foo x 3
mmId ← componentLookup MemoryManager 4
invoke MemoryManager mmId (Read i) 5

x =: y = do 6
i ← foo x 7
v ← bar y 8
mmId ← componentLookup MemoryManager 9
invoke MemoryManager mmId (Write i v) 10

We explained earlier that the simulator monad (Sim) should
be seen as a computational context in which a function is
executed. By making our simulator monad the computational
instance (or environment) of our embedded language defi-
nition, we can now run the applications defined with our em-
bedded language inside the SoOSiM simulator. Most language
constructs of our embedded language will be implemented in
such a way that they behave like their Haskell counterpart.
The constructs where we made minor adjustments are the drf
and (=:) constructs, which now enact communication with our
Memory Manager OS module. By using the invoke function,
our application descriptions are also suspended whenever they
dereference or update memory locations, as they have to wait
for a response from the memory manager. Using the SoOSiM
GUI, we can now observe the communication patterns between
the applications described in our embedded language, and our
newly created OS module.

C. Further Extensions and Interpretations

The use cases of embedded languages in the context of our
simulation framework extend far beyond the example given in
the previous subsection. We can for example easily extend our
language definition with constructs for parallel composition,
and introduce blocking mutable references for communication

WATERS 2012 68

between threads. An initial interpretation (in the form of a type-
class instance) could then be sequential execution, allowing
for the simple search of algorithmic bugs in the application.
A second instance could then use the Haskell counterparts for
parallel composition and block mutable variables to mimic
an actual concurrent execution. A third instance could then
interact with OS modules inside a SoOSiM simulated system,
allowing a developer to observe the interaction between our
new language constructs and the operating system.

We said earlier that one of the interpretations of an em-
bedded language description could be a pretty-printed string-
representation. Following up on the idea of converting a
description to a datatype, we can also interpret our application
description as an abstract syntax tree or even a dependency
graph. Such a dependency graph could then be used in
another instances of our embedded language that facilitates the
automatic parallel execution of independent sub-expressions.
Again, we can hook up such an instance to our simulator monad,
and observe the effects of the distribution of computation and
data, as facilitated by our simulated operating system.

IV. RELATED WORK

COTSon [1] is a full system simulator, using an emulator
(such as SimNow) for the processor architecture. It allows
a developer to execute normal x86-code in a simulated
environment. COTSon is far too detailed for our needs, and
does not facilitate the easy exploration of a complete operating
system.

OMNeT++ [2] is a C++-based discrete event simulator for
modelling distributed or parallel system. Compared to SoOSiM,
OMNeT++ does not allow the straightforward creation of
new modules, meaning the distribution of modules is static.
OMNeT++ is thus not meeting our simulation needs to
dynamically instantiate new OS modules and application
threads.

House [7] is an operating system built in Haskell; it
uses a Haskell run-time system allowing direct execution on
bare metal. OS modules are executed with the Hardware
monad, comparable to our Simulator monad, allowing direct
interaction with real hardware. Consequently, OS modules
in House must be implemented in full detail, meaning this
approach is not suitable for our exploration needs.

Barrelfish [8] is an OS in which embedded languages are
used, amongst other purposes, to define driver interfaces. These
embedded languages are also implemented in Haskell. The
approach used in Barrelfish is however to create parsers for
their embedded languages so that they may have a nicer syntax,
inducing an additional implementation burden.

V. CONCLUSIONS

Although the SoOSiM simulator is still considered work in
progress, it has already allowed us to formalize the interactions
between the different OS modules devised within the S(o)OS
[3] project. We believe that this is the strength of our simulator’s
approach: the quick exploration and formalization of system
concepts. Fast exploration is achieved by the highly abstracted

view of SoOSiM on the hardware / system. However, having
to actually program all our OS modules forces us to formalize
the interactions within the system; exposing any potential flaw
not discovered by an informal (text-based) description of the
operating system.

By using embedded languages to program applications that
run in our simulated environment, we attain complete control of
its execution. By using specific interpretations of our embedded
language, we can easily observe specific parts (such as memory
access) of an application’s execution. Using Haskell functions
to specify our embedded language constructs saves us from a
high implementation burden usually associated with the creation
of the tools / compilers for programming languages.

VI. FUTURE WORK

At the moment, the simulation core of SoOSiM is single-
threaded. We expect that as we move to the simulation
of systems with 10’s to 100’s of computing nodes, that
the single threaded approach can become a performance
bottleneck. Although individual components are susceptible for
parallel execution, the communication between components is
problematically non-deterministic. We plan to use Haskell’s
implementation of software transactional memory (STM) to
safely deal with the non-deterministic communication and still
achieve parallel execution.

We will additionally explore the use of embedded languages,
in the domain of operating system and programming language
design, further. Within the context of the S(o)OS project, we
intend to add both explicit parallel composition to our embed-
ded language definition, and implicit parallel interpretation of
data-independent sub-expressions. We also intend to implement
software transactional memory constructs, and investigate their
interaction with the operating system.

ACKNOWLEDGEMENTS

The authors would like to thank Ivan Perez for the design
and implementation of the SoOSiM GUI.

REFERENCES

[1] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega,
“COTSon: Infrastructure for full system simulation,” SIGOPS Oper. Syst.
Rev., vol. 43, no. 1, pp. 52–61, Jan. 2009.

[2] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” in Proceedings of Simutools ’08, ICST, Brussels, Belgium,
2008, pp. 1–10.

[3] L. Schubert, A. Kipp, B. Koller, and S. Wesner, “Service-oriented operating
systems: future workspaces,” Wireless Communications, IEEE, vol. 16,
no. 3, pp. 42–50, june 2009.

[4] B. O’Sullivan, J. Goerzen, and D. Stewart, Real World Haskell, 1st ed.
O’Reilly Media, Inc., 2008.

[5] Haskell Wiki. (2012, May) Embedded domain specific language.
[Online]. Available: http://www.haskell.org/haskellwiki/Embedded
domain specific language

[6] J. Carette, O. Kiselyov, and C.-c. Shan, “Finally Tagless, Partially
Evaluated: Tagless Staged Interpreters for Simpler Typed Languages,”
J. Funct. Program., vol. 19, no. 5, pp. 509–543, Sep. 2009.

[7] T. Hallgren, M. P. Jones, R. Leslie, and A. Tolmach, “A Principled
Approach to Operating System Construction in Haskell,” in Proceedings
of ICFP ’05. New York, NY, USA: ACM, 2005, pp. 116–128.

[8] P.-E. Dagand, A. Baumann, and T. Roscoe, “Filet-o-Fish: practical and
dependable domain-specific languages for OS development,” SIGOPS
Oper. Syst. Rev., vol. 43, no. 4, pp. 35–39, Jan. 2010.

