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Engine control applications include functions that need to be executed at specific rotation angles of the

crankshaft. The tasks performing these functions are activated at variable rates and are programmed to be

adaptive with respect to the rotation speed of the engine to avoid overloading the CPU. Simplified control

implementations are used at high speeds, for example reducing the number of fuel injections or the com-

plexity of the computations. Such different control implementations define execution modes with different

execution times for different ranges of the rotation speed. The selection of the switching speeds for the op-

erating modes of such tasks is an optimization problem, consisting in determining the optimal transition

speeds that maximize the engine performance while guaranteeing schedulability.

This paper presents three methods for tackling such an optimization problem under a set of assumptions

about the performance metrics: two heuristics and a branch and bound method that guarantees finding the

optimal solution within a given speed granularity. In addition, a simple method to compute a performance

upper bound is presented. The approach and the hypothesis are validated using a Simulink model of the

engine and the computational tasks, considering the engine efficiency and the production of pollutants (NO2)

as metrics of interest. Simulation experiments show that the performance of proposed heuristics is quite

close to the one of the upper bound and the optimum within a finite granularity.

CCS Concepts: •Computer systems organization → Embedded and cyber-physical systems; Real-

time systems;

Additional Key Words and Phrases: engine control, design optimization, real-time systems, control perfor-

mance

1. INTRODUCTION

Engine control is one the most challenging examples of Cyber-Physical System (CPS),
where the software that controls injection and combustion must be designed to take
several physical characteristics of the engine into account. From a timing perspective,
engine control software requires the execution of different types of computations, some
cyclicly activated at fixed intervals (periodic tasks) ranging from a few milliseconds up
to 100 ms, and some triggered at predefined rotation angles of the crankshaft (angular
tasks) [Guzzella and Onder 2010]. Such angular tasks generate a dynamic workload
strictly dependent on the actual engine speed.

To avoid overloading the processor at high engine speeds, angular tasks are typically
implemented as a set of operational modes, each characterized by a different compu-
tational demand and acting on a different speed interval [Buttle 2012]. Since angular
tasks adapt their functionality with the speed and are activated at non constant rate,
they are also referred to as adaptive variable-rate (AVR). The schedulability analysis of
AVR tasks has received significant attention from the research community (a detailed
review of the literature is available in Section 9).

The implementation of an AVR task requires determining the precise engine
speeds at which mode changes should occur. This problem has been addressed under
EDF scheduling by Buttazzo, Bini, and Buttle [Buttazzo et al. 2014], who proposed a
method for identifying the highest switching speeds that bound the utilization of an
AVR task to a desired value.

In reality, the selection of the transition speeds is not driven by schedulability con-
straints alone, but has to optimize a set of performance indexes, related to power, fuel
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consumption and emissions (among others). The control implementations are designed
to achieve the best possible combination of all the performance indexes within a given
computation complexity and for a given set of engine speeds. This process requires
the tuning of a significant number of configuration parameters and is performed at
the test bench, where each implementation is tested for different speeds recording the
performance parameters of interest.

Intuitively, the most sophisticated control implementations have the best perfor-
mance but they require a higher computational demand that cannot be afforded (with-
out incurring in deadline misses) when they are executed more frequently (i.e., at
high engine speeds). Conversely, simpler control implementations have lower compu-
tational requirements and tend to work better at higher rotational speeds, where the
engine is more stable. The resulting behavior of engine-control tasks is a mode-change
among a set of different control implementations, each one executed in a given interval
of engine speeds.

Paper contributions. The main contribution of this paper is to formulate a design
optimization problem to find the switching speeds that maximize the system perfor-
mance while guaranteeing the schedulability of the task set. We assume the knowledge
of the performance function associated to each control implementation (for instance,
they can be derived by fitting the test bench performance data to a family of rela-
tively simple analytical functions). To the best of our knowledge, this is the first work
that integrates performance metrics together with real-time constraints on the com-
putational activities to address the design optimization of engine control systems. This
paper presents three methods for tackling such an optimization problem assuming a
given performance metric and a set of constraints. Two heuristic approaches are first
proposed to reduce the computational complexity and a performance upper bound is
computed. Then, a branch and bound method is presented to find the optimal solu-
tion within a given speed granularity. Simulation results show that the performance
achieved by the heuristics is quite close to the performance upper bound and the opti-
mum with respect to a given granularity. The performance functions considered in the
proposed paper have been also validated in a simulation environment that includes a
Diesel engine model.

Paper structure. The remainder of the paper is structured as follows. Section 2
presents the model and the notation used throughout the paper. Section 3 formally
states the problem considered in the paper. Section 4 presents a technique to reduce
the design space and compute a bound on the maximum performance of the engine.
Section 5 presents the two heuristic approaches. Section 6 describes the branch and
bound algorithm. Section 7 illustrates a set of experimental results aimed at compar-
ing the proposed approaches. Section 8 reports on the experimental validation of the
performance model considered in this paper. Section 9 discusses the related work. Fi-
nally, Section 10 states our conclusions and future work.

A preliminary version of this paper is available in [Biondi et al. 2016], which has
been extended by including (i) the validation of the performance model in Section 8;
(ii) the pseudo-code (with the corresponding description) for the branch and bound
algorithm presented in Section 6; (iii) the proof for the performance upper bound dis-
cussed in Section 4; and (iv) additional experimental results in Section 7. Further-
more, the entire paper has been polished and, when needed, restructured. Clarifica-
tions of some concepts with a more verbose discussion have also been added.
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2. SYSTEM MODEL AND BACKGROUND

This paper considers applications consisting of a set n real-time preemptive tasks Γ =
{τ1, τ2, . . . , τn}. Each task can be a regular periodic task, or an AVR task, activated
at specific crankshaft rotation angles. Whenever needed, an AVR task may also be
denoted as τ∗i . The rotation source triggering the AVR tasks is characterized by the
following state variables:

θ the current rotation angle of the crankshaft;
ω the current angular speed of the crankshaft;
α the current angular acceleration of the crankshaft.

The rotation speed ω is assumed to be limited within a range [ωmin, ωmax] and the
acceleration α is assumed to be limited within a range [α−, α+].

Both periodic and AVR tasks are characterized by a worst-case execution time
(WCET) Ci, an interarrival time (or period) Ti, and a relative deadline Di. However,
while for regular periodic tasks such parameters are fixed, for angular tasks they de-
pend on the engine rotation speed ω. An AVR task τ∗i is characterized by an angular
period Θi and an angular phase Φi, so that it is activated at the following angles:
θi = Φi + kΘi, for k = 0, 1, 2, . . ..

This means that the inter-arrival of an AVR task is inversely proportional to the
engine speed ω and, in steady-state conditions, can be expressed as

Ti(ω) =
Θi

ω
. (1)

An angular task τ∗i is also characterized by a relative angular deadline ∆i expressed
as a fraction δi of the angular period (δi ∈ [0, 1]). In the following, ∆i = δiΘi represents
the relative angular deadline. All angular phases Φi are relative to a reference position
called Top Dead Center (TDC) corresponding to the crankshaft angle for which at least
one piston is at the highest position in its cylinder. Without loss of generality, the TDC
position is assumed to be at θ = 0.

As explained in the introduction, an AVR task τ∗i is typically implemented as a set
Mi of Mi execution modes. Each mode m has a different WCET Cm

i and operates in a

predetermined range of engine speeds (ωm+1
i , ωm

i ], where ωMi+1
i = ωmin and ω1

i = ωmax.
Hence, the set of modes of task τ∗i can be expressed as

Mi = {(Cm
i , ωm

i ),m = 1, 2, . . . ,Mi}.

The vector of the set of switching speeds is denoted as ~ωi, while the vector of WCETs

is denoted as ~Ci.
We assume that the worst-case execution time of an AVR task τ∗i can be expressed as

a non-increasing step function Ci(ω) of the instantaneous speed ω at its release, that
is,

Ci(ω) ∈ {C1
i , . . . , C

Mi

i }. (2)

An example of C(ω) function is illustrated in Figure 1.
For the sake of readability, when a single AVR task is addressed, the task index is

omitted. To support the presentation of the following results, it is convenient to define
the steady-state utilization of the jth execution mode as a function of an arbitrary
switching speed w, that is

U j(ω) =
Cj

Θ
ω. (3)

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 A. Biondi et al.

Ci(ω)

C1
i

C2
i

Cm
i

C
Mi
i

ωωmin
i ω

Mi
i ωm

i ω2
i ω1

i

Fig. 1. WCET of an AVR task as a function of the engine speed at the job activation.

Moreover, U j = U j(ωj) denotes the steady-state utilization of the jth execution mode
at its switching speed ωj .

2.1. Schedulability Analysis of AVR Tasks

In this paper, the schedulability analysis of mixed task sets consisting of pe-
riodic tasks and AVR tasks is performed by adopting the technique presented
in [Biondi et al. 2015].

Considering the speed domain as a continuum, a schedulability test for task sets
including AVR tasks must take into account all possible speed evolutions of the rota-
tion source to cope with potential worst-case situations resulting in deadline misses.
The adaptive behavior of AVR tasks, which causes mode changes as a function of the
engine speed, further complicates the identification of worst-case response times. This
prevents to treat such tasks as classical periodic/sporadic tasks to apply standard real-
time analysis techniques.

For this reason, a novel analysis approach has been proposed in [Biondi et al. 2015]
to explicitly take into physical constraints (i.e., the rotation of the crankshaft) when
dealing with the mode change issue. Similarly to other standard techniques, such an
analysis is based on the computation of the interference caused by higher-priority
tasks, which is then used to compute the tasks response times. By restricting to a
finite set of dominant speeds [Biondi et al. 2014], it is possible to limit the number of
speed evolution patterns that have to be examined for deriving the worst-case inter-
ference. The response time computation is then approached as a search problem in
the speed domain: the notion of dominant speeds is first used to reduce the number of
critical instants (i.e., the situation in which all tasks are released simultaneously) and
then the search space is reduced to dominant speeds only.

3. PROBLEM DEFINITION

The analysis presented in this paper is restricted to a representative class of automo-
tive applications consisting of a single AVR task and a set of periodic tasks, scheduled
by fixed-priority on a single core. Since there is a single AVR task, we drop its index in
the definition of its parameters.

The addressed problem is first stated using a general formulation and then re-
stricted to a number of specific cases under a set of assumptions. The general for-
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mulation consists of the definition of the input parameters, the optimization variables,
the set of constraint functions, and the performance function to be optimized.

Input parameters. We consider an AVR task consisting of Q implementations Λj

(j = 1, . . . , Q) of the same functionality at different complexity. Note that we distin-
guish between implementations and mode, since (after the design process) one or more
implementations can be merged into a single mode, to be executed in a range of speeds
(to be determined) and characterized by a known WCET Cj . The implementations are
indexed such that their execution times are strictly increasing with the index j — that
is, ∀j = 1, . . . , Q− 1, Cj < Cj+1.

Optimization variables. The objective of the proposed optimization algorithms is
to find the set of switching speeds between modes of the AVR task that maximizes
the engine performance while guaranteeing the task set schedulability. The switching
speeds ωj ∈ [ωmin, ωmax], with j = 1, . . . , Q − 1, are hence the main variables of the
considered optimization problem. The schedulability condition yields a fixed-priority
assignment for the AVR task and the periodic tasks. Note that, in the presence of
AVR tasks, a Rate-Monotonic priority assignment cannot be enforced, due to the large
variation of interarrival times of an AVR task [Biondi et al. 2015].

Constraints. The main constraint considered in the optimization procedure is the
schedulability of the task set, that is, the condition under which all the tasks in the
system meet their deadlines. More specifically, the following notion of schedulability is
considered in this paper: a task set is said to be schedulable if there exists at least a
fixed priority assignment such that all the tasks meet their deadlines, otherwise the
task set is said to be unschedulable. To verify the schedulability of a given instance of
task system, we rely on the analysis presented in [Biondi et al. 2015] (summarized in
Section 2.1).

Performance Metrics. The effectiveness of a design solution is evaluated by as-
signing each implementation a performance function fj(ω) of the engine speed ω,

which is monotonically increasing with the WCET Cj — that is, ∀ω, fj(ω) > fj′(ω) ⇔

Cj > Cj′ . The rationale behind such a restriction is that a more complex control im-
plementation, which has a higher computational demand (and hence a higher WCET),
makes sense only if it improves the performance.

The overall system performance is defined as the integral of the resulting perfor-
mance function over the entire speed range. Since each execution mode is active in a
particular speed range, the overall performance is expressed as the sum of the contri-
butions given by each mode j, whose performance function fj(ω) is integrated in its
operating range — hence obtaining

P(ω1, . . . , ωQ) =

Q∑

j=1

∫ ωj

ωj+1

fj(ω) dω (4)

where j spans over all the modes j = 1, . . . , Q, and, by definition, ω1 = ωmax and
ωQ+1 = ωmin. In this paper, two families of performance functions are considered. In
the first one, each implementation brings a contribution to the performance that does
not depend on the rotation speed at which it is applied. Each Λj has an associated
performance constant kj and the overall system performance is

P(ω1, . . . , ωQ) =

Q∑

j=1

kj(ωj − ωj+1). (5)
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In the second family, functions represent control implementations in which the perfor-
mance depends on the implemented control law and the rotation speed at which it is
applied. The selected function (for each mode) is

fj(ω) = kj,1e−
kj,2

ω (6)

and the system performance is computed as

P(ω1, . . . , ωQ) =

Q∑

j=1

∫ ωj

ωj+1

kj,1e−
kj,2

ω dω. (7)

The rationale for selecting an exponential function of this type is the following. The
most sophisticated control implementation (j = Q, with possibly multiple injections
during the cycle) has the best performance, which is kept unchanged across the speed
range (i.e., fQ(ω) = 1, with kQ,2 = 0), and is considered as a baseline for the other
control implementations. Simplified control implementations tend to work better at
higher rotational speeds, where the engine is more stable, but become less effective at
some cutoff speed, represented by the parameter ki,2. The parameter ki,1 is used as
an additional degree of freedom to improve fitting the performance curve to the actual
experimental data. Figure 2 shows the typical shape of our exponential performance
functions for different values of kj,1, kj,2, and Figure 3 shows technical data (from the
web) expressing the engine output power as a function of the engine speed, in support
of a possible fit with a family of exponential functions as in Equation (6).

Fig. 2. A set of exponential performance functions
for selected values of kj,1, kj,2.

Fig. 3. The power output curve of a the Evinrude
E-TEC-250 engine (from continuouswave.com).

Formally, the first type of function is a special case of the exponential one where
kj,2 = 0 for all j. However, in our experiments they are handled in a different way,
because the optimization algorithms leverage the constant gradient of the constant
functions to avoid recomputing it at every step, thus speeding up the computation.

Although these two classes of functions are used in the experiments, the proposed
method is not limited to their consideration. The only requirement is that the used
function is monotonic with the mode index (and hence with the mode WCET) for all ω
and it is integrable in the speed domain ω.
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The integral in Equation (7) cannot be computed analytically, thus is computed nu-
merically through the exponential integral function Ei(x), so obtaining

P(ω1, . . . , ωQ) =

Q∑

j=1

Yj(ω
j)− Yj(ω

j+1), (8)

where

Yj(ω) = kj,1
(
kj,2 ·Ei

(
−kj,2

ω

)
+ ω · e

−kj,2

ω

)
. (9)

For notational convenience, we introduce a shortcut pj(~ω) for the partial derivatives of
the performance function with respect to the switching speeds, defined as

pj(~ω) =
∂P(~ω)

∂ωj
. (10)

Design objective. The design goal is to compute the set of switching speeds {ωj, j =
1, . . . , Q} and the multidimensional optimization problem can be stated as follows:

Definition 3.1 (Optimization problem).

maxP(ω1, . . . , ωQ)

ω1 > ω2 > . . . > ωQ

such that the system is schedulable.

3.1. Running example

To illustrate the outcome of each algorithm presented in the paper, we use a running
example (using a configuration from the EU INTERESTED project [INT ]) consisting
of 4 periodic tasks with overall utilization U = 0.825, and an AVR task with 6 modes.
The periods and the computation times of the periodic tasks are reported in Table 3.1,
whereas the computation times of the 6 modes of the AVR task are reported in Table II.
To better explore the input space, the computation times of the AVR task are expressed
as a function of a scaling factor s. In the following, two subcases are generated, using
s = 6.0 and s = 8.0 (all times are expressed in microseconds).

Table I. Parameters of the task set used in the
example.

Task1 Task2 Task3 Task4
C 1000 6500 10000 10000
T=D 5000 20000 50000 100000

Table II. Computation times of the AVR task in the example.

Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

Cj s· 150 s· 278 s· 344 s· 425 s· 576 s· 966

kj 2 3 4 5 7 10

The running example has the only purpose of explaining the typical outcome of the
proposed algorithms and is only considered for the first set of performance functions
(constant over the entire speed range). The experiments in the experimental section
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(Section 7) has been conducted also for exponential performance functions. In our
running example, the coefficients kj of the performance functions have been set as
kj ∈ {2, 3, 4, 5, 7, 10}.

4. REDUCING THE DESIGN SPACE

By exploring the design space, it has been experimentally observed that the schedu-
lability constraint determines a non-convex region in the space of the switching
speeds ωj. This result was not surprising considering that the schedulability region
for classical periodic tasks in the space of interarrival times is known to be non-
convex [Bini et al. 2008] and, to the best of our knowledge, there is no known convex
upper or lower bound of good quality for checking the schedulability of AVR tasks un-
der fixed-priority scheduling.

Although an analytical description of the feasibility region cannot be derived in a
closed form, we provide a numerical method for computing (with an arbitrary accuracy)

an upper-bound ωj

(ub) of the maximum speed at which each control implementation can

be executed, thus limiting the design space. The upper bound is such that no feasible

solution for the optimization problem exists for speeds ωj > wj

(ub), with respect to the

fixed accuracy.

ωmin
ωmax

ω

ω1

Cj

C(ω)

C1

ω
j

(ub)

ω
j−1
(ub)

ω
j+1
(ub)

Fig. 4. Computing the switching speed upper bounds.

The proposed algorithm probes the schedulability region in the most favorable con-
dition for each possible control implementation j, that is when (i) no more complex con-
trol implementations are active and (ii) the AVR task performs a direct mode change
to the simplest control implementation with WCET C1, for any ω > ωj . An example of
such upper bound is shown in Figure 4, in which the mode configuration for determin-

ing ωj

(ub) is shown as a dashed line. Under this condition, the algorithm computes the

maximum speed ωj

(ub) at which each control implementation Λj can be executed. The

(typically unfeasible) modes configuration for the AVR task, obtained by considering
all the upper bounds on the switching speeds, is shown as a thick line in Figure 4.

The approach is guaranteed to be correct because of the sustainability property
of uniprocessor fixed-priority scheduling [Burns and Baruah 2008], which states that
schedulability never improves when computation times are increased.
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1: procedure COMPUTEUBS( ~C)
2: w1

(ub) = ωmax;

3: for j = 2 to j = Q do
4: M← {(C1, ωmax), (Cj , ωmin)};

5: ω
j

(ub) = MAXBINSEARCH(j,M);

6: end for
7: return {ωj

(ub), j = 1, . . . , Q};

8: end procedure

Fig. 5. Procedure for computing the upper-bounds for the switching speeds.

The algorithm to compute the switching speed upper bounds is shown in Figure 5.
A first step of pre-processing (omitted in the figure for simplicity) can be used to de-
termine whether there are modes that can be safely avoided. This is done by finding
(i) the implementation Λj with the largest Cj that can safely be executed in ωmin and

discarding those with higher index; and (ii) the implementation Λj′ with the largest

Cj′ that is feasible in ωmax and discarding those with lower index.
For simplicity, in the following, we assume that the only control implementation

feasible at ωmax is the first one (j = 1) and that the control implementation with the
largest WCET CQ is feasible at ωmin (that is, the number of modes are equal to the
number of available implementations Q = M ).

The first control implementation has maximum speed w1
(ub) = ωmax, since it is not

possible to exceed the allowed speed range (see line 2 in Figure 5). The maximum
speeds are then determined for each mode j > 1 by a simple binary search (line 5) on

the schedulability condition, by seeking a speed ωj

(ub) such that mode Cj is executed in

[ωmin, ωj

(ub)] and mode C1 is active in (ωj

(ub), ω
max].

4.1. Performance upper bound

The computation of the upper bound on the switching speeds also leads to an upper-
bound P(ub) on the maximum system performance, that is expressed by the following
theorem.

THEOREM 4.1. Any valid solution for the optimization problem expressed in Defi-
nition 3.1 has an overall performance no greater than

P(ub) = P(w1
(ub), . . . , w

Q

(ub)). (11)

PROOF. Let ~ω(opt) be the vector of the switching speeds that lead to the optimal so-

lution of the optimization problem and let P(opt) = P(w1
(opt), . . . , w

Q

(opt)) be the maximum

performance. By Equation (4) we get

P(opt) =

∫ ω
Q

(opt)

ωmin

fQ(ω) dω +

∫ ω
Q−1
(opt)

ω
Q

(opt)

fQ−1(ω) dω + . . .+

∫ ω1
(opt)

ω2
(opt)

f1(ω) dω.

Since the condition ∀j, ωj ≤ wj

(ub) holds for any valid solution, then the condition

∀j, ωj

(opt) ≤ wj

(ub) also holds, which allows rewriting P(opt) as

P(opt) =

∫ ω
Q

(opt)

ωmin

fQ(ω) dω+

∫ ω
Q

(ub)

ω
Q

(opt)

fQ−1(ω) dω+

∫ ω
Q−1
(opt)

ω
Q

(ub)

fQ−1(ω) dω+

∫ ω
Q−1
(ub)

ω
Q−1
(opt)

fQ−2(ω) dω+. . .
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By recalling the assumption on the monotonicity of the performance functions with the
mode index — i.e., ∀ω, fj(ω) > fj−1(ω) — we get

P(opt) <

∫ ω
Q

(opt)

ωmin

fQ(ω) dω+

∫ ω
Q

(ub)

ω
Q

(opt)

fQ(ω) dω+

∫ ω
Q−1
(opt)

ω
Q

(ub)

fQ−1(ω) dω+

∫ ω
Q−1
(ub)

ω
Q−1
(opt)

fQ−1(ω) dω+. . .

Now, by composing every pair of contiguous integrals as

∫ ω
j

(opt)

ω
j+1
(ub)

fj(ω) dω +

∫ ω
j

(ub)

ω
j

(opt)

fj(ω) dω =

∫ ω
j

(ub)

ω
j+1
(ub)

fj(ω) dω,

for all modes j = 1, . . . , Q (with ωQ+1
(ub) = ωmin) it is possible to conclude that P(opt) <

P(ub). Hence the theorem follows.

Such an upper bound is fundamental to evaluate the “quality” of the algorithms
proposed in this paper, as it allows expressing a bound on the distance to the optimal
solution. In other words, the distance of any solution to the upper bound P(ub) provides
a confidence interval which includes the actual (generally unknown) optimal solution.

4.2. Running example

The algorithm shown in Figure 5 has been applied to the running example presented
in Section 3.1 and the resulting switching speed upper bounds are shown in Table III.

Table III. Upper bounds on the transition speeds for the consid-
ered example.

s ω1
(ub) ω2

(ub) ω3
(ub) ω4

(ub) ω5
(ub) ω6

(ub) P(ub)

s=6 6500 6043 4848 3676 2996 1637 3504.84
s=8 6500 4285 3629 2996 1871 1214 2753.8

5. HEURISTIC APPROACHES

The non-convexity of the problem together with the lack of an analytical (closed-form)
characterization of the schedulability constraint prevents the application of standard
methods for computing the optimal solution.

A number of possible heuristic approaches can be devised to solve the problem. How-
ever, some of them are not immediately applicable, as explained below.

5.1. Gradient-based search

A first possible approach is to search the space of the switching speeds ωj starting from
a known feasible point and then increasing all the candidate transition speeds accord-
ing to the gradient of the performance function ∇P. This is done by selecting a step δ
and increasing each speed ωj by δ × pj(~ω) until the boundary of the feasibility region
is encountered. From that point on, the algorithm may proceed along the schedulabil-
ity boundary with a local search. A local search consists in trying to improve as much
as possible (using a binary search on the schedulability condition) all the transition
speeds one by one, in order of their performance gradient pj(~ω).

This intuitive (and quite standard) approach does not work in many cases. This is
because in most cases, the gradient of the performance function has higher compo-
nents for lower transition speeds and the problem definition requires that ω1 < ω2 <
. . . < ωM . By projecting the desired direction onto this constraint, all the ωj are in-
creased by the same amount until we obtain the solution that computes the highest
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possible switching speed ω1 for the first mode. This is often suboptimal. An exam-
ple for a search space with only two switching speeds is reported in Figure 6, where
the trajectory generated by such an heuristic is illustrated as a solid grey line that
reaches the suboptimal solution ~ωso. The gray curve lines in the figure join the set of
points with the same performance value, while the black segmented line illustrates
the (non-convex) feasibility boundary.

∇P

ω1

ω2

ω1
(ub)

ω2
(ub)

~ωopt

~ωso

Fig. 6. Illustration for the modified gradient-based search in a bi-dimensional design space. The straight
grey line illustrates the trajectory of a standard gradient-based search while the dashed black line illustrates
the corrected trajectory. The segmented black line depicts the (non-convex) feasibility region.

Indeed, this policy is similar to two other heuristics: a top-down or bottom-up greedy
search. A bottom-up search (the top-down is similar) consists of finding the largest pos-
sible value of ω1 that is feasible. Once ω1 is determined, the algorithm tries to increase
ω2 to the largest possible amount that still results in a feasible system configuration
and so on. Unfortunately, these methods are too greedy and often result in solutions
in which most modes are simply not usable at all, and compute solutions that are far
from optimality.

For example in our running example, a top-down algorithm would produce ω2 = w2
(ub)

and prevents the execution of the other control implementations Λj , with j > 2.
To improve results, the gradient-based heuristic can be corrected by a penalty factor

associated to the gradient term for a given ωj when the algorithm approaches its upper

bound ωj

(ub). An effective penalty function is:

zj(ω) = 1− e

(

ω
j
(ub)

−ω

ω
j
(ub)

)2

. (12)

The trajectory component T j(~ω) for each switching speed wj is expressed by

T j(~ω) = zj(ωj) +
pj(ωj)

pmax
, (13)
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where pmax = maxj p
j(~ω). Please note that the second term in T j(ω) corresponds to

the original gradient direction (defined in Equation (10)) with a normalization step of
1

pmax .

Each switching speed ωj is progressively increased with rate δ×T j(~ω) (for instance,
δ = 5 RPM has been used in our experiments), generating a sequence of speeds
~ω(0), ~ω(1), . . . , ~ω(k), . . ., in which each component progresses as:

ωj(0) = ωmin

ωj(k + 1) = ωj(k) + δ × T j(~ω(k)), ∀j = 2, . . . , Q;

ω1(k) = ωmax ∀k.

We hold ω1(k) = ωmax for the reasons explained in Section 4. The effect of the corrected
gradient trajectory is shown in Figure 6 (dashed line).

From Equation (12), when approaching the upper-bound ωj

(ub) for a mode j, the

penalty term zj(ω) is lowered (in an exponential manner) and reduces the increase
rate for ωj . This correction attempts at escaping from trivial local minima and improv-
ing the obtained solution.

1: procedure GRADIENTSEARCH( ~C)
2: w1(k) = ωmax,∀k;
3: for j = 2 to j = Q do
4: ωj(0) = ωmin;
5: end for
6: k ← 0;
7: while SCHEDULABLE({(Cj, ωj(k)),∀j}) do
8: for j = 2 to j = Q do
9: ωj(k + 1)← ωj(k) + δT j(~ω(k));
10: end for
11: k ← k + 1;
12: end while
13: ~ω(end) ← LOCALSEARCH(~ω(k − 1));
14: return ~ω(end);
15: end procedure

Fig. 7. Pseudo-code for the proposed corrected gradient-based search.

Figure 7 illustrates the pseudo code for the corrected gradient-based heuristic. The
algorithm initializes the switching speeds at ωmin (except for the first mode). Then, a
loop (line 7) updates the switching speeds according to the gradient trajectory T j(~ω)
until the boundary of the schedulability constraint is reached. Finally, a local search
is performed (see line 13) starting from the mode that has the maximum gradient
coefficient, until no further steps can be performed without violating the schedulability
constraint.

5.1.1. Running example. The application of the corrected gradient heuristic to our run-
ning example provides the results reported in Table IV.

Table IV. Results of the application of the corrected gradient heuristic to the
running example.

s ω1 ω2 ω3 ω4 ω5 ω6
P

6 6500 3817 3481 3146 2959 1598 3053.2 87.1% of P(ub)

8 6500 1460 1419 1366 1361 1168 1934.2 70.2% of P(ub)
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Clearly, the results in the second case are poor, since the modes after the first are
all collapsed into a very small range and the final performance is far from the upper
bound.

5.2. Utilization and Performance-Driven Backwards Search

An additional insight helps building a better heuristic: lowering a switching speed can
give more freedom to the feasibility range of the others.

In particular, analyzing the experimental results of a more exhaustive branch and
bound search (discussed in the next section), it became clear (as expected) that reduc-
ing the switching speed of the mode with the largest steady-state utilization provides
more freedom for the other speeds, that is, allows to keep them closer to their upper
bound.

At the same time, the reduction of any transition speed ωj causes a corresponding
performance reduction that should be traded off with the utilization gain that favors
the system schedulability. Both considerations are combined in the Utilization and
Performance-Driven backwards search.

In this approach, the switching speeds are iteratively lowered, generating a se-
quence ~ω(0), ~ω(1), . . . , ~ω(k), . . ., starting from the upper bound ~ω(0) = ~ω(ub). At each

iteration, each ωj is lowered by a quantity δ ×Rj , that is

ωj(k + 1) = ωj(k)− δ ×Rj(~ω(k)), ∀j = 2, . . . , Q (14)

until a feasible set of speeds is found.
The reduction step Rj(~ω) has been conceived for taking into account both the per-

formance gradient and the steady-state utilization of the j-th mode, thus obtaining

Rj(~ω) = max(Û j + P̂ j(~ω), Rmin), (15)

where Rmin represents a minimum step to ensure progression (for instance, we used

Rmin = 0.2 RPM in our experiments). The terms Û j and P̂ j(~ω) are normalized indexes
that relate to the utilization and performance gradient at the current switching speed

ωj(k). The index Û j is defined as

Û j =
U j − Umin

Umax − Umin
, (16)

with

Umax = max
j

{U j} and Umin = min
j

{U j}. (17)

Similarly, P̂ j(~ω) is computed as

P̂ j(~ω) =
pmax − pj(~ω)

pmax − pmin
, (18)

where pmax = maxj p
j(~ω) and pmin = minj p

j(~ω).
Note that, to match the objective of this heuristic, the larger the steady-state uti-

lization of a mode the larger the corresponding index Û j . Analogously, the larger the

performance gradient, the lower the index P̂ j(~ω).
Figure 8 illustrates the pseudo code for the proposed backwards search. The al-

gorithm lowers each switching speed ωj until the system becomes schedulable (see
line 7), then it proceeds with a local search, as the gradient-based search of Section 5.1.
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1: procedure BACKWARDSSEARCH( ~C)
2: w1(k) = ωmax,∀k;
3: for j = 2 to j = Q do
4: ωj(0) = ω

j

ub;
5: end for
6: k ← 0;
7: while NOT SCHEDULABLE({(Cj, ωj(k)),∀j}) do
8: for j = 2 to j = Q do
9: ωj(k + 1)← ωj(k)− δRj(~ω(k));
10: end for
11: k ← k + 1;
12: end while
13: ~ω(end) ← LOCALSEARCH(~ω(k));
14: return ~ω(end);
15: end procedure

Fig. 8. Pseudo-code for the proposed utilization and performance-driven backwards search.

5.2.1. Running example. The application of the backwards search heuristic to our run-
ning example provides the results reported in Table V.

Table V. Results of the application of the backwards search heuristic to the
running example.

s ω1 ω2 ω3 ω4 ω5 ω6
P

6 6500 6039 4836 3672 2899 1630 3480.2 99.3% of P(ub)

8 6500 4282 3194 2887 1868 1050 2644.0 96.0% of P(ub)

The backwards search heuristic is very effective. The running example is not a spe-
cial case, as shown in our experimental results (Section 7). The computed values are
always very close to the optimum. Also, compared with the previous heuristic, a set of
higher transition speeds for lower index modes is traded for a lower transition speed
for the last mode (which results in a better performance anyway).

6. BRANCH AND BOUND

In many cases, the optimum can be computed (within a given speed granularity) by
performing an exhaustive search starting from an initial feasible solution and attempt-
ing to extend each transition speed towards its upper bound. The knowledge of perfor-
mance upper and lower bounds allows introducing effective pruning rules that stop
the algorithm when a solution with sufficient quality is obtained.

6.1. Definition of the algorithm

The algorithm makes use of speed upper bounds to compute a performance upper
bound Pub that is in general not feasible. Also, one of the heuristics in the previous
section (the backwards search is the best option) allows computing a lower bound on
the optimum performance Plb.

The algorithm requires the definition of a speed resolution δ (in our experiments
δ = 15 RPM) and a starting feasible solution with a configuration of transition speeds
that has ωQ at the highest possible value that allows for the execution of the other
modes. The starting solution should also be maximal, meaning that any possible in-
crease of any transition speed would create a non-feasible solution. Given any solution,
a maximal solution can be simply found by a local search. Because of the monotonicity
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property of our performance function (on Λi and Ci), a maximal solution is always go-
ing to have higher performance than any solution for which the transition speeds are
component-wise less than or equal.

The search algorithm is based on the observation that, given a maximal solution,
any increase in a transition speed ωj can be obtained by decreasing at least one of
the transition speeds ωk with k > j. The algorithm works iteratively, attempting to
improve on an initial feasible solution ~ωs with ωQ

s equal to the largest possible value
that allows for the execution of the other modes (the algorithm to compute the initial
solution is explained later).

At each iteration with index j (j goes from Q to 3), the values in the set
{ωQ

s , ω
Q−1
s , . . . , ωj+1

s } are left unchanged from ~ωs (the set is empty when j = Q): this is
because the algorithm is similar to a depth-first search in a tree, where the sub-tree
corresponding to modes with index < j is explored.

The speed ωj
s is then iteratively reduced by mj × δ, with mj ∈ N

+, and for each value
of mj the algorithm tries all the possible extensions (as integer multiples of δ) of the

speeds {ωj−1
s , . . . , ω2

s}, until it reaches the feasibility boundary (i.e., a maximal solution
within the δ resolution). As a result, the algorithm performs a branch and bound search
on the tree of speeds with index lower than j. Figure 9 shows an intermediate step of
the algorithm with the corresponding search tree below the element with index j. Since
the index j is progressively lowered until 3, all the possible speed combinations (with
granularity δ) are tried. The index j (controlling the switching speed that is selectively
reduced) ends in 3 because it is always ω1 = ωmax and reducing ω2 (starting from the
initial maximal solution) is pointless because ω1 cannot be further increased.

ωmin ωmax ω

ω
j
s

ω
j−1
s

ω
j−2
s

ω
j

(ub)

ω
j−1
(ub)

ω
j−2
(ub)

Fig. 9. The optimization algorithm as a branch and bound search in the domain of the ω.

Computing the initial solution ~ωs. The solution ~ωs is computed iteratively. First,

the value of ωQ
s is computed by searching back from ωQ

(ub) (using a binary search) until

the largest value that allows the execution of all other modes with lower index j at
transition speeds ωQ

s + ǫ× (Q− j) (with ǫ arbitrarily small). When the algorithm moves
to the next mode Q − 1, ωQ−1

s is similarly computed as the largest speed that allows
executing all other modes with index j < Q−1 with a transition in ωQ−1

s +ǫ×(Q−1−j)
and so on.
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6.2. Pseudo code

Figure 10 illustrates the pseudo code for the proposed branch and bound algorithm. In
addition to the WCETs of the available control implementations, the algorithm takes
as input a lower bound on the overall performance P(lb), which can be obtained by
executing one of the heuristics presented in the previous section.

At any point in time, the search algorithm keeps track of the best performance solu-
tion P(cur) found until then, which is initialized to the performance lower bound (line 2
in Figure 10). After initializing the switching speeds at their upper bound (line 3),
the algorithm calls the SEARCH recursive sub-procedure to search for the optimal
solution. The search starts from the switching speed of the Q-th mode and explores
the tree of possible values for the switching speeds of all the modes (within the given
granularity δ). The search tree has Q levels, one for each mode. Every instance of the
SEARCH procedure, invoked with index j, is in charge of exploring the sub-tree at
levels < j by starting from the initial solution for the j-th switching speed (which is
computed as discussed above).

The procedure uses of a conditional statement to distinguish between (i) the recur-
sive step and (ii) the stop condition of the recursive algorithm.

The recursive step consists in opening a set of branches to explore the sub-tree, each
corresponding to a reduced value of the j-th switching speed. The switching speed ωj

is progressively reduced by δ: the reduction starts from the initial solution ωj
s and ends

when the switching speed of the (j + 1)-th mode is reached (line 12).
Not all the branches are actually explored. The algorithm performs a pruning on

the sub-tree when the current best performance value cannot be improved by any so-
lution available in the sub-tree (line 14). The performance of all the solutions avail-
able in the current sub-tree are upper bound by the performance of the set of speeds

{ω1, ω2
(ub), . . . , ω

j−1
(ub), ω

j , ωj+1, . . . , ωQ} (similarly as stated by Theorem 4.1), which is con-

structed by leveraging on the knowledge of the speed upper bounds.
The stop condition holds when the search reaches the second level, i.e., j = 2 (re-

member that ω1 is fixed and equal to the maximum engine speed). In this case, the
procedure has traversed the entire search tree, hence a particular solution exists. If
such a solution improves the best performance that has been found so far (line 19),
then it is stored as optimal (line 21).

6.3. Discussion

The execution of the algorithm showed how the optimum performance often results in
a configuration in which the largest speed decrease is for the mode with highest local
utilization. This was the motivation for the deriving the utilization-driven backwards
search heuristics presented in Section 5.2.

The branch and bound computes solutions of very good quality at the expense of
time. A set of experiments (see Section 7.3) has been performed to evaluate the execu-
tion times and how the branch and bound results compare with respect to the results
from the heuristics. However, it should be noted that the runtime of the branch and
bound search is heavily dependent on the performance lower bound Plb that is provided
to prune the solution tree at the beginning. This value is obtained by the backwards
search heuristic. Hence, even in those cases in which the problem can be solved to (al-
most) optimality by the branch and bound search, a practically usable execution time
can only be achieved thanks to the availability of a very good (and fast) heuristic.
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1: procedure BRANCHANDBOUND( ~C,P(lb))
2: P(cur) ← P(lb);
3: ~ω(opt) ← ~ω(ub);

4: SEARCH( ~C,Q);
5: return ~ω(opt);
6: end procedure
7:

8: procedure SEARCH( ~C, j)
9: ωj

s ← INITIALSOLUTION(j);
10: if j > 2 then
11: ω

j

(lb)
← ωj+1 + ǫ;

12: for ωj = ωj
s to ωj = ω

j

(lb) with step −δ do

13: P(max) ← P(ω1
(ub), . . . , ω

j−1
(ub), ω

j , . . . , ωQ);

14: if P(max) > P(cur) then

15: SEARCH( ~C, j − 1);
16: end if
17: end for
18: else
19: if P(ω1, . . . , ωQ) > P(cur) then

20: P(cur) ← P(ω1, . . . , ωQ);
21: ~ω(opt) ← ~ω;
22: end if
23: end if
24: return ~ω(opt);
25: end procedure

Fig. 10. Pseudo-code for the branch and bound algorithm.

6.4. Running example

The availability of the branch and bound exhaustive search for the optimum (with
finite granularity) allows an evaluation of the quality of the heuristics. Table VI shows
a summary of the results for the case with s = 8.

Table VI. Results for the running example with s = 8 applying all the algorithms presented in this
paper.

Algorithm ω1 ω2 ω3 ω4 ω5 ω6
P

Gradient-based search 6500 1460 1419 1366 1361 1168 1934.2 70.2% of P(ub)

Backwards search 6500 4282 3194 2887 1868 1050 2644.0 96.0% of P(ub)

Branch and bound 6500 4274 3556 2778 1858 1044 2665.9 96.8% P(ub)

Upper bound 6500 4285 3629 2996 1871 1214 P(ub) = 2753.8

The table shows the typical result found in our experiments. Not only the backwards
heuristic is very close to the upper bound, but it is also extremely close to the value
computed by the branch and bound search. In reality, the branch and bound result is
much closer to the result of the heuristic than it is to the upper bound.

7. EXPERIMENTAL RESULTS

This section reports a set of experimental results aimed at evaluating and comparing
the approaches presented in this paper. All the algorithms have been implemented in
the C++ language and tested over synthetic workload for measuring their effective-
ness.

In the experiments, the speed limits of the engine have been set to ωmin = 500
RPM and ωmax = 6500 RPM, respectively (typical values for a production car). The
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acceleration range allows the engine to reach the maximum speed starting from the
minimum in 35 revolutions [Davis et al. 2014], resulting in α+ = −α− = 1.62 10−4

rev/msec2.

7.1. Workload generation

In the evaluation we consider a task set composed of N periodic tasks, with utilization
UP , and an AVR task τ∗ with Q = 6 possible control implementations.

The periods of the periodic tasks are {5, 10, 20, 50, 80, 100} ms, considered as
typical values for engine control applications [Guzzella and Onder 2010]. The
execution times of the periodic tasks are generated by the UUnifast algo-
rithm [Bini and Buttazzo 2005]. The WCETs of the possible control implementations
for the AVR task are generated by randomly choosing (with a uniform distribution
and a minimum separation csep) a set of seed values {c1, c2, . . . , cQ} from the range
[cmin, cmax]. The actual WCETs are computed using a scale factor s as Cj = s · cj . The
scale factor is a parameter that allows tuning the computational requirements of the
AVR task implementations. When the switching speeds and consequently the interar-
rival times of the AVR task are unknown, it is not possible to define the AVR load with
a simple utilization metric.

7.2. Performance functions generation

The performance functions considered in this work are: (i) constant functions, as in
Equation (5), and (ii) exponential functions of the engine speed, as in Equation (7). In
the first case, each control implementation Λj is assigned a performance coefficient kj

that is randomly generated with a uniform distribution in the range [kmin, kmax], with
a minimum separation of ksep. In the case of exponential functions, the generation
involves two parameters kj,1 and kj,2 for each control implementation Λj. The per-
formance is normalized with respect to ΛQ (i.e., the implementation with the largest
WCET with constant performance), which has kQ,1 = 1 and kQ,2 = 0. To provide for a
uniform distribution of the exponential performance functions (see Equation (6)), the
coefficients kj,2 are generated with a uniform distribution in a logarithmic scale with
range [log k2,min, log k2,max]. Finally, we set kj,1 = 1, j = 1, . . . , Q for simplicity.

7.3. Constant performance functions

In this experiment we consider the constant performance functions and evaluated the
performance of the heuristics with respect to the upper-bound P(ub) obtained with the
method described in Section 4. We generate 500 task sets with N = 5 periodic tasks
and an AVR task with a set of possible control implementations. For each task set, we
tested 30 different sets of performance coefficients and a variable scale factor s from 1
to 10, trying 150000 different configurations in total.

For each value of s the performance of the heuristics and the upper-bound are com-
puted. The performance values obtained by the heuristics are normalized with respect
to the value of the upper-bound. As a consequence, the obtained values are lower-
bounds of the performance values normalized with respect to the actual optimal per-
formance. The normalized performance values were then averaged among all the con-
figurations for a given value of s.

The range and separation cmin = 100, cmax = 1000, csep = 100 are used for generating
the computation time seeds and kmin = 1, kmax = 50 and ksep = 1 are used for the
generation of the performance coefficients.

Figure 11 shows the results for the case of utilization UP = 0.5 of the periodic tasks.
As shown by the graph, the backwards heuristic provides an extremely good perfor-
mance, always greater than 99% of the upper-bound, and extremely close to the op-
timum. Conversely, the gradient-based heuristic shows a degradation for increasing
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Fig. 11. Performance of the two heuristics (Section 5) as a function of s for UP = 0.5. The results are
normalized to the performance upper-bound.

values of s reaching a value lower than the 90% of the upper-bound for s = 10. In our
experiments, the gradient-based heuristic always performs worse than the backwards
search.

Figure 12 reports the results for the same experiment when the utilization of the
periodic tasks is increased to UP = 0.75. The performance of the backwards search
heuristic is slightly worse, reaching a value of approximately 93% for s = 10, while the
gradient-based heuristic shows a consistent degradation for s > 3.
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Fig. 12. Performance of the two heuristics as a
function of s for UP = 0.75. The results are nor-
malized to the performance upper-bound.
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Fig. 13. Performance of the backwards heuristic
and the branch and bound algorithm as a function
of s for UP = 0.75. The results are normalized to
the performance upper-bound.

However, as explained at the beginning of this section, the results normalized with
respect to the upper-bound are only lower-bounds of the actual performance, expressed
by the ratio with respect to the true optimum performance value (when computable).
For this reason we performed another set of experiments including the result of the
branch and bound algorithm (with δ =15 RPM), to study the performance of the back-
wards search heuristic with respect to the actual optimal performance (or a value most
likely close to it). Due to the large run-time of the branch and bound algorithm, this
experiment has been conducted on a small set of configurations with 50 task sets and
5 sets of performance coefficients. The results are shown in Figure 13. As shown by the
graph, the optimal performance tends to recede from the upper-bound for increasing
values of s, confirming the effectiveness of the backwards search heuristic which re-
mains around 99% of the performance value found by the branch and bound algorithm.

Running times. The maximum observed running time for the backwards search
heuristic is 756 seconds with an average run-time of 5.6 seconds. The maximum ob-
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served running time for the gradient-based heuristic is 999 seconds with an average
run-time of 182 seconds. For the branch and bound algorithm with precision δ =15
RPM we measured a maximum run-time of 16070 seconds with an average run-time
of about 600 seconds. Such results have been obtained executing the algorithms on a
machine equipped with Intel i7 processor running at 3.2 Ghz and 8Gb of RAM.

7.4. Exponential performance functions

Another experiment has been conducted with the exponential performance functions
described in Section 3. We focus on the comparison of the two heuristics against the
performance upper-bound P(ub).

Figure 14 shows the results as a function of the scale factor s for two different values
of the coefficient k2,max of the performance functions (keeping k2,min constant). The
utilization of the periodic tasks is UP = 0.75 and for each value of s we try 500 task sets
and 30 sets of performance coefficients, hence testing 150000 different configurations.

As shown by the graph, the backwards search heuristic has a performance always
greater than the 99% of the upper-bound for k2,max = 50k2,min. In the same setting, the
gradient-based heuristic shows a slight performance degradation, reaching the 95% of
the upper-bound for s = 10. In the case k2,max = 200k2,min, there is a slight degradation
also for the backwards heuristic, which reaches the 96% of the upper-bound for s = 10,
while the gradient-based heuristic shows a consistent degradation for s > 4.
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Fig. 14. Performance of the two heuristics as a function of s for UP = 0.75. Exponential performance
functions under two different configurations are considered. The results are normalized to the performance
upper-bound.

The ratio between k2,max and k2,min determines the distribution of the exponential
performance functions in the speed domain. Intuitively, the higher k2,max/k2,min the
more the performance functions are far apart. For this reason we conduct another
experiment by varying the ratio k2,max/k2,min while holding the scale factor s = 7.

For each value of the ratio we test 500 task sets and 50 sets of performance coeffi-
cients k2,j , hence 500000 configurations. The results are shown in Figure 15 and con-
firm the trend of Figure 14, showing a graceful and quite limited degradation of the
performance of the backwards heuristic for increasing values of the ratio k2,max/k2,min.
Again, the gradient-based heuristic shows worse performance, reaching very low val-
ues for k2,max/k2,min > 200.
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Fig. 15. Performance of the two heuristics as a function of k2,max

k2,min for UP = 0.75 and s = 7. The results are

normalized to the performance upper-bound.

8. VALIDATION OF THE PERFORMANCE MODEL

The performance model presented in Section 3 has been validated using a simulation
framework, which has been developed to model and execute the main components of
the considered CPS: the engine, the control logic, and the task implementation. In the
context of this work, the simulation framework has been used to compute the perfor-
mance functions under different fuel injection strategies and verify our fitting hypoth-
esis to the family of exponential functions expressed in Equation (6). The framework
has also been used to explore the dependency of the performance with respect to dif-
ferent control implementations.

8.1. Simulation framework

The system model has been created in the MATLAB Simulink R© environment by in-
tegrating three major subsystems. The engine model and the model of the injection
control logic have been developed as traditional Simulink systems, with blocks en-
coding the differential equations of the engine dynamics and the control algorithms
(including the tables for determining the injection phase and duration).

The implementation of the controls as a set of concurrent tasks with variable-rate
activation and an adaptive behavior (and execution time) has been modeled using the
T-Res framework [Cremona et al. 2015], specifically developed for studying the impact
of task scheduling on control performance and purposely extended to add the repre-
sentation of AVR tasks.

8.2. Engine Modeling

Modeling a Diesel engine is a challenging problem due to the multiple complex physical
parts to be considered, obtaining a highly non-linear dynamic system with at least one
dynamic feedback loop for the turbocharger.

The engine model developed for this work is an abstraction of a modern 4-cylinder
heavy-duty Diesel engine, equipped with a common-rail injection system and a Vari-
able Geometry Turbocharger (VGT). The model includes a set of physical equations
describing the engine dynamics, taken from the specialized literature, some functions
defining subsystem models based on experimental data, and static maps (e.g., for the
turbocharger model).

The main sources used for modeling the air path are the books by
Guzzella [Guzzella and Onder 2010], Panse [Panse 2005], and Criens [Criens 2014]).
A simplified model of combustion has been created following the description
in [Ding 2011] and [Ericson et al. 2006] to simulate the behavior of pressure, tempera-
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ture, emissions of Nitrogen Oxide (NO2) and thermodynamic efficiency. The equations
that describe the turbocharger behaviour have been taken from the recent book by
Nguyen-Schäfer [Nguyen-Schäfer 2015].

8.3. Engine Control

In agreement with the current industrial practice, the control of the engine is based
on a mix of static maps and additive control loops to correct possible deviations from
the set points. This strategy is a typical solution for commercial cars, where maps are
calibrated on test benches, in optimal conditions, and additional loops are added to
face deviations from the optimal behavior due to transients, ageing, and changes of
external conditions.

Our engine control functions include the typical injection profile for Diesel engines,
consisting of (i) an optional number of pre-injections, (ii) a central main injection and
(iii) one or two optional post-injections. Pre-injections are used to heat the combustion
chamber and ensure a more uniform fuel-air mixture for the main injection, while
post-injections are typically used to burn the residual and decrease the amount of
pollutants [Criens 2014; Bhatt et al. 2013].

8.4. Control task model

The task set in the engine model considers a single AVR task computing all the func-
tions related to the fuel injection control. The focus of the modeling is to understand
how the performance functions of the system change as the system switches through
the different modes implemented in the AVR task.

For the purpose of this work, the task execution modes are modeled according to
three different injection strategies: triple, double and single injection. Each strategy
corresponds to a mode of the AVR task (with decreasing WCET).

Figure 16 shows the set of Simulink subsystems representing the control tasks, the
scheduler, and the functions executed by the tasks. The custom blocks for the represen-
tation of the scheduler and the tasks are described in detail in [Cremona et al. 2015].
The block on the top-left corner of Figure 16 contains the model of the fixed-priority
scheduler. The blocks below it are the control tasks. Three of them are periodic, the
second from the top is the AVR task controlling the fuel injection. With respect to the
periodic task blocks, the AVR task has an additional input defining the execution mode
(and its corresponding WCET). The chains of blocks on the right side of Figure 16 are
the subsystems executed by the tasks. The second chain from the top is the sequence
of the control subsystems executed by the AVR task.

The three AVR modes lead to different heat release profiles, thus directly influenc-
ing the combustion dynamics. Typically, multiple injections decrease the efficiency
of torque generation, but also decrease the pollutant emissions, by lowering the in-
cylinder peak temperature and improving the fuel combustion with pre-heating and
better air-fuel mixing [Criens 2014; Bhatt et al. 2013].

8.5. Experimental Evaluation

The objectives of the simulation is to characterize the performance functions and model
their dependency on the engine speed. The performance functions available with the
current model setting are (i) the thermodynamic efficiency and (ii) the emissions of
NO2. The simulation runs have been defined for a model input with low external torque
(no gear subsystem is included) and a throttle input profile with a sudden acceleration
(maximum throttle) of a duration of approximately 2 seconds. The data obtained from
the simulation have been studied as a function of the engine speed (ranging from 500
to 5500 RPM).
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Fig. 16. Injection strategies used in the simulation: from the top to the bottom, triple injection, double
injection and single injection

For the three different injections strategies (one to three injections), the simulation
results show that the performance functions can be fitted well with the exponential
behavior reported in Equation (6). The fitting have been made using the Curve Fitting
Tool of MATLAB, with the LAR Trust-Region algorithm.

The experimental data for the thermodynamic efficiency are reported in Figure 17,
where also the fit to our exponential performance model is reported as a continuous
line. As clear from the graph, the fit is very accurate and resulted in a coefficient of de-
termination (R squared) of 0.998 (1 means a perfect fit) when Equation (6) is configured
with k1 = 0.5042 and k2 = 579.2.

Because of the strong dependency on the temperature, the emissions of NO2 mea-
sured with the simulated framework resulted quite noisy — with particular sensitivity
at little variations for values greater than 1700oK. However, as shown in the example
illustrated in Figure 18, the behavior appeared clearly correlated with an exponential
shape. In fact, the fit to Equation (6) (illustrated as a continuous line in the figure)
resulted in a coefficient of determination equal to 0.94 when configured with k1 = 2619
and k2 = 1.625 · 104.

8.6. Comparing performance functions with different AVR modalities

With the same setting and approach described in the previous section, we also evalu-
ated the dependency of the performance functions on the mode of the AVR task, which
in our case corresponds to a given injection strategy. For each mode, the performance
has been first measured as a function of the engine speed and then fit to the pro-
posed exponential model. Figure 19 reports the results of this experiment for the NO2

emissions. As can be observed from the graph, the performance functions match our
monotonicity assumption with the complexity of the control implementation (a control
for the triple injection strategy requires more computation than the one with double
injection, ad so on).

9. RELATED WORK

A model for describing an AVR task was first proposed by Kim, Lakshmanan, and
Rajkumar [Kim et al. 2012], who also derived a schedulability analysis under very re-
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Fig. 17. Experimental data for the thermodynamic efficiency as a function of the engine speed. The contin-
uous line illustrates a fit to the exponential performance model proposed in this work.

Fig. 18. Experimental data for the emissions of NO2 as a function of the engine speed. The continuous line
illustrates a fit to the exponential performance model proposed in this work.

strictive assumptions, considering a single AVR task running at the highest priority
with a period always smaller than those of the other tasks. In addition, relative dead-
lines were assumed to be equal to periods and priorities were assigned based on the
Rate-Monotonic algorithm. Pollex et al. [Pollex et al. 2013] derived a sufficient feasibil-
ity test for fixed priority scheduling, but assuming a constant engine speed. Davis et
al. [Davis et al. 2014] used an Integer Linear Programming (ILP) formulation to derive
a sufficient schedulability test of AVR tasks under fixed-priorities, also taking acceler-
ation into account, but considering a finite set of (discretized) initial engine speeds.

The exact characterization of the interference produced by an AVR task under fixed
priorities has been presented by Biondi et al. [Biondi et al. 2014] as a search approach
in the speed domain, where the concept of dominant speeds is used to reduce the com-
plexity and avoid speed quantization. Such a method has then been extended to derive
an exact response time analysis of fixed priorities AVR tasks [Biondi et al. 2015].

Other works addressed the analysis of AVR tasks under the Earliest Deadline
First (EDF) scheduling algorithm. Guo and Baruah [Guo and Baruah 2015] proposed
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Fig. 19. Fit to the exponential performance model of the NO2 emissions for different injection strategies.

a speedup factor analysis and sufficient schedulability tests for AVR tasks scheduled
with EDF. Biondi et al. [Biondi et al. 2015] proposed a precise workload characteriza-
tion generated by an AVR tasks that is used to derive a feasibility analysis under EDF
scheduling.

10. CONCLUSIONS

The problem of performance oriented design of transition speeds in a fuel injection
system with adaptive variable rate tasks has been discussed. A set of optimization
algorithms has been presented, assuming a quite general scenario in which the per-
formance of each control implementation is expressed by an arbitrary function that
has the only requirement of being integrable and monotonically increasing with the
complexity of the implemented algorithm.

The experimental results show that the proposed heuristics are quite close to the
actual optimal value and allow the computation of the optimum with finite resolution
in many cases.

A set of Simulink models, including the CPS model of the engine, the fuel injection
system, the control functions and their task implementation (with variable execution
times) have been defined to support the assumptions on which our algorithms are
based (fitting the engine performance functions with exponential curves) and study
the dependency of the control performance with respect to a task implementation.
Future work includes an experimental analysis and validation with actual test bench
data and extending the proposed optimization method to schedulability constraints
that allow for temporary overload conditions.
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