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Abstract—Engine control systems include computational activities that
are triggered at predetermined angular values of the crankshaft, and
therefore generate a workload that tends to increase with the engine
speed. To cope with overload conditions, a common practice adopted
by the automotive industry is to design such angular tasks with a set
of modes that switch at given rotation speeds to adapt the computa-
tional demand. This paper presents an exact response time analysis for
engine control applications consisting of periodic and engine-triggered
tasks scheduled by fixed priority. The proposed analysis explicitly takes
into account the physical constraints of the considered systems and
is based on the derivation of dominant speeds, which are particular
engine speeds that are proved to determine the worst-case behavior of
engine-triggered tasks from a timing perspective. Experimental results
are finally reported to validate the proposed approach and compare it
against an existing sufficient test.

Index Terms—engine-control, cyber-physical systems, real-time analy-
sis

1 INTRODUCTION

Engine control application belong to an interesting class of
real-time applications that are not suitably represented by a
periodic or sporadic task model, since the activation of one
or more tasks of interest occurs on a given angular position
of the engine shaft. In addition, to leverage at best the
computational resources, more complex control functions
are defined for low rates of the engine. When the engine
speed increases, computational load is shed, giving rise to
the Adaptive Variable Rate (AVR) task model.

In a 4-cylinder engine, for example, the injection of the
fuel for the odd numbered cylinders follows a cycle of two
rotations and is in phase opposition with the corresponding
injection for the even cylinders. Conventionally, the rotation
of the engine crankshaft and the phase within it are referred
to the Top Dead Center (or TDC) position of one of the cylin-
ders. When the engine speed increases, the code complexity
of some tasks is reduced and correspondingly, their worst-
case execution time is lowered. These modes of execution
of variable complexity operate within given engine speed
ranges, defined at design time.

The timing analysis of applications that include AVR
tasks is not trivial, since the identification of the possi-
ble worst-case scenario depends on the initial speed, the
transition speeds, and the worst-case execution times for
each mode. In addition, the worst-case scenario for a task
also depends on the possible evolution of the engine speed

according to the physics of the engine, defined at least
by boundaries on the maximum and minimum angular
acceleration.

The definition of the transition speeds and the control
task implementations for the different modes are defined
to optimize a set of performance indexes, related to power,
fuel consumption, and emissions (among others) within
schedulability constraints. This process requires a fine tun-
ing of a significant number of configuration parameters,
often performed manually at the test bench.

Contribution. This paper presents an exact analysis (with
respect to a general physical model of the engine dynam-
ics) for a mixed task set that includes both regular peri-
odic/sporadic tasks and AVR tasks managed under fixed-
priority scheduling, the policy mandated by the AUTOSAR
standard (adopted by the vast majority of automotive com-
panies). The analysis is valid for uniprocessor systems
and multiprocessor systems managed by partitioned fixed-
priority scheduling.

The main purpose of the presented analysis is to explicitly
take into account the physical constraints of the considered
system during the characterization of the maximum com-
putational demand generated by AVR tasks. In this way, it
is possible to precisely study mode-changes and release pat-
terns of AVR tasks, thus enabling the derivation of a method
for precisely computing their temporal interference on low-
priority tasks. The analysis integrates, extends and clarifies
previous work by the same authors. A full description of
the novel contributions is in Section 8 together with the
discussion of the state of the art.

A model of engine-control applications for the purpose
of real-time analysis is first presented in Section 2, including
a model for the dynamics of a rotating crankshaft. The latter
is generalized in Section 7. The proposed analysis technique
is based on approaching the computation of the interference
as a search problem in the speed domain, which is discussed
and formalized in Section 3. Then, in Section 4, the search
space is studied to identify a set of pruning conditions. The
problem is demonstrably solvable by only considering a lim-
ited set of engine speeds (denoted as dominant speeds), which
allows computing the maximum response time of tasks by
studying some specific scenarios. Based on these results,
an algorithm is designed to efficiently perform response-
time analysis (Section 5). Section 6 reports an experimental
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study that has been conducted to assess the performance of
the proposed approach and evaluate it against the previous
work. Section 8 discusses the related work and Section 9
concludes the paper.

2 SYSTEM MODEL

This work considers a single rotation source (the crankshaft
of one engine) characterized by the following state variables:

• the rotation angle (θ);
• the angular velocity (ω);
• the angular acceleration (α).

It is assumed that the angular velocity ω is limited within
the range [ω−, ω+] and the acceleration α is limited within
the range [α−, α+].

Section 2.1 introduces a model for engine control appli-
cations for the purpose of real-time (timing) analysis. To the
best of our knowledge and experience with a number of
automotive industries, the proposed model is appropriate
for describing a wide representative set of engine control
applications.

Then, Section 2.2 presents a model for the physical
dynamics of the rotation source. To ease the presentation,
such a model is based on the simplifying assumption of
constant acceleration during a given angular interval within
one crankshaft revolution. This assumption is relaxed in
a generalized model (reported in Section 7), which allows
computing minimum inter-arrival times under arbitrary
acceleration profiles with unbounded jerk (i.e., infinite rate
of change of the acceleration) — a conservative assumption
that avoids incurring in excessive complications for the
purpose of this work. Thanks to a set of monotonicity
properties derived in the following, the presented results are
compatible with both models.

2.1 Application model

The considered engine-control applications consist of a set
Γ = {τ1, τ2, . . . , τn} of n real-time preemptive tasks. Each
task can either be periodic (i.e., activated at fixed time
intervals), sporadic (i.e., activated with a minimum inter-
arrival time) or an angular task (i.e., activated at specific
crankshaft rotation angles). Considering that angular tasks
have a variable inter-arrival time linked to the engine speed
and adapt their workload for different speeds, they are
also referred to as adaptive variable-rate (AVR) tasks. In
the following, the subset of regular periodic/sporadic tasks
is denoted as ΓP and the subset of angular AVR tasks is
denoted as ΓA, so that Γ = ΓP ∪ ΓA and ΓP ∩ ΓA = ∅. The
overall utilization of ΓP is denoted as UP . For the sake of
clarity, whenever needed, an AVR task may also be denoted
as τ∗i .

Both types of tasks are characterized by a worst-case
execution time (WCET) Ci, an inter-arrival time (or period)
Ti, and a relative deadline Di. However, while for regular
periodic/sporadic tasks such parameters are fixed, for an-
gular tasks they depend on the engine rotation speed ω. In
particular, an angular task τ∗i is characterized by an angular
period Θi and an angular phase Φi, so that it is activated at the
angles θi = Φi + kΘi, for k = 0, 1, 2, . . .. This means that,

when the engine is rotating at a fixed speed ω, the inter-
arrival time of an AVR task is inversely proportional to the
engine speed and can be expressed as Ti(ω) = Θi/ω.

The angular phase Φi is relative to a reference posi-
tion called Top Dead Center (TDC) corresponding to the
crankshaft angle for which at least one piston is at the
highest position in its cylinder. Without loss of generality,
the TDC position is assumed to be at θ = 0. An angular
task τ∗i is also characterized by a relative angular deadline ∆i

expressed as a fraction δi of the angular period (δi ∈ [0, 1]).
In the following, ∆i = δiΘi represents the relative angular
deadline.

An AVR task τ∗i is typically implemented [10] as a set
Mi of Mi execution modes with decreasing functionality,
each operating in a predetermined range of rotation speeds.
Mode m of an AVR task τ∗i is characterized by a WCET Cmi
and is valid in a speed range (ωm+1

i , ωmi ], where ωMi+1
i =

ω− and ω1
i = ω+. Hence, the set of modes of task τ∗i can

be expressed as Mi = {(Cmi , ωmi ),m = 1, 2, . . . ,Mi}. The
WCET Ci,k of an arbitrary AVR job Ji,k is expressed as
a non-increasing step function Ci(ω) of the instantaneous
speed ω at its release, that is,

Ci,k = Ci(ω) ∈ {C1
i , . . . , C

Mi
i }. (1)

An example of a Ci(ω) function is shown in Figure 1.
The implementation of AVR tasks can be performed as a

sequence of conditional if statements, each executing a spe-
cific subset of functions [9], [10] (also denoted as runnables in
the automotive domain). Figure 2 illustrates a sample AVR
task with four modes, ω− = 500 RPM, and ω+ = 6500 RPM.
This example assumes that the read_rotation_speed()
function returns the instantaneous speed ω at the task
activation time (not at the calling time of the function).

introduces our approach for analyzing the schedulability of
a system composed of periodic and AVR tasks. Section IV
describes how to compute the worst-case workload for an AVR
task. Section V presents a set of experimental results aimed
at comparing EDF and FP scheduling. Finally, Section VI
summarizes the results and concludes the paper.

II. SYSTEM MODEL

For the purpose of the analysis, this paper considers a sin-
gle rotation source (the engine) characterized by the following
state variables:

θ the current rotation angle of the crankshaft;
ω the current angular speed of the crankshaft;
α the current angular acceleration of the crankshaft.

We assume that the speed ω is limited within a given range
[ωmin, ωmax] and the acceleration α is limited within a given
range [α−, α+] and its rate of change (jerk) is bounded.

A. Task model

The application consists of a set of n real-time preemptive
tasks Γ = {τ1, τ2, . . . , τn}. Each task can be either periodic
(i.e., activated at fixed time intervals), or an angular task (i.e.,
activated at specific crankshaft rotation angles). Since angular
tasks have a variable interarrival time linked to the engine
speed and adapt their workload for different speeds, they are
also referred to as adaptive variable-rate (AVR) tasks. In the
following, the subset of regular periodic tasks is denoted as
ΓP and the subset of angular AVR tasks is denoted as ΓA, so
that Γ = ΓP ∪ΓA and ΓP ∩ΓA = ∅. The overall utilization of
ΓP is denoted as UP . For the sake of clarity, whenever needed,
an AVR task may also be denoted as τ∗i .

Both types of tasks are characterized by a worst-case
execution time (WCET) Ci, an interarrival time (or period) Ti,
and a relative deadline Di. However, while for regular periodic
tasks such parameters are fixed, for angular tasks they depend
on the engine rotation speed ω. In particular, an angular task
τ∗i is characterized by an angular period Θi and an angular
phase Φi, so that it is activated at the following angles:

θi = Φi + kΘi, for k = 0, 1, 2, . . .

This means that the period of an AVR task is inversely
proportional to the engine speed ω and can be expressed as

Ti(ω) =
Θi

ω
. (1)

The angular phase Φi is relative to a reference position called
Top Dead Center (TDC) corresponding to the crankshaft angle
for which at least one piston is at the highest position in
its cylinder. Without loss of generality, the TDC position
is assumed to be at θ = 0. An angular task τ∗i is also
characterized by a relative angular deadline ∆i expressed as a
fraction δi of the angular period (δi ∈ [0, 1]). In the following,
∆i = δiΘi represents the relative angular deadline.

An AVR task τ∗i is typically implemented as a set Mi

of Mi execution modes with decreasing functionality, each
operating in a predetermined range of rotation speeds. Mode
m of an AVR task τ∗i is characterized by a WCET Cm

i and
is valid in a speed range (ωm+1

i , ωm
i ], where ωMi+1

i = ωmin

and ω1
i = ωmax. Hence, the set of modes of task τ∗i can be

expressed as

Mi = {(Cm
i , ωm

i ),m = 1, 2, . . . ,Mi}.

The computation time of a generic AVR job Ji,k can be
expressed as a non-increasing step function Ci of the instanta-
neous speed ω at its release, that is,

Ci,k = C(ω) ∈ {C1
i , . . . , C

Mi

i }. (2)

An example of C function is illustrated in Figure 1.

Ci(ω)

C1
i

C2
i

Cm
i

CMi
i

ωωmin
i ωMi

i ωm
i ω2

i ω1
i

Figure 1. Computation time of an AVR task as a function of the speed at
the job activation.

The implementation of such a type of tasks is typically
performed as a sequence of conditional if statements, each
executing a specific subset of functions [2], [9]. Figure 2 illus-
trates a sample AVR task with four modes reported in Table I.
In this example, ωmin = 500 rpm, and ωmax = 8000 rpm.
Note that we assume that function read_rotation_speed()
returns the instantaneous speed ω at the task activation time
(not at the execution time of the function).

Mode rotation (rmp) functions to be executed
Mode 1 ( 6000, 8000] f1();

Mode 2 ( 4000, 6000] f1(); f2();

Mode 3 ( 2000, 4000] f1(); f2(); f3();

Mode 4 [ 500, 2000] f1(); f2(); f3(); f4();

Table I. SAMPLE AVR TASK WITH FOUR MODES.

#define W1 8000
#define W2 6000
#define W3 4000
#define W4 2000

task sample_AVR_task {
omega = read_rotation_speed();

if (omega ≤ W1) f1();
if (omega ≤ W2) f2();
if (omega ≤ W3) f3();
if (omega ≤ W4) f4();

}

Figure 2. Implementation of the AVR task reported in Table I.

Note that, when using EDF as a scheduler, an absolute
deadline must be assigned to each job at its activation time
in order to be scheduled. Although the angular deadline is
constant, the temporal deadline is a function of ω and (for
constant rotation speed) is equal to

Di(ω) =
∆i

ω
=

δiΘi

ω
= δiTi(ω). (3)

However, for an incoming job, the next arrival time is not
known, since ω may not be constant over time. To achieve

Figure 1. Worst-case execution time of an AVR task as a function of the
speed at the job activation.

task sample_AVR_task {
omega = read_rotation_speed();
if (omega ≤ 6500) f1();
if (omega ≤ 5000) f2();
if (omega ≤ 3500) f3();
if (omega ≤ 2000) f4();

}

Figure 2. Implementation of an example AVR task.
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2.2 Rotation source model

For the purpose of analyzing the timing properties of engine
control applications that include AVR tasks, it is crucial to
characterize the relation between the AVR task parameters
and the dynamics of the engine. In this section we make
the simplifying assumption that the engine acceleration has
a negligible variation during two consecutive jobs of an
AVR task, and is hence assumed constant within the angu-
lar period of AVR tasks. Such an assumption significantly
simplifies the derivation of the inter-arrival time between
two consecutive jobs as a function of the engine state. On
the other hand, it can lead to the computation of optimistic
(overestimated) inter-arrival times. Although this model has
this drawback, numerical evaluations reveal that the error
introduced by the assumption of constant acceleration is
very marginal, especially when considering realistic speed
and acceleration bounds. Hence, in the following sections,
this simplified model is used to ease the presentation of
the problem and of the solution. However, we idenfity the
fundamental properties on which all the proofs and the
analysis are based and in Section we show how the method
still applies to a quite general model of the dynamics that
removes all the limitations and inaccuracies of the constant
acceleration assumption.

Suppose that a job Ji,k of an AVR task τ∗i is released
at time tk with instantaneous engine speed ωk. Following
standard physical equations (e.g., as presented in [9]), the
release time tk+1 of the next AVR job Ji,k+1 assuming a
constant acceleration αk during (tk, tk+1] can be computed
as tk+1 = tk + Ti(ωk, αk), where

Ti(ωk, αk) =

√
ω2
k + 2Θiαk − ωk

αk
. (2)

In a similar way, the instantaneous engine speed ωk+1 =
Ω(ωk, αk) at the release of the next job Ji,k+1 can be com-
puted as ωk + αkTi(ωk, αk), which gives:

Ωi(ωk, αk) =
√
ω2
k + 2Θiαk. (3)

If two consecutive jobs Ji,k and Ji,k+1 are respectively
released when the engine has instantaneous speeds ωk and
ωk+1, the inter-arrival time T̃i(ωk, ωk+1) between the two
jobs can be obtained by Equation (2), substituting αk from
Equation (3), which gives:

T̃i(ωk, ωk+1) =
2Θi

ωk + ωk+1
. (4)

Considering a job Ji,k released with instantaneous speed
ωk, Equation (4) can be used to compute the minimum inter-
arrival time T̃mi (ωk) such that the next job Ji,k+1 is released
in mode m (if reachable with the acceleration bounds)

T̃mi (ωk) = T̃i(ωk, ω
m
i ) =

2Θi

ωk + ωmi
. (5)

Finally, given a job Ji,k released with instantaneous
speed ωk and the inter-arrival time T to the next job Ji,k+1,
we define Ω̃(ωk, T ) as the instantaneous speed at the release
Ji,k+1, computed from Equation (4):

Ω̃i(ωk, T ) =
2Θi

T
− ωk. (6)

It is also convenient to define the inverse function of
Equation (3), representing the initial speed ωk that allows
reaching speed ωk+1 with constant acceleration αk, that is,

Ω−i (ωk+1, αk) =
√
ω2
k+1 − 2Θiαk. (7)

In the analysis presented in the following sections, we
also define the engine speed after n job releases (following
an arbitrary kth job), with constant acceleration α during
(tk, tk+n]; such a value, denoted as Ωn, can be recur-
sively computed as Ωn(ωk, α) = Ω(Ωn−1(ωk, α), α), where
Ω0(ω, α) = ω. Similarly as in Equation (7), we define the in-
verse function Ω−n(ωk+n, α) = Ω−(Ω−(n−1)(ωk+n, α), α),
where Ω−0(ω, α) = ω.

A summary of the notation is shown in Table 1.

2.3 Monotonicity of inter-arrival times

Consider two consecutive jobs Ji,k and Ji,k+1 with Ji,k+1

released at a given speed ωk+1. Let ωk and ω′k be two
possible speeds at the release of Ji,k. If ωk > ω′k then
T̃i(ωk, ωk+1) < T̃i(ω

′
k, ωk+1). That is, the higher the speed

at which Ji,k is released, the lower the inter-arrival time to
the next job. Similarly, consider now the case in which Ji,k is
released at a given speed ωk and let ωk+1 and ω′k+1 be two
possible speeds at the release of Ji,k+1. If ωk+1 > ω′k+1,
then also T̃i(ωk, ωk+1) < T̃i(ωk, ω

′
k+1). Finally, the func-

tion T̃i(ωk, ωk+1) is simultaneously decreasing in the two
variables, that is, if ωk > ω′k and ωk+1 > ω′k+1 then
T̃i(ωk, ωk+1) < T̃i(ω

′
k, ω

′
k+1).

To end of generalizing the presented results, the mono-
tonicity of the function T̃i(ωk, ωk+1) (in both its variables) is
used in the following sections as a fundamental hypothesis
to identify the dominant speeds and construct the analysis
methods presented in this paper. In Section 7, these proper-
ties are shown to also apply to a very general model of the
engine dynamics.

3 ADDRESSING INTERFERENCE AS A SEARCH
PROBLEM

Under fixed-priority scheduling, a task suffers interference
whenever it is prevented to execute due to the execution of
higher-priority tasks. This section explains how to compute
the interference generated by an AVR task on a set of lower
priority tasks.

Let J0 be a job of an AVR task τ∗ activated at time t = 0
with a speed ω0, as shown in Figure 3, and suppose that
the job executes for its WCET C(ω0). Since the engine has
acceleration α ∈ [α−, α+], there can be infinite instants of
time at which the next job can be activated. The earliest
job activation time is given by the maximum acceleration
α+ and occurs after T (ω0, α

+) time units, while the latest
activation time occurs at the maximum deceleration α− after
T (ω0, α

−) units of time.
The execution mode of the next job J1 (and hence its

WCET) depends on the instantaneous speed of the engine
at its activation. Figure 3 reports the single-job interference
function iω0(t) representing the envelope of the interference
contribution among all the possible subsequent jobs. The
instantaneous angular velocity ω1 at the activation of J1 is
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Table 1
Main notation introduced in the system model.

Symbol Description

τi ith periodic task
τ∗i ith AVR task
Ci(ω) WCET of τ∗i as a function of the inst. speed
Cm

i WCET of mode m of τ∗i
ωm
i Maximum speed for mode m of τ∗i

Θi Angular period of τ∗i
Γ Task set
ΓP Subset of Γ composed of periodic tasks
ΓA Subset of Γ composed of AVR tasks

Ti(ωk, αk) Inter-arrival time between the kth and (k + 1)th

job instances, with constant acceleration αk

Ωi(ωk, αk) Speed at the release of job Ji,k+1 assuming
Ji,k released at speed ωk and acceleration αk

Ω̃i(ωk, T ) Speed at the release of job Ji,k+1 assuming
Ji,k released at speed ωk and the inter-arrival
time between Ji,k and Ji,k+1 is T

T̃i(ωk, ωk+1) Inter-arrival time between a job released at speed
ωk and the following at speed ωk+1

T̃m
i (ωk) Minimum inter-arrival time between a job released

at speed ωk and the following in mode m
Ωn

i (ωk, α) Speed after n jobs releases following job Ji,k
released at speed ωk with constant acceleration α

bounded in the range [Ω(ω0, α
−),Ω(ω0, α

+)] and depends
on the actual acceleration of the engine during the inter-
arrival time. Figure 4 illustrates the tree of possible job se-
quences that results by recursively applying such reasoning
to each job generated after J1.
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Figure 3. Possible activations after a job released at speed ω0. Different
colors indicate different modes of the AVR task. Constant acceleration
between two consecutive jobs is assumed. The interference iω0 (t)
generated by the next job is also shown.

The computation of the interference of an AVR task can
then be considered as a search problem in the speed domain,
where all possible job sequences and the composition of the
corresponding single-job interferences have to be analyzed
in a given time interval. Note that, being the speed domain

continuous, the search tree is infinite, that is, it includes an
infinite set of job sequences. This fact implies that any brute-
force search algorithm must quantize the speed domain in
order to produce a solution in a finite amount of time.

In addition, since the release of the first job must be
considered for each instantaneous speed ω0 of the AVR
set, the search algorithm has to be applied for each speed
ω0 ∈ [ω−, ω+]. Therefore, a speed quantization is also
needed, further complicating the problem.

tim
e

t0

ω0

ω1

ω2

Ω(ω0, α−)

Ω(ω1, α−)

Ω(ω0, α+)

Ω(ω1, α+)

Figure 1: Search tree representing the possible job sequences for an AVR task.

0.1 AAAAA

[?]

1

Figure 4. Search tree representing the possible job sequences for an
AVR task.

The pseudo code of a brute-force search of the speed
tree using quantization is reported in Figure 5. Starting with
a job J0 released at t = 0 with speed ω0, the procedure
is called as Interference(ω0, C(ω0), 0). The MAXTIME
parameter represents the length of the time interval within
which the interference needs to be computed. Each recursive
instance of the Interference procedure represents a job
activated at time t with instantaneous speed ω and Π is
the sum of all the computational requests imposed by the
previous jobs. At each recursive step, the algorithm (i) ter-
minates a branch when reaching the end of the time interval
of interest (lines 3-4); (ii) keeps track of the computational
requests accumulated at time t via the sub-procedure UP-
DATEINTERFERENCE (line 4); (iii) explores (with quantiza-
tion) the speed domain allowed by the acceleration bounds
α− and α+ by computing the inter-arrival time to the next
job (lines 6), accumulating the overall computational request
(line 7), and recursively calling the function INTERFERENCE
to explore the sub-tree (line 8).

Besides providing only an approximate (and possibly
unsafe) analysis due to quantization, this approach is very
expensive in terms of computational complexity and in-
tractable for most practical cases. In the following, the prob-
lem is formalized in order to derive a method for exploring

1: procedure INTERFERENCE(ω,Π, t)
2: if t > MAXTIME then return ;
3: end if
4: UPDATEINTERFERENCE(Π, t);
5: for ωnext = Ω(ω, α−) to Ω(ω, α+) step ∆ω do
6: Tnext ← T̃ (ω, ωnext);
7: Πnext ← Π + C(ωnext);
8: INTERFERENCE(ωnext,Πnext, t+ Tnext);
9: end for

10: end procedure

Figure 5. Procedure for computing the interference of an AVR task using
brute-force on the search domain.
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the speed domain with a tractable complexity still providing
an exact interference analysis.

3.1 Formalization

Definition 1. A job sequence s of an AVR task τ∗ is a
sequence of consecutive jobs J0, . . . , Jns

, where each job Jk
is released with instantaneous engine speed ωk.

Definition 2. A job sequence s is valid if any two consec-
utive jobs are released at speeds that are compatible with
the acceleration range; that is, ∀ωk, k = 1, . . . , ns, ωk ∈
[Ω(ωk−1, α

−),Ω(ωk−1, α
+)].

The interference of an AVR task is characterized by an
infinite set of possible valid job sequences in a given time
window [0, t]. Let S(t) be such a set. Intuitively, each path
in the search tree represents a job sequence.

Each sequence s ∈ S(t) generates an interference I(s)(t),
which is a function of ω0 and ωk, k = 1, . . . , ns, because it
depends on the speed evolution pattern experienced by the
AVR task. In general, I(s)(t) can be expressed as

I(s)(t) = C(ω0) +
ns∑
k=1

C(ωk) step

t− k∑
j=1

T̃ (ωj−1, ωj)

 ,
where

step(x) =

{
1 if x ≥ 0

0 if x < 0
.

Ideally, to cope with all possible speed evolution pat-
terns, all the job sequences s ∈ S(t) have to be considered
to obtain a characterization of the interference (as in the
algorithm of Figure 5). Clearly, this is not viable for practical
purposes. The following sections present a technique for
drastically reducing the number of job sequences that must
be explored, while still guaranteeing an exact characteriza-
tion of the interference.

4 REDUCING THE SEARCH SPACE THROUGH
DOMINANT SPEEDS

For each job released at a given speed, only a finite set
of following job releases must be taken into account to
derive the maximum interference. This section first explains
how to compute such critical job releases and then derives
a pruning method for the search problem presented in
the previous section. Before proceeding, it is necessary to
formalize the notion of single-job interference.

4.1 Single-job interference

To compute the potential interference generated by a single
job Ja, it is necessary to consider all the possible activations
of the next job Ja+1 that are compatible with the acceleration
range [α−, α+].

Definition 3. Given a job Ja of an AVR task released at
engine speed ωa at time ta, the single-job interference iωa(δ)
of Ja is the maximum computational request generated by
Ja and the next job Ja+1, in the interval [ta, ta + δ], for all
possible releases of Ja+1 at ta+1 = ta + δ.

As shown in Section 3, the activations of a job are related
to the engine dynamics, and the future release times and
modes of Ja+1 are constrained by the maximum/minimum
acceleration of the engine. At time ta, it is iωa

(0) = C(ωa) to
account for the computational request of Ja. If the maximum
acceleration of the engine is α+, then clearly no job can be
activated in [ta, ta + δ], if δ ∈ [0, T (ωa, α

+)); hence, in this
interval iωa

(δ) = C(ωa).
For T (ωa, α

+) ≤ δ ≤ T (ωa, α
−), a release of the next job

Ja+1 is possible and must be correspondingly considered
by iωa(δ). The earliest possible release occurs in the case
of maximum acceleration α+, while the latest occurs in
the case of maximum deceleration α−. Depending on the
engine dynamics, Ja+1 can be activated in a number of
different modes. The larger the acceleration/deceleration
range, the greater the number of possible modes. Being
[Ω(ωa, α

−),Ω(ωa, α
+)] the range of possible engine speeds

at the release of Ja+1, such a job can be in any mode m′ such
that ωm

′ ∈ [Ω(ωa, α
−),Ω(ωa, α

+)].
For δ > T (ωa, α

−), there are no releases of Ja+1; there-
fore, the interference is given by the computational request
of the latest possible job release time, that is, iωa

(δ) =
C(Ω(ωa, α

−)). In general, iωa
(δ) is a non-decreasing step-

wise function, where each step represents the release of a
different mode m′. An example of single-job interference is
illustrated in Figure 3 (plot in the middle).

Based on the above definition, it is possible to derive
a theorem that states a dominance condition between the
single-job interferences of two jobs.

Theorem 1. Let Ja and Jb be two jobs released in mode m,
and let ωa and ωb be the instantaneous engine speeds at their
respective release times. If ωa ≥ ωb and C(Ω(ωa, α

−)) =
C(Ω(ωb, α

−)), then ∀δ ≥ 0, iωa
(δ) ≥ iωb

(δ).

Proof. The proof is trivial for ωa = ωb. Hence, let us assume
ωa > ωb. Since, for a given α, both T (ω, α+) and T (ω, α−)
are monotonic decreasing functions in ω, we have:

(i) T (ωa, α
+) ≤ T (ωb, α

+);
(ii) T (ωa, α

−) ≤ T (ωb, α
−).

From (i) we can derive that iωa
(δ) = iωb

(δ) = Cm for
δ < T (ωa, α

+). For T (ωa, α
+) ≤ δ < T (ωb, α

+) we have
iωb

(δ) = Cm (job releases after Jb cannot occur before
T (ωb, α

+)), while iωa
(δ) is larger because of the possible

job releases following Ja. Hence, in the range T (ωa, α
+) ≤

δ < T (ωb, α
+), we have iωa

(δ) > iωb
(δ).

For δ ≥ T (ωb, α
+) two scenarios are possible:

• T (ωb, α
+) ≤ T (ωa, α

−), i.e., the steps of the two
single-job interference functions are overlapped in
time. Consider a fixed (but arbitrary) time instant δ
in this range, which corresponds to the inter-arrival
time to the next jobs—namely Ja+1 and Jb+1, respec-
tively. In this case, for T (ωb, α

+) ≤ δ ≤ T (ωa, α
−),

we have Ω̃(ωa, δ) < Ω̃(ωb, δ). Therefore, job Ja+1 will
always be released at an higher speed than Jb+1. As
a result, being C(ω) non-increasing, C(Ω̃(ωa, δ)) >
C(Ω̃(ωb, δ)), hence iωa

(δ) ≥ iωb
(δ).

Finally, for δ > T (ωa, α
−), iωa

(δ) = C(Ω(ωa, α
−)) +

Cm. By hypothesis, we note that the maximum
computational request of Jb+1 is C(Ω(ωb, α

−)) =
C(Ω(ωa, α

−)). Hence, iωa
(δ) ≥ iωb

(δ).
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• T (ωb, α
+) > T (ωa, α

−), i.e., the two single-job
interference function are non-overlapped in time.
This case follows as the one discussed above for
δ > T (ωa, α

−).

Having shown that iωa
(δ) ≥ iωb

(δ) in each possible time
interval, the theorem follows.

Figure 6 shows a typical scenario in which Theorem 1
holds, related to the case T (ωb, α

+) ≤ T (ωa, α
−).

0

Cm

iωa (δ)

iωb (δ)

δ
T (ωa, α+) T (ωb, α

+) T (ωa, α−) T (ωb, α
−)

0.1 AAAAA

[?]

1

Figure 6. Example of a scenario in which Theorem 1 holds.

4.2 Pruning conditions for the search space
Unfortunately, Theorem 1 is not sufficient to discard all the
single-job interferences generated by the jobs following a job
Jb that is compliant with the theorem hypothesis.

For example, consider a generic job instance Jb for which
the single-job interference is dominated by the one of job
Ja. Since (by hypothesis) ωa ≥ ωb, a job Jb+1 immediately
following Jb could be released at a speed lower than those of
all the possible jobs instances Ja+1 immediately following
Ja. As a consequence, at the following step, job Jb+2 (imme-
diately following Jb+1) can also be released at speeds lower
than all possible jobs instances Ja+2 (immediately following
Ja+1). Since function C(ω) can assume higher values for
lower speeds ω, the single-job interference generated by
Jb+1 can be higher than those of all possible jobs Ja+1. A
situation in which this happens is illustrated in Figure 7.

Cm

iωa (δ)

iωa+1(δ − T (ωa, α−))

iωb (δ)

iωb+1(δ − T (ωb, α
−))

δ0
T (ωa, α−) T (ωb, α

−) t∗(ωa) t∗(ωb)

0.1 AAAAA

[?]

1

Figure 7. Example in which Theorem 1 is not sufficient to discard all the
interferences generated by the jobs following Jb. There exists a job Jb+2

that is released at a speed that is lower than the one at which any job
Ja+2 can be released. Consequently, the interference caused by jobs
following Jb (dashed line) is not dominated by the one generated by
jobs following Ja. The function t∗(ω) in the graph is defined as t∗(ω) =
T (ω, α−) + T (Ω(ω, α−), α−).

Formally speaking, the minimum speeds at which
Ja+2 and Jb+2 can be respectively activated are ωa+2 =
Ω2(ωa, α

−) and ωb+2 = Ω2(ωb, α
−) with ωa+2 ≤ ωb+2.

Therefore, since it can happen that C(ωb+2) > C(ωa+2),
there exist some instances of Jb+2 that cannot be pruned
in favor of all valid sequences Ja, Ja+1, Ja+2.

Taken in isolation, Theorem 1 cannot provide an effective
pruning condition to compute the maximum interference.
What is needed is a pruning method that allows discarding
an entire sub-tree during the search for the maximum inter-
ference, i.e., all possible job sequences following a job Jb in
favor of all possible sequences following another job Ja.

Before proceeding, it is convenient to introduce the no-
tion of interference envelope.

Definition 4. The interference envelope Iω0
(t) is the max-

imum interference produced by all possible valid job se-
quences J0, . . . , Jn in the interval [0, t], with J0 released at
time t = 0 and speed ω0.

Thanks to this definition, it is possible to precisely define
the objective of this section, that is finding a method to dis-
card a job Jb in favor or another job Ja (respectively released
at speeds ωb and ωa) such that ∀t ≥ 0, Iωa(t) ≥ Iωb

(t).
We begin by noting that, under particular conditions, the

maximum interference generated by some job sequences is
dominated by an interference envelope.

Lemma 1. Consider an arbitrary (but valid) job sequence
s = Jb, Jb+1, . . . , Jb+n. Let Ja and Jb be two jobs released in
mode m at time t = 0 and at speeds ωa and ωb, respectively,
with ωa ≥ ωb. If job Jb+1 is released at a speed ωb+1 ∈
[Ω(ωa, α

−),Ω(ωa, α
+)], then ∀t ≥ 0, Iωa

(t) ≥ I(s)(t).

Proof. Since ωb+1 ≥ Ω(ωa, α
−), then job Ja+1 (immediately

following Ja) can also be activated at speed ωb+1. Let
ta+1 = T̃ (ωa, ωb+1) be the inter-arrival time between Ja and
Ja+1 if the latter is activated at speed ωb+1. ∀t ≥ 0, any valid
job sequence starting with Ja and Ja+1 cannot generate
an interference higher than Cm + Iωb+1

(t − ta+1). Being
such sequences valid job sequences following Ja (released
at speed ωa), it must also be

∀t ≥ 0, Cm + Iωb+1
(t− ta+1) ≤ Iωa(t).

Consider now the sequence s and let tb+1 = T̃ (ωb, ωb+1)
be the inter-arrival time between jobs Jb and Jb+1. Similarly
as argued above, the interference I(s)(t) generated by s can
be bounded as ∀t ≥ 0, I(s)(t) ≤ Cm + Iwb+1

(t− tb+1).
Being ωa ≥ ωb, due to the monotonicity property of

inter-arrival times (see Sections 2.3 and 7.1), it follows that
ta+1 ≤ tb+1, which implies

∀t ≥ 0, Iwb+1
(t− ta+1) ≥ Iwb+1

(t− tb+1).

Therefore, ∀t ≥ 0,

Iωa
(t) ≥ Cm+Iωb+1

(t−ta+1) ≥ Cm+Iwb+1
(t−tb+1) ≥ I(s)(t).

Hence the lemma follows.

Lemma 1 can be used to derive the following key the-
orem that expresses a dominance relationship between two
interference envelopes.
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Theorem 2. Let Ja and Jb be two jobs released in mode m, and
let ωa and ωb be the instantaneous engine speeds at their respec-
tive release times. If ωa ≥ ωb and ∀n ∈ N≥0, C(Ωn(ωa, α

−)) =
C(Ωn(ωb, α

−)), then ∀t ≥ 0, Iωa
(t) ≥ Iωb

(t).

Proof. The proof is trivial for ωa = ωb, therefore in the
following we assume ωa > ωb. The strategy consists in
demonstrating that, for any valid job sequence s that starts
with Jb, there exists a valid sequence s′ starting with Ja
whose interference dominates the one of s. We proceed by
constructing an inductive argument on the number of jobs
n ≥ 1 after Jb ∈ s.

Base case (n = 1). Since ωa ≥ ωb, both Ja and Jb
are released in the same mode m and C(Ω(ωa, α

−)) =
C(Ω(ωb, α

−)). Hence, by Theorem 1 the dominance holds
for job sequences that include a single job (n = 1) after Jb.

Inductive step (n > 1). Suppose that the theorem
holds for all possible job sequences starting with Jb ex-
cept those that include more than n jobs after Jb and
∀k = 0, . . . , n, ωb+k < Ωk(ωa, α

−), where ωb+k is the
speed at the release of Jb+k. Let s = Jb, . . . , Jb+n, Jb+n+1

be one of such job sequences.
Consider also the job sequence s′ = Ja, . . . , Ja+n where

each job Ja+k is released at speed Ωk(ωa, α
−). Let ta+n and

tb+n be the release times of Ja+n and Jb+n, respectively.
Being all jobs in s released at lower speeds than the ones in
s′, due to the monotonicity property of inter-arrival times it
must be tb+n > ta+n.

Since function C(ω) is non-decreasing and ∀n ∈
N≥0, C(Ωn(ωa, α

−)) = C(Ωn(ωb, α
−)) (by hypothesis), ev-

ery pair of jobs Ja+k and Jb+k, with k = 0, . . . , n, is released
in the same mode. As a consequence, the computational
request accumulated up to times ta+n − ε and tb+n − ε by
sequences s and s′ is the same, say Π > 0 (with ε > 0
arbitrary small). That is, I(s)(tb+n−ε) = I(s′)(ta+n−ε) = Π.

For t ≥ tb+n, the interference I(s)(t) generated by s can
be upper-bounded by exploiting the single-job interference
of Jb+n as follows

∀t ≥ tb+n, I(s)(t) ≤ Π + iωb+n
(t− tb+n).

Now, since C(Ωn+1(ωa, α
−)) = C(Ωn+1(ωb, α

−)) (by
hypothesis), then also C(Ω(ωa+n, α

−)) = C(Ω(ωb+n, α
−)).

Therefore, Theorem 1 can be applied, which allows conclud-
ing that ∀δ ≥ 0, iωa+n

(δ) ≥ iωb+n
(δ). Thanks to this result,

it is now possible to bound I(s)(t) as follows:

∀t ≥ tb+n, I(s)(t) ≤ Π + iωb+n
(t− tb+n) ≤

≤ Π + iωa+n(t− tb+n) ≤ Π + iωa+n(t− ta+n).

Since Π + iωa+n(t− ta+n) copes with the interference gener-
ated by the (n+1)th job after Ja, and Ja is released at speed
ωa, it must also be that

∀t ≥ ta+n, Π + iωa+n
(t− ta+n) ≤ Iωa

(t).

As a consequence, being ta+n < tb+n, we can finally
conclude that also ∀t ≥ tb+n, I(s)(t) ≤ Iωa

(t) holds.
By Lemma 1, the interference generated by all the possi-

ble job sequences with Jb+n+1 released at speed ωb+n+1 ≥
Ωn(ωa, α

−) (possible only if Ω(ωb+n+1, α
+) ≥ Ωn(ωa, α

−))
are dominated by Iωa+n

(t). Therefore, the theorem holds
for all the possible job sequences starting with Jb except

those that include more than n + 1 jobs after Jb with
∀k = 0, . . . , n + 1, ωb+k < Ωk(ωa, α

−). Hence, the in-
duction has to proceed only for job sequences s under the
latter conditions.

Having shown that the interference generated by se-
quences s—with an arbitrary number n of jobs after Jb—is
dominated by the interference envelope Iωa

(t), the theorem
follows.

When exploring the search tree, jobs are generally re-
leased at different times, which is not the case considered in
the hypothesis of the theorem above. A simple, but useful
corollary of Theorem 2 can be derived to cope with this
scenario.

Corollary 1. Theorem 2 also holds if Jb is released later than
Ja.

Proof. Let ta and tb be the respective release times of Ja and
Jb. Without loss of generality assume ta = 0. If Theorem 2
holds, then ∀t ≥ 0, Iωa

(t) ≥ Iωb
(t). Therefore, if tb > ta = 0,

then also ∀t ≥ 0, Iωa
(t) ≥ Iωb

(t− tb) holds.

4.3 Dominant speeds and critical job sequences

Theorem 2 allows solving the search problem discussed in
Section 3 by exploring a limited set of job sequences. During
the search for the maximum interference, for every pair of
jobs Ja and Jb that satisfies the conditions of Theorem 2, job
Jb can be discarded in favor of Ja. By extensively apply-
ing this reasoning, it can be concluded that the maximum
interference generated by an AVR task can be computed
by only taking into account a limited set of engine speeds,
which will be referred to as dominant speeds. The notion of
dominant speeds allows computing the exact interference
with a contained complexity and avoiding quantization.

Several approaches can be adopted to compute such
dominant speeds: indeed, a super set of dominant speeds
can easily be computed, e.g., by manually checking the con-
ditions of Theorem 2 with a binary search. A more accurate
technique for computing dominant speeds is presented in
Section 4.4.

Using the notion of dominant speeds, it is also possible
to define a critical job sequence for an AVR task.

Definition 5. A critical job sequence for an AVR task τ∗ is a
job sequence where each job is released at a dominant speed.

The main property of the critical job sequences is that
for each non-critical job sequence s′ there exists a critical
job sequence s whose interference dominates the one of
s′. Formally, if CS(t) is the set of the possible critical job
sequences in the time window [0, t], and S(t) is the set of all
possible valid job sequences in the same internval, then

∀s′ ∈ {S(t) \ CS(t)}
∃s ∈ CS(t) | ∀t′ ∈ [0, t] I(s)(t′) ≥ I(s′)(t′). (8)

Based on this result, the worst-case interference caused
by an AVR task τ∗ is generated from a sequence of jobs
belonging to one of the critical sequences.
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4.4 Computing the dominant speeds

The dominant speeds in a given range [ωb, ωa] can be deter-
mined by exploiting Theorem 2 as follows. Let ω∗ be highest
speed less than ωa for which the condition of Theorem 2
does not hold. This means that all the interference envelopes
Iω(t) for speeds ω ∈ (ω∗, ωa] are dominated by Iωa

(t).
Note that speed ω∗ can be readily found by inverting

the conditions of Theorem 2. That is, for each value of n
(number of look ahead steps in the search tree), we compute
the speed ω(n)

a = Ωn(ωa, α
−), and then the maximum speed

ω∗,(n) < ω
(n)
a such that C(ω(n)

a ) 6= C(ω∗,(n)), corresponding
to the speed for which the theorem hypothesis are violated.
Since function C(ω) is non-increasing, such a speed ω∗,(n)

can always be found1. Also speed ω∗,(n) must be a switching
speed for the AVR task, being the first speed for an adjacent
mode in deceleration.

Given a value for n, it is possible to compute a candidate
for speed ω∗, denoted as ω

(n)
C . Speed ω

(n)
C can then be

easily computed by using the inverted physical equation
of Ωn(ω, α−), that is ω(n)

C = Ω−n(ω∗,(n), α−). Finally, since
the conditions of Theorem 2 must hold ∀n ∈ N≥0, speed
ω∗ is computed as the maximum of all such candidates,
that is, ω∗ = maxn∈N≥0

{ω(n)
C }. Such a speed is then stored

as a dominant speed. The same reasoning is applied starting
from speed ω∗, until reaching the minimum speed ωb of the
considered interval. Being the speeds domain limited in the
range [ω−, ω+], the maximum value for n is bounded to
max{n ∈ N≥0 | Ωn(ωa, α

−) ≥ ω−}.
The technique for computing the dominant speeds is

summarized in the algorithm reported in Figure 8.

1: procedure GETDOMINANTS(ωb, ωa)
2: ω∗ ← ωa;
3: while ω∗ > ωb do
4: DOMINANTS.ADD(ω∗);
5: maxN← max{n ∈ N≥0 | Ωn(ω∗, α−) ≥ ω−};
6: for i = 0 to maxN do
7: ω(i) = Ωi(ω∗, α−);
8: ω∗,(i) = maxm=1,...,M{ωm < ωi};
9: ω

(i)
C = Ω−i(ω∗,(i), α−);

10: end for
11: ω∗ = maxi=0,...,maxN{ω(i)

C };
12: end while
13: return DOMINANTS;
14: end procedure

Figure 8. Algorithm for computing the dominant speeds in a generic
speed range [ωb, ωa].

An example of application of the algorithm GETDOMI-
NANTS is illustrated in Figure 9.

4.5 Additional pruning

By leveraging another simple observation, it is possible to
further reduce the jobs sequences that have to be explored
to compute the maximum interference.

1. The only exception is related to speeds ω(n)
a < ω1, i.e., lower than

the first switching speed of the AVR task. In this case, the dominance is
automatically satisfied since it is not possible to violate the hypothesis
C(ω

(n)
a ) = C

(
ω∗,(n)

)
of Theorem 2. In other words, it is not possible to

have a mode change decelerating from speed ω(n)
a .

dominated by

ωωa
ωb ω

D

1
ω
D

2

Iωa
(t)dominated byI

ω
D

1

(t)dominated by I
ω
D

2

(t)

Figure 9. Example of the result produced by algorithm GETDOMI-
NANTS when applied to a range of speeds [ωb, ωa]. The algorithm
produces three dominant speeds: ωa, ωD

1 and ωD
2 . The interference en-

velope Iωa (t) dominates all the interference envelopes Iω(t) for speeds
ω ∈ (ωD

1 , ωa]. Similarly, IωD
1

(t) dominates the ones for speeds ω ∈
(ωD

2 , ω
D
1 ] while IωD

2
(t) dominates the ones for speeds ω ∈ [ωb, ω

D
2 ].

Consider two jobs Ja and Jb simultaneously released
in the same mode m and at dominant speeds ωa and ωb,
respectively, with ωa ≥ ωb. If Ω(ωa, α

−) < Ω(ωb, α
+), i.e.,

the interval of possible speeds at the release of the next jobs
Ja+1 and Jb+1 are overlapped, then it may exist a dominant
speed ω∗ ∈ [Ω(ωa, α

−),Ω(ωb, α
+)] that is reachable by both

ωa and ωb after one angular period of the AVR task. A
procedure that computes the interference by only relying
on dominant speeds would consider dominant speed ω∗ at
least two times, both as a follower of ωa and ωb.

However, the maximum interference can be computed
(without loosing accuracy) by considering the dominant
speed ω∗ only as a follower of ωa. Let Ja+1 and Jb+1 be the
jobs following Ja and Jb, respectively, released at speed ω∗.
Due to the physical nature of the inter-arrival times between
jobs, being ωa ≥ ωb, job Ja+1 will be released before job Jb+1.
Since the same system state (speed ω∗) can be reached earlier
by Ja+1, and the computational demand of jobs Ja and Jb is
the same (as they are both released in the same mode), the
job sequences following Jb+1 can be discarded in favor of the
exploration of the job sequences following Ja+1.

In other words, any job sequence following Jb+1 will
never generate an interference higher than the maximum
interference generated by the job sequences following Ja+1.

Since, in the considered job sequences, the dominant
speed ω∗ is reachable as an immediate follower of both ωa
and ωb, and ωa ≥ ωb, then it follows that ω∗ ≥ Ω(ωa, α

−).
Therefore, this additional pruning condition follows directly
from Lemma 1.

5 EXACT RESPONSE-TIME ANALYSIS

This section derives the response time analysis for a set of
AVR and periodic/sporadic tasks with constrained dead-
lines (both angular and temporal). The analysis first con-
siders the case of a single AVR task interfering with a
periodic task set and then addresses the dual case in which
a periodic task set creates interference on a single AVR task.
The extension to multiple AVR tasks activated by the same
rotation source is considered in Section 5.1.2 and Section 5.3.
This extension does not consider AVR tasks with different
angular periods and phases: their analysis determines sev-
eral complications and it is left as future work.

The proposed method builds upon standard response-
time analysis [1] for fixed-priority scheduling, which aims
at computing the length of the longest busy-period for a
task τi (i.e., an interval of time without idle times where
only τi and its higher-priority tasks execute).
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5.1 Response time of a periodic task interfered by an
AVR task

Let τi be a periodic task suffering interference from a set of
regular periodic tasks and a single AVR task τ∗, all having
higher priority than τi. In the following, the set of periodic
tasks having higher priority than τi is denoted as hp(i)
and the set of critical job sequences in the interval [0, Di]
is denoted as CS(Di), or simply as CS .

For a particular job sequence s of τ∗, the response time
of τi, denoted as R(s)

i , can be expressed as

R
(s)
i = min

t≥0

Ci + I(s)(t) +
∑

τj∈hp(τi)

⌈
t

Tj

⌉
Cj = t

 . (9)

Note that the response time R(s)
i may tend to infinity

under overload conditions. Here, to simplify the presenta-
tion, its computation is derived by assuming that the R(s)

i

is implicitly bounded by Di + 1 for any job sequence s. It is
worth observing that, for the purpose of schedulability, this
assumption does not impact the analysis.

The challenging part in the analysis is the computation
of the interference I(s)(t) imposed by the AVR task for
all the possible job sequences s. The following theorem
formalizes that the response time of τi can be computed
by only considering the critical job sequences in the interval
[0, Di].

Theorem 3. The response time Ri of a periodic task τi interfered
by an AVR task τ∗ is the maximum response time over all possible
critical job sequences generated by τ∗, that is

Ri = max
s∈CS

R
(s)
i . (10)

Proof. By contradiction, suppose that there exists a non-
critical job sequence s′ /∈ CS such that R(s′)

i > Ri. Then,
to avoid the completion of τi before (or at) time Ri, it
must be that at time Ri, the sequence s′ caused more
interference to τi than when interfered by critical sequences,
i.e., ∀s ∈ CS, I(s′)(R

(s)
i ) > I(s)(R

(s)
i ). Hence, for each

critical job sequence s, there exists a time instant at which
I(s) is dominated by the interference of the non-critical job
sequence s′. This contradicts the main property of critical
job sequences expressed by Equation (8), hence the theorem
follows.

Before proceeding, it is worth noting that the use of the
maximum interference I(t) = maxω0

Iω0
(t) that an AVR task

can generate in a given time window of length t prevents
the derivation of the exact response time, as highlighted by
Stigge and Yi [21], [22] in the context of the digraph real-
time task model. In fact, the speed sequences that generate
the critical job sequences s ∈ CS (that contribute to I(t))
may be mutually exclusive. Thus, simply computing their
maximum interference may lead to a sequence of speeds
that cannot occur in practice. In other words, by computing
the interference envelope we lose the information about the
sequence of speeds that may generate the envelope.

To better clarify this point, which at a first look may ap-
pear counter-intuitive, consider the case where the response
time of a periodic task τi is computed when it is interfered
by an high-priority AVR task τ∗. Also, assume that the set

CS is composed of only two sequences, i.e., CS = {sa, sb}.
Figure 10 shows the two interferences I(sa)(t) and I(sb)(t)
originated by the two job sequences sa and sb, respectively,
and the corresponding interference envelope I(t), computed
as the maximum between I(sa)(t) and I(sb)(t). As clearly
visible from the plots, the envelope I(t) leads to a response
time R much higher than those resulting from the two
concrete interferences (note that in the graph the response
time is the time instant at which the computational demand
matches the processor supply). In other words, the concrete
job sequences of τ∗ contributing to I(t) (the actual ones that
τ∗ can generate), lead to a response time smaller than R.

CS(Di) is composed of only two sequences, i.e., CS(Di) =

{sa, sb}. Figure 5 shows the two interferences I(sa)(t) and

I(sb)(t) originated by the two job sequences sa and sb, re-
spectively, and the corresponding interference envelope I(t),

computed as the maximum between I(sa)(t) and I(sb)(t).
As clearly visible from the plots, the envelope I(t) leads to a
response time R much higher than those resulting from the
two concrete interferences (note that in the graph the re-
sponse time is the time instant at which the computational
demand matches the processor supply). In other words, any
concrete job sequence of τ∗ contributing to I(t) generates
an idle-time before R.

����

����I(t)

I(sa)(t)

I(sb)(t)

RR(sa)R(sb) t

y = t

Figure 5: Example in which the interference envelope leads
to an over-estimated response-time.

In general, since the determination of the time at which the
processor is idle cannot be computed without a full knowl-
edge of the higher priority task set, it is not possible to
compute a priori the interference of an AVR task. In other
words, the maximum response-time Ri is originated from
different sequences s ∈ CS depending on the interference of
the higher priority tasks. Hence, contrary to classical peri-
odic tasks, to characterize the exact response-time it is not
possible to abstract the interference of τ∗ by using a single
value of interference for each time instant t. The solution
proposed in this paper consists of computing the interfer-
ence on the fly while the response time of τi is computed,
exploring the domain of the set CS.

4.1.1 Algorithm for Computing the Response Time
According to Equation (9), to compute the response-time
Ri, it is necessary to identify all possible critical job se-

quences s ∈ CS and then compute the response-time R
(s)
i

for each sequence s.

In this section, we present an algorithm to efficiently com-
pute Ri by evaluating the critical job sequences on-the-fly
and only when needed, providing additional pruning in the
search of the speed space and significant speedup for the
analysis.

The proposed algorithm (reported in Figure 7) performs a
visit of the speed tree with pruning, using the concept of
dominant speeds while at the same time discarding the job
sequences that would result in an idle time earlier than one
of the candidate response times. The algorithm operates re-
cursively for increasing time values. At any point in time,
the main function of the algorithm, ResponseTime, computes
the contribution to the interference of one additional job ac-

tivation. ResponseTime is called by passing the priority in-
dex i of the task for which the response time is computed
(used to evaluate the contribution to the interference from
the set of periodic tasks), the current speed ω (at the time
the job is activated), the current time t, and the execution
time requests Π (the contribution to the interference) ac-
cumulated up to time t. Note that the algorithm always
terminates when current time t exceeds MaxTime, which
is the maximum time (equal to the task deadline) for the
search.

0

jobRT

idleTime

actual interference

of the current job

Π

t tt1 td
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w2
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Figure 6: Pruning and branching in the algorithm for com-
puting the response time.

Each time ResponseTime is called, ω is one of the dominant
speeds and t the candidate point in time for the job acti-
vation. Given t and ω, the algorithm computes the next
possible idle time (an example is illustrated in Figure 6).
Next, it computes the times and speeds for the possible ac-
tivations of the next job that dominate its execution time
requests. The requests that occur before the next idle time
(such as ω1 in the figure) are considered by the algorithm,
while those occurring after the idle time (such as ω2 and
ω3 in the figure) are discarded. Among all the possible job
activations that occur before the idle time, the algorithm se-
lects the one that results in the candidate response time at
the current step (in singleJobRT). The candidate response
time is stored and, if it is still smaller than the deadline,
the algorithm prepares for the next recursive call. At this
point, the procedure getDominants(ω) computes the dom-
inant speeds in the range of possible instantaneous speed at
the activation of the next job, that is [Ω(ω, α−),Ω(ω, α+)].
Among those dominant speeds, there are not only the ones
that contribute to the steps in the time request function for
the current job (such as ω1), but also additional ones (dom-
inating the requests for a subset of the following jobs). For
these dominants, the same pruning rule based on the idle
time applies. If they result in activations before the idle
time (such as ωd in the figure), they are considered for the
next recursive call, otherwise (ωp in the figure), they are
pruned.

Figure 8 shows the algorithm to check the schedulability of
τi using the procedure ResponseTime. Procedure Schedula-
bilityTest starts by computing the initial dominant speeds
in the full range allowed for engine speeds, (i.e., [ωmin, ωmax]).
Then, for each initial dominant speed ω0 we compute the
response-time candidates: since all the candidates represent
response-time values related to possible job sequences start-
ing from ω0, the maximum R of such candidates is taken as
response time for speed ω0. If the response-time R exceeds

Figure 10. Example with two job sequences sa and sb in which the
interference envelope (continuous line) leads to an over-estimated re-
sponse time R. The exact response time is R(sb), which is given by job
sequence sb.

In general, since the determination of the time at which
the processor is idle cannot be computed without a full
knowledge of the tasks involved in the busy-period of τi,
it is not possible to compute a priori the interference of an
AVR task. In other words, the maximum response time Ri
is originated from different sequences s ∈ CS depending on
the interference of the higher priority tasks. Hence, contrary
to classical periodic tasks, to characterize the exact response
time it is not possible to abstract the interference of τ∗ by
using a single value of interference for each time instant t.
To address this issue, the solution proposed in this paper
consists of computing the interference on the fly while the
response time of τi is computed, exploring the domain of
the CS set.

5.1.1 Algorithm for Computing the Response Time
According to Theorem 3, to compute the response time Ri,
it is necessary to identify all possible critical job sequences
s ∈ CS and then compute the response time R(s)

i for each
sequence s.

This section presents an algorithm to efficiently compute
Ri by evaluating the critical job sequences on-the-fly and only
when needed, providing additional pruning in the search of
the speed space and significant speedup for the analysis.
To implement the pruning, the algorithm leverages both
Theorem 2, which serves to identify dominant speeds, and
the additional pruning method discussed in Section 4.5,
which allows discarding some dominant speeds in partic-
ular scenarios.

The proposed algorithm (reported in Figure 12) visits
the speed tree with pruning using the concept of dominant
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speeds while discarding the job sequences that would re-
sult in an idle time (for priority level i) earlier than one
of the candidate response times. The algorithm operates
recursively for increasing time values. At any point in time,
the main function of the algorithm, RespTime, computes
the contribution to the interference of one additional job
activation. RespTime is called by passing

• the priority index i of the task for which the response
time is computed (used to evaluate the contribution
to the interference from the set of periodic tasks);

• the current speed ω (at the time the job of τ∗ is
activated);

• the current time t;
• the execution time requests Π (the contribution to the

interference of τ∗) accumulated up to time t; and
• a set E of dominant speeds that have not to be consid-

ered (according to the pruning conditions discussed
in Section 4.5).

Note that the algorithm always terminates when the
current time t exceeds the deadline of τi.

0

idleTime

actual single-job
interference

Π

t tt1 td

w1

w2

w3

wd

wp

y = t

0.1 AAAAA

[?]

1

Figure 11. Pruning and branching in the algorithm for computing the
response time. The figure considers a job J of an AVR task released at
time t. The thick line indicates the single-job interference for J : the solid
part considers jobs following J that are released before the idle time,
while the dashed part refers to the jobs that would be released after the
idle time, hence not contributing to the exact response time.

Each time RespTime is called, ω is one of the dominant
speeds and t the candidate point in time for the activation of
a job released at speed ω.

First, given t, ω and Π, the algorithm computes the next
possible idle time (an example is illustrated in Figure 11),
which corresponds to the tentative response time of τi as if
no other jobs of the AVR task would be released. This can be
computed via a standard fixed-point iteration starting from
time t and accounting for Π units of interference generated
by the AVR task. Such a tentative response time is also
stored as candidate for the maximum response time of τi
(line 7).

Subsequently, the procedure GETDOMINANTS is used for
computing the dominant speeds in the range of possible
instantaneous speed at the activation of the next job, that
is [Ω(ω, α−),Ω(ω, α+)] (line 9). Some of such dominants
speeds can be discarded by looking at the set E (line 10). The
overall set of dominant speeds that have to be considered is
stored into D.

Then, the algorithm proceeds by iterating over the dom-
inant speeds into the set D in descending order (line 5),

each of these representing a possible branch explored by
the algorithm. For each dominant speed ωnext ∈ D, the
algorithm computes the time Tnext after which the next
job can be activated at speed ωnext (line 17). If such a job
can be activated after the idle time, then the corresponding
branch is discarded (such as the one released at speed ωp in
Figure 11). Otherwise, if the job can be activated before the
idle time (such as the one released at speed ωd in Figure 11),
then it is considered for the next recursive call.

To leverage the pruning conditions discussed in Sec-
tion 4.5, the algorithm keeps track of the dominant speeds
explored by the immediate following recursive branches. To
this end, each recursive call of the algorithm returns the
set of dominant speeds that have been considered; such
speeds are then collected by the parent branch into the set
Enext (lines 20-21). Since dominant speeds are explored in
descending order, the conditions of Lemma 1 can only be
violated when the next job is released in a mode different
than the one previously considered for filling the set Enext.
In this case, the algorithm invalidates the set Enext (line 14),
thus not enforcing the pruning conditions discussed in
Section 4.5.

Figure 13 shows the algorithm to check the schedu-
lability of τi using the procedure RespTime. Procedure
SchedulabilityTest starts by computing the initial
dominant speeds in the full range allowed for engine
speeds, (i.e., [ω−, ω+]). Then, for each initial dominant speed
ω0, the response time candidates are computed. Since all
the candidates represent response-time values related to
possible job sequences starting from ω0, the maximum R
of such candidates is taken as response time for speed ω0. If
the response time R exceeds the deadline Di, then τi is not
schedulable; otherwise, if R results lower (or equal) than Di

for each initial dominant speeds, then τi is schedulable.

5.1.2 Interference from Multiple AVR Tasks

This section extends the analysis by considering the in-
terference from multiple AVR tasks triggered by the same
rotating source (which is a relevant case in engine-control
applications [15]).

When computing the response time of a periodic task τi
interfered by a set of AVR tasks hpA(τi) = {τ∗0 , τ∗1 , . . . τ∗p }
that have the same angular period and phase (assumed as 0
for convenience), the interference from the tasks in the AVR
set is equivalent to the interference from a single task τ∗k , as
their release times are always implicitly synchronized.

Task τ∗k is constructed as follows. Consider the union of
the mode speeds of the AVR tasks and sort them from ω+ to
ω−. The cardinality of the set gives the number of modes for
τ∗k (at most the sum of the number of modes for all the AVR
tasks). Each mode m of τ∗k is defined by the corresponding
speed range (ωm+1

k , ωmk ] and a worst case execution time
Cmk (ω) =

∑
τ∗j ∈hpA(τi)

Cj(ωmk ). At this point, the approach
presented in the previous section can be applied.

Note that, in the presence of AVR tasks with different
angular periods or different angular phases, their release
times are not anymore synchronized, hence the proposed
approach does not work. Nevertheless, their behavior is not
totally independent, as they are still triggered by the same
rotation source. The consideration of such task sets requires
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1: global set RTCandidates
2: procedure RESPTIME(i, ω,Π, t, E)
3: if t > Di then return ∅;
4: end if
5:
6: idleTime← GETIDLETIME(i, ω,Π, t);
7: RTCandidates.ADD(idleTime);
8:
9: D ← GETDOMINANTS(Ω(ω, α−),Ω(ω, α+));

10: D ← D \ E ;
11:
12: Cprev = 0;
13: for each ωnext ∈ D in descending order do
14: if C(ωnext) 6= Cprev then
15: Enext = ∅;
16: end if
17: Tnext ← T̃ (ω, ωnext);
18: if t+ Tnext < idleTime then
19: Πnext ← Π + C(ωnext);
20: Dnext ← RESPTIME(i, ωnext,Πnext, t+ Tnext, Enext);

21: Enext = Enext ∪ Dnext;
22: Cprev = C(ωnext);
23: end if
24: end for
25: return D;
26: end procedure

Figure 12. Procedure for computing the response time of a task τi
interfered by an AVR task.

1: global set RTCandidates
2: procedure SCHEDULABILITYTEST(i)
3: dominants← GETDOMINANTS(ω−, ω+);
4: MAXTIME← Di;
5: for ω0 in dominants do
6: RTCandidates← ∅;
7: RESPTIME(i, ω0, 0, 0, ∅);
8: R← MAX(RTCandidates);
9:

10: if R > Di then
11: return UNSCHEDULABLE;
12: end if
13: end for
14: return SCHEDULABLE;
15: end procedure

Figure 13. Procedure describing the schedulability test for a task τi.

new theoretical foundations, as the response-time algorithm
would have to take into account multiple search problems in
the speed domain that are coupled by the same evolution of
the engine speed over time. For this reason, this extension is
left as future work.

5.2 Response time of an AVR task interfered by peri-
odic tasks

Let us now consider the response time of an AVR task τ∗

interfered by periodic tasks (assuming there are periodic
tasks having higher priority than τ∗).

Since the response time of τ∗ depends on the instanta-
neous speed ω0 at which it is released, we have

R(ω0) = min
t≥0

C(ω0) +
∑

τi∈hp(τ∗)

⌈
t

Ti

⌉
Ci = t

 ,

where hp(τ∗) denotes the set of periodic tasks having higher
priority than τ∗.

Note that the dependency on the speed ω0 can be
removed by considering each mode of τ∗, so obtaining a
response-time value for each mode m = 1, . . . ,M , that is

Rm = min
t≥0

Cm +
∑

τi∈hp(τ∗)

⌈
t

Ti

⌉
Ci = t

 .

Finally, the schedulability of τ∗ can be checked by verify-
ing that Rm ≤ D(ωm) for each mode m = 1, . . . ,M , where
D(ωm) is the shortest temporal deadline of τ∗ in mode m,
computed by Equation (2) in the special case of αk = α+

and Θi = ∆i, so obtainingD(ω) = (
√
ω2 + 2∆iα+−ω)/α+.

5.3 Response time of an AVR task interfered by other
AVR tasks

This section addresses the schedulability of an AVR task τ∗i
interfered by both periodic tasks and multiple AVR tasks
that have the same angular period of τ∗i . When multiple
AVR tasks with the same angular period are considered,
only one job for each high-priority AVR task can produce in-
terference, i.e., a single computation time must be accounted
for. The set of AVR tasks having higher priority than τ∗i is
denoted as hpA(τ∗i ).

As done in Section 5.2, the dependency from the speed
ω0 ∈ [ω−, ω+] can be removed by considering each mode
m of τ∗i and computing the reponse time for each m. Once
the mode of τ∗i is selected, each higher priority AVR task
τ∗j ∈ hpA(τ∗i ) may be in a finite set of modes mj,k, . . . , mj,n

such that the intersection of the speed ranges for m and
any of the mj,p with k ≤ p ≤ n is not empty (as shown in
Figure 14). The possible interference of each higher priority
AVR task τ∗j only changes at the boundary speeds of its
modes. Hence, these are the only (finite) number of speeds
that need to be considered.

AVR τ∗
j only changes at the boundary speeds of its modes.

Hence, these are the only (finite) number of speeds that need
to be considered.

...

hpA(τ∗
i )

τ∗
i

τ∗
j

ωm+1
i ωm

i

mj,k mj,n

Figure 9: Identifying the contributions of the higher priority
AVR task modes to τ∗

i .

Formally, for each mode m of τ∗
i , the following conditions

must be satisfied:

∀j ∈ hpA(τ∗
i ) ∪ {i}

∀ωm′
j ∈ (ωm+1

i , ωm
i ] Rm

i (ωm′
j ) ≤ Di(ω

m′
j ).

where

Rm
i (ω) = min



t | Cm

i +
∑

j∈hpA(τ∗
i )

Cj(ω) +
∑

j∈hp(τ∗
i )

⌈
t

Tj

⌉
Cj = t



 .

5. EXPERIMENTAL RESULTS
This section presents a set of experimental results aimed
at comparing the exact schedulability analysis presented in
this paper with the sufficient ILP-based analysis for AVR
tasks presented by Davis et al. in [8]. Both schedulabil-
ity tests have been implemented and applied to synthetic
workloads for comparison. The ILP-based formulation has
been implemented using the IBM CPLEX solver, whereas
the proposed algorithm has been implemented as a MAT-
LAB script. Tests have been executed on a desktop PC
with processor Intel i7 running at 3.5 GHz.

Since the ILP-based analysis requires a quantization on the
speed domain, a step of 100 RPM was adopted, as suggested
by the authors. Our analysis discriminates 1 RPM in the
computation of the dominant speeds. It is also worth not-
ing that the approach presented in [8] considers a slightly
different task model in which mode-change is triggered as a
function of an estimation of the instantaneous speed through
the average speed in the previous inter-arrival time. The ILP
formulation [8] leads to some inconsistencies in the compu-
tation of the interference for low speed values: the problem
has been fixed by the authors in a technical report [9], taken
as a reference for our comparison.

We assume a rotation source ranging from ωmin = 500 RPM
to ωmax = 6500 RPM as typical values for a production
car engine. Similarly, values of acceleration have been se-
lected [8] such that the engine is able to reach the maximum
speed starting from the minimum one in 35 revolutions, ob-
taining α+ = −α− = 1.62 10−4 rev/msec2.

5.1 Workload Generation
In our experiments we considered a task set composed of n
periodic tasks and an AVR task. Given an overall target
utilization UP for the set of periodic tasks, each periodic
tasks is generated as follows:

• The utilization Ui of each task τi is randomly gener-
ated using the UUniFast [1] algorithm such that

∑n
i=1

Ui = UP . The minimum utilization of each periodic
task is Umin = 0.005;

• Task periods Ti are randomly generated (with a uni-
form distribution) in the range [3, 100] msec;

• We considered implicit deadlines for each periodic task,
i.e., Di = Ti;

• Computation times are computed as Ci = UiTi.

Observe that the case of multiple AVR tasks with a com-
mon activation source can be modeled as a single AVR task
(also called representative AVR) in which the definition of
the modes, the speed boundaries for the modes, and the
execution time for each mode are defined as a combination
of the modes, boundary speeds and execution times of the
tasks in the AVR set. For the purpose of our experiments,
we simply represent the single AVR task resulting from the
composition of the set.

Given a target utilization U∗ for the representative AVR
task, its parameters are generated as follows:

• Θ = 2π is the angular period (i.e., a task activation
for each engine revolution);

• ∆ = Θ (implicit angular deadlines);

• The number of modes M has been randomly generated
in the range [Mmin,Mmax]. The values defining the
range are parameters for the definition of the experi-
mental set;

• A random mode m′ is selected to have the maximum
utilization Um′

= U∗. The utilization Um of the other
modes m 6= m′ are randomly generated in the range
[0.85U∗, U∗], where U∗ is an additional parameter;

• The maximum speed ωm of each mode m < M is ran-
domly generated in the range [1000, 6000] RPM. The
maximum speed for mode 1 is always set at the max-
imum speed ωmax. Once the boundary speeds for the
mode transitions are generated, they are checked to
ensure a minimum separation between any two values.
If the minimum separation between any two speeds is
below 3000/M RPM, then all speeds are discarded and
the set is generated again;

• The computation time Cm of each mode m is defined
as Cm = UmΘ/wm. If the generated computation
times are not monotonically increasing with respect
to modes, then they are discarded, and a new set is
generated.

U = UP +U∗ is the overall utilization of the set of periodic
and AVR tasks. Task priorities are assigned according to the
Rate Monotonic order (i.e., the lower the period the higher
the priority), where the period of the AVR task is considered
as T ∗ = Θ/ωmax, that is, its lowest possible inter-arrival
time.

In the following experiments we denote as

• EXACT - The analysis presented in this paper (in Sec-
tion 4);

Figure 14. Identifying the contributions of the higher priority AVR task
modes to τ∗i . The figure considers a mode m for an AVR task τ∗i
and shows the mode of the high-priority AVR task (set hpA(τ∗i )) that
overlap with the corresponding speed range (ωm+1

i , ωm
i ]. The black

dots indicate the switching speeds.

Formally, to guarantee the schedulability of τ∗i , the fol-
lowing conditions must be satisfied: for each mode m of τ∗i ,
∀τ∗j ∈ hpA(τ∗i ) ∪ {τi}

∀ωm′j ∈ (ωm+1
i , ωmi ] Rmi (ωm

′
j ) ≤ Di(ω

m′
j ),

where

Rmi (ω) = min
t≥0

Cmi +
∑

τ∗j ∈hpA(τ∗i )

Cj(ω) +
∑

τj∈hp(τ∗i )

⌈
t

Tj

⌉
Cj = t

.
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6 EXPERIMENTAL RESULTS

This section presents a set of experimental results aimed
at comparing the exact schedulability analysis presented in
this paper with the sufficient ILP-based analysis for AVR
tasks presented by Davis et al. in [11]. Both schedulabil-
ity tests have been implemented and applied to synthetic
workloads for comparison. The ILP-based formulation has
been implemented using the IBM CPLEX solver, whereas
the proposed algorithm has been implemented in C++. To
ensure a broader comparison, the proposed schedulability
test has also been compared against two other tests pro-
posed in [11] and the utilization bound for EDF scheduling
proposed in [3], [9].

Since the ILP-based analysis of Davis et al. requires
a quantization on the speed domain, a step of 100 RPM
was adopted, as suggested by the authors. Our analysis
discriminates 1 RPM in the computation of the dominant
speeds. It is also worth noting that the approach presented
in [11] considers a slightly different task model in which
mode-change is triggered as a function of an estimation of
the instantaneous speed through the average speed in the
previous inter-arrival time. The ILP formulation [11] leads to
some inconsistencies in the computation of the interference
for low speed values: the problem has been fixed by the
authors in a technical report [12], taken as a reference for
our comparison.

In the experiments, the rotation source is assumed to
range from ω− = 500 RPM to ω+ = 6500 RPM, which are
typical values for a production car engine. As done by Davis
et al. [11], the values for the acceleration have been selected
such that the engine is able to reach the maximum speed
starting from the minimum one in 35 revolutions, obtaining
α+ = −α− = 1.62 10−4 rev/msec2.

6.1 Workload generation

The experiments have been performed on a task set con-
sisting of n periodic tasks and an AVR task. Given an
overall target utilization UP for the set of periodic tasks,
each periodic task is generated as follows:

• The utilization Ui of each task τi is randomly gen-
erated using the UUniFast [2] algorithm such that∑n
i=1 Ui = UP . The minimum utilization of each

periodic task is enforced to Umin = 0.005;
• Task periods Ti are randomly generated (with a

uniform distribution) in the range [3, 100] msec;
• Deadlines for periodic tasks are implicit, i.e., Di =

Ti;
• Execution times are computed as Ci = UiTi.

Observe that the case of multiple AVR tasks with a com-
mon activation source can be modeled as a single AVR task
(also called representative AVR) as discussed in Section 5.1.2.

Given a target utilization U∗ for the representative AVR
task, its parameters are generated as follows:

• The angular period is Θ = 2π (causing a task activa-
tion for each engine revolution);

• The angular deadline is implicit, i.e., ∆ = Θ;
• The number of modes M is randomly generated

in the range [Mmin,Mmax]. The values defining

the range are parameters for the definition of the
experimental setup;

• A random mode m′ is selected to have the maximum
utilization Um

′
= U∗. The utilization Um of the other

modes m 6= m′ is randomly generated in the range
[0.85U∗, U∗];

• The maximum speed ωm of each mode m < M is
randomly generated in the range [1000, 6000] RPM.
The maximum speed for mode 1 is always set at the
maximum speed ω+. Once the boundary speeds for
the mode transitions are generated, they are checked
to ensure a minimum separation between any two
values. If the minimum separation between any two
speeds is below 3000/M RPM, then all speeds are
discarded and the set is generated again;

• The computation time Cm of each modem is defined
as Cm = UmΘ/wm. If the generated computation
times are not monotonically increasing with respect
to modes, then they are discarded, and a new set is
generated.

The overall utilization of the set of periodic and AVR
tasks is U = UP +U∗. Task priorities are assigned according
to the Rate Monotonic order (i.e., the lower the period, the
higher the priority), where the period of the AVR task is
considered as T ∗ = Θ/ω+, that is, its lowest possible inter-
arrival time.

The approaches compared in the experiments are de-
noted as:

• EXACT - The analysis presented in Section 5;
• ILP - The analysis proposed in [11] using the revised

ILP constraints of [12].
• VRB-L2 - The VRB-L2 test proposed in [11] (Eq. (7)).
• SPORADIC - The standard response-time analysis

where AVR tasks is converted to sporadic tasks tak-
ing the maximum execution time and the minimum
inter-arrival time (denoted as RTA-SP in [11]).

• EDF-U-BOUND - The utilization-based test for EDF
proposed in [3], [9] (note that, under the experimen-
tal setting considered here, the bound proposed in [3]
is the same as the one of [9]).

Note that the analysis presented in this paper does not
apply to EDF scheduling, therefore the results for the EDF-
U-BOUND test do not enable a fair comparison; rather, they
should be intended as representative for the performance
that can be obtained with dynamic-priority scheduling.

6.2 Experiment 1
The first experiment was carried out to measure the schedu-
lability ratio of the two approaches as a function of the
overall utilization U of task set composed of n = 5 periodic
tasks and an AVR task with Mmin = 4 and Mmax = 8. The
utilization of the AVR task was computed as U∗ = ρuU .
For each value of the utilization, the two schedulability tests
were executed over 500 randomly generated task sets.

Figure 15(a) shows the results of this experiment when
the utilization U varies from 0.3 to 0.95, and for ρu = 0.4.
Clearly, both tests tend to degrade as the system load
increases. In the range [0.7, 0.95], the EXACT analysis im-
proves the schedulability with respect to the ILP test, being
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(a) ρu = 0.4
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(b) ρu = 0.6
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(c) U = 0.85
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(d) U = 0.85, ρu = 0.4

SPORADIC VRB-L2 Difference (EXACT-ILP) ILP EXACT EDF-U-BOUND

Figure 15. Schedulability ratio under four representative configurations as a function of the system utilization U (insets (a) and (b)), the relative
utilization ρu of AVR tasks (inset (c)), and the number of modes M (inset (d)). The parameters of each configuration are reported in the captions
above the graphs.

able to admit 6 times more task sets for U = 0.9. Figure 15(b)
shows the results of a similar experiment carried out for
ρu = 0.6, where the gain in schedulability of the EXACT
test over ILP is 10 times more for U = 0.9. Both figures
also report the difference of the two schedulability ratios to
better appreciate the results.

Note that the achieved improvement of the proposed
analysis exactly occurs in the workload range where these
applications typical operate (80% utilization or higher). The
performance gap with respect to the VBR-L2 and SPO-
RADIC tests is not surprising and is in line with the results
presented in [11]. The results also confirm the excellent
performance of EDF scheduling, as it has been observed
in [4].

6.3 Experiment 2

A second experiment was carried out to better evaluate the
dependency of the schedulability ratio on the utilization
of the AVR task by varying the factor ρu = U∗/U from
0.05 to 0.9. For each value of ρu, the two schedulability
tests (EXACT and ILP) were executed over 500 randomly
generated task sets composed of n = 5 periodic tasks and
an AVR task with Mmin = 4 and Mmax = 8.

The results of this experiment for U = 0.85 are reported
in Figure 15(c). As visible from the plots, the gain in schedu-
lability of the EXACT test increases with ρu, until reaching
a significant improvement around ρu = 0.5. Notice that, for
high values of the AVR utilization (ρu ∈ [0.6, 0.85]) the ILP
analysis shows a saturation effect in the schedulability ratio,
whereas the EXACT test is still able to admit 2 times more
task sets than ILP. Finally, it is worth observing that, in the
considered setting, the SPORADIC test is totally ineffective,

while the performance gap between ILP and VRB-L2 tends
to reduce as ρu increases.

6.4 Experiment 3

Another experiment has been done to measure the schedu-
lability ratio of the two methods when the number M of
modes of the AVR task varies from Mmin to Mmax. The
overall utilization of the task set is fixed to U = 0.85, and
the utilization of the AVR task is U∗ = 0.4U . For each value
ofM , 500 task sets have been randomly generated including
n = 5 periodic tasks.

Figure 15(d) shows the results of this experiment, when
M is varied from 3 to 12. Note that both the tests decrease
their performance as M increases, but the improvement
of the EXACT test over ILP increases with the number of
modes M or, equivalently, with the number of AVR tasks,
as observed at the beginning of Section 6.1. Concerning the
SPORADIC and VRB-L2 tests, the same observations made
in the previous section also hold for this experiment.

6.5 Running times

Another set of experiments has been carried out to measure
the running time of the schedulability test proposed in this
paper. The implementation has been compiled with GCC
4.9.2 for Windows with all the optimizations enabled (-O3
flag). The tests have been executed on a machine equipped
with a quad-core Intel i7 processor running at 3.5 GHz. The
implementation is sequential (i.e., no parallelism has been
exploited).

The results for four representative configurations are
reported in Figure 16: the parameters of each configuration
are reported in the captions above the graphs. The graphs
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Figure 16. Average and maximum running times (in seconds) of the EXACT analysis for an entire task set. The results consider four representative
configurations, which are reported in the captions above the graphs. Insets (a) and (b) refer to Experiment 1, inset (c) refers to Exper. 2 and inset
(d) refers to Exper. 3.

show both maximum and average running times of the
analysis (for an entire task set) as a function of the utilization
U , the number of periodic tasks n and the number of modes
M of the AVR task. Specifically, insets (a) and (b) refer to
Experiment 1, inset (c) refers to Experiment 2, and inset
(d) refers to Experiment 3. For each tested value of the
parameter that has been varied, the schedulability test has
been executed on 1000 randomly generated task sets.

As can be observed from the graphs, all the collected
maximum running times are below 1 second for the configu-
rations of insets (a), (b) and (c). The maximum running times
increase up to 4 seconds only as a function of the number
of modes (inset (d)): this happens because the number of
dominant speeds increases with the number of modes, thus
determining an increasing number of scenarios that have
to be considered in the analysis. Finally, also note that the
average running times are always in the order of a few
milliseconds and far from the maximum values for all the
four configurations.

Overall, this set of experiments clearly shows that the
running time of the proposed analysis is perfectly compati-
ble with the time-frame of off-line design activities. Further
improvements in terms of speed-up can also be achieved
with a carefully optimization of the implementation and/or
by exploiting parallelism.

7 GENERALIZATION TO ARBITRARY ACCELERA-
TION FUNCTIONS

The assumption of constant acceleration, on which the
model presented in Section 2.2 is based, can lead to the com-
putation of optimistic (larger) inter-arrival times between
two jobs of an AVR task, when using function T̃ (ωk, ωk+1).
Given two jobs Ji,k and Ji,k+1 of an AVR task τ∗i , respec-
tively released at speeds ωk and ωk+1, there can exist several
non-constant acceleration profiles that, when undertaken by
the rotation source, lead to lower inter-arrival times between
Ji,k and Ji,k+1 with respect to the one related to the case of
constant acceleration.

To overcome this limitation, this section presents another
model for the rotation source. Differently from the one
presented in Section 2.2, this model does not rely on the

assumption of constant acceleration, but it is based on limit-
case acceleration profiles that allow deriving a conservative
lower-bound on the inter-arrival time of AVR tasks. Such
limit-case acceleration profiles are obtained by considering
bounded acceleration but unbounded jerk (i.e., infinite rate
of change for the acceleration), which allows coping with
any possible acceleration profile that the rotation source can
undertake.

Given an initial state X0 = [θ = 0, ω = ωa] and a final
state X1 = [θ = Θi, ω = ωb], it is known [8], [23] that, under
bounded speed and bounded acceleration, the acceleration
profile leading to the minimum time to reach state X1 from
state X0 can be constructed as follows:

• accelerate with the maximum acceleration α+ until
reaching an intermediate speed ωX , covering an an-
gle Θ+;

• decelerate with maximum deceleration α− from ωX ,
covering an angle Θ− = Θi −Θ+.

The method to compute the value of ωX is explained
in the following. When the initial speed ωa is close to
the maximum speed ω+, the desired value for ωX may
be larger than the maximum speed (ωX > ω+). In this
case, the minimum time is obtained with a slightly different
acceleration profile:

• accelerate with the maximum acceleration α+ until
reaching the maximum speed ω+, covering an angle
Θ+
i ;

• remain at the maximum speed ω+ for an angle Θ=;
• decelerate with maximum deceleration α− from

speed ω+, covering an angle Θ− = Θi −Θ+ −Θ=.

The acceleration profiles in the two considered cases are
illustrated in Figure 17(a) and Figure 17(b), respectively. The
inter-arrival times under both cases will now be derived.
For the sake of simplicity, the intermediate algebraic steps
needed to obtain the results will be omitted.
Case (a). The acceleration profile in Figure 17(a) is defined
by the following system of physical equations:

Θi = Θ+ + Θ−

ωX =
√
ω2
a + 2Θ+α+

ωb =
√
ω2
X + 2Θ−α−
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lead to minimum inter-arrival times. A job Ji,k is released at speed ωa (time t = 0) and
the following job Ji,k+1 is released at speed ωb after T̃i(ωa, ωb) time units.

!a (RPM)
3000 3100 3200 3300 3400 3500 3600 3700 3800

e T(! a
;!

b
)

#104

1.82

1.84

1.86

1.88

1.9

1.92

1.94

Figure 18. Example plot of T̃ (ωa, ωb) as a
function of ωa for ωb = 3000 RPM.

Solving the above system of equations for ωX gives

ωX =

√
ω2
aα
− − ω2

bα
+ + 2Θiα+α−

α− − α+
. (11)

As a consequence, if two consecutive jobs Ji,k and Ji,k+1

are respectively released at speeds ωa and ωb, a safe lower-
bound T̃ (ωa, ωb) on the inter-arrival time between the two
jobs can be computed as

T̃i(ωa, ωb) =
ωX − ωa
α+

+
ωb − ωX
α−

. (12)

Case (b). The value ωX (computed according to Equa-
tion (11)) can be higher than the maximum speed ω+. In
this case, the acceleration profile in Figure 17(b) leads to the
minimum time.

The first and the last part of the acceleration profile are
regulated by the following two equations:{

ω+ =
√
ω2
a + 2Θ+α+

ωb =
√

(ω+)2 + 2Θ−α−
.

By solving the two equations for Θ+ and Θ− we obtain
Θ+ = ((ω+)2 − ω2

a)/(2α+) and Θ− = (ω2
b − (ω+)2)/(2α−).

Now, the angular distance Θ= for which the rotation source
remains at constant speed ω+ can be computed as Θ= =
Θi − (Θ+ + Θ−).

Once Θ= is computed, if two consecutive jobs Ji,k and
Ji,k+1 are respectively released at speeds ωa and ωb, and
ωX > ω+ (according to Equation (11)), a safe lower-bound
T̃ (ωa, ωb) on the inter-arrival time between the two jobs can
be computed as

T̃i(ωa, ωb) =
ω+ − ωa
α+

+
Θ=

ω+
+
ωb − ω+

α−
. (13)

As for the model in Section 2.2, considering a given
job Ji,k released at instantaneous speed ωa, a particular
case of Equation (12) and Equation (13) can be derived for
computing the minimum inter-arrival time T̃mi (ωa) to have
the next job Ji,k+1 released in mode m (if reachable with the
acceleration bounds), that is T̃mi (ωa) = T̃i(ωa, ω

m).

7.1 Monotonicity of inter-arrival times

This section shows that the same properties defined in Sec-
tion 2.3 also hold for a model of the rotation source without
constant acceleration. Unfortunately, due to the analytical

complexity of Equations (12) and (13), it is not straightfor-
ward to show the monotonicity properties of interest. Below,
each case is separately discussed.

Case (a). Given a speed ωb, Equation (12) is not monotone
with respect to speed ωa. That is, given two speeds ωa
and ωa′ , with ωa > ωa′ , it may happen that T̃i(ωa, ωb) >
T̃i(ωa′ , ωb). This can be also noted by looking at the sample
plot of Equation (12) shown in Figure 18.

However, a physical interpretation of Equation (12) leads
to the conclusion that such cases are physically impossible,
i.e., the values for ωa for which Equation (12) is not mono-
tone correspond to speeds for which is not possible to reach
ωb without violating the acceleration bounds.

This can be shown by studying Equation (12). The first
derivative of Equation (12) with respect to ωa is

∂

∂ωa
T̃i(ωa, ωb) =

ωa −
√

2Θiα−α++α−ω2
a−α+ω2

b

α−−α+

α+

√
2Θiα−α++α−ω2

a−α+ω2
b

α−−α+

.

By equating the first derivative to zero, it is possible to
find the stationary point of Equation (12):

∂

∂ωa
T̃i(ωa, ωb) = 0 ⇒ ωa =

√
ωb − 2Θiα− = Ω−i (ωb, α

−).

Such a point is a minimum and corresponds exactly to
the maximum speed from which it is possible to reach ωb
without violating the acceleration bounds. Therefore, Equa-
tion (12) is monotonically decreasing with ωa for speeds ωa
from which it is physically possible to reach ωb.

In a similar manner, it is possible to show that Equa-
tion (12) is monotonically decreasing with ωb, which allows
concluding that the equation is also simultaneously decreas-
ing in both variables. Hence, the same properties defined in
Section 2.3 hold.

Case (b). Equation (13) is also not monotone with respect to
ωa. However, it is possible to show that it is not monotone
only for speeds ωa that are outside the validity range. The
same approach used for case (a) applies.

The first derivative of Equation (13) with respect to ωa is

∂

∂ωa
T̃i(ωa, ωb) =

ωa − ω+

α+ω+
.

By equaling the first derivative to zero, it is possible to
find the stationary point of Equation (13), that is

∂

∂ωa
T̃i(ωa, ωb) = 0 ⇒ ωa = ω+.



16

Also in this case, such a point is a minimum. Clearly,
there cannot exist valid speeds ωa that are higher than the
maximum speed ω+, hence the monotonicity property holds
for all valid speeds ωa ≤ ω+. In a similar manner, the same
can be shown for all valid speeds ωb ≤ ω+.

To summarize, if the function T̃i(ωa, ωb) is applied to
pairs of speeds ωa and ωb that are compatible with the
acceleration and speed bounds, in both the cases we have:
(i) if ωa > ω′a, then T̃i(ωa, ωb) < T̃i(ω

′
a, ωb); (ii) if ωb > ω′b,

then T̃i(ωa, ωb) < T̃i(ωa, ω
′
b); and (iii) if ωa > ω′a ∧ ωb > ω′b,

then T̃i(ωa, ωb) < T̃i(ω
′
a, ω
′
b).

8 RELATED WORK

To the best of our records, a suitable model for AVR tasks
has been proposed for the first time in 2012 by Kim,
Lakshmanan, and Rajkumar [16], who derived preliminary
schedulability results under very simple assumptions. In
particular, their analysis applies to a single engine-triggered
task with a interarrival time always smaller than the periods
of the other tasks, and running at the highest priority level.
Negrean et al. [18] discussed the problem of analyzing
the mode-changes of engine-triggered tasks by means of
standard mode-change analysis techniques. The paper also
addressed the case of multiprocessor systems under par-
titioned scheduling. However, no analysis was detailed in
their work. In a keynote speech given at ECRTS 2012, Darren
Buttle gave [10] discussed some timing-related issues in au-
tomotive software, presenting a common practice adopted
in automotive applications to adapt the functionality and
the computational requirements of engine-control tasks for
different rotation speeds of the engine. Following Buttle’s
keynote, the real-time community started getting interested
to the analysis of engine-triggered tasks, producing various
solutions under different modeling approaches, assump-
tions, and scheduling policies.

Preliminary results concerning the analysis of engine-
triggered tasks under fixed-priority scheduling have been pre-
sented by Pollex et al. [19], [20] in 2013. In [20], the authors
presented a sufficient schedulability analysis under the as-
sumption of arbitrary, but fixed engine speed, thus ignoring
the potentially dangerous effect caused by mode-changes.
Subsequently, in [19], the same authors proposed a simple
analysis based on a transformation of engine-triggered tasks
to sporadic tasks. The first relevant milestone is due to
Davis et al. [11], [12], who in 2014 presented a sufficient
ILP-based analysis for task sets including both periodic and
engine-triggered tasks, where the latter are activated by the
same rotation source. The physical constraints of the system
have been considered for setting up an ILP formulation that
computes an upper bound of the interference generated
by engine-triggered tasks. The ILP formulation applies to
a given speed range, and hence requires a quantization of
the speed domain for being used in a schedulability test.
Feld and Slomka [13] derived an analysis for variable rate
tasks that with arbitrary angular phases, but their approach
cannot be applied in the presence of other periodic tasks.

The present paper extends the results presented in [6]
and [5] by including: (i) the generalization of the results to
make them independent from the rotation source model and

the corresponding consideration of arbitrary acceleration
patterns; (ii) an extended and more formal presentation of
the theoretical foundations for the derivation of dominant
speeds; (iii) an additional pruning condition that allows
speeding up the computation of response times; (iv) the
algorithm for computing dominant speeds; (v) additional
experimental results to evaluate the running time of the
proposed analysis technique.

Other authors looked into the dynamic-priority schedul-
ing of AVR tasks by adopting the earliest deadline first (EDF)
algorithm. Most relevant to this paper are the works by
Buttazzo et al. [9] and Biondi and Buttazzo [3], who pro-
posed utilization-based schedulability tests, and Guo and
Baruah [14], who proposed sufficient tests for constrained-
deadline tasks and speedup factors. Still concerning EDF
scheduling, Biondi et al. [4] presented an exact feasibility
analysis for AVR tasks based on dominant speeds. Finally,
Mohaqeqi et al. [17] provide an alternative analysis method
by transforming the AVR task model in a task digraph
and applying standard digraph analysis methods to the
resulting model. On the design side, accurate heuristics for
the selection of the transition speeds (and the task priority)
have been presented by Biondi et al. [7], where the engine
performance is optimized with respect to a general speed-
dependent performance model.

9 CONCLUSION

This paper presented an exact response-time analysis for
task sets consisting of periodic/sporadic tasks and AVR
tasks with a common activation source, all managed under
fixed-priority scheduling. The analysis is based on the no-
tion of dominant speeds, which allow to drastically restrict
the scenarios that have to be considered for computing
the worst-case interference generated by AVR tasks. This
result allows a designer to precisely analyze the behavior
of engine control applications in the temporal domain, pro-
viding a method for predicting possible overload conditions
that could jeopardize the system performance. Experimental
results show that the proposed approach always dominates
the previous sufficient tests, with significant improvements
in terms of schedulability for high processor workloads
(80% utilization or higher), which represent the typical
operating conditions of engine control applications.

As a future work, we plan to extend the response time
analysis to sets with multiple AVR tasks with different angu-
lar periods and phases and possibly different independent
activation sources.
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