
Response-Time Analysis for Real-Time Tasks in Engine
Control Applications

Alessandro Biondi
Scuola Superiore Sant’Anna

Pisa, Italy
alessandro.biondi@sssup.it

Marco Di Natale
Scuola Superiore Sant’Anna

Pisa, Italy
marco.dinatale@sssup.it

Giorgio Buttazzo
Scuola Superiore Sant’Anna

Pisa, Italy
giorgio.buttazzo@sssup.it

ABSTRACT
Engine control systems include computational activities that
are triggered at predetermined angular values of the crankshaft,
and therefore generate a workload that tends to increase with
the engine speed. To cope with overload conditions, a com-
mon practice adopted by the automotive industry is to design
such angular tasks with a set of modes that switch at given
rotation speeds to adapt the computational demand. For this
reason, these tasks are referred to as adaptive variable-rate
(AVR). This paper presents an exact response time analy-
sis for engine control applications consisting of periodic and
AVR tasks scheduled by fixed priority. The proposed analysis
is first presented for task sets with a single AVR task, and
then extended to consider multiple AVR tasks related to a
common rotation source. A number of experimental results
are reported to validate the proposed approach and compare
it against an existing sufficient test.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION

BASED SYSTEMS]: Real-time and embedded systems;
D.4.7 [Organization and Design]: Real-time systems and
embedded systems

1. INTRODUCTION
Engine control is a typical example of Cyber-Physical Sys-
tem (CPS), because the software that controls injection and
combustion must be designed taking into account several
physical characteristics of the engine and the combustion
process taking place within it. The timing properties of the
control software and its reactions define the performance of
the engine with respect to fuel efficiency and pollutant gen-
eration, and must be tuned to avoid damaging the engine
because of knocking [10].

One of the most peculiar features of engine control software
is to require the execution of different kinds of computa-
tional activities: while some control tasks are activated by

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ICCPS ’15 April 14 - 16, 2015, Seattle, WA, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3455-6/15/04 ...$15.00.

http://dx.doi.org/10.1145/2735960.2735963

a timer at a fixed time intervals (periodic tasks), other con-
trol tasks are triggered at predefined rotation angles of the
crankshaft (angular tasks), thus generating a dynamic work-
load that strictly depends on the engine speed: the higher
the speed, the higher the activation rate. In a typical en-
gine control application, periodic tasks have periods ranging
from a few milliseconds up to 100 ms, while angular tasks
are activated every single, half, and possibly quarter revo-
lution of the crankshaft [10]. Tasks are normally scheduled
using a fixed priority assignment, which cannot be optimal
(in the sense of feasibility) due to the large period variations
of angular tasks.

A major problem in engine control systems is that, at high
engine speeds, the computational demand can generate an
overload condition that, if not properly handled, could intro-
duce large delays on control responses, with a significant per-
formance degradation of one or more control functions [6].

A common solution often adopted in automotive applica-
tions to prevent such overload situations is to develop angu-
lar tasks that adapt their computational demand at different
speeds, by changing their functionality [7]. This is typically
done by defining a set of execution modes, each operating
within a given speed range. For this reason, angular tasks
are often referred to as adaptive variable-rate (AVR) tasks.
In this work, AVR task is used as a synonym for angular
task.

Unfortunately, the schedulability analysis of AVR tasks can-
not be addressed using classical real-time methods. For in-
stance, classical mode change analysis [13,14,17] cannot be
applied to engine control systems, because the activation
rate of an AVR task changes continuously. Likewise, the
elastic task model proposed by Buttazzo et al. [3, 5] cannot
be used to represent AVR tasks. In fact, in the elastic ap-
proach, an overload condition is not managed by the task
itself by scaling its functions, but through a global resource
manager, which reduces the utilization of the other tasks by
enlarging their periods.

The schedulability analysis of real-time applications includ-
ing both regular and AVR tasks has recently been addressed
in the literature under different models and assumptions.
One of the first models suitable for describing AVR tasks
was proposed by Kim, Lakshmanan, and Rajkumar [11],
denoted by the authors as rhythmic task model. The results
presented in this work, however, were derived under very
restrictive assumptions and apply to a single AVR task hav-

ing the highest priority and a variable period always smaller
than the periods of the other tasks. In addition, relative
deadlines are assumed to be equal to periods and priorities
are assigned based on the Rate-Monotonic algorithm.

Later, Pollex et al. [12] derived a sufficient feasibility test
for fixed priority scheduling, but under the assumption of a
constant engine speed.

A more general schedulability analysis of AVR tasks under
fixed-priorities has been presented by Davis et al. [8], who
derived a sufficient test using an Integer Linear Program-
ming (ILP) solver. Their method, however, is based on a
quantization of the instantaneous engine speed, which in-
troduces pessimism in the analysis.

An exact characterization of the interference produced by an
AVR task under fixed priorities has been presented by Biondi
et al. [2], who used a search approach in the speed domain,
making use of dominant speeds to reduce complexity and
avoid speed quantization.

Buttazzo, Bini, and Buttle [4] presented the design and the
analysis of a mixed set of regular and angular tasks un-
der Earliest Deadline First (EDF) scheduling. However, all
angular tasks are assumed to be triggered by independent
rotation sources. Although the assumption of independency
simplifies the analysis, it introduces additional pessimism,
considering situations that cannot actually occur when tasks
are related to the same rotation source.

Contributions. This paper has three main novel contribu-
tions:

• An exact response-time analysis is presented for hybrid
task sets consisting of regular periodic tasks and AVR
tasks related to a common rotation source (the engine),
under fixed-priority scheduling. To the best of our
knowledge, this is the first exact response-time analysis
in dynamic conditions (i.e., considering acceleration)
for mixed periodic and AVR tasks having arbitrary
fixed priorities.

• An algorithm is provided to efficiently compute the
response-time of a periodic task subject to the inter-
ference of higher priority AVR tasks.

• Several simulation results are presented to validate the
proposed approach and compare the performance of
the exact schedulability test with the sufficient ILP-
based test proposed in [8].

Paper structure. The remainder of the paper is struc-
tured as follows: Section 2 presents the model and the no-
tation used throughout the paper. Section 3 briefly recalls
how to compute the interference produced by a single AVR
task. Section 4 presents the method for deriving the exact
response time of each application task assuming the pres-
ence of a single AVR task, later extending the analysis to
multiple AVR tasks related to a common rotation source and
having the same angular period. Section 5 illustrates a set
of experimental results aimed at validating the proposed ap-
proach. Finally, Section 6 states our conclusions and future
work.

2. SYSTEM MODEL
This section introduces the notation adopted throughout the
paper and the models used for the rotation source and the
computational tasks. The rotation source considered in this
paper is characterized by the following state variables:

θ the current rotation angle of the crankshaft;

ω the current angular speed of the crankshaft;

α the current angular acceleration of the crankshaft.

The rotation speed ω is assumed to be limited within a range
[ωmin, ωmax] and the acceleration α is assumed to be limited
within a range [α−, α+]. For the purpose of the analysis, the
acceleration is assumed to have a negligible variation during
a full revolution of the crankshaft.

2.1 Task Model
The task set considered in this work consists of n real-time
preemptive tasks Γ = {τ1, τ2, . . . , τn}. Each task can be ei-
ther a regular periodic task, or an AVR task, activated at
specific crankshaft rotation angles. The subset of regular
periodic tasks is denoted by ΓP , whereas the subset of an-
gular tasks is denoted by ΓA, so that Γ = ΓP ∪ ΓA and
ΓP ∩ ΓA = ∅. Whenever needed, an AVR task may also be
denoted as τ∗

i .

Both types of tasks are characterized by a worst-case ex-
ecution time (WCET) Ci, an interarrival time (or period)
Ti, and a relative deadline Di. However, while for regular
periodic tasks such parameters are fixed, for angular tasks
they depend on the engine rotation speed ω.

An angular task τ∗
i is characterized by an angular period

Θi and an angular phase Φi, so that it is activated at the
following angles:

θi = Φi + kΘi, for k = 0, 1, 2, . . .

This means that the period of an AVR task is inversely pro-
portional to the engine speed ω and can be expressed as

Ti(ω) =
Θi

ω
. (1)

An angular task τ∗
i is also characterized by a relative angular

deadline ∆i expressed as a fraction δi of the angular period
(δi ∈ [0, 1]). In the following, ∆i = δiΘi represents the
relative angular deadline.

In engine control, the angular phase Φi is relative to a refer-
ence position called Top Dead Center (TDC) corresponding
to the crankshaft angle for which at least one piston is at the
highest position in its cylinder. Without loss of generality,
the TDC position is assumed to be at θ = 0.

An AVR task τ∗
i is typically implemented as a setMi of Mi

execution modes, each consisting of a different functionality,
valid in a predetermined range of rotation speeds. Mode m
of an AVR task τ∗

i is characterized by a WCET Cm
i and

is valid in a speed range (ωm+1
i , ωm

i], where ωMi+1
i = ωmin

and ω1
i = ωmax. Hence, the set of modes of task τ∗

i can be
expressed as

Mi = {(C
m
i , ωm

i),m = 1, 2, . . . ,Mi}.

The computation time of a generic AVR job Ji,k can be
expressed as a non-increasing step function Ci of the instan-
taneous speed ω at its release, that is,

Ci,k = C(ω) ∈ {C1
i , . . . , C

Mi

i }. (2)

An example of C function is illustrated in Figure 1.

Ci(ω)

C1
i

C2
i

Cm
i

CMi

i

ωωmin
i ωMi

i ωm
i ω2

i ω1
i

Figure 1: Computation time of an AVR task as a function
of the speed at the job activation.

2.2 Rotation Source Model
For the purpose of analyzing the schedulability of engine
control applications consisting of AVR tasks, it is crucial to
characterize the relation between the task parameters and
the dynamics of the engine. Following the approach pro-
posed by Buttazzo et al. [4], if (ωk, αk) is the state of the
engine at time tk, the next job release time of an AVR task
can be computed (assuming a constant acceleration αk) as:

Ti(ωk, αk) =

√
ω2
k + 2Θiαk − ωk

αk

. (3)

The corresponding relative deadline in the time domain can
be computed by considering the earliest value given by the
maximum acceleration α+, that is

Di(ωk) =

√
ω2
k + 2∆iα+ − ωk

α+
. (4)

In a similar way, the instantaneous rotation speed at the
next job release can be computed (assuming constant ac-
celeration during the angular period) as Ω(ωk, αk) = ωk +
αkTi(ωk, αk), which gives:

Ωi(ωk, αk) =
√

ω2
k + 2Θiαk. (5)

If a job Ji,k is released when the engine has an instantaneous

speed ωk, the interarrival time T̃i(ωk, ωk+1) to the next job
Ji,k+1 released with instantaneous speed ωk+1 (if reachable
with the acceleration bounds), can be obtained by Equa-
tion (3), substituting αk from Equation (5), which gives:

T̃i(ωk, ωk+1) =
2Θi

ωk + ωk+1
. (6)

Similarly, given a job Ji,k released at instantaneous speed

ωk, the minimum interarrival time T̃m
i (ωk) to have the next

job Ji,k+1 released in mode m can be computed as

T̃m
i (ωk) = T̃i(ωk, ω

m) =
2Θi

ωk + ωm
. (7)

In the following, when a single AVR task is addressed, the
task index is removed by the AVR task parameters for the

sake of readability. To help the reader in following the
adopted notation, Table 1 summarizes the main symbols
used throughout the paper.

Symbol Description

τi ith periodic task

τ∗i ith AVR task

Ci(ω) WCET of τ∗i as a function of the
instantaneous speed

Cm
i WCET of mode m of τ∗i

ωm
i Maximum speed for mode m of τ∗i

Θi Angular period of τ∗i
Ti(ωk , αk) Inter-arrival time between the kth and (k + 1)th

job instances, assuming the acceleration is αk

Di(ωk) Relative (temporal) deadline for a job released at
speed ωk

Ωi(ωk , αk) Engine speed at the release of job Ji,k+1

assuming that job Ji,k is released with speed
ωk and acceleration αk

T̃i(ωk , ωk+1) Inter-arrival time between a job released
at speed ωk and the following at speed ωk+1

T̃m
i (ωk) Minimum inter-arrival time between a job

released at speed ωk and the following
in mode m

S(t) Set of job sequences for an AVR task
in a time window [0, t]

CS(t) Set of critical job sequences for an
AVR task in a time window [0, t]

I(s)(t) Interference of a job sequence s of an
AVR task

I(t) Interference envelope of an AVR task

R
(s)
i Response time of task τi interfered

by the job sequence s of an AVR task

Ri Response time of task τi

Ri Upper-bound for the response time of
task τi

Table 1: Main notation used throughout this paper.

3. INTERFERENCE COMPUTATION AS A

SEARCH PROBLEM
This section briefly recaps the approach proposed in [2] and
introduces the concepts and the notation used in the re-
sponse time analysis presented in the next section.

Let us consider a job J0 of an AVR task τ∗ released at
time t = 0 with speed ω0, as illustrated in Figure 2, and
suppose that the job executes for its WCET C(ω0). Since the
engine is subject to an acceleration α ∈ [α−, α+], there are
infinite possible time instants for the next job release. The
earliest possible job release corresponds to the maximum
acceleration α+ and would occur after T (ω0, α

+) time units,
whereas the latest job release corresponds to the maximum
deceleration α−, occurring after T (ω0, α

−) time units.

Depending on the instantaneous engine speed at its activa-
tion, the next job J1, can execute in different modes with
different WCETs. The function iω0

(t) reported in Figure 2
is denoted as single-job interference and represents the enve-
lope of the interference contribution among all the possible
subsequent jobs. The instantaneous speed ω1 at the activa-
tion of J1 is constrained in the range [Ω(ω0, α

−),Ω(ω0, α
+)]

and its value depends on the engine acceleration during the
inter-arrival time.

����, �
�� ����, �

��

��

�

�

�

���
���

������� ���������

��

��

�����

��

����

�
∗

����

�������

�������

�����

Ω���, �
��

Ω���, �
��

Figure 2: Possible activations after a job released at speed
ω0.

The same reasoning applies to each job generated after J1,
leading to a tree of possible job sequences as illustrated in
Figure 3.

The computation of the interference of an AVR task can
be seen as a search problem in the speed domain, ana-
lyzing all possible job sequences in a given time window
and the composition of the corresponding single-job interfer-
ences. Considering that the speed domain is a continuum,
the search tree is infinite (i.e., it contains an infinite set of
job sequences). This means that, if a brute-force approach
is applied, a quantization on the speed domain is required
to achieve a solution in a finite time.

tim
e

t0

ω0

ω1

ω2

Ω(ω0, α
−)

Ω(ω1, α
−)

Ω(ω0, α
+)

Ω(ω1, α
+)

Figure 3: Search tree representing the possible job sequences
for an AVR task.

Figure 4 shows the pseudo code for a brute-force search of
the tree using quantization. Assuming to start from a job
J0 released at speed ω0 at t = 0, the procedure is called as
Interference(ω0, C(ω0), 0). The MaxTime parameter rep-
resents the maximum time interval in which the interference
has to be computed (further details on this approach can
be found in [2]). Each recursive instance of the Interfer-

ence procedure represents a job activated at time t with
instantaneous speed ω and Π is the sum of all the computa-
tional request imposed by the previous jobs. The procedure

1: procedure Interference(ω,Π, t)
2: if t > MaxTime then return ;
3: end if

4: UpdateInterference(Π, t);
5: for α = α− to α+ step ∆α do

6: ωnext ← Ω(ω, α);
7: Tnext ← T (ω,α);
8: Πnext ← Π+ C(ωnext);
9: Interference(ωnext,Πnext, t+ Tnext);
10: end for

11: end procedure

Figure 4: Procedure for computing the interference of an
AVR using brute-force on the search domain.

UpdateInterference keeps track of the computational re-
quest accumulated at time t; then the algorithm prepares
for the next recursive call exploring the speed domain with
quantization. Besides providing only an approximate (and
possibly unsafe) analysis, this approach is very expensive in
terms of computational complexity and intractable for most
practical cases.

For a system consisting of a mixed set of periodic tasks and
AVR tasks (having the same angular phase and activated by
a single rotation source), the critical instant of a task (i.e.,
the activation time that produces its longer response time)
occurs when it is activated at the same time of all higher
priority tasks. Without loss of generality, we assume that
the critical instant occurs at time t = 0. In addition, the
critical instant must be considered for each instantaneous
speed ω0 of the AVR set, hence, the search algorithm has
to be repeated for each possible speed ω0 ∈ [ωmin, ωmax]
requiring again a quantization and further increasing the
computational complexity.

Definition 1. A job sequence s for an AVR task τ∗ is
composed of a set of consecutive released jobs J0, . . . , Jns

,
and a set of speeds ω0, . . . , ωns

, where each element ωk, k =
0, . . . , ns represents the speed at the activation of job Jk.

The interference of an AVR task is characterized by an in-
finite set of possible job sequences in a given time window
[0, t]. Let S(t) be such a set. Intuitively, each path in the
search tree represents a job sequence.

Each sequence s ∈ S(t) generates an interference I(s)(t),
which is a function of ω0 and ωk, k = 1, . . . , ns, because it
depends on the speed evolution pattern experienced by the
AVR task. In general I(s)(t) can be expressed as

I(s)(t) = C(ω0) +

ns∑

k=1

C(ωk) step

(
t−

k∑

j=1

T̃ (ωj−1, ωj)

)
,

where

step(x) =

{
1 if x ≥ 0

0 if x < 0
.

In addition, it is convenient to define the partial contribution
I(s)(t, i, ω) to I(s)(t) starting from the intermediate nodes

(corresponding to job activations) of the job tree. I(s)(t, i, ω)

is defined as the worst-case contribution to the interference
from all the jobs of index i and higher, assuming the activa-

tion of the ith job occurs when the speed is ω.

Ideally, to cope with all possible speed evolution patterns, all
the job sequences s ∈ S(t) have to be considered to obtain
a characterization of the interference. However, Biondi et
al. [2], defined the conditions for finding a set of dominant
speeds and a set of pruning rules to reduce the infinite speed
domain to a discrete and limited set of critical job sequences.
Similarly, the search tree for all possible ω0 values can be
reduced to a finite set of dominant initial speeds. Note that
this approach allows computing the exact interference with
a contained complexity and avoiding quantization!

Definition 2. Given a job instance Ji of an AVR task τ∗,
the set of its dominant speeds W = {ωd

i,0, ω
d
i,1, . . .} is the set

of engine speeds at the release time of Ji such that for any
other engine speed ω /∈ W there exists at least one ωd

i,j ∈ W

such that I(s)(t, i, ωd
i,j) ≥ I(s)(t, i, ω).

Dominant speeds can be computed by leveraging the con-
ditions stated in Theorem 2 in [2]. Using the concept of
dominant speeds, it is possible to define a critical job se-
quence for an AVR task.

Definition 3. A critical job sequence for an AVR task τ∗

is a job sequence where each job is released at a dominant
speed.

The set CS(t) of the possible critical job sequences in the
time window [0, t] can be computed through a pruned visit of
the search tree in the speed domain (considering the possible
dominant initial speeds and the following dominants at each
following job).

The main property of the pruning-based methodology is that
for each non-critical job sequence s′ there exists a critical
job sequence s whose interference dominates the one of s′.
Formally, when a time window [0, D] is considered for the
interference characterization, we have that

∀s′ /∈ CS(D) ∃s ∈ CS(D) | ∀t ∈ [0, D] I(s)(t) ≥ I(s
′)(t). (8)

Based on this result, the worst-case interference caused by
an AVR task τ∗ will result from a sequence of jobs belonging
to one of the critical sequences.

4. EXACT RESPONSE-TIME ANALYSIS
In this section we derive a response time analysis for a mixed
set of tasks having constrained deadline Di ≤ Ti. We first
consider the case in which a single AVR task interferes on
a periodic task set, and then the opposite case in which a
periodic task set creates interference on a single AVR task.
The extension to multiple AVR tasks activated by the same
rotating source is addressed in Section 4.1.2 and Section 4.3.

4.1 Response-time of a Periodic Task Inter-

fered by an AVR Task
We first derive the response time of a periodic task τi inter-
fered by a set of regular periodic tasks and a single AVR task
τ∗, all having higher priority than τi. In the following, hp(i)

denotes the set of periodic tasks having higher priority than
τi. To simplify the notation, the set CS is used as a shortcut
for CS(Di), denoting the set of critical job sequences in the
interval [0, Di].

Given a particular job sequence s of τ∗, the response time

of τi denoted as R
(s)
i , can be expressed as

R
(s)
i = min




t | Ci + I(s)(t) +
∑

j∈hp(τi)

⌈
t

Tj

⌉
Cj = t




 .

The challenging part in the analysis is clearly the compu-
tation of the interference I(s)(t) imposed by the AVR task.
Exploiting the pruning methodology presented in [2], the
following theorem demonstrates that the response time of τi
can be computed only considering the critical job sequences
in the interval [0, Di].

Theorem 1. The response-time Ri of a periodic task τi
interfered by an AVR task τ∗ is the maximum response-time
over all possible critical job sequences generated by τ∗, that
is

Ri = max
s∈CS

R
(s)
i . (9)

Proof. Each critical job sequence s ∈ CS leads to an idle

time after time R
(s)
i . By contradiction, suppose that there

exists a non-critical job sequence s′ /∈ CS such that R
(s′)
i >

Ri; then, to avoid idle-time before time Ri, it must be that

I(s
′)(R

(s)
i) > I(s)(R

(s)
i) ∀s ∈ CS. Hence, for each critical

job sequence s, we have a time instant at which the inter-
ference I(s) is dominated by the one of the non-critical job
sequence s′. This contradicts the main property of critical
job sequences expressed by Equation (8), hence the theorem
follows.

In [2], the maximum over all the possible sequences s (lead-
ing to further branching in the computation of the response
time) was avoided by using the interference envelope I(t)
for τ∗, defined as

I(t) = max
s∈S(t)

I(s)(t).

and computing a response time upper bound Ri as

Ri = min



t | Ci + I(t) +

∑

j∈hp(τi)

⌈
t

Tj

⌉
Cj = t



 .

However, as highlighted by Stigge and Yi [15,16] in the con-
text of the digraph real-time task model, this approach in-
troduces a pessimism in the analysis, preventing the deriva-
tion of the exact response time. In fact, the speed sequences
that generate the critical job sequences s ∈ CS (the func-
tions contributing to the definition of I(t)) may be mutually
exclusive. Thus, simply computing the maximum may lead
to a sequence of speeds that cannot occur in practice. In
other words, by computing the interference envelope we lose
the information about the sequence of speeds that may gen-
erate the envelope.

To better clarify this point, consider we want to compute the
response time of a period task τi executing with an AVR
task τ∗ having higher priority. Also, assume that the set

CS(Di) is composed of only two sequences, i.e., CS(Di) =

{sa, sb}. Figure 5 shows the two interferences I(sa)(t) and

I(sb)(t) originated by the two job sequences sa and sb, re-
spectively, and the corresponding interference envelope I(t),

computed as the maximum between I(sa)(t) and I(sb)(t).
As clearly visible from the plots, the envelope I(t) leads to a
response time R much higher than those resulting from the
two concrete interferences (note that in the graph the re-
sponse time is the time instant at which the computational
demand matches the processor supply). In other words, any
concrete job sequence of τ∗ contributing to I(t) generates
an idle-time before R.

����

�
�
�
�I(t)

I(sa)(t)
I(sb)(t)

RR(sa)R(sb) t

y = t

Figure 5: Example in which the interference envelope leads
to an over-estimated response-time.

In general, since the determination of the time at which the
processor is idle cannot be computed without a full knowl-
edge of the higher priority task set, it is not possible to
compute a priori the interference of an AVR task. In other
words, the maximum response-time Ri is originated from
different sequences s ∈ CS depending on the interference of
the higher priority tasks. Hence, contrary to classical peri-
odic tasks, to characterize the exact response-time it is not
possible to abstract the interference of τ∗ by using a single
value of interference for each time instant t. The solution
proposed in this paper consists of computing the interfer-
ence on the fly while the response time of τi is computed,
exploring the domain of the set CS.

4.1.1 Algorithm for Computing the Response Time
According to Equation (9), to compute the response-time
Ri, it is necessary to identify all possible critical job se-

quences s ∈ CS and then compute the response-time R
(s)
i

for each sequence s.

In this section, we present an algorithm to efficiently com-
pute Ri by evaluating the critical job sequences on-the-fly
and only when needed, providing additional pruning in the
search of the speed space and significant speedup for the
analysis.

The proposed algorithm (reported in Figure 7) performs a
visit of the speed tree with pruning, using the concept of
dominant speeds while at the same time discarding the job
sequences that would result in an idle time earlier than one
of the candidate response times. The algorithm operates re-
cursively for increasing time values. At any point in time,
the main function of the algorithm, ResponseTime, computes
the contribution to the interference of one additional job ac-

tivation. ResponseTime is called by passing the priority in-
dex i of the task for which the response time is computed
(used to evaluate the contribution to the interference from
the set of periodic tasks), the current speed ω (at the time
the job is activated), the current time t, and the execution
time requests Π (the contribution to the interference) ac-
cumulated up to time t. Note that the algorithm always
terminates when current time t exceeds MaxTime, which
is the maximum time (equal to the task deadline) for the
search.

0

jobRT

idleTime

actual interference
of the current job

Π

t tt1 td

w1

w2

w3

wd

wp

y = t

Figure 6: Pruning and branching in the algorithm for com-
puting the response time.

Each time ResponseTime is called, ω is one of the dominant
speeds and t the candidate point in time for the job acti-
vation. Given t and ω, the algorithm computes the next
possible idle time (an example is illustrated in Figure 6).
Next, it computes the times and speeds for the possible ac-
tivations of the next job that dominate its execution time
requests. The requests that occur before the next idle time
(such as ω1 in the figure) are considered by the algorithm,
while those occurring after the idle time (such as ω2 and
ω3 in the figure) are discarded. Among all the possible job
activations that occur before the idle time, the algorithm se-
lects the one that results in the candidate response time at
the current step (in singleJobRT). The candidate response
time is stored and, if it is still smaller than the deadline,
the algorithm prepares for the next recursive call. At this
point, the procedure getDominants(ω) computes the dom-
inant speeds in the range of possible instantaneous speed at
the activation of the next job, that is [Ω(ω, α−),Ω(ω, α+)].
Among those dominant speeds, there are not only the ones
that contribute to the steps in the time request function for
the current job (such as ω1), but also additional ones (dom-
inating the requests for a subset of the following jobs). For
these dominants, the same pruning rule based on the idle
time applies. If they result in activations before the idle
time (such as ωd in the figure), they are considered for the
next recursive call, otherwise (ωp in the figure), they are
pruned.

Figure 8 shows the algorithm to check the schedulability of
τi using the procedure ResponseTime. Procedure Schedula-
bilityTest starts by computing the initial dominant speeds
in the full range allowed for engine speeds, (i.e., [ωmin, ωmax]).
Then, for each initial dominant speed ω0 we compute the
response-time candidates: since all the candidates represent
response-time values related to possible job sequences start-
ing from ω0, the maximum R of such candidates is taken as
response time for speed ω0. If the response-time R exceeds

the deadline Di, then τi is not schedulable; otherwise, if R
results lower (or equal) than Di for each initial dominant
speeds, then τi is schedulable.

1: procedure ResponseTime(i,ω,Π, t)
2: idleTime ← getIdleTime(i, ω,Π, t);
3: jobRT ← singleJobRT(i, ω,Π, idleTime);
4: RTCandidates.add(jobRT);
5:
6: if jobRT> MaxTime then return ;
7: end if

8:
9: dominants ← getDominants(Ω(ω, α−),Ω(ω, α+));
10: for ωnext in dominants do
11: Tnext ← T̃ (ω,ωnext);
12: if t+ Tnext < idleTime then

13: Πnext ← Π+ C(ωnext);
14: ResponseTime(i, ωnext,Πnext, t+ Tnext);
15: end if

16: end for

17: end procedure

Figure 7: Procedure for computing the response-time of a
task τi.

1: procedure SchedulabilityTest(i)
2: dominants ← getDominants(ωmin, ωmax);
3: MaxTime ← Di;
4: for ω0 in dominants do
5: RTCandidates ← [];
6: ResponseTime(i, ω0, 0, 0);
7: R←Max(RTCandidates);
8:
9: if R > Di then

10: return UNSCHEDULABLE;
11: end if

12: end for

13: return SCHEDULABLE;
14: end procedure

Figure 8: Procedure describing the schedulability test for a
task τi.

Surprisingly, the additional pruning in the search allowed
by the idle-time detection makes the computation of the
exact response-time more efficient than the computation of
the over estimated response-time through the interference
envelope I(t).

4.1.2 Interference from Multiple AVR Tasks
In this section we extend the analysis by considering the
possible interference from multiple AVR tasks with the same
rotating source of activation events (the case is significant
when considering engine-control application).

Since the set of jobs from the AVR tasks are activated ex-
actly at the same time instant, the definition of critical in-
stant does not change. The intereference of the tasks in the
AVR (higher priority) set can be characterized as follows.

When computing the response time of a periodic task τi
interfered by a set of AVR tasks hpA(τi) = {τ∗

0 , τ
∗
1 , . . . τ

∗
p }

having the same angular period and phase (assumed as 0

for convenience), the interference from the tasks in the AVR
set is equivalent to the interference from a single task τ∗

k

constructed as follows.

Consider the union of the mode speeds of the AVR tasks
and sort them from ωmax to ωmin. The cardinality of the
set gives the number of modes for τ∗

k (at most the sum of the
number of modes for all the AVR tasks). Each mode m of
τ∗
k is defined by the corresponding speed range (ωm+1

k , ωm
k]

and a worst case execution time

Cmk (ω) =
∑

j∈hpA(τi)

Cj(ω
m
k).

At this point, the approach presented in the previous section
can be applied.

4.2 Response-Time of an AVR Task Interfered

by Periodic Tasks
Let us now consider the response-time of an AVR task τ∗ in-
terfered by periodic tasks (assuming there are periodic tasks
having higher priority than τ∗).

Since the response time of τ∗ depends on the instantaneous
speed ω0 at which it is released, we have

R(ω0) = min



t | C(ω0) +

∑

i∈hp(τ∗)

⌈
t

Ti

⌉
Ci = t



 ,

where hp(τ∗) denotes the set of periodic tasks having higher
priority than τ∗.

Now, the dependency on the speed ω0 can be removed by
considering each mode of τ∗, so obtaining a response-time
value for each mode, that is

Rm = min



t | Cm +

∑

i∈hp(τ∗)

⌈
t

Ti

⌉
Ci = t



 ,

with m = 1, . . . ,M .

Finally, to check the schedulability of τ∗ we have to verify
that Rm ≤ D(ωm) for each mode m = 1, . . . ,M .

4.3 Response Time of an AVR Task Interfered

by other AVR Tasks
We now address the schedulability of an AVR task τ∗

i inter-
fered by both periodic tasks and multiple AVR tasks having
the same angular period of τ∗

i . When multiple AVR tasks
with the same angular period are considered, only one job for
each high-priority AVR task can produce interference, i.e., a
single computation time must be accounted for. We denote
hpA(τ∗

i) as the set of AVR tasks having higher priority than
τ∗
i .

As done in Section 4.2, the dependency from the speed ω0 ∈
[ωmin, ωmax] can be removed by considering each mode m
of τ∗

i and computing the reponse time for each m. Once
the mode of τ∗

i is selected, each higher priority AVR task
τ∗
j , j ∈ hpA(τ∗

i) may be in a finite set of modes mj,k, . . . ,
mj,n such that the intersection of the speed ranges for m
and any of the mj,p with k ≤ p ≤ n is not empty (as shown
in Figure 9). The possible interference of each higher priority

AVR τ∗
j only changes at the boundary speeds of its modes.

Hence, these are the only (finite) number of speeds that need
to be considered.

...
hpA(τ∗

i)

τ∗
i

τ∗
j

ωm+1
i ωm

i

mj,k mj,n

Figure 9: Identifying the contributions of the higher priority
AVR task modes to τ∗

i .

Formally, for each mode m of τ∗
i , the following conditions

must be satisfied:

∀j ∈ hpA(τ∗
i) ∪ {i}

∀ωm′

j ∈ (ωm+1
i , ωm

i] Rm
i (ωm′

j) ≤ Di(ω
m′

j).

where

Rm
i (ω) = min




t | Cm
i +

∑

j∈hpA(τ∗

i
)

Cj(ω) +
∑

j∈hp(τ∗

i
)

⌈
t

Tj

⌉
Cj = t




 .

5. EXPERIMENTAL RESULTS
This section presents a set of experimental results aimed
at comparing the exact schedulability analysis presented in
this paper with the sufficient ILP-based analysis for AVR
tasks presented by Davis et al. in [8]. Both schedulabil-
ity tests have been implemented and applied to synthetic
workloads for comparison. The ILP-based formulation has
been implemented using the IBM CPLEX solver, whereas
the proposed algorithm has been implemented as a MAT-
LAB script. Tests have been executed on a desktop PC
with processor Intel i7 running at 3.5 GHz.

Since the ILP-based analysis requires a quantization on the
speed domain, a step of 100 RPM was adopted, as suggested
by the authors. Our analysis discriminates 1 RPM in the
computation of the dominant speeds. It is also worth not-
ing that the approach presented in [8] considers a slightly
different task model in which mode-change is triggered as a
function of an estimation of the instantaneous speed through
the average speed in the previous inter-arrival time. The ILP
formulation [8] leads to some inconsistencies in the compu-
tation of the interference for low speed values: the problem
has been fixed by the authors in a technical report [9], taken
as a reference for our comparison.

We assume a rotation source ranging from ωmin = 500 RPM
to ωmax = 6500 RPM as typical values for a production
car engine. Similarly, values of acceleration have been se-
lected [8] such that the engine is able to reach the maximum
speed starting from the minimum one in 35 revolutions, ob-
taining α+ = −α− = 1.62 10−4 rev/msec2.

5.1 Workload Generation
In our experiments we considered a task set composed of n
periodic tasks and an AVR task. Given an overall target
utilization UP for the set of periodic tasks, each periodic
tasks is generated as follows:

• The utilization Ui of each task τi is randomly gener-
ated using the UUniFast [1] algorithm such that

∑n

i=1

Ui = UP . The minimum utilization of each periodic
task is Umin = 0.005;

• Task periods Ti are randomly generated (with a uni-
form distribution) in the range [3, 100] msec;

• We considered implicit deadlines for each periodic task,
i.e., Di = Ti;

• Computation times are computed as Ci = UiTi.

Observe that the case of multiple AVR tasks with a com-
mon activation source can be modeled as a single AVR task
(also called representative AVR) in which the definition of
the modes, the speed boundaries for the modes, and the
execution time for each mode are defined as a combination
of the modes, boundary speeds and execution times of the
tasks in the AVR set. For the purpose of our experiments,
we simply represent the single AVR task resulting from the
composition of the set.

Given a target utilization U∗ for the representative AVR
task, its parameters are generated as follows:

• Θ = 2π is the angular period (i.e., a task activation
for each engine revolution);

• ∆ = Θ (implicit angular deadlines);

• The number of modes M has been randomly generated
in the range [Mmin,Mmax]. The values defining the
range are parameters for the definition of the experi-
mental set;

• A random mode m′ is selected to have the maximum
utilization Um′

= U∗. The utilization Um of the other
modes m 6= m′ are randomly generated in the range
[0.85U∗, U∗], where U∗ is an additional parameter;

• The maximum speed ωm of each mode m < M is ran-
domly generated in the range [1000, 6000] RPM. The
maximum speed for mode 1 is always set at the max-
imum speed ωmax. Once the boundary speeds for the
mode transitions are generated, they are checked to
ensure a minimum separation between any two values.
If the minimum separation between any two speeds is
below 3000/M RPM, then all speeds are discarded and
the set is generated again;

• The computation time Cm of each mode m is defined
as Cm = UmΘ/wm. If the generated computation
times are not monotonically increasing with respect
to modes, then they are discarded, and a new set is
generated.

U = UP +U∗ is the overall utilization of the set of periodic
and AVR tasks. Task priorities are assigned according to the
Rate Monotonic order (i.e., the lower the period the higher
the priority), where the period of the AVR task is considered
as T ∗ = Θ/ωmax, that is, its lowest possible inter-arrival
time.

In the following experiments we denote as

• EXACT - The analysis presented in this paper (in Sec-
tion 4);

• ILP - The analysis proposed in [8] using the revised
ILP constraints of [9].

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

U

S
ch
ed
u
la
b
il
it
y
ra
ti
o

ρu = 0.4

Difference

EXACT

ILP

Figure 10: Schedulability ratio as a function of the system
load U for ρu = 0.4.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

U

S
ch
ed
u
la
b
il
it
y
ra
ti
o

ρu = 0.6

Difference

EXACT

ILP

Figure 11: Schedulability ratio as a function of the system
load U for ρu = 0.6.

5.2 Experiment 1
The first experiment was carried out to measure the schedu-
lability ratio of the two analyses as a function of the overall
utilization U for task sets composed of n = 5 periodic tasks
and an AVR task with Mmin = 4 and Mmax = 8. The uti-
lization of the AVR task was computed as U∗ = ρuU . For
each value of the utilization, the two schedulability tests
were executed over 500 randomly generated task sets.

Figure 10 shows the results of this experiment when the uti-
lization U varies from 0.3 to 0.95, and for ρu = 0.4. Clearly,
both the tests tend to degrade as the system load increases.
In the range [0.7, 0.95] the EXACT analysis improves the
schedulability with respect to the ILP test, being able to
admit 6 times more task sets for U = 0.9. Figure 11 shows

the results of a similar experiment carried out for ρu = 0.6,
where the gain in schedulability of the EXACT test over
ILP is 10 times more for U = 0.9. Both figures also re-
port the difference of the two schedulability ratios to better
appreciate the results.

Note that the achieved improvement of the proposed analy-
sis exactly occurs in the workload range where these appli-
cations typical operate (80% utilization or higher).

5.3 Experiment 2
A second experiment was carried out to better evaluate the
dependency of the schedulability ratio on the utilization of
the AVR task by varying the factor ρu = U∗/U from 0.05
to 0.95. For each value of ρu, the two schedulability tests
(EXACT and ILP) were executed over 500 randomly gen-
erated task sets composed of n = 5 periodic tasks and an
AVR task with Mmin = 4 and Mmax = 8.

The results of this experiment for U = 0.85 are reported in
Figure 12. As visible from the plots, the gain in schedula-
bility of the EXACT test increases with ρu, until reaching
a significant improvement around ρu = 0.6. Notice that,
for high values of the AVR utilization (ρu > 0.6) the ILP
analysis shows a saturation effect in the schedulability ra-
tio, whereas the EXACT test is still able to admit 2-3 times
more task sets than ILP.

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

ρu

S
ch
ed
u
la
b
il
it
y
ra
ti
o

U = 0.85

Difference

EXACT

ILP

Figure 12: Schedulability ratio as a function of ρu = U∗/U .

5.4 Experiment 3
In this experiment we measured the schedulability ratio of
the two methods by varying the number of modes M =
Mmin = Mmax of the AVR task. The overall utilization
of the task set is fixed to U = 0.85, and the utilization of
the AVR task is U∗ = 0.4U . For each value of M , 500 task
sets have been randomly generated including n = 5 periodic
tasks.

Figure 13 shows the results of this experiment, when M is
varied from 3 to 12. Note that both the tests decrease their
performance as M increases, but the improvement of the
EXACT test over ILP increases with the number of modes
M , or equivalently, with the number of AVR tasks, as ob-
served at the beginning of Section 5.1.

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

M

S
ch
ed
u
la
b
il
it
y
ra
ti
o

U = 0.85, ρu = 0.4

Difference

EXACT

ILP

Figure 13: Schedulability ratio as a function of the number
of modes M for the AVR task, with U = 0.85 and ρu = 0.4.

6. CONCLUSIONS AND FUTURE WORK
This paper presented the first exact analysis for task sets
consisting of periodic tasks and adaptive variable rate tasks
with a common activation source, all scheduled by a fixed
priority algorithm. This result allows a designer to precisely
analyze the behavior of engine control applications in the
temporal domain, providing a method for predicting pos-
sible overload conditions that could jeopardize the system
performance. Simulation results show that the proposed ap-
proach always dominates the previous sufficient tests, with
significant improvements in terms of schedulability for high
processor workloads (80% utilization or higher), which rep-
resent the typical operating conditions of engine control ap-
plications.

As a future work, we plan to extend the response time anal-
ysis to sets with multiple AVR tasks with different angular
periods and phases and possibly different independent acti-
vation sources. We also aim at using our analysis methodol-
ogy in a design synthesis process to support the application
developer in selecting the mode transition speeds given the
implementation of the control functions for each mode.

Acknowledgements
The authors like to thank Martin Stigge for the interest-
ing exchange of ideas on AVR and digraph real-time task
models, and Robert I. Davis, Timo Feld, Victor Pollex, and
Frank Slomka for the fruitful discussions on schedulability
analysis of AVR tasks.

7. REFERENCES
[1] E. Bini and G. C. Buttazzo. Measuring the

performance of schedulability tests. Real-Time
Systems, 30(1-2):129–154, 2005.

[2] A. Biondi, A. Melani, M. Marinoni, M. D. Natale, and
G. Buttazzo. Exact interference of adaptive
variable-rate tasks under fixed-priority scheduling. In
Proceedings of the 26th Euromicro Conference on
Real-Time Systems (ECRTS 2014), Madrid, Spain,
July 8-11, 2014.

[3] G. Buttazzo, L. Abeni, and G. Lipari. Elastic task
model for adaptive rate control. In IEEE Real Time
System Symposium, Madrid, Spain, December 1998.

[4] G. Buttazzo, E. Bini, and D. Buttle. Rate-adaptive
tasks: Model, analysis, and design issues. In Proc. of
the Int. Conference on Design, Automation and Test
in Europe, Dresden, Germany, March 24-28, 2014.

[5] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni.
Elastic scheduling for flexible workload management.
IEEE Transactions on Computers, 51(3):289–302,
March 2002.

[6] G. C. Buttazzo. Rate monotonic vs. EDF: Judgment
day. Real-Time Systems, 29(1):5–26, January 2005.

[7] D. Buttle. Real-time in the prime-time. In Keynote
speech at the 24th Euromicro Conference on
Real-Time Systems, Pisa, Italy, July 12, 2012.

[8] R. I. Davis, T. Feld, V. Pollex, and F. Slomka.
Schedulability tests for tasks with variable
rate-dependent behaviour under fixed priority
scheduling. In Proc. 20th IEEE Real-Time and
Embedded Technology and Applications Symposium,
Berlin, Germany, April 15-17, 2014.

[9] R. I. Davis, T. Feld, V. Pollex, and F. Slomka.
Schedulability tests for tasks with variable
rate-dependent behaviour under fixed priority
scheduling. In University of York, Department of
Computer Science Technical Report, YCS-2014-488,
January 2014.

[10] L. Guzzella and C. H. Onder. Introduction to Modeling
and Control of Internal Combustion Engine Systems.
Springer-Verlag, 2010.

[11] J. Kim, K. Lakshmanan, and R. Rajkumar. Rhythmic
tasks: A new task model with continually varying
periods for cyber-physical systems. In Proc. of the
Third IEEE/ACM Int. Conference on Cyber-Physical
Systems (ICCPS 2012), pages 28–38, Beijing, China,
April 17-19, 2012.

[12] V. Pollex, T. Feld, F. Slomka, U. Margull, R. Mader,
and G. Wirrer. Sufficient real-time analysis for an
engine control unit with constant angular velocities. In
Proc. of the Design, Automation and Test Conference
in Europe, Grenoble, France, March 18-22, 2013.

[13] J. Real and A. Crespo. Mode change protocols for
real-time systems: A survey and a new proposal.
Real-Time Systems, 26(2):161–197, March 2004.

[14] L. Sha, R. Rajkumar, J. P. Lehoczky, and
K. Ramamritham. Mode change protocols for
priority-driven preemptive scheduling. Real-Time
Systems, 1(3):243–264, December 1989.

[15] M. Stigge and W. Yi. Combinatorial abstraction
refinement for feasibility analysis. In Proceedings of
the 34nd IEEE Real-Time Systems Symposium (RTSS
2013), 2013.

[16] M. Stigge and W. Yi. Refinement-based exact
response-time analysis. In Proc. 26th Euromicro
Conference on Real-Time Systems (ECRTS’14), 2014.

[17] N. Stoimenov, S. Perathoner, and L. Thiele. Reliable
mode changes in real-time systems with fixed priority
or EDF scheduling. In Proceedings of the Design,
Automation and Test Conference in Europe (DATE
2009), Nice, France, April 20-24, 2009.

