
Performance-driven Design of Engine Control Tasks

Alessandro Biondi, Marco Di Natale, Giorgio Buttazzo

Scuola Superiore Sant’Anna, Pisa, Italy

Email: {alessandro.biondi, marco, giorgio}@sssup.it

Abstract—Engine control tasks include computational activities
triggered at specific rotation angles of the crankshaft, making
the computational load increase with the engine speed. To avoid
overload at high speeds, simplified control implementations are
used, defining different operational modes at different speed
intervals. The design of a set of adaptive variable rate tasks is
an optimization problem, consisting in determining the rotation
speeds at which mode changes should occur to optimize the system
performance while guaranteeing the schedulability. This paper
presents three methods for tackling the optimization problem
under a set of assumptions about the performance metric and
the problem constraints. Two are heuristics and one is a branch
and bound that is guaranteed, when it terminates, to find the
optimum within a given granularity. In addition, a simple method
to compute a performance upper bound is presented. The analysis
of the problem reveals several insights for the design and the
heuristics are shown to be quite close to the performance upper
bound and the optimum with finite granularity.

I. INTRODUCTION

Engine control is one the most challenging examples of

Cyber-Physical System (CPS), where the software that controls

injection and combustion must be designed to take several phys-

ical characteristics of the engine into account. From a timing

perspective, engine control software requires the execution of

different types of computations, some cyclicly activated at fixed

intervals (periodic tasks) ranging from a few milliseconds up

to 100 ms, and some triggered at predefined rotation angles of

the crankshaft (angular tasks) [12]. Such angular tasks generate

a dynamic workload strictly dependent on the actual engine

speed.

To avoid overloading the processor at high engine speeds,

angular tasks are typically implemented as a set of operational

modes, each characterized by a different computational demand

and acting on a different speed interval [9]. Since angular tasks

adapt their functionality with the speed and are activated at non

constant rate, they are also referred to as adaptive variable-rate

(AVR). The schedulability analysis of AVR tasks has received

significant attention from the research community.

A model for describing an AVR task was first proposed

by Kim, Lakshmanan, and Rajkumar [13], who also derived

a schedulability analysis under very restrictive assumptions,

considering a single AVR task running at the highest priority

with a period always smaller than those of the other tasks. In

addition, relative deadlines were assumed to be equal to periods

and priorities were assigned based on the Rate-Monotonic

algorithm. Pollex et al. [14] derived a sufficient feasibility test

for fixed priority scheduling, but assuming a constant engine

speed. Davis et al. [10] used an Integer Linear Programming

(ILP) formulation to derive a sufficient schedulability test of

AVR tasks under fixed-priorities, also taking acceleration into

account, but considering a finite set of (discretized) initial

engine speeds.

The exact characterization of the interference produced by an

AVR task under fixed priorities has been presented by Biondi

et al. [5] as a search approach in the speed domain, where the

concept of dominant speeds is used to reduce the complexity

and avoid speed quantization. Such a method has then been

extended to derive an exact response time analysis of fixed

priorities AVR tasks [6].

Other works addressed the analysis of AVR tasks under the

Earliest Deadline First (EDF) scheduling algorithm. Guo and

Baruah [11] proposed a speedup factor analysis and sufficient

schedulability tests for AVR tasks scheduled with EDF. Biondi

et al. [4] proposed a precise workload characterization gener-

ated by an AVR tasks that is used to derive a feasibility analysis

under EDF scheduling.

The implementation of an AVR task also requires determin-

ing the precise engine speeds at which mode changes should

occur. This problem has been addressed under EDF scheduling

by Buttazzo, Bini, and Buttle [8], who proposed a method

for identifying the highest switching speeds that bound the

utilization of an AVR task to a desired value.

In reality, the selection of the transition speeds is not driven

by schedulability constraints alone, but has to optimize a set

of performance indexes, related to power, fuel consumption

and emissions (among others). The control implementations are

designed to achieve the best possible combination of all the

performance indexes within a given computation complexity

and for a given set of engine speeds. This process requires the

tuning of a significant number of configuration parameters and

is performed at the test bench, where each implementation is

tested for different speeds recording the performance parame-

ters of interest.

Intuitively, the most sophisticated control implementations

have the best performance but they require a higher compu-

tational demand that cannot be afforded (without incurring in

deadline misses) when they are executed more frequently (i.e.,

at high engine speeds). Conversely, simpler control implemen-

tations have lower computational requirements and tend to work

better at higher rotational speeds, where the engine is more

stable. The resulting behavior of engine-control tasks is a mode-

change among a set of different control implementations, each

one executed in a given interval of engine speeds.

In our framework, the mode change issue is formulated

as a design optimization problem, consisting in finding the

switching speeds that optimize the overall system performance

while guaranteeing the schedulability of the task set. We assume

the knowledge of the performance function associated to each

control implementation (they can be derived by fitting the



test bench performance data to a family of relatively simple

analytical functions). The consideration of such performance

functions in the design optimization process together with the

schedulability constraints is the main contribution of this work.

This paper presents three methods for tackling such an

optimization problem assuming a given performance metric and

a set of constraints. Two heuristic approaches are first proposed

to reduce the computational complexity and a performance

upper bound is computed. Then, a branch and bound method is

presented to find the optimum within a given speed granularity.

Simulation results show that the performance achieved by the

heuristics is quite close to the performance upper bound and

the optimum with a finite granularity.

Paper structure. The remainder of the paper is structured

as follows: Section II presents the model and the notation used

throughout the paper. Section III formally states the problem

considered in the paper. Section V presents the two heuristic

approaches. Section VI describes the branch and bound algo-

rithm. Section VII illustrates a set of experimental results aimed

at comparing the proposed approaches. Finally, Section VIII

states our conclusions and future work.

II. SYSTEM MODEL

This paper considers applications consisting of a set n real-

time preemptive tasks Γ = {τ1, τ2, . . . , τn}. Each task can be

a regular periodic task, or an AVR task, activated at specific

crankshaft rotation angles. Whenever needed, an AVR task may

also be denoted as τ∗i . The rotation source triggering the AVR

tasks is characterized by the following state variables:

θ the current rotation angle of the crankshaft;

ω the current angular speed of the crankshaft;

α the current angular acceleration of the crankshaft.

The rotation speed ω is assumed to be limited within a range

[ωmin, ωmax] and the acceleration α is assumed to be limited

within a range [α−, α+].

Both periodic and AVR tasks are characterized by a worst-

case execution time (WCET) Ci, an interarrival time (or period)

Ti, and a relative deadline Di. However, while for regular

periodic tasks such parameters are fixed, for angular tasks they

depend on the engine rotation speed ω. An AVR task τ∗i is

characterized by an angular period Θi and an angular phase

Φi, so that it is activated at the following angles: θi = Φi+kΘi,

for k = 0, 1, 2, . . ..
This means that the inter-arrival of an AVR task is inversely

proportional to the engine speed ω and can be expressed as

Ti(ω) =
Θi

ω
. (1)

An angular task τ∗i is also characterized by a relative angular

deadline ∆i expressed as a fraction δi of the angular period

(δi ∈ [0, 1]). In the following, ∆i = δiΘi represents the relative

angular deadline. All angular phases Φi are relative to a ref-

erence position called Top Dead Center (TDC) corresponding

to the crankshaft angle for which at least one piston is at the

highest position in its cylinder. Without loss of generality, the

TDC position is assumed to be at θ = 0.

As explained in the introduction, an AVR task τ∗i is typically

implemented as a set Mi of Mi execution modes. Each mode

m has a different WCET Cm
i and operates in a predetermined

range of engine speeds (ωm+1
i , ωm

i ], where ωMi+1
i = ωmin

and ω1
i = ωmax. Hence, the set of modes of task τ∗i can be

expressed as

Mi = {(C
m
i , ωm

i ),m = 1, 2, . . . ,Mi}.

The vector of the set of switching speed is denoted as ~ω.

We assume that the worst-case execution time of an AVR task

τ∗i can be expressed as a non-increasing step function Ci(ω)
of the instantaneous speed ω at its release, that is,

Ci(ω) ∈ {C
1
i , . . . , C

Mi

i }. (2)

An example of C(ω) function is illustrated in Figure 1.

Ci(ω)

C1
i

C2
i

Cm
i

C
Mi
i

ωωmin
i ω

Mi
i ωm

i ω2
i ω1

i

Figure 1: Computation time of an AVR task as a function of

the speed at the job activation.

In the following, when a single AVR task is addressed, the

task index is removed by the AVR task parameters for the sake

of readability. To support the presentation of the derived results

it is convenient to define the steady-state utilization of the jth

execution mode as a function of a generic switching speed w,

that is

U j(ω) =
Cj

Θ
ω. (3)

Moreover, U j = U j(ωj) denotes the steady-state utilization of

the jth execution mode at its current switching speed ωj .

A. Schedulability Analysis of AVR Tasks

In this paper, the schedulability analysis of mixed task sets

consisting of periodic tasks and AVR tasks is performed using

the test presented in [6]. Considering the speed domain as a

continuum, a schedulability test for task sets including AVR

tasks must take into account all possible speed evolutions of

the rotation source to cope with potential worst-case situations

resulting in deadline misses.

The adaptive behaviour of AVR tasks causing mode changes

as a function of the engine speed further complicates the identi-

fication of worst-case response times, preventing the treatment

of such tasks as classical sporadic tasks. The analysis in [6] is

based on the computation of the interference caused by higher-

priority tasks, which is then used to compute the tasks response

times.

By restricting to a finite set of dominant speeds [5], it is

possible to limit the number of speed evolution patterns that

have to be examined for deriving the worst-case interference.

In [6] the response time computation has been approached as



a search problem in the speed domain: the notion of dominant

speeds is first used to reduce the number of critical instants (i.e.,

the situation in which all tasks are released simultaneously) and

then the search space is reduced to dominant speeds only.

III. PROBLEM DEFINITION

The analysis of this paper is restricted to a representative

class of automotive applications consisting of a single AVR

task and a set of periodic tasks, scheduled by fixed-priority on

a single core. Since there is only one AVR task, we drop its

index in the definition of its parameters.

The addressed problem is first stated using a general formu-

lation and then restricted to a number of specific cases under

a set of assumptions. The general formulation consists of the

definition of the input parameters, the optimization variables,

the set of constraint functions, and the performance function to

be optimized.

Input parameters. We consider an AVR task consisting of Q
implementations Λj (j = 1, . . . , Q) of the same functionality

at different complexity. Note that we distinguish between

implementations and mode, since, after the design process, one

or more implementations can be merged into a single mode,

to be executed in a range of speeds (to be determined) and

characterized by a known WCET Cj . The Λj are indexed

such that their execution times are strictly increasing, that is,

Cj < Cj+1, ∀j = 1, . . . , Q− 1.

Optimization variables. The objective of the proposed op-

timization algorithms is to find the set of switching speeds

between modes of the AVR task and to assign a fixed priority

to the AVR task and the periodic tasks to optimize the engine

performance while guaranteeing the task set schedulability.

Note that in the presence of AVR tasks the Rate-Monotonic

priority assignment is not guaranteed to be optimal due to the

large period variations of the AVR task [4]. The set of switching

speeds is labeled as ωj ∈ [ωmin, ωmax].
Constraints. The constraint we consider in our optimization

is the schedulability of the task set, that is, the condition under

which all the tasks in the system meet their deadlines. More

specifically, the following notion of schedulability is considered

in this paper: a task set is said to be schedulable if there

exists at least a fixed priority assignment such that all the

tasks meet their deadlines, otherwise the task set is said to be

unschedulable. The schedulability test considered in this paper

is the one presented in [6] and summarized in Section II-A.

Performance Metric. The effectiveness of a design solution

is evaluated by assigning each implementation a performance

function fj(ω) which is monotonically increasing with Cj ,

that is, ∀ω, fj(ω) > fj′(ω) ⇔ Cj > Cj′ . The rationale

behind such a restriction is that a more complex control im-

plementation only makes sense if it improves the performance.

The overall system performance over the entire speeds range,

considering all the possible execution modes is defined as

P(ω1, . . . , ωQ) =

Q∑

j=1

∫ ωj

ωj+1

fj(ω) dω (4)

where j spans over all the modes j = 1, . . . , Q, and, by

definition, ω1 = ωmax and ωQ+1 = ωmin. In this paper we

consider two families of performance functions. In the first,

each implementation brings a contribution to the performance

that does not depend on the rotation speed at which it is applied.

Each Λj has an associated performance kj and the overall

system performance is

P(ω1, . . . , ωQ) =

Q∑

j=1

kj(ωj − ωj+1). (5)

The second set of functions represent control implementations

in which the performance depends on the control law that is

implemented, but also on the rotation speed at which it is

applied. The selected function (for each mode) is

fj(ω) = kj,1e−
kj,2

ω (6)

and the system performance is computed as

P(ω1, . . . , ωQ) =

Q∑

j=1

∫ ωj

ωj+1

kj,1e−
kj,2

ω dω. (7)

The rationale for selecting an exponential function of this

type is the following. The most sophisticated control function

(j = Q, with possibly multiple injections during the cycle)

has the best performance, which is kept unchanged across the

speed range (fQ(ω) = 1, with kQ,2 = 0), and is considered as a

baseline for the other modes. Simplified control functions tend

to work better at higher rotational speeds, where the engine is

more stable, but become less effective at some cutoff speed,

represented by the parameter ki,2. The parameter ki,1 is used

as an additional degree of freedom to improve fitting the per-

formance curve to the actual experimental data. Figure 2 shows

the typical shape of our exponential performance functions for

different values of kj,1, kj,2, and Figure 3 shows technical data

(from the web) expressing the engine output power as a function

of the engine speed, in support of a possible fit with a family

of exponential functions as in Equation (6).

Figure 2: A set of exponential performance functions for

selected values of kj,1, kj,2.

Formally, the first type of function is a special case of the



Figure 3: The power output curve of a the Evinrude E-TEC-250

engine (from continuouswave.com).

exponential one where kj,2 = 0 for all j. However, in our

experiments they are handled in a different way, because the

optimization algorithms leverage the constant gradient of the

constant functions to avoid recomputing it at every step, thus

speeding up the computation.

Although these two classes of functions are used in the

experiments, the proposed method is not limited to their con-

sideration. The only requirement is that the used function is

monotonic with the mode index (and hence with the mode

WCET) for all ω and it is integrable in the speed domain ω.

The integral in Equation (7) cannot be computed analytically,

thus is computed numerically through the exponential integral

function Ei(x), so obtaining

P(ω1, . . . , ωQ) =

Q∑

j=1

Yj(ω
j)− Yj(ω

j+1), (8)

where

Yj(ω) = kj,1
(
kj,2 ·Ei

(
−kj,2

ω

)
+ ω · e

−kj,2

ω

)
. (9)

For notational convenience, we introduce a shortcut pj(~ω) for

the partial derivatives of the performance function with respect

to the switching speeds, defined as

pj(~ω) =
∂P(~ω)

∂ωj
.

Design objective. The design goal is to compute the set of

switching speeds {ωj, j = 1, . . . , Q} and the multidimensional

optimization problem can be stated as follows:

Definition 1 (Optimization problem).

maxP(ω1, . . . , ωQ)

ω1 > ω2 > . . . > ωQ

such that the system is schedulable.

A. Running example

To illustrate the outcome of each algorithm and the optimiza-

tion procedure, we use a running example (using a configuration

from the EU INTERESTED project [1]) consisting of 4 periodic

tasks with overall utilization U = 0.825, and an AVR task

with 6 modes. The periods and the computation times of the

periodic tasks are reported in Table I, whereas the computation

times of the 6 modes of the AVR task are reported in Table II.

To better explore the input space, AVR computation times are

expressed as a function of a scaling factor s. In the following,

two subcases are generated, using s = 6.0 and s = 8.0 (all

times in µs).

Task1 Task2 Task3 Task4

C 1000 6500 10000 10000

T=D 5000 20000 50000 100000

Table I: Parameters of the task set used in the example.

Λ
1

Λ
2

Λ
3

Λ
4

Λ
5

Λ
6

C
j

s· 150 s· 278 s· 344 s· 425 s· 576 s· 966

k
j 2 3 4 5 7 10

Table II: Computation times of the AVR task in the example.

The running example has the only purpose of explaining the

typical outcome of the proposed algorithms and is only con-

sidered for the first set of performance functions (constant over

the entire speed range). The experiments in the experimental

section has been conducted also for exponential performance

functions. In our running example, the coefficients kj of the

performance functions have been set as kj ∈ {2, 3, 4, 5, 7, 10}.

IV. REDUCING THE DESIGN SPACE

Exploring the design space it has been experimentally ob-

served that the schedulability constraint determines a non-

convex region in the space of the switching speeds ωj . This

result was not surprising considering that the schedulability

region for classical periodic tasks in the space of interarrival

times is known to be non convex [3] and, to the best of our

knowledge, there is no known convex upper or lower bound

of good quality for checking the schedulability of AVR tasks

under fixed-priority scheduling.

Although an analytical description of the feasibility region

cannot be derived in a closed form, we provide a numerical

method for computing (with an arbitrary accuracy) an upper-

bound ωj

(ub) of the maximum speed at which each control

implementation can be executed, thus limiting the design space.

The upper bound is such that no feasible solution exists for the

optimization problem for speeds ωj ≥ ωj

(ub). The determination

of this upper bound also leads to an upper-bound P(ub) on the

maximum system performance.

The proposed algorithm probes the schedulability region

in the most favorable condition for each possible control

implementation j, that is when (i) no more complex control

implementation are active and (ii) the AVR task performs a

direct mode change to the simplest control implementation

having WCET C1, for any ω > ωj . An example of such upper

bound is shown in Figure 4, in which the mode configuration

for determining ωj

(ub) is shown as a dashed line. Under this



ωmin
ωmax

ω

ω1

Cj

C(ω)

C1

ω
j

(ub)

ω
j−1
(ub)

ω
j+1
(ub)

Figure 4: Computing the transition speed upper bounds.

condition, the algorithm computes the maximum speed ωj

(ub)

at which each control implementation Λj can be executed. In

Figure 4, the (typically unfeasible) system modes configuration

obtained by considering all the upper bounds transition speeds

is shown as a thick line.

The approach is guaranteed to be correct because of the

sustainability property of uniprocessor fixed-priority schedul-

ing [7], which states that schedulability never improves when

computation times are increased.

1: procedure COMPUTEUBS(C1, . . . , CQ)

2: w1
(ub) = ωmax;

3: for j = 2 to j = Q do

4: M ← {(C1, ωmax), (Cj , ωmin)};
5: ωj

(ub) = MAXBINSEARCH(j,M);
6: end for

7: return {ωj

(ub), j = 1, . . . , Q};
8: end procedure

Figure 5: Procedure for computing the upper-bounds for the

switching speeds.

The algorithm to compute the switching speed upper bounds

is shown in Figure 5. The first step determines whether there

are modes that can be safely avoided. This is done by finding

the implementation with the largest Cj that can safely be

executed in ωmin and discarding those with higher index, and

the implementation with the largest C that is feasible in ωM

and discarding those with lower index.

For simplicity, in the following, we assume that the only

control implementation feasible at ωmax is the first one (j = 1)

and that the control implementation with the largest WCET CQ

is feasible at ωmin (that is, the number of modes are equal to

the number of available implementations M = Q).

The first control implementation has maximum speed

w1
(ub) = ωmax, since it is not possible to exceed the allowed

speed range (see line 2). The maximum speeds are then

determined for each mode j > 1 by a simple binary search

(line 5) on the feasibility condition, by seeking a speed ωj

(ub)

such that mode Cj is executed in [ωmin, ωj

(ub)] and mode C1

is active in (ωj

(ub), ω
max].

A. Running example

The speed upper bounds for our running example are shown

in Table III.

s ω
1
(ub) ω

2
(ub) ω

3
(ub) ω

4
(ub) ω

5
(ub) ω

6
(ub) P(ub)

s=6 6500 6043 4848 3676 2996 1637 3504.84

s=8 6500 4285 3629 2996 1871 1214 2753.8

Table III: Upper bounds on the transition speeds for the

considered example.

V. HEURISTIC APPROACHES

The non-convexity of the problem together with the lack of

an analytical (closed-form) characterization of the schedulabil-

ity constraint, prevents the application of standard methods for

computing the optimal solution.

A number of possible heuristic approaches can be devised to

solve the problem. However, some of them are not immediately

applicable, as explained below.

A. Gradient-based search

A first possible approach is to search the space of the

switching speeds ωj starting from a known feasible point and

then increasing all the candidate transition speeds according to

the gradient of the performance function ∇P. This is done by

selecting a step δ and increasing each speed ωj by δ × pj(~ω)
(δ =50 in our experiments) until the boundary of the feasibility

region is encountered. From that point on, the algorithm may

proceed along the schedulability boundary with a local search.

A local search consists in trying to improve as much as possible

(using a binary search on the schedulability condition) all the

transition speeds one by one, in order of their performance

gradient pj(~ω).
This intuitive approach does not work in many cases. This is

because in most cases, the gradient of the performance function

has higher components for lower transition speeds and the

problem definition requires that ω1 < ω2 < . . . < ωM . By

projecting the desired direction onto this constraint, all the ωj

are increased by the same amount until we obtain the solution

that computes the highest possible ω1 for the first mode. This

is often suboptimal (see Figure 6, for a space with only two

speeds, with the suboptimal solution ~ωso, the gray curve lines

join the set of points with the same performance value, the

black line the feasibility boundary).

Indeed, this policy is similar to two other heuristics: a top-

down or bottom-up greedy search. A bottom-up search (the top-

down is similar) consists of finding the largest possible value of

ω1 that is feasible. Once ω1 is determined, the algorithm tries

to increase ω2 to the largest possible amount that still results in

a feasible system configuration and so on. Unfortunately, these

methods are too greedy and often result in solutions in which

most modes are simply not usable at all, and compute solutions

that are far from optimality.

For example in our running example, a top-down algorithm

would produce ω2 = w2
(ub) and prevents the execution of the

other control implementations Λj, j > 2.



∇P

ω1

ω2

~ωopt

~ωso

Figure 6: The modified gradient-based search.

To improve results, the gradient-driven heuristic can be

corrected by a penalty factor associated to the gradient term

for a given ωj when the algorithm approaches its upper bound

ωj

(ub). An effective penalty function is:

zj(ω) = 1− e

(

ω
j

(ub)
−ω

ω
j

(ub)

)2

. (10)

The trajectory component T j(~ω) for each switching speed wj

is expressed by

T j(~ω) = zj(ωj) +
pj(ωj)

pmax
, (11)

where pmax = maxj p
j(~ω). Please note that the second term

in T j(ω) corresponds to the original gradient direction with a

normalization step of 1
pmax .

Each switching speed ωj is progressively increased with

rate δ × T j(~ω) (δ = 5rpm in our experiments), generating

a sequence of speeds ~ω(0), ~ω(1), . . . , ~ω(k), . . ., in which each

component progresses as:

ωj(0) = ωmin

ωj(k + 1) = ωj(k) + δ × T j(~ω(k)), ∀j = 2, . . . , Q;

ω1(k) = ωmax ∀k.

We hold ω1(k) = ωmax for the reasons explained in Section IV.

The effect of the corrected gradient trajectory is shown in

Figure 6 (dashed line). From Equation (10), when approaching

the upper-bound ωj

(ub) for a mode j, the penalty term zj(ω) is

lowered and reduces the increase rate for ωj . This correction

attempts at escaping from trivial local minima and improving

the obtained solution. Figure 7 illustrates the pseudo code for

the corrected gradient-based heuristic. The algorithm initializes

the switching speeds at ωmin (except for the first mode).

Then, a loop (line 7) updates the switching speed according

to the gradient trajectory T j(~ω) until the boundary of the

schedulability constraint is reached. Finally, a local search is

performed (see line 13) starting from the mode having the

maximum gradient coefficient, until no further steps can be

performed without violating the schedulability constraint.

1: procedure GRADIENTSEARCH(C1, . . . , CQ)

2: w1(k) = ωmax, ∀k;

3: for j = 2 to j = Q do

4: ωj(0) = ωmin;

5: end for

6: k ← 0;

7: while SCHEDULABLE({(Cj , ωj(k)), ∀j}) do

8: for j = 2 to j = Q do

9: ωj(k + 1)← ωj(k) + δT j(~ω(k));
10: end for

11: k ← k + 1;

12: end while

13: ~ω(end) ← LOCALSEARCH(~ω(k − 1));
14: return ~ω(end);

15: end procedure

Figure 7: Pseudo-code for the proposed corrected gradient-

based search.

1) Running example: The application of the corrected gra-

dient heuristic to our running example provides the results

reported in Table IV.

s ω
1

ω
2

ω
3

ω
4

ω
5

ω
6

P

6 6500 3817 3481 3146 2959 1598 3053.2 87.1% of P(ub)

8 6500 1460 1419 1366 1361 1168 1934.2 70.2% of P(ub)

Table IV: Results of the application of the corrected gradient

heuristic to the running example.

Clearly, the results in the second case are poor, since the

modes after the first are all collapsed into a very small range

and the final performance is far from the upper bound.

B. Utilization and Performance-Driven Backwards Search

An additional insight helps building a better heuristic: lower-

ing a switching speed can give more freedom to the feasibility

range of the others.

In particular, analyzing the experimental results of a more

exhaustive branch and bound search (discussed in the next

section), it became clear (as expected) that reducing the switch-

ing speed of the mode with the largest steady-state utilization

(defined as U(ub) = U( ~ωub)) provides more freedom for the

other speeds, that is, allows to keep them closer to their upper

bound.

At the same time, the reduction of any transition speed ωj

causes a corresponding performance reduction that should be

traded off with the utilization gain. Both considerations are

combined in the Utilization and Performance-Driven backwards

search.

The switching speeds are iteratively lowered, generating

a sequence ~ω(0), ~ω(1), . . . , ~ω(k), . . ., starting from the upper

bound ~ω(0) = ~ω(ub). At each iteration, each ωj is lowered by

a quantity δ ×Rj , that is

ωj(k+1) = ωj(k)− δ×Rj(~ω(k)), ∀j = 2, . . . , Q (12)

until a feasible set of speeds is found. The reduction step Rj(~ω)



is

Rj(~ω) = max(Û j + P̂ j(~ω), Rmin). (13)

Rmin represents a minimum step to ensure progression (in our

experiments Rmin = 0.2 RPM). Û j and P̂ j(~ω) are normalized

indexes that relate to the utilization and performance gradient

at the current speed ωj(k). The index Û j is defined as

Û j =
U j − Umin

Umax − Umin
, (14)

with

Umax = max
j
{U j} and Umin = min

j
{U j}. (15)

Similarly, P̂ j(~ω) is computed as

P̂ j(~ω) =
pmax − pj(~ω)

pmax − pmin
, (16)

where pmax = maxj p
j(~ω) and pmin = minj p

j(~ω).
Figure 8 illustrates the pseudo code for the proposed utiliza-

tion and performance-driven backwards search. The algorithm

lowers each switching speed ωj until the system becomes

schedulable (see line 7), then it proceeds with a local search,

as the gradient-based search of Section V-A.

1: procedure BACKWARDSSEARCH(C1 , . . . , CQ)

2: w1(k) = ωmax, ∀k;

3: for j = 2 to j = Q do

4: ωj(0) = ωj
ub;

5: end for

6: k ← 0;

7: while NOT SCHEDULABLE({(Cj , ωj(k)), ∀j}) do

8: for j = 2 to j = Q do

9: ωj(k + 1)← ωj(k)− δRj(~ω(k));
10: end for

11: k ← k + 1;

12: end while

13: ~ω(end) ← LOCALSEARCH(~ω(k));
14: return ~ω(end);

15: end procedure

Figure 8: Pseudo-code for the proposed utilization and

performance-driven backwards search.

1) Running example: The application of the backwards

search heuristic to our running example provides the results

reported in Table V.

s ω
1

ω
2

ω
3

ω
4

ω
5

ω
6

P

6 6500 6039 4836 3672 2899 1630 3480.2 99.3% of P(ub)

8 6500 4282 3194 2887 1868 1050 2644.0 96.0% of P(ub)

Table V: Results of the application of the backwards search

heuristic to the running example.

The backwards search heuristic is very effective. The running

example is not a special case, as shown in our experimental

results. The computed values are always very close to the

optimum. Also, compared with the previous heuristic, a set

of higher transition speeds for lower index modes is traded for

a lower transition speed for the last mode (which results in a

better performance anyway).

VI. BRANCH AND BOUND

In many cases, the optimum can be computed (within a

given speed granularity) by performing an exhaustive search

starting from an initial feasible solution and attempting to

extend each transition speed towards its upper bound. The

knowledge of performance upper and lower bounds allows

introducing effective pruning rules that stop the algorithm when

a solution with sufficient quality is obtained.

A. Definition of the algorithm

The algorithm makes use of speed upper bounds to compute

a performance upper bound Pub that is in general not feasi-

ble. Also, one of the heuristics in the previous section (the

backwards search is the best option) allows computing a lower

bound on the optimum performance Plb.

The algorithm requires the definition of a speed resolution

δ (in our experiments δ = 15 RPM) and a starting feasible

solution with a configuration of transition speeds that has ωQ

at the highest possible value that allows for the execution of

the other modes. The starting solution should also be maximal,

meaning that any possible increase of any transition speed

would create a non-feasible solution. Given any solution, a

maximal solution can be simply found by a local search.

Because of the monotonicity property of our performance

function (on Λi and Ci), a maximal solution is always going

to have higher performance than any solution for which the

transition speeds are component-wise less than or equal.

The search algorithm is based on the observation that, given a

maximal solution, any increase in a transition speed ωj can only

be obtained by decreasing at least one of the transition speeds

ωk with k > j. The algorithm works iteratively, attempting to

improve on an initial feasible solution ~ωs with ωQ
s equal to

the largest possible value that allows for the execution of the

other modes (the algorithm to compute the initial solution is

explained later).

At each iteration with index j (j goes from 3 to Q), the values

in the set {ωQ
s , ω

Q−1
s , . . . , ωj+1

s } are left unchanged from ~ωs

(the set is empty when j = Q), the speed ωj
s is iteratively

reduced by mj × δ, with mj ∈ N
+; and for each value of

mj the algorithm tries all the possible extensions, of integer

multiples of δ, of the speeds {ωj−1
s , . . . , ω2

s}, until it reaches

the feasibility boundary (i.e., a maximal solution within the δ
resolution). As a result, the algorithm performs a branch and

bound search on the tree of speeds with index lower than j.

Figure 9 shows an intermediate step of the algorithm with the

corresponding search tree below the element with index j. Since

the index j is progressively increased up to Q, all the possible

speed combinations (with granularity δ) are tried. The index j
(controlling the speed that is selectively reduced) starts from

3 because it is always ω1 = ωM and reducing ω2 is pointless

because ω1 cannot be further increased. Also, it is necessary

that ωQ
s is the largest possible value that allows the execution

of the other modes, because ωQ
s is the only transition speed

that is not increased in the search.



ωmin ωmax ω

ω1

ω
j
s

ω
j−1
s

ω
j−2
s

ω
j

(ub)

ω
j−1
(ub)

ω
j−2
(ub)

Figure 9: The optimization algorithm as a branch and bound

search in the domain of the ω.

At any point in time, the search algorithm keeps track of

the best performance solution found until then (initialized with

the performance of the solution found by the backwards search

heuristic).

At each iteration, the algorithm performs a pruning on the

speed subtree when, after a reduction of mj × δ of ωj
s , the

current best performance value cannot be improved by any

solution available in the subtree. The performance of all the

solutions available in the current subtree are upper bound by

the performance of the set of speeds {ωQ
s , . . . , ω

j+1
s , ωj

s −
mj × δ, ωj−1

(ub), . . . , ω
2
(ub), ω

1} constructed by leveraging on the

knowledge of the speed upper bounds.

Computing the initial solution ~ωs. The solution ~ωs is com-

puted iteratively. First, the value of ωQ
s is computed by search-

ing back from ωQ

(ub) (using a binary search) until the largest

value that allows the execution of all other modes with lower

index j at transition speeds ωQ
s + ǫ× (Q− j) (with ǫ arbitrarily

small). Next, ωQ−1
s is similarly computed as the largest speed

that allows executing all other modes with index j < Q − 1
with a transition in ωQ−1

s + ǫ × (Q− 1− j) and so on.

The execution of the algorithm shows how the optimum

performance often results in a configuration in which the largest

speed decrease is for the mode with highest local utilization.

This was the motivation for the deriving the utilization-driven

backwards search heuristics.

The branch and bound computes solutions of very good

quality at the expense of time. A set of experiments (see

Section VII-C) has been performed to evaluate the execution

times and how the branch and bound results compare with

respect to the results from the heuristics. However, it should

be noted that the runtime of the branch and bound search is

heavily dependent on the performance lower bound Plb that is

provided to prune the solution tree at the beginning. This value

is obtained by the backwards search heuristic. Hence, even in

those cases in which the problem can be solved to (almost)

optimality by the branch and bound search, a practically usable

execution time can only be achieved thanks to the availability

of a very good (and fast) heuristic.

B. Running example

The availability of the branch and bound exhaustive search

for the optimum (with finite granularity) allows an evaluation

of the quality of the heuristics. Table VI shows a summary of

the results for the case with s = 8.

Algo ω
1

ω
2

ω
3

ω
4

ω
5

ω
6

P

H∇ 6500 1460 1419 1366 1361 1168 1934.2 70.2% of P(ub)

HBS 6500 4282 3194 2887 1868 1050 2644.0 96.0% of P(ub)

BB 6500 4274 3556 2778 1858 1044 2665.9 96.8% P(ub)

UB 6500 4285 3629 2996 1871 1214 P(ub) = 2753.8

Table VI: Results for the running example with s = 8 applying

all the algorithms presented in this paper.

The table shows the typical result found in our experiments.

Not only the backwards heuristic is very close to the upper

bound, but it is also extremely close to the value computed by

the branch and bound search. In reality, the branch and bound

result is much closer to the heuristic than it is to the upper

bound.

VII. EXPERIMENTAL RESULTS

This section reports a set of experimental results aimed at

evaluating and comparing the approaches presented in this

paper. All the algorithms have been implemented in the C++

language and tested over synthetic workload for measuring their

effectiveness.

In the experiments, the speed limits of the engine have been

set to ωmin = 500 RPM and ωmax = 6500 RPM, respectively

(typical values for a production car). The acceleration range

allows the engine to reach the maximum speed starting from

the minimum in 35 revolutions [10], resulting in α+ = −α− =
1.62 10−4 rev/msec2.

A. Workload generation

In the evaluation we consider a task set composed of N
periodic tasks, with utilization UP , and an AVR task τ∗ with

Q = 6 possible control implementations.

The periods of the periodic tasks are

{5, 10, 20, 50, 80, 100}ms, considered as typical values

for engine control applications [12]. The execution times of

the periodic tasks are generated by the UUnifast algorithm [2].

The WCETs of the possible control implementations for

the AVR task are generated by randomly choosing (with a

uniform distribution and a minimum separation csep) a set

of seed values {c1, c2, . . . , cQ} from the range [cmin, cmax].
The actual WCETs are computed using a scale factor s as

Cj = s · cj . The scale factor is a parameter that allows

tuning the computational requirements of the AVR task

implementations. When the switching speeds and consequently

the interarrival times of the AVR task are unknown, it is not

possible to define the AVR load with a simple utilization

metric.

B. Performance functions generation

The performance functions considered in this work are: (i)

constant functions, as in Equation (5), and (ii) exponential

functions of the engine speed, as in Equation (7). In the

first case, each control implementation Λj is assigned a per-

formance coefficient kj that is randomly generated with a

uniform distribution in the range [kmin, kmax], with a minimum



separation of ksep. In the case of exponential functions, the

generation involves two parameters kj,1 and kj,2 for each

control implementation Λj . The performance is normalized

with respect to ΛQ (i.e., the implementation with the largest

WCET with constant performance), which has kQ,1 = 1
and kQ,2 = 0. To provide for a uniform distribution of

the exponential performance functions (see Equation (6)), the

coefficients kj,2 are generated with a uniform distribution in

a logarithmic scale with range [log k2,min, log k2,max]. Finally,

we set kj,1 = 1, j = 1, . . . , Q for simplicity.

C. Constant performance function

In this experiment we consider the constant performance

functions and evaluated the performance of the heuristics with

respect to the upper-bound P(ub) obtained with the method

described in Section IV. We generate 500 task sets with N = 5
periodic tasks and an AVR task with a set of possible control

implementations. For each task set, we tested 30 different sets

of performance coefficients and a variable scale factor s from

1 to 10, trying 150000 different configurations.

For each value of s the performances of the heuristics and the

upper-bound are computed. The, performance values obtained

by the heuristics are normalized with respect to the value of the

upper-bound. The normalized performance values with respect

to the upper-bound are lower-bounds of the performance values

normalized with respect to the actual optimal performance. The

normalized performance values were then averaged among all

the configurations for a given value of s.

The range and separation cmin = 100, cmax = 1000, csep =
100 are used for generating the computation time seeds and

kmin = 1, kmax = 50 and ksep = 1 are used for the generation

of the performance coefficients.

2 4 6 8 10
0.7

0.8

0.9

1

s

N
o
rm

al
iz

ed
P

er
fo

rm
an

ce

Upper-Bound

Backwards Heuristic

Gradient-based Heuristic

Figure 10: Performance of the heuristics normalized to the

performance upper-bound as a function of s for UP = 0.5.

Figure 10 shows the results for the case of a periodic task

utilization UP = 0.5. As shown by the graph, the backwards

heuristic provides an extremely good performance, always

greater than 99% of the upper-bound, and extremely close to

the optimum. Conversely, the gradient-based heuristic shows a

degradation for increasing values of s reaching a value lower

than the 90% of the upper-bound for s = 10.

In our experiments, the gradient-based heuristic always per-

forms worse than the backwards search. To save time in our

experiments, we focused the remaining evaluation cases on the

backwards search heuristic.

Figure 11 reports the results for the same experiment when

the utilization of the periodic tasks is increased to UP = 0.75.

The performance of the backwards search heuristic is slightly

worse, reaching a value of approximately 93% for s = 10.

2 4 6 8 10
0.7

0.8

0.9

1

s

N
o
rm

al
iz

ed
P

er
fo

rm
an

ce

Upper-Bound

Backwards Heuristic

Figure 11: Performance of the heuristics normalized to the

performance upper-bound as a function of s for UP = 0.75.

However, as explained at the beginning of this section, the

results normalized with respect to the upper-bound are only

lower-bounds of the actual performance, expressed by the ratio

with respect to the true optimum performance value (when

computable). For this reason we performed another set of exper-

iments including the result of the Branch and Bound algorithm

(with δ =15 RPM), to study the performance of the backwards

search heuristic with respect to the actual optimal performance

(or a value most likely close to it). Due to the large run-time

of the branch and bound algorithm, this experiment has been

conducted on a small set of configurations with 50 task sets

and 5 sets of performance coefficients. The results are shown

in Figure 12. As shown by the graph, the optimal performance

tends to recede from the upper-bound for increasing values of s,

confirming the effectiveness of the backwards search heuristic

which remains around 99% of the performance value found by

the branch and bound algorithm.

The maximum observed run-time for the Backwards Search

heuristic is 756 seconds with an average run-time of 5.6

seconds. For the Branch and Bound algorithm with precision

δ =15 RPM we measured a maximum run-time of 16070

seconds with an average run-time of about 600 seconds. Such

results have been obtained executing the algorithms on a

machine equipped with Intel i7 processor running at 3.2 Ghz

and 8Gb of RAM.

2 4 6 8 10
0.7

0.8

0.9

1

s

N
o
rm

al
iz

ed
P

er
fo

rm
an

ce

Upper-Bound

Branch and Bound (15 RPM)

Backwards Heuristic

Figure 12: Performance of the heuristics normalized to the

performance upper-bound as a function of s for UP = 0.75.



D. Exponential performance functions

Another experiment has been conducted with the exponential

performance functions described in Section III. We focus on the

comparison of the backwards search heuristic results against the

performance upper-bound P(ub).

Figure 13 shows the results as a function of the scale

factor s for two different values of the coefficient k2,max

of the performance functions (keeping k2,min constant). The

utilization of the periodic tasks is UP = 0.75 and for each

value of s we try 500 task sets and 30 sets of performance

coefficients, hence testing 150000 different configurations.

As shown by the graph, the backwards search heuristic has

a performance always greater than 99% of the upper-bound for

k2,max = 50k2,min. In the case k2,max = 200k2,min there is

a slight degradation of the performance of the heuristic that

reaches 96% of the upper-bound for s = 10.

2 4 6 8 10
0.7

0.8

0.9

1

s

N
o
rm

al
iz

ed
P

er
fo

rm
an

ce

Upper-Bound

Backwards Heuristic (k2,max = 50k2,min)

Backwards Heuristic (k2,max = 200k2,min)

Figure 13: Performance of the heuristics normalized to the

performance upper-bound as a function of s for UP = 0.75
with exponential performance functions.

The ratio between k2,max and k2,min determines the distri-

bution of the exponential performance functions in the speed

domain. Intuitively, the higher k2,max/k2,min the more the

performance functions are far apart. For this reason we conduct

another experiment by varying the ratio k2,max/k2,min while

holding the scale factor s = 7.

For each value of the ratio we test 500 task sets and 50 sets

of performance coefficients k2,j , hence 500000 configurations.

The results are shown in Figure 14 and confirm the trend of

Figure 13, showing a graceful and quite limited degradation for

increasing values of the ratio k2,max/k2,min.

50 100 150 200 250 300
0.7

0.8

0.9

1

k2,max/k2,min

N
o
rm

al
iz

ed
P

er
fo

rm
an

ce

Upper-Bound

Backwards Heuristic

Figure 14: Performance of the heuristics normalized to the per-

formance upper-bound as a function of k2,max

k2,min for UP = 0.75
and s = 7.

VIII. CONCLUSIONS

The problem of performance oriented design of transition

speeds in a (fuel injection) system with adaptive variable

rate tasks is discussed by presenting a set of optimization

algorithms that apply to a quite general scenario, in which the

performance of each control implementation is expressed by

an arbitrary function that has the only requirement of being

integrable and monotonically increasing with the complexity

of the implemented algorithm.

The experimental results show that the proposed heuristics

are extremely close to the actual optimum value and allow

the computation of the optimum with finite resolution in many

cases. Future work include the analysis of actual performance

data and improving the schedulability constraint to allow for

temporary overload conditions.

REFERENCES

[1] INTERESTED, European project, Cordis project descrip-
tion. URL: http://cordis.europa.eu/fp7/ict/embedded-systems-
engineering/factsheets/interested.pdf.

[2] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2), 2005.

[3] E. Bini, M. D. Natale, and G. Buttazzo. Sensitivity analysis for fixed-
priority real-time systems. Real-Time Systems, 39(1-3):5–30, August
2008.

[4] A. Biondi, G. Buttazzo, and S. Simoncelli. Feasibility analysis of engine
control tasks under EDF scheduling. In Proc. of the 27th Euromicro

Conference on Real-Time Systems (ECRTS 2015), Lund, Sweden, July
8-10, 2015.

[5] A. Biondi, A. Melani, M. Marinoni, M. D. Natale, and G. Buttazzo.
Exact interference of adaptive variable-rate tasks under fixed-priority
scheduling. In Proceedings of the 26th Euromicro Conference on Real-

Time Systems (ECRTS 2014), Madrid, Spain, July 8-11, 2014.
[6] A. Biondi, M. D. Natale, and G. Buttazzo. Response-time analysis for

real-time tasks in engine control applications. In Proceedings of the

6th International Conference on Cyber-Physical Systems (ICCPS 2015),
Seattle, Washington, USA, April 14-16, 2015.

[7] A. Burns and S. Baruah. Sustainability in real-time scheduling. Journal

of Computing Science and Engineering, 2(1):74–97, 2008.
[8] G. Buttazzo, E. Bini, and D. Buttle. Rate-adaptive tasks: Model, analysis,

and design issues. In Proc. of the Int. Conference on Design, Automation

and Test in Europe, Dresden, Germany, March 24-28, 2014.
[9] D. Buttle. Real-time in the prime-time. In Keynote speech at the 24th

Euromicro Conference on Real-Time Systems, Pisa, Italy, July 12, 2012.
[10] R. I. Davis, T. Feld, V. Pollex, and F. Slomka. Schedulability tests

for tasks with variable rate-dependent behaviour under fixed priority
scheduling. In Proc. 20th IEEE Real-Time and Embedded Technology

and Applications Symposium, Berlin, Germany, April 2014.
[11] Z. Guo and S. Baruah. Uniprocessor EDF scheduling of avr task

systems. In Proc. of the ACM/IEEE 6th International Conference on

Cyber-Physical Systems (ICCPS 2015), Seattle, USA, April 2015.
[12] L. Guzzella and C. H. Onder. Introduction to Modeling and Control of

Internal Combustion Engine Systems. Springer-Verlag, 2010.
[13] J. Kim, K. Lakshmanan, and R. Rajkumar. Rhythmic tasks: A new task

model with continually varying periods for cyber-physical systems. In
Proc. of the Third IEEE/ACM Int. Conference on Cyber-Physical Systems

(ICCPS 2012), pages 28–38, Beijing, China, April 2012.
[14] V. Pollex, T. Feld, F. Slomka, U. Margull, R. Mader, and G. Wirrer. Suf-

ficient real-time analysis for an engine control unit with constant angular
velocities. In Proc. of the Design, Automation and Test Conference in

Europe, Grenoble, France, March 18-22, 2013.


