
Is Your Bus Arbiter Really Fair?
Restoring Fairness in AXI Interconnects for FPGA SoCs

FRANCESCO RESTUCCIA, Scuola Superiore Sant’Anna
MARCO PAGANI, Scuola Superiore Sant’Anna and CRIStAL (Univ. Lille, CNRS, Centrale Lille, UMR 9189)
ALESSANDRO BIONDI, Scuola Superiore Sant’Anna
MAURO MARINONI, Scuola Superiore Sant’Anna
GIORGIO BUTTAZZO, Scuola Superiore Sant’Anna

AMBA AXI is a popular bus protocol that is widely adopted as the medium to exchange data in field-
programmable gate array system-on-chips (FPGA SoCs). The AXI protocol does not specify how conflicting
transactions are arbitrated and hence the design of bus arbiters is left to the vendors that adopt AXI. Typically,
a round-robin arbitration is implemented to ensure a fair access to the bus by the master nodes, as for the
popular SoCs by Xilinx.

This paper addresses a critical issue that can arise when adopting the AXI protocol under round-robin
arbitration; specifically, in the presence of bus transactions with heterogeneous burst sizes. First, it is shown
that a completely unfair bandwidth distribution can be achieved under some configurations, making possible
to arbitrarily decrease the bus bandwidth of a target master node. This issue poses serious performance, safety,
and security concerns. Second, a low-latency (one clock cycle) module named AXI burst equalizer (ABE) is
proposed to restore fairness. Our investigations and proposals are supported by implementations and tests
upon three modern SoCs. Experimental results are reported to confirm the existence of the issue and assess
the effectiveness of the ABE with bus traffic generators and hardware accelerators from the Xilinx’s IP library.

CCS Concepts: • Computer systems organization→ Embedded and cyber-physical systems; • Hard-
ware → Reconfigurable logic and FPGAs; Programmable interconnect; Safety critical systems;

Additional Key Words and Phrases: FPGA, AXI BUS, Arbitration, Embedded Systems

ACM Reference Format:
Francesco Restuccia, Marco Pagani, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo. 2019. Is Your
Bus Arbiter Really Fair? Restoring Fairness in AXI Interconnects for FPGA SoCs. J. ACM 00, 0, Article 000
(2019), 22 pages. https://doi.org/xxx

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES) 2019

Authors’ addresses: Francesco Restuccia, francesco.restuccia@santannapisa.it, Scuola Superiore Sant’Anna, Pisa, Italy;
Marco Pagani, marco.pagani@santannapisa.it, Scuola Superiore Sant’Anna, Pisa, Italy, CRIStAL (Univ. Lille, CNRS, Centrale
Lille, UMR 9189), Lille, France; Alessandro Biondi, alessandro.biondi@santannapisa.it, Scuola Superiore Sant’Anna, Pisa,
Italy; Mauro Marinoni, mauro.marinoni@santannapisa.it, Scuola Superiore Sant’Anna, Pisa, Italy; Giorgio Buttazzo, giorgio.
buttazzo@santannapisa.it, Scuola Superiore Sant’Anna, Pisa, Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0004-5411/2019/0-ART000 $15.00
https://doi.org/xxx

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

https://doi.org/xxx
https://doi.org/xxx

000:2 Restuccia, et al.

1 INTRODUCTION
The AMBA AXI bus protocol was proposed by ARM more than 15 years ago as an evolution of
previous solutions (such as AMBA APB and AMBA AHB) for internal connections in System-on-
Chips (SoCs). Since then, the protocol has been widely adopted due to a number of advantages, such
as being an open standard that is fully compatible with the popular ARM Cortex processors. The
range of platforms that rely on AMBA AXI has grown, reaching devices with a level of complexity
and flexibility way beyond those of the initial chips targeted by the protocol. A relevant case is the
one of SoCs equipped with field-programmable gate arrays (FPGA) where the programmable logic
(PL) communicates with the memory controller through the AMBA AXI protocol. AXI will be even
adopted in the upcoming new-generation platforms by Xilinx that rely on a network-on-chip with
AXI-based links [25].

FPGA SoCs are promising computing platforms to manage the increasing software complexity
and computational demand of modern embedded systems. In particular, they are particularly
attractive as they allow deploying high-performance, yet energy-efficient hardware accelerators
onto the FPGA fabric, while making use of the plethora of pure software solutions (such as Linux,
communication stacks, drivers, etc.) that can be executed upon the multicore processor(s) available
in the SoC.
In these platforms, it is possible to deploy very different kinds of hardware modules, even

dynamically programmed at run-time, which act as masters on the bus and are allowed to issue
bus transactions with different structures. During the last decade, component-based design for
applications that make use of FPGAs has been more and more adopted, as it allows designers
to build systems by combining Intellectual Properties blocks (IPs) developed by different teams
or even different companies. This trend has been accelerated with the development of advanced
high-level synthesis (HLS) tools [12]. For instance, some companies sell proprietary IP libraries,
which are usually distributed in a closed-source form that forbids the designers working at the
integration level to view or edit their behavioral functional description.

Furthermore, it is also common that closed-source IPs do not allow controlling the way they issue
bus transactions. This limitation becomes particularly relevant for the case of hardware accelerators,
which are typically memory-intensive as they commonly work on large amount of data, and hence
generate a consistent traffic on the bus. Indeed, the way bus transactions for memory access are
managed in the SoC is crucial for the system performance [13, 27], especially when time-sensitive
systems are designed.

Nevertheless, the AXI protocol leaves flexibility on the way bus transactions are structured, while
not mandating specific arbitration policies, hence leaving the burden of designing bus arbiters
to the vendors that adopt AXI. To ensure a fair redistribution of the bus bandwidth, the most
common solution consists in adopting the round-robin arbitration policy, as for the popular SoCs
by Xilinx (e.g., those belonging to the Zynq-7000 and Zynq-Ultrascale families). Despite the use of a
round-robin arbitration results in a simple and effective solution, we found that its integration with
the AXI protocol may lead to critical issues under specific configurations of the bus transactions.

Contributions. This paper first shows that the integration of the round-robin policy with the AXI
protocol may lead to a completely unfair bandwidth distribution in the presence of bus transactions
with heterogeneous burst sizes. Just to mention a representative result, in a scenario with three
hardware accelerator IPs it is possible to reduce the memory bandwidth of a victim IP of about
91%, with respect to the expected bandwidth (i.e., the one assigned by a fair arbitration). In other
scenarios, it is even possible to reach larger bandwidth reductions, bringing the available bandwidth
of the victim IP arbitrarily close to 0%, thus completely jeopardizing its functionality.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

Is Your Bus Arbiter Really Fair?
Restoring Fairness in AXI Interconnects for FPGA SoCs 000:3

The problem is shown to be originated by the structure of the memory transactions generated
by each IP—hence, by a local property of each IP— and poses serious risks for at least two reasons.
First, when applying component-based design, where IPs from different vendors or developed
by different teams are integrated, this issue can be triggered any time when the structure of the
memory transactions of each IP cannot be controlled at the stage of integration, e.g., in the presence
of proprietary IPs. The presence of IPs with different burst sizes is a very plausible scenario, as the
structure of memory transactions can even be controlled from high-level synthesis (HLS) by means
of specific pragma statements. Second, since modern FPGAs offer dynamic partial reconfiguration
(DPR) capabilities, which allows reprogramming a portion of the FPGA area while the system is
operating, the system can be exposed to performance/safety/security issues if malicious IPs are
dynamically configured to generate crafted bus transactions, e.g., to realize a denial-of-service
attack.
A practical solution consisting in a low-latency (one extra clock cycle) IP named AXI burst

equalizer (ABE) is proposed to restore fairness. The ABE mediates the bus traffic generated by IPs by
(i) splitting outgoing address requests to an equalized (i.e., nominal) burst size, (ii) merging/splitting
incoming data, and (iii) equalizing the number of outstanding transactions. The ABE has been
evaluated upon three modern FPGA-based SoCs (two of the Zynq-7000 family and one from
the Zynq-Ultrascale family by Xilinx) by means of benchmarks and case studies, demonstrating
its ability to restore a fair bandwidth distribution in accessing the memory bus. Despite the
experimental results reported in the paper focus on Xilinx FPGA SoCS, the ABE also applies to
other products that adopt AXI and rely on round-robin bus arbitration.

2 ESSENTIAL BACKGROUND
A typical FPGA SoC architecture combines a processing system (PS) (generally based on one or
more processors) with a Field Programmable Gate Array (FPGA) subsystem in a single device.
Both the subsystems access a DRAM controller through which they can access a shared DRAM
memory. Figure 1 illustrates a typical SoC FPGA architecture in which two interfaces allow the
communication between the FPGA subsystem and the processing system (PS). The de-facto standard
interface for interconnections is the ARM Advanced Microcontroller Bus Architecture Advanced
eXtensible Interface (AMBA AXI) [1].

DRAM
Controller

FPGA-PS
Interface

PS Interconnect

APU

ARM CoresARM Cores

I/O peripherals

Custom logic

FPGA PS

PS-FPGA
Interface

Fig. 1. Simplified architecture of a SoC FPGA platform.

The AXI bus. The AMBA AXI standard defines a master-slave interface to allow simultaneous
bi-directional data exchange. An AXI port interface is composed of five independent channels:
Address Read (AR channel), Address Write (AW channel), Data Read (R channel), Data Write (W
channel), and Write Response (B channel). Each channel is composed by a standard-defined set
of signals. In an AXI-based interconnection, all the transactions are started by a master, which
requests to read/write data from/to a slave interface through AR or AW channels, respectively. Data

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

000:4 Restuccia, et al.

reads are routed back to the requesting device through R channels, while data writes are routed to
the correct destination through W channels. The B channel is used by the destination device of a
write request to acknowledge the master that its request has been correctly served. Each of the
five AXI channels implements a handshake mechanism based on two signals: the ready signal and
the valid signal. Depending on the channel type, one signal is controlled by the master interface,
while the corresponding slave interface controls the other. When both signals are high, the request
or the data are transmitted. The AXI standard allows masters to issue multiple pending requests.
This means that, in principle, each master is allowed to issue an unlimited number of outstanding
transactions. Typically, the number of outstanding transactions is limited by the designer of the IP.
Following data requests on the AR and AW channels, data are transmitted back to the master on
the R channel (for read data) or provided to the W channel (for write data) in the same order as
requests have been routed to the corresponding address channel. This means that data channels
are completely dependent on address channels, that is, the access to the output data channels R and
W depends on the order in which requests are routed to the address channels. This feature is reported
in the documentation of many commercial devices [18, 19] and has been experimentally validated
for the platforms analyzed in this paper (see Section 5).

AXI ports. As it is illustrated in Figure 1, the communication between the FPGA and the PS is
allowed by two different types of interfaces: the PS-FPGA interface and the FPGA-PS interface. The
first one offers a slave interface to the FPGA and is used by the processors to control the hardware
devices or access data in the FPGA. In a dual manner, the second one offers a slave interface to the
PS and is used by modules deployed on the FPGA (e.g., hardware accelerators) to access the central
DRAM memory or the on-chip memory in the PS. In the considered architecture, the slave port
interface on the PS side (FPGA-PS interface) is split into different ports. Each of such ports allows
accessing a single, but configurable range of contiguous addresses in the PS. Note that, when two
requests refer to disjoint address ranges mapped to different ports, no bus arbitration is required,
as they can be served in parallel.

AXI Interconnects.Whenever multiple AXI masters want to access the same output port, an AXI
Interconnect is in charge of arbitrating conflicting requests to the same port. The access to each
channel of the output AXI port is managed by a multiplexer. Each multiplexer is controlled by an
arbiter, which decides at each time which input port is granted to the output channel. The arbiters
are completely independent from each other.

For instance, in FPGA SoCs by Xilinx, two implementations of the Interconnect are available: AXI
Interconnect (deprecated in the latest platforms) and AXI SmartConnect. Both the implementations
are multiplexer-based and therefore comply with the structure described above.

Arbitration policy. In this work, each arbiter is assumed to implement a round-robin policy, which
to the best of our records is the most common solution in off-the-shelf platforms. For instance, the
AXI arbiters for FPGA SoCs by Xilinx implement round-robin (both the AXI Interconnect and the
AXI SmartConnect, see [20, 24]). Round-robin arbitration should guarantee fairness in contending
the bus; specifically, it should guarantee a fair distribution of the bus bandwidth among the IPs
that contend a port.

Burst sizes. AXI offers two methods for transmitting data between masters and slaves: single
transactions or transaction bursts. When operating in burst mode, the requesting device can issue
a single address request to fetch/write up to 256 data words per request. Typically, hardware
accelerators work on large amount of data. Therefore, burst transactions are preferable than single
transactions to avoid issuing a large number of addresses, hence reducing the overhead of the
hardware accelerator related to its addressing phases.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

Is Your Bus Arbiter Really Fair?
Restoring Fairness in AXI Interconnects for FPGA SoCs 000:5

AXI allows for bursts of different sizes. The burst size is a property of each IP configured by the
developer. Burst sizes may also be implicitly set to default values when using libraries or high-level
synthesis (HLS), with the result that designers may be unaware of the burst size adopted by their IP.
The configuration of burst sizes is also exposed to HLS with specific pragma statements. In general,
when developing IPs in HDL, the developer has a lot of freedom in configuring the burst sizes, which
may even change at run-time. Overall, when deploying multiple IPs on the same FPGA, possibly
developed by different teams or even different companies, it is likely to have multiple masters
on the bus that issue transactions with heterogeneous burst sizes. Furthermore, when integrating
commercial closed-source IPs, it may not even be possible to configure their burst sizes.

3 PROBLEM DESCRIPTION
This section illustrates a problem that emerges when stimulating round-robin arbiters on address
read AR and address write AW channels with address burst requests of different sizes. We focus
on the arbitration required to solve conflicts of requests that target the same output port, and we
hence assume that all the bus traffic is routed to the same port. Note that this setting represents
the worst-case scenario from the point of view of bus contention. Moreover, being the number of
available ports limited, scenarios in which a port is contended by multiple masters are common in
typical realistic designs.
A simple experimental setup has been used to show the problem. Consider a general AXI

Interconnect with one output port connected to the FPGA-PS interface and three Direct Memory
Access IP blocks (DMA) D1, D2, and D3, each connected to one of the input ports of the considered
AXI Interconnect.

The time needed by D2 to complete a memory transfer has been measured, while D1 and D3
have been used to generate continuous interference in accessing the memory. Specifically, D2 is
the DMA under test, configured to perform a memory transfer of 128 KB, while D1 and D3 manage
memory transfers of 4 MB. The purpose of this experiment is to measure the bandwidth of D2 by (i)
varying the size s of the bursts issued by D1 and D3, (ii) while keeping the size of the bursts issued
by the IP under analysis D2 constant and equal to 16 words.
The bandwidth of D2 can be obtained as the ratio between 128 KB and the time needed to

complete the transaction. Such a bandwidth can finally be normalized to the total bus bandwidth to
compute the percentage of bandwidth used by D2. This test has been executed on both the Xilinx
Zynq-7020 and the Xilinx Ultrascale+ platforms using the AXI SmartConnect and the DMA IPs by
Xilinx (note that these IPs allow configuring burst sizes from 2 to 256 words, which corresponds to
the range specified in the AXI standard definition).

16-16-16 32-16-32 64-16-64 128-16-128 256-16-256
0

10

20

30

Ba
nd

w
id
th

of
D
2
(%
)

experimental data fair allocation

Fig. 2. Percentage of the bandwidth used by D2 as a function of the burst size of D1 and D3. The labels below
each pair of bars indicate the burst size of D1, D2 and D3, respectively.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

000:6 Restuccia, et al.

The red bars in Figure 2 report the results of the experiment for s ∈ {16,32,64,128,256}. Ideally,
the round-robin arbitration should guarantee a fair redistribution of the available bandwidth,
reserving one third of the total bandwidth (about 33%) to each DMA. However, as clear from
Figure 2, this is the case only when all the three DMAs issue transactions with the same burst
size. The results also show that the bandwidth of D2 significantly decreases as the burst size of the
other DMAs increases, reaching about the 3% of the total bandwidth for s = 256. Note that the
latter case corresponds to just the 9% of the expected bandwidth, which means a 91% drop with
respect of the expected bandwidth! To make things worse, a larger bandwidth reduction can be
obtained by increasing the number of interfering DMAs, reaching configurations in which the
execution of a DMA is completely jeopardized (further details will be provided in Section 5). From
this experiment, it is possible to conclude that the integration of round-robin arbitration with the AXI
protocol can cause an unfair distribution of the bandwidth in the presence of heterogeneous burst sizes.
As mentioned in the introduction, this issue may be critical when integrating multiple IPs developed
by independent teams (possibly with closed-source, and hence unknown non-configurable burst
sizes), or in the presence of systems in which part of the FPGA could be reconfigured to maliciously
introduce “bandwidth-stealing” modules.

3.1 In-depth analysis
This section aims at analyzing in details the problem presented above. To this end, consider the
design illustrated in Figure 3. The design is composed of three hardware accelerators (HWA1, HWA2,
and HWA3) that issue burst transactions (reads or writes) to the central memory controller (DRAM
CTRL) located in the PS, while the AXI Interconnect arbitrates the address burst requests to access
the OUT slave port interface in the FPGA-PS interface. HWA2 issues burst transactions with a length
of S words. Differently, HWA1 and HWA3 issue burst transactions with size 2S . For instance, HWA1 can
be a typical hardware task synthesized with HLS, while HWA2, and HWA3 can be two DMAs.

M

M

M

S

S

S

S

AXI
Interconnect

M

Processing
System

DRAM
Ctrl.

OUT2

3

AXI bus

1
2S

HWA1

HWA2

HWA32S

S

Fig. 3. Sample architecture to probe the bandwidth allocation in the presence of heterogeneous burst size
transactions.

Consider the case in which the three hardware accelerators simultaneously issue a read request
on the corresponding AXI Address Read channelAR1,AR2, andAR3, respectively (the same example
can be extended to write channels). Also, to cope with the worst-case scenario, it is assumed that
the corresponding hardware accelerators can provide a new request immediately after the AXI
Interconnect granted a request and presented it to the slave OUT Port Address Channel in the
FPGA-PS interface (named AROUT).
Figure 4 reports a simplified waveform diagram re-created by observing real traces on a Xilinx

Zynq SoC platform (a bus signal analysis has been performed upon three state-of-the-art platforms,
namely the Zynq Z-7010, Zynq Z-7020, and the Zynq Ultrascale+ ZU9EG, obtaining the same
results). The corresponding design has been developed with Xilinx Vivado 2018.2, making use of
the state-of-the-art Xilinx IPs.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

Is Your Bus Arbiter Really Fair?
Restoring Fairness in AXI Interconnects for FPGA SoCs 000:7

S S S S S

2S 2S 2S 2S 2SAR1

AR2

AR3

AROUT

R1

R2

R3

ROUT

2S S 2S 2S S 2S 2S S 2S 2S S

2S 2S 2S 2S

S

CLK

S

S

S S S S

S

S

S

S S

NO DATA

2S

S

Req burst size 2S

Req burst size S

S S data back

Request accepted, preparing new one

Waiting to be accepted

Changing data

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

AR Round Robin Cycle Equivalent R Round Robin Cycle

Time

Fig. 4. Simplified waveform of the arbitration for the sample architecture of Figure 3.

The diagram illustrates the input address requests and the corresponding outputs in accordance
to the round-robin arbitration policy. To simplify the presentation and focus on relevant aspects,
it is assumed that (i) the PS is always ready to accept address requests from the AXI slave port
under analysis in the FPGA-PS interface (i.e., the one related to the OUT port); and (ii) the read
channels (i.e., ROUT , R1, R2, and R3 in the figure) have a width of S words each, so that S words can
be transferred in one clock cycle.

As it can be noted from the diagram, at time t1, each of the three hardware accelerators provides
its first burst request (i.e., AR1, AR2, and AR3). At time t2, the round-robin arbiter on AR channel
decides to accept the request coming from HWA1 and routes it through the AR channel of the OUT
port. After the request is sampled, a new one is provided by HWA1 on AR1. Analogously, the request
coming from HWA2 is admitted at time t3, while the one coming from HWA3 is granted at time t4. This
completes the round-robin period of the input AR channels (each hardware accelerator has routed
a request to the output). Hence, at time t5, a new request can be accepted from HWA1.

At time t6, the first chunk of data is provided from memory on the common read channel ROUT .
Since the address requests are served in order, this data is related to the first request accepted
from HWA1; thus, the chunk is routed to HWA1 through its read channel R1. The second chunk of
data coming from memory at time t7 is still related to HWA1, so it is also routed to R1. The same
happens at time t8 for the data requested by HWA2 (single chunk), and at times t9 and t10 for the data
requested by HWA3 (two chunks).

The diagram reported in Figure 4, and in particular the timelines of channels ROUT , R1, R2, and
R3, allow us to clearly identify the cause of the problem presented in the previous section. Despite
the requests on the address channel AROUT are accepted in round-robin order, their corresponding
data transfers to the hardware accelerators do not respect a perfectly-balanced round-robin order
(see the ROUT channel)—that is, the round-robin arbitration is preserved on address channels, but with
different per-master granularity, which depends on the burst sizes. Indeed, as data must be transmitted

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

000:8 Restuccia, et al.

in accordance to the order with which the address requests are granted, they cannot be provided
on channels R1, R2, and R3 in a fair manner, i.e., with the granularity of S words per hardware
accelerator.

3.2 Analytical characterization
From a theoretical point of view, in the above example each hardware accelerator should have been
able to leverage 1/3 of the total bandwidth. However, this is not the case, since the round-robin
arbiter on address channels performs the arbitration without considering the burst sizes, thus
granting a request of 2S words to both HWA1 and HWA3, and only S words to HWA2. The final result is
that the read channel ROUT allocates 2/5 of the bandwidth to both HWA1 and HWA3, and only 1/5 of
the bandwidth to HWA2.
From this analysis, it is possible to derive a formula that calculates the actual bandwidth Bi of

a hardware accelerator HWAi in the case in which (i) it requests bursts of length βi words; (ii)
while sharing a port via an AXI Interconnect with others N − 1 hardware accelerators requesting
βothers words per request (with βi ≤ βothers). First note that, the total amount of data transmitted in
a round-robin cycle is (N − 1) · βothers + βi . The fraction of data for the hardware accelerator under
analysis within each round-robin cycle is hence given by βi/((N − 1) · βothers + βi), which can be
rewritten as

Bi =
1

βothers
βi
· (N − 1) + 1

. (1)

Consequently, the ratio between the real bandwidth and the one expected with a fair round-robin
arbitration can be computed as:

Bi
1
N

=
N

βothers
βi
· (N − 1) + 1

. (2)

The analysis can easily be extended to the general case in which each hardware accelerator has a
different burst size. Consider a set of hardware acceleratorsH = {HWA1, . . . ,HWAN } connected to an
interconnect I . Each hardware accelerator HWAi ∈ H has a burst size of βi . The bandwidth assigned
by the interconnect to HWAi can be computed as

Bi =
βi∑

HWAj ∈H βj
. (3)

Table 1. Percentage of the total bandwidth allocated to a hardware accelerator in the presence of other
interfering hardware accelerators.

Interfering
accel.

Burst size of interfering accelerators
16 32 64 128 256

Num.

1 50.0% 33.34% 20.0% 11.11% 5.88%
2 33.4% 20.0% 11.11% 5.88% 3.03%
3 25.0% 14.29% 7.69% 4.0% 2.04%
4 20.0% 11.11% 5.88% 3.03% 1.54%
5 16.67% 9.09% 4.76% 2.44% 1.24%
6 14.29% 7.69% 4.00% 2.04% 1.03%
7 12.50% 6.67% 3.45% 1.75% 0.89%

Table 1 reports the percentage of total bandwidth, computed by Equation (2), which is allocated
to a hardware accelerator in the presence of up to seven interfering hardware accelerators. The
burst size of the hardware accelerator under analysis remains fixed to 16, while the burst size of the

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

Is Your Bus Arbiter Really Fair?
Restoring Fairness in AXI Interconnects for FPGA SoCs 000:9

interfering hardware accelerators is the same and varies from 16 to 256. As it can be noted from
the table, in the presence of seven interfering hardware accelerators with burst size equal to 256,
the bandwidth of the victim IP can be reduced to the 0.89% of the total bus bandwidth!

4 PROPOSED SOLUTION
This work addresses the issue presented in the previous section by proposing a practical solution
that consists of an IP named AXI Burst Equalizer (ABE). The ABE is conceived to be placed between
each hardware accelerator and an input port of an AXI Interconnect and serves the purpose of
equalizing the address burst requests issued by the hardware accelerator. The main objective of the
ABE is to achieve a fair bus bandwidth allocation in the presence of round-robin arbitration. This
feature is particularly useful when hardware accelerators are subject to worst-case timing analysis,
e.g., in the case they are part of a real-time system [3].
The ABE preserves standard interconnections by employing two AXI ports: the master port of

the hardware accelerator connects to a slave port of the ABE, while the slave input port of the AXI
Interconnect connects to a master port in the ABE, as illustrated in Figure 5. The ABE implements
the standard AXI handshaking mechanism and supports any permissible burst size.

M

M

M

S

S

S

S

AXI
Interconnect

M

Processing
System

DRAM
CTRL

OUT2

3

AXI bus
1

2S
HWA1

S
HWA2

2S
HWA3

S MABE1

S MABE2

S MABE3

Eq1

Eq2

Eq3

Fig. 5. Extension of the sample architecture to include the ABEs.

An ABE is characterized by two configuration parameters, i.e., (i) a nominal burst size β̂ , and (ii)
a maximum number L̂ of outstanding transactions, and complies with the following rules:
R1 In accordance to the AXI standard, each hardware accelerator can initiate a transaction by

issuing to its corresponding ABE two types of requests: (i) address read requests, denoted by
RR , with burst size βR ; and (ii) address write requests, denoted by RW , with burst size βW .

R2 If βR ≤ β̂ (or βW ≤ β̂ for write requests), the ABE forwards the request issued by the correspond-
ing hardware accelerator to the AXI Interconnect without any modification. Otherwise, when
βR > β̂ (or βW > β̂), request RR (or RW) is split into C =

⌈
βR/β̂

⌉
sub-requests RR1 ,RR2 ,...,RRC

(or C =
⌈
βW /β̂

⌉
sub-requests RW1 ,RW2 ,...,RWC) that have at most the nominal burst size β̂ .

R3 The ABE sequentially propagates the sub-requests mentioned in the previous rule to the AXI
Interconnect.

R4 When an address read request RR is split into the RR1 ,RR2 ,...,RRC sub-requests, the ABE reassem-
bles the corresponding incoming data chunks DR1 ,DR2 ,...,DRC into a single data response DR
that is compliant (according to the AXI standard) with the original request RR .

R5 When an address write request RW is split into the RW1 ,RW2 ,...,RWC sub-requests, the ABE also
splits the corresponding outgoing write data DW intoC outgoing data chunks DW1 ,DW2 ,...,DWC .
The corresponding write responses KW1 ,KW2 ,...,KWC on the B channel are merged into a single
write response KW .

R6 The ABE can issue at most L̂ nominal outstanding read transactions and L̂ nominal outstanding
write transactions. Once the limit of outstanding transactions has been reached, the ABE must

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

000:10 Restuccia, et al.

wait for the completion of a pending transaction before issuing a new transaction to the AXI
Interconnect.

An implementation of the ABE has been realized in VHDL language and exported as an IP-XACT
standard package. It can be integrated on any platform compatible with the IP-XACT standard,
as well as easily ported and packaged to other platforms that are not compatible with the IP-
XACT standard. The internal hardware architecture of the ABE is presented in Appendix 4.5. Our
implementation leverages cycle-level parallelism to minimize the latency introduced when splitting
transactions: further details are provided in Section 4.2. The reason for which the ABE limits the
number of outstanding transactions (rule R6) is explained in Section 4.3.

4.1 Example: the ABE in action
Let us now consider the same example introduced in Section 3 and analyze the differences in the
bus signals when the ABEs are installed (the same example can be extended to the case of write
transactions). As in Section 3, HWA2 issues address burst requests S words long, while HWA1 and
HWA3 issue address burst requests 2S words long. The equalized channels mediated by the ABEs are
denoted with the subscripts eq1, eq2 and eq3. The nominal burst size β̂ is set to S . The (simplified)
bus signals in the presence of ABEs are illustrated in Figure 6 (this figure has also been created
by observing real execution traces obtained from the same platforms considered in the previous
section).

S S S

2S 2S 2SAR1

AR2

AR3

AROUT

R1

R2

R3

ROUT

S S S S S S S S S S S

2S 2S 2S

S

CLK

S

S S S S S

S

S

S

S

S

S S

NO DATA

2S

S

Req burst size 2S

Req burst size S

S S data back

Request accepted, preparing new req

Waiting to be accepted

Changing data

S S S

S S SAReq1

AReq2

AReq3 S S S

S

S

S

S

S S S

2S

2S

AR Round Robin Cycle Equivalent R Round Robin Cycle

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 Time

Fig. 6. Waveform of an arbitration sequence in the presence of ABEs.

Each hardware accelerator issues a burst request at time t0 on the respective address read channel
(AR1, AR2, and AR3) to be routed to the PS through the OUT port in the FPGA-PS interface. At

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

Is Your Bus Arbiter Really Fair?
Restoring Fairness in AXI Interconnects for FPGA SoCs 000:11

time t1, the ABEs (ABE1, ABE2, and ABE3) latch the address requests coming from the respective
hardware accelerators, thus releasing the buses (AR1, AR2 and AR3) and allowing the hardware
accelerators to provide a new burst request. Since the size of the burst request coming from HWA2 is
the same of the nominal one, this request is directly routed to the output AReq2 channel without
modifications (rule R2). Conversely, since HWA1 and HWA3 provide requests of size 2S , ABE1 and
ABE3 issue to AReq1 and AReq3, respectively, partial burst requests with length S words (rule R2).

At time t2, the AXI Interconnect has in input three bursts requests of S words from ABE1, ABE2
and ABE3. Let us suppose that the first granted request is the one on AReq1. Hence, the first partial
burst request coming from HWA1 is granted and immediately latched on the AROUT channel at
time t3. At the same time, ABE1 generates the next partial burst request, which completes the
original data request of size 2S and will become available on the AReq1 channel at time t3. Next,
at time t4, the request on AReq2 is granted to the output port by the round-robin arbiter. Since
it has the nominal burst size, it can be routed as it is by ABE2. After that, a new nominal burst
request on the AR2 channel is provided to the AReq2 channel by ABE2. Then, similarly as for
the request generated by HWA1, the first chunk of the request issued by HWA3 is granted and
latched on the AROUT channel at time t5: this concludes the first round-robin cycle. The same
arbitration scheme is repeated until the addressing phases are completed. As the requests have been
granted by following a round-robin arbitration scheme with a fair burst granularity of S words, the
corresponding data are also transmitted back on the R1, R2, and R3 channels with a granularity of S
words (see Fig. 6 from time t6 on). This allows achieving a fair bandwidth redistribution for the
bus, with a consequent impact on the response times of the hardware accelerators — please refer to
Appendix 4.4 for further details.

4.2 Extra latency introduced by the ABE
Implementing the ABE in a HDL language allowed achieving high performance and optimizing
its area consumption. The ABE has been designed to leverage the parallelism offered by the AXI
protocol to introduce as less latency as possible. It analyzes AXI channels in parallel by defining
a specific VHDL process for each channel. Note that, as the ABE has to analyze the request for
transactions to identify their burst size, at least one cycle of latency is required to process the
request. Our implementation is able to perform the analysis of requests in the minimum time (one
cycle). Conversely, when managing the data channels, our implementation does not introduce
additional latency as (i) it directly connects the upstream and downstream data channels; and (ii)
monitors the data traffic to proactively perform splitting and merging tasks. Specifically, knowing
the nominal burst size of transactions, the ABE counts the number of words transmitted on data
channels and can hence be prepared to either split (by inserting the AXI-standard LAST signal on
the W channel) or merge (by removing LAST signals on the R channel) transactions one clock cycle
in advance.

Figure 7 reports three examples to illustrate the latency introduced by the ABE: the first two are
related to transactions issued without the ABE, and are used to explain the third example that refers
to the case in which the ABE is present. To simplify the figure, only 8-word write transactions are
considered (the same examples can be extended to other sizes and read transactions).
First of all, note that a 8-word write data request can be served via either (i) a single burst

transaction with size 8 words; or (ii) with eight one-word long transactions. These two options are
illustrated by Case 1 and Case 2 in Figure 7, respectively. The bus traffic on both the address (AW)
and data (W) channels is considered.

Case 1. In this case, a 8-word burst is issued by a hardware accelerator to the memory controller.
At time t1, the address burst request is accepted on the AW channel; hence, at the next clock cycle,
the hardware accelerator can start providing data on theW channel (time t2). Assuming (to simplify

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

000:12 Restuccia, et al.

CLK

8W

W W W W

W

W W W W

W W W

8W

W W W W

W W W W

AW

W

AW

AW

W

W

AWABE

Extra latency introduced by ABE

NO DATA

8W

W

Burst Req of 8 Words

Single Req one wordW Word of Data

Changing data

W W W W

W W W W

W W W W

W W W W

W W W W

Case 1

Case 2

Case 3

t0 t1 t2 t3 t5t4 Time

Fig. 7. Latency introduced by ABE to serve an 8-word write transaction.

the example) that the output port is always ready to accept data on the W channel, at time t4 all
the eight words have been transferred.

Case 2. In this case, the hardware accelerator still wants to transfer eight words of data, but
issuing eight single-word transactions. According to the AXI standard, each word of data on the W
channel has to be preceded by the corresponding address request on the AW channel. At time t1, the
first address request is accepted on the AW channel. Assuming that the output port is always ready
to accept data from the W channel, the hardware accelerator provides the first word of data at the
next clock cycle (time t2). Thanks to the parallelism of AXI (i.e., the presence of multiple channels),
in the same clock cycle the hardware accelerator can provide a new address request for the next
word of data on the AW channel, while also transmitting data on the W channel. Consequently, the
eight transactions complete in the same amount of clock cycles needed in Case 1.

Case 3. Here, the ABE is installed to mediate the traffic issued by the hardware accelerator
under analysis. The ABE is configured with a nominal burst size of length one word. As in Case 1,
the hardware accelerator issues a 8-word address burst request to the ABE on the AW channel at
time t1. The ABE receives the request and, in one clock cycle, is able to provide the first nominal
address burst request to the AWABE channel at time t2. This extra clock cycle corresponds to the
only latency introduced by the ABE. Indeed, at time t3, the hardware accelerator can issue the
first word of data in the data channel W (corresponding to the first nominal burst) and, since data
channels are not decoupled by ABE, data are accepted directly at the output port without any other
latency. At the same clock cycle, the ABE is ready to provide the next nominal address burst request
on the AWABE channel, and so on until the data transfer is completed. The transaction completes
at time t5, which is just one clock cycle after the completion of the transaction(s) in Cases 1 and 2.
This single-cycle latency is originated by a stage of the ABE that computes (and provides to the
output port) the next nominal address burst request. Note that this latency is not affected by the
size of the nominal burst, nor by the size of the address burst requests in input to the ABE.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

Is Your Bus Arbiter Really Fair?
Restoring Fairness in AXI Interconnects for FPGA SoCs 000:13

4.3 Limiting the number of outstanding transactions
As discussed in Section 2, the AXI standard supports multiple outstanding transactions by allowing
AXI masters modules to issue multiple reads or write address burst requests without waiting for
their corresponding completions. The AXI standard itself does not impose any limit on themaximum
number of outstanding transactions; however, in practical implementations of IPs, a maximum
number of outstanding transactions is typically configured. In general, the number of maximum
outstanding transactions depends on the specific IP implementation. Once a master module has
reached the maximum number of outstanding transactions, it must wait for the completion of one
pending transaction before issuing a new transaction. This practical limitation may be another
cause of unfair bandwidth allocation.
For instance, consider two hardware accelerators connected to the same Interconnect: HWA1

issuing 16-word burst transactions and HWA2 issuing 64-word burst transactions. Assume that the
maximum number of outstanding transactions is set to 2 for both hardware accelerators. Despite the
number of outstanding transactions is the same, the ones issued by HWA2 request four times more
data than the ones issued by HWA1. This means that HWA2 can issue four times more outstanding
data than HWA1. Note that the same would occur in the presence of ABEs without rule R6.

Now, consider the case in which ABE modules, configured with nominal burst sizes of 16 words,
are placed between each hardware accelerator and the Interconnect. In this scenario, the ABE will
fragment each 64-word address burst request issued by HWA2 into 4 ones, each consisting of 16-word
bursts. However, from the perspective of HWA2, only a single transaction has been issued. Therefore,
the ABE protecting HWA2 could potentially issue 4 · 2 = 8 outstanding 16-word transactions before
reaching its original limit (i.e., 2 outstanding 64-word transaction), while HWA1 can issue only two
16-word outstanding transactions. This difference may lead to an unfair bus bandwidth allocation,
as it is illustrated in the (simplified) waveform diagram reported in Figure 8.
At time t0, both HWA1 and HWA2 prepare their first address requests. One cycle later, the ABEs

propagate the address requests to their corresponding AReq channels. The first arbitration cycle
starts at time t1 and ends at t2. The Interconnect arbitrates the first 4 address requests in a fair way
up to time t3, at which all address requests issued by HWA1 have been served. At this time, having
already reached the limit of 2 outstanding transactions, HWA1 cannot issue further transactions.
From this point on, all address requests from HWA2 are propagated without suffering contention
up to time t4, when HWA1 receives back the data corresponding to its first address request and can
finally issue a new transaction. In this scenario, HWA1 issued only 2 transactions during the first
4 arbitration cycles, while HWA2 issued 6 transactions. Overall, this corresponds to an unfair bus
bandwidth allocation in which HWA1 and HWA2 are assigned the 25% and the 75% of the total bus
bandwidth, respectively.
The analysis presented in Section 3.2 can easily be extended to account for a set of hardware

accelerators with different number of outstanding transactions. Considering that each hardware
accelerator HWAi ∈ HWA has a burst size of Si and can issue Li outstanding transactions (on each
write and read channel), Equation (3) can be extended as follows:

Bi =
Si · Li∑

HWAj ∈HWA S j · Lj
. (4)

To cope with this phenomenon, the ABE limits the number of outstanding nominal transactions
to a configurable value L̂ (rule R6). This parameter is set as L̂ = minHWAi ∈HWA

⌊
Si · Li/β̂

⌋
. In this way,

all the hardware accelerators in the system can have at most the same amount of outstanding
data, independently of their number of outstanding transactions (and also of their burst size). This

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

000:14 Restuccia, et al.

CLK

16

64 64

16 16 16

16 16 16 16

AR1

ARout

AR Round Robin Cycle

NO DATA

S Burst Req of S Words

S S words of Data

Changing data

16 16 16 16

t1 t2 t3 t4

AR2

16

16AReq1

16 16 16 16 16 16 16 16 16

AReq2

16

16

Rout

16 16R1

16R2

16

Blocked due to
outstanding transactions limit

16

16 16 16

16 16

16 16 16

16 16

16

Timet0

Fig. 8. Waveforms of an arbitration sequence in the presence of ABEs.

feature is essential for complex designs that may include multiple hardware accelerators hardwired
with a different maximum number of outstanding transactions.

4.4 Response times with ABEs
As discussed in Section 3, hardware accelerators that issue requests with large bursts are privileged
in contending the bus bandwidth. When ABEs are installed, a fair bus bandwidth redistribution is
restored: this means that some hardware accelerators will experience larger response times with
respect to the case of a stock configuration of the bus, while others will experience shorter response
times. This section aims at briefly quantifying this phenomenon. Only the case of read requests is
addressed (the case of write requests follows analogously).
Example. To begin, consider as an example the same architecture described in Section 3 and the
corresponding waveform diagram in Figure 4. Assume that ABEs are not installed. Let HWA3 be the
hardware accelerator under analysis. For each Interconnect round-robin cycle on the address read
channels, in the worst-case scenario each 2S-word burst request issued by HWA3 can be preceded by
a 2S-word burst request issued by HWA1 and one S-word burst request issued by HWA2. Therefore,
the time needed for HWA3 to complete a request includes the time required for the data phases of
HWA1 and HWA2, i.e., it requires 2S + S + 2S = 5S clock cycles to retrieve 2S words of data (2S clock
cycles for the data phase of HWA1, S clock cycles for the data phase of HWA2, and 2S clock cycles for
its data phase). The same worst-case delay is suffered by burst requests issued by HWA1 (as it has
the same configuration of HWA3). Now, consider a request issued by HWA2. In the worst-case, the
request suffers the same delay of the ones issued by HWA1 and HWA3; however, note that it retrieves
just S words of data (instead of 2S). If 2S words of data are used to compare the delay suffered by
the three accelerators, HWA2 can experience a worst-case delay equal to 2 · (2S + 2S + S) = 10S to
retrieve the same data that HWA1 and HWA3 can get in a single request. Note that the per-word delay
of HWA2 is twice the one of HWA1 and HWA3.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

Is Your Bus Arbiter Really Fair?
Restoring Fairness in AXI Interconnects for FPGA SoCs 000:15

Now, consider the case in which ABEs are installed and the waveform diagram of Figure 6.
Requests with burst sizes larger than the nominal one are split. This means that, considering a
nominal burst size of S , each request coming from HWA1 and HWA3 is split into two requests. In the
worst-case scenario, both the sub-requests lose the arbitration in favor of a request issued by each
of the other two accelerators. Therefore, a 2S words burst request issued by HWA1 or HWA3 is served
with a worst-case delay equal to 2 · (S + S + S) + 1 = 6S + 1, where the term +1 accounts for the
additional clock cycle of latency introduced by the ABE as described in Section 4.2. Since HWA2 is
issuing burst requests S words long, two burst requests need to be issued to fetch 2S words of data.
In the worst-case scenario, both the requests lose the arbitration and are preceded by 2 sub-requests
S words long issued by HWA1 and HWA3, respectively, experiencing the same worst-case delay of
HWA1 and HWA3. Hence, in this case the per-word delay is the same for all the accelerators.
It is worth noting that the increase of the worst-case delay of burst requests issued by HWA1

and HWA3 does not merely correspond to a performance drop; rather, it should be seen as an effect
introduced by the fair bandwidth distribution. Overall, with the ABEs, the worst-case delay in
accessing a given amount of data is constant and does not depend on the structure of the interfering
transactions (i.e., their burst size).
Generalization. To generalize the analysis of the previous example, consider a case with N
hardware accelerators, with HWAi being the hardware accelerator under analysis. HWAi issues burst
requests with size βi , and each of them is split into

⌈
βi/β̂

⌉
nominal sub-requests by the ABE.

Each other hardware accelerator , HWAi can interfere with at most one nominal sub-request per
round-robin cycle, i.e., for a total of (N − 1) · β̂ clock cycles for each sub-request issued by HWAi .
Hence, the total worst-case delay suffered by HWAi to complete a burst request βi -word wide is
given by ⌈

βi/β̂
⌉
· (N − 1) · β̂ + 1.

Note that, thanks to the ABE, this delay is analytically independent of the burst sizes of the other
accelerators.

4.5 Hardware architecture of the ABE
The internal hardware architecture of the ABE is illustrated with a block diagram in Figure 9. The
ABE is implemented with five VHDL processes, each in charge of managing a corresponding AXI
channel. The processes operate in parallel and are sensitive to the rising edge of the system AXI
clock. This design choice allows keeping track of the whole AXI bus while preserving the intrinsic
parallelism of the AXI standard. Please also refer to Section 4 for the functionality of the ABE
discussed in the following.

The address read splitter process (ARP process in short) manages the AXI Address Read channel
(AR Channel). The process is in charge of splitting the address read burst requests RR coming from
the master module (i.e., a hardware accelerator) and provides the C sub-requests RR1 ,RR2 ,...,RRC to
the slave port. For each address burst request received, the numberC of sub-requests into which the
request is split is sent to the read merger process (RP process in short). The ARP process includes
a counter to keep track of the current number of outstanding transactions (i.e., the ones not yet
completed) of the equalized module, and decouples the channel when the maximum number of
outstanding transactions set by the user is reached. Such a counter is incremented when a sub-
request is accepted at the corresponding interconnect slave interface, and is decremented when an
outstanding sub-request completes (a signal is transmitted from the RP process). The ARP process
is implemented as a finite-state machine.
The read data merger process (RP process in short) is in charge of merging the incoming data

bursts DR1 ,DR2 ,...,DRC coming from the AXI interconnect to a single request DR directed to the

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

000:16 Restuccia, et al.

HW
Accel. M

 AXI
Interc.S

Address read splitter (ARP)
finite state machine

Address Read
channel (AR)

Read merger (RP)

Address write splitter (AWP)
finite state machine

DR1,DR2, … ,DRC

KW1,KW2, … ,KWC

DW1,DW2, … ,DWC

RR1,RR2, … ,RRC

RW1,RW2, … ,RWC

RR

DR

Read channel
 (R)

KW

Write response
channel (B)

Address Write
channel (AW)

Write channel
 (W)

RW

DW

RLAST
manager

Write response merger (BP)

BVALID
manager

ABE

Write splitter (WP)

WLAST
manager

Fig. 9. Internal hardware architecture of the ABE.

hardware accelerator involved in the transaction. It operates in a proactive way (1 clock cycle in
advance) on the LAST signal of the AXI Read channel (R channel), while implementing a pass-
through logic for the other signals. It uses the information provided by the ARP process to resize
the incoming burst data to a single-data response. The RP process acknowledges the ARP process
when an outstanding read sub-request has been correctly served.

The address write requests splitter process (AWP process in short) implements the same behavior
of the ARP process, but on write burst requests, hence operating on the AXI Address Write channel
(AW channel). The number of sub-requests C into which an address write request RW is split is
communicated to the write splitter process (WP process in short) and to the write response merger
process (BP process in short). As for the ARP process, the AWP includes a counter for keeping track
of the number of outstanding transactions, which is incremented when a sub-request is accepted,
and decremented when an acknowledge signal related to completed sub-requests is received from
the BP process. The AWP process is also implemented as a finite-state machine.
The WP process manages the AXI Write channel (W channel) and is in charge of splitting the

outgoing write dataDW into theC chunksDW1 ,DW2 ,...,DWC . The process operates in a proactive way
on the WLAST signal, using the information provided by the the AWP process, while implementing
a pass-through logic for the other signals on the W channel.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

Is Your Bus Arbiter Really Fair?
Restoring Fairness in AXI Interconnects for FPGA SoCs 000:17

The BP process is in charge of merging the incoming write response coming from the data
producer and directed to the hardware accelerator of interest. It operates on the AXI B channel,
merging write responses using the information provided by the AWP process. Furthermore, each
time the process receives a write sub-response (meaning that an outstanding write sub-request is
completed) it acknowledges the AWP process.

5 EXPERIMENTAL RESULTS
This section presents the experimental evaluation that has been conducted to assess the effectiveness
of the ABE in restoring a fair bus bandwidth allocation. Two experimental campaigns have been
performed. The first one makes use of traffic generators (DMA IPs) that aim at recreating a realistic
scenario in which a set of high-performance hardware IPs (e.g., accelerators) concurrently access a
shared memory through an AXI Interconnect, as illustrated in Figure 5. The second one is a case
study. Furthermore, the resource consumption of the ABE has been quantified.

5.1 Tests with DMAs as traffic generators

Experimental setup. The experimental setup adopted in this work has been implemented both
on the Xilinx Zynq Z-7020 SoC using the Digilent PYNQ-Z1 board, and on the Zynq UltraScale+
ZU9EG SoC using the ZCU102 evaluation kit. The results obtained on the two platforms were
essentially the same. Therefore, due to space reasons, only those obtained on the Xilinx Zynq
Z-7020 are reported in the paper. The corresponding designs have been developed with Xilinx
Vivado 2018.2, using the state-of-the-art Xilinx IPs.

The setup employs a set of AXI DMA modules deployed on the FPGA, each managed by a
corresponding software task running in the PS on top of the FreeRTOS operating system. The
AXI DMA modules have been chosen because they provide high-bandwidth memory access and
are used in many designs to feed and receive data from AXI4-Stream peripherals. In fact, many
relevant Xilinx library IPs like FFT [22], FIR filter [23], and Convolution Encoder [21] make use of
the AXI4-Stream interface and require the support of an AXI DMA to access the system memory.
Note that the AXI DMA is capable of transmitting and receiving the maximum amount of data per
clock cycle (one word) on each channel. For this reason, the AXI DMAs can generate the maximum
bus load, and can hence be used to stress the bus under worst-case scenarios.
The test setup comprises three AXI DMA modules (D1, D2, and D3), each configured by their

software task to perform the copy of a memory buffer located in the system DRAM. As in Section 3,
D2 is the DMA under test, configured to perform a memory transfer of 128 KB, while D1 and D3
manage memory transfers of 4 MB. Each DMA is attached to an ABE, which is in turn connected
to an AXI Interconnect as shown in Figure 5. The AXI Interconnect is connected to the FPGA-PS
Interface through an AXI port to the DRAM controller located in the PS. This configuration is
tested against the case of a stock configuration, i.e., when the DMAs are directly connected to the
AXI Interconnect as shown in Figure 3. The Xilinx DMAs are closed-source IPs and their maximum
number of outstanding transactions is not documented: nevertheless, by analyzing their behavior,
we empirically found that this parameters is set to 6.
Effectiveness of ABEs. The experimental setup described above is the same used to perform the
experiments reported in Section 3. The same experiment has been repeated under the configuration
in which the ABEs are installed, varying the burst size of two DMAs (D1 and D3) and keeping
the size of the bursts issued by D2 constant and equal to 16 words. Both the experiments have
been repeated for 10000 runs for each configuration, collecting the response times for the DMA
under analysis (D2) and for the interfering DMAs (D1 and D3). Thanks to the predictability of the
hardware platform, the variability of the measurements resulted very low (in the order of the 1%),

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

000:18 Restuccia, et al.

16-16-16 32-16-32 64-16-64 128-16-128 256-16-256
0

5

10

1.02 1.65
2.97

5.6

10.87

1.04 1.04 1.05 1.05 1.04Re
sp
on

se
tim

es
[m

s]
(a) Device under test

16-16-16 32-16-32 64-16-64 128-16-128 256-16-256
0

10

20

Re
sp
on

se
tim

es
[m

s]

(b) Interfering

Without ABEs With ABEs

Fig. 10. Response times for the case study.

16-16-16 32-16-32 64-16-64 128-16-128 256-16-256
0

10

20

30

Ba
nd

w
id
th

of
D
2
(%
)

Without ABEs With ABEs fair allocation

Fig. 11. Percentage of the total bandwidth used by D2 as a function of the burst size of D1 and D3. The labels
below each pair of bars indicate the burst size of D1, D2 and D3, respectively.

therefore only the maximum times are reported in the paper. Figure 10 reports the response times
of the three DMAs (the one under test in inset (a), and the others in inset (b)) as a function of their
configuration. Both the results with the ABEs (blue bars) and without (red bars) are reported. When
the ABEs are not installed, the response time of D2 (under test) increases with the burst size of
the interfering DMAs, reaching a maximum of 10.87 ms when D1 and D3 issue 256-word bursts.
In the latter case, the response time is more than 10 times than the one under a fair bandwidth
allocation. Conversely, when the ABEs are installed, the response time of D2 remains the same,
interdependently of the burst size of the interfering DMAsD1 andD3 (see the blue bars in Fig. 10(a)).
Figure 10(b) reports the response times of the interfering DMAs D1 and D3. Since these two DMAs

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

Is Your Bus Arbiter Really Fair?
Restoring Fairness in AXI Interconnects for FPGA SoCs 000:19

have the same functionality and configuration, under our experimental setting their response times
never differ: hence, a single graph is reported. It is worth observing that, since D1 and D3 move an
amount of data one order of magnitude larger than the one moved by D2, the interference suffered
by D1 and D3 due to D2 is limited. Therefore, their response times are almost the same with and
without ABEs. This result also confirms that the latency introduced by the ABE is marginal.

The corresponding bus bandwidths of the DMA under test D2 are reported in Figure 11. As it can
be noted from the graph, when ABEs are installed, the bandwidth of D2 matches the theoretical
one under a fair allocation, independently of the size of the bursts issued by the other two DMAs.

5.2 Case study
The effectiveness of the ABE has also been validated by means of a practical application comprising
two common IPs from the Xilinx IP library: the Fast Fourier Transform (FFT) accelerator IP, and a
Finite Impulse Response (FIR) filter IP synthesized by the Xilinx FIR Compiler. The case study is
completed by a DMA (as those mentioned in the previous section) that generates interference on the
bus. The FIR filter and the FFT accelerator issue burst transactions of 16 and 64 words, respectively.
The DMA is configured to issue burst transactions of 256 words. Each execution instance of the FIR
filter processes 256 KB of samples, while each execution instance of the FFT accelerator processes
a window of 64 K sample words of 32 bits, resulting in a total amount of 256 KB of data. Finally,
the DMA moves memory blocks of 1 MB for each execution instance. Note that this experiment
confirms the seamless applicability of the ABE to real-world IPs.

In this experimental evaluation, all hardware modules have been periodically and synchronously
activated with the same period of 100 ms for 10000 runs. Figure 12 reports the longest observed
response times under three configurations: (i) each hardware module running alone (i.e., the other
two are off); (ii) the three hardware modules running together (i.e., they experience contention
on the bus) without ABEs; and (iii) the same of (ii) but with ABEs. Average and minimum values
are not reported as they differ from the maximum values by less than 1%. From a profiling of the
behavior of the DMA and the FIR modules when running alone, it emerged that they move one
word of data at almost every clock cycle. Their response times in isolation are consistent with this
observation: indeed by dividing the amount of data moved by the modules by their response time
the obtained memory bandwidth is very close to the one documented for the target platform (about
380 MB/s). Conversely, the FFT interleaves memory transactions with computation stages, and
when running alone is able to utilize about half of the bus bandwidth (256 KB/1.32 ms ≃ 194 MB/s).

When running together all the three modules, the FIR filter exhibits the largest response time, as
it is penalized by the fact that it issues burst transactions with the smallest size (with respect to the
other two modules). Despite being the more data-eager module and the one that when running
alone has the largest response time, the DMA has the shortest response time when running together
with the other modules. This is because it issues burst transactions with the largest size. With
the ABEs is then possible to restore a fair bandwidth redistribution. First note that the response
times with the ABEs follow the same order of the response times when the modules run alone.
Being the one with the shortest response time, the FIR module always experiences contention
generated by the other two modules. Dividing the amount of data moved by the FIR module (256
KB) by the corresponding response time (2.07) it results that it uses 1/3 of the total bandwidth
(about 124 MB/s), which corresponds to the expected fair share. A similar analysis can be performed
for the DMA, but taking into account that the amount of contention varies over time, i.e., up to
2.07 ms it receives interference from both the FFT and the FIR modules, from 2.07 ms to 3.27 it
receives interference from the FFT module only, and finally it is running alone until it completes.
An accurate timing analysis of the modules is omitted due to lack of space.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

000:20 Restuccia, et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

FIR

FFT

DMA

0.68

1.32

2.63

4.59

4.3

3.46

2.07

3.27

4.58

Response times [ms]

Alone Together without ABEs Together with ABEs

Fig. 12. Comparison of the response times for the case study.

5.3 Resource consumption
The ABE has been packaged as an IP, making easier to integrate it in realistic designs. Table 2 reports
the logical resources required by the implementation of an ABE on two state-of-the-art FPGA
SoCs, namely the Xilinx Zynq Z-7020 and the Xilinx Zynq ZU9EG UltraScale+. The percentage of
resources required by the ABE (with respect to the total numbers available in the platform) is also
reported in the table. Furthermore, Table 3 reports the resource consumption of the ABEs used for
the case study presented in the previous section, compared with the resource consumption of the
whole AXI bus infrastructure deployed on the FPGA fabric and the adopted Xilinx IPs. The results
are the same on both the ZYNQ-Z7020 and ZYNQ Ultrascale+ platforms.
The tested implementations have been synthesized using Xilinx Vivado 2018.2. As it can be

observed from the tables, the resource utilization of ABE is relatively limited, not only compared
with the total amount of resource available on the evaluated platforms, but also compared to the
AXI bus programmable logic and the IPs used in the case study.

Table 2. Resource utilization of an ABE.

SoC Resources
LUT FF BRAM DSP

Z-7020 1131/53200 (2.1%) 582/106400 (0.5%) 0/140 0/220
ZU9EG 1167/274080 (0.4%) 486/274080 (0.2%) 0/912 0/2520

Table 3. Resource consumption for all the components in programmable logic used for the case study of
Section 5.2 (ZYNQ Z-7020 platform) .

ZYNQ Z-7020 Resources
LUT FF BRAM DSP

Xilinx IPs.
DMA + FIR + FFT

10935/53200
(20.55%)

15006/106400
(14.1%)

85/140
(60.7%)

51/220
(23.2%)

ABEs (3) 3393/53200
(6.3%)

1746/106400
(1.6%) 0/140 0/220

AXI Bus in FPGA Fabric 16163/53200
(30.4%)

19129/106400
(18.0%) 0/140 0/220

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

Is Your Bus Arbiter Really Fair?
Restoring Fairness in AXI Interconnects for FPGA SoCs 000:21

6 RELATEDWORK
The dominant architectural solutions for implementing on-chip communication infrastructures
for systems on chip (SoC) platforms are mostly based on traditional transaction-based buses or
packet-based networks on chip (NoC) [2, 15]. Many research efforts have been dedicated to enhance
predictability and improve the performance using NoC architectures [7–9].

In a bus-based SoC architecture, the processing elements are generally bus master units capable
of initiating read and write transactions directed to slave memory modules and I/O peripherals.
A wide range of schemes to arbitrate master’s requests can be conceived, based on well know
paradigms like Fixed Priority, Round Robin, and Time-Division Multiple Access (TDMA). In the
research community, many efforts have been dedicated to improve throughput and predictability of
on-chip interconnect with innovative solutions. Poletti et al. [14] presented a performance analysis
of arbitration policies for SoCs platforms. Richardson et al. [15] and Burgio et al. [6] employed
TDMA-based schemes with dynamic timeslot allocation to guarantee system predictability and
provide good average-case performances. Shah et al. [16] proposed an arbitration scheme combining
static priority based arbitration with TDMA. In [4] and [5] the authors propose a predictable bus
arbitration scheme designed for multi-core architectures. Lahiri et al. [10] and Lin et al. [11]
employed a statistical approach to solve the contention problem, in which the master arbitration
is resolved using a ticket-based random selection. Yuan et al. [26] and Sousa et al. [17] presented
reconfigurable bus arbiters employing different arbitration schemes depending on the application.
However, despite considerable research efforts, the AMBA AXI bus architecture remains the

dominant solution used in FPGA and FPGA-SoC platforms to leverage the availability of IP cores
compliant to the AXI standard. The AXI specification [1] does not mandate any specific arbitration
protocol for the Interconnect which is left to the implementer. In the Xilinx’s ecosystem, the
interconnect functionalities are implemented by the AXI Interconnect [20] and the more recent
SmartConnect [24] IPs. Both IPs implement the Round Robin arbitration policy but ignore the burst
size while accepting incoming requests. As shown in this paper, this behavior can result in unfair
bandwidth allocation when considering multiple masters with different burst sizes.

7 CONCLUSIONS
This paper showed that round-robin arbiters, quite common in state-of-the-art AXI Interconnect
used in SoC FPGAs, can lead to a completely unfair bandwidth allocation whenever transactions
with heterogeneous burst sizes are issued. Experimental evaluations on multiple state-of-the-art
platforms highlighted that the memory bandwidth of a victim hardware accelerator can drop to 9%
of the bandwidth expected under a fair allocation. In the general case including an arbitrary number
of hardware accelerator, the bus bandwidth of a victim hardware accelerator can be arbitrarily
dropped to 0%. The AXI Bus Equalizer (ABE) has been introduced to restore fairness in the bus
arbitration. The ABE introduces just one cycle of additional latency, independently of the the burst
size of the transactions. The effectiveness of the ABE has been demonstrated with experimental
results targeting both traffic generators and hardware accelerators from the Xilinx’s IP library. The
impact on resource consumption of ABEs has also found to be very marginal (less than the 0.5% on
a Zynq Ultrascale+). Future work will aim at realizing a powerful interconnect module that does
not suffer of the issue identified in this work, implementing more advanced arbitration policies to
better control the memory traffic.

REFERENCES
[1] ARM 2012. AMBA AXI and ACE Protocol Specification. ARM.
[2] Luca Benini and Giovanni De Micheli. 2002. Networks on chips: A new SoC paradigm. IEEE Computer 35, 1 (2002),

70–78.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

000:22 Restuccia, et al.

[3] Alessandro Biondi, Alessio Balsini, Marco Pagani, Enrico Rossi, Mauro Marinoni, and Giorgio Buttazzo. 2016. A
Framework for Supporting Real-Time Applications on Dynamic Reconfigurable FPGAs. In Proceedings of the IEEE
Real-Time Systems Symposium (RTSS).

[4] Roman Bourgade, Christine Rochange, Marianne De Michiel, and Pascal Sainrat. 2010. MBBA: a multi-bandwidth bus
arbiter for hard real-time. In 5th IntâĂŹl Conference on Embedded and Multimedia Computing (EMC).

[5] Roman Bourgade, Christine Rochange, and Pascal Sainrat. 2011. Predictable bus arbitration schemes for heterogeneous
time-critical workloads running on multicore processors. In Emerging Technologies & Factory Automation (ETFA), 2011
IEEE 16th Conference on. IEEE, 1–4.

[6] Paolo Burgio, Martino Ruggiero, Francesco Esposito, Mauro Marinoni, Giorgio Buttazzo, and Luca Benini. 2010.
Adaptive TDMA bus allocation and elastic scheduling: A unified approach for enhancing robustness in multi-core RT
systems. In Computer Design (ICCD), 2010 IEEE International Conference on. IEEE, 187–194.

[7] Jason Cong, Michael Gill, Yuchen Hao, Glenn Reinman, and Bo Yuan. 2015. On-chip interconnection network for
accelerator-rich architectures. In Proceedings of the 52nd Annual Design Automation Conference. ACM, 8.

[8] Abbas Eslami Kiasari, Zhonghai Lu, and Axel Jantsch. 2013. An analytical latency model for networks-on-chip. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 21, 1 (2013), 113–123.

[9] Akash Kumar, Andreas Hansson, Jos Huisken, and Henk Corporaal. 2007. An FPGA design flow for reconfigurable
network-based multi-processor systems on chip. In 2007 Design, Automation & Test in Europe Conference & Exhibition.
IEEE, 1–6.

[10] Kanishka Lahiri, Anand Raghunathan, and Ganesh Lakshminarayana. 2006. The LOTTERYBUS on-chip communication
architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 14, 6 (2006), 596–608.

[11] Bu-Ching Lin, Geeng-Wei Lee, Juinn-Dar Huang, and Jing-Yang Jou. 2007. A precise bandwidth control arbitration
algorithm for hard real-time SoC buses. In Proceedings of the 2007 Asia and South Pacific Design Automation Conference.
IEEE Computer Society, 165–170.

[12] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis, Yu Ting Chen, Hsuan Hsiao,
Stephen Brown, Fabrizio Ferrandi, et al. 2016. A survey and evaluation of FPGA high-level synthesis tools. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems 35, 10 (2016), 1591–1604.

[13] Marco Pagani, Enrico Rossi, Alessandro Biondi, Mauro Marinoni, Giuseppe Lipari, and Giorgio Buttazzo. 2019. A
Bandwidth Reservation Mechanism for AXI-Based Hardware Accelerators on FPGAs. In 31st Euromicro Conference
on Real-Time Systems (ECRTS 2019) (Leibniz International Proceedings in Informatics (LIPIcs)), Sophie Quinton (Ed.),
Vol. 133. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 24:1–24:24. https://doi.org/10.4230/
LIPIcs.ECRTS.2019.24

[14] Francesco Poletti, Davide Bertozzi, Luca Benini, and Alessandro Bogliolo. 2003. Performance analysis of arbitration
policies for SoC communication architectures. Design Automation for Embedded Systems 8, 2-3 (2003), 189–210.

[15] Thomas D Richardson, Chrysostomos Nicopoulos, Dongkook Park, Vijaykrishnan Narayanan, Yuan Xie, Chita Das,
and Vijay Degalahal. 2006. A hybrid SoC interconnect with dynamic TDMA-based transaction-less buses and on-chip
networks. In VLSI Design, 2006. Held jointly with 5th International Conference on Embedded Systems and Design., 19th
International Conference on. IEEE, 8–pp.

[16] Hardik Shah, Andreas Raabe, and Alois Knoll. 2011. Priority division: A high-speed shared-memory bus arbitration
with bounded latency. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011. IEEE, 1–4.

[17] Éricles Sousa, Deepak Gangadharan, Frank Hannig, and Juergen Teich. 2014. Runtime reconfigurable bus arbitration for
concurrent applications on heterogeneous MPSoC architectures. In Digital System Design (DSD), 2014 17th Euromicro
Conference on. IEEE, 74–81.

[18] Xilinx 2016. Zynq-7000 All Programmable SoC - Reference Manual. Xilinx. UG585.
[19] Xilinx 2017. Zynq UltraScale+ Device - Reference Manual. Xilinx. UG1085.
[20] Xilinx 2018. AXI Interconnect, LogiCORE IP Product Guide. Xilinx. PG059.
[21] Xilinx 2018. Convolutional Encoder, LogiCORE IP Product Guide. Xilinx. PG026.
[22] Xilinx 2018. Fast Fourier Transform, LogiCORE IP Product Guide. Xilinx. PG109.
[23] Xilinx 2018. FIR Compiler, LogiCORE IP Product Guide. Xilinx. PG149.
[24] Xilinx 2018. SmartConnect, LogiCORE IP Product Guide. Xilinx. PG247.
[25] Xilinx 2018. Versal: Adaptive Compute Acceleration Platform. Xilinx. WP505.
[26] Ching-Chien Yuan, Yu-Jung Huang, Shih-Jhe Lin, and Kai-hsiang Huang. 2008. A reconfigurable arbiter for SOC

applications. In Circuits and Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on. IEEE, 713–716.
[27] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. 2016. Memory bandwidth management for

efficient performance isolation in multi-core platforms. IEEE Trans. Comput. 65, 2 (2016), 562–576.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2019.

https://doi.org/10.4230/LIPIcs.ECRTS.2019.24
https://doi.org/10.4230/LIPIcs.ECRTS.2019.24

	Abstract
	1 Introduction
	2 Essential Background
	3 Problem Description
	3.1 In-depth analysis
	3.2 Analytical characterization

	4 Proposed Solution
	4.1 Example: the ABE in action
	4.2 Extra latency introduced by the ABE
	4.3 Limiting the number of outstanding transactions
	4.4 Response times with ABEs
	4.5 Hardware architecture of the ABE

	5 Experimental Results
	5.1 Tests with DMAs as traffic generators
	5.2 Case study
	5.3 Resource consumption

	6 Related Work
	7 Conclusions
	References

