
FLORA: FLoorplan Optimizer for Reconfigurable Areas in
FPGAs

BIRUK B. SEYOUM, Scuola Superiore Sant’Anna
ALESSANDRO BIONDI, Scuola Superiore Sant’Anna
GIORGIO C. BUTTAZZO, Scuola Superiore Sant’Anna

Floorplanning is a mandatory step in the design of hardware accelerators for FPGA platforms, especially when

adopting dynamic partial reconfiguration (DPR). This paper presents FLORA, an automated floorplanner based

on optimization via Mixed-Integer Linear Programming (MILP). The floorplanning problem is solved by means

of a novel fine-grained modeling strategy of FPGA resources. Furthermore, differently from other proposals,

our approach takes into account several realistic Partial Reconfiguration (PR) floorplanning constraints on

FPGAs. FLORA was compared against state-of-the-art floorplanners by means of benchmark suites, showing

that it is capable of providing better performance in terms of resource consumption, maximum inter-region,

wire-length, and running time required to produce the solutions. Finally, FLORA was utilized to generate

placements for a partially-reconfigurable video processing engine that was implemented on a Xilinx Zynq-7020.

CCS Concepts: • Computer systems organization → Reconfigurable computing; Heterogeneous (hybrid)
systems; • Hardware→ Reconfigurable logic applications.

Additional Key Words and Phrases: FPGA, Heterogenous SoC, Floorplanning, partial-reconfiguration, dynamic

reconfiguration, MILP

ACM Reference Format:

Biruk B. Seyoum, Alessandro Biondi, and Giorgio C. Buttazzo. 2019. FLORA: FLoorplan Optimizer for Recon-

figurable Areas in FPGAs. 1, 1 (October 2019), 20 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
System-on-chips (SoC) based on field-programmable gate arrays (FPGA) are promising platforms

to address the needs of modern cyber-physical systems, offering the possibility to deploy high-

performance and energy-efficient hardware accelerators onto the FPGA fabric. In addition, modern

FPGAs come with a very interesting feature, named dynamic partial reconfiguration (DPR). With

DPR, it is possible to dynamically reconfigure a portion of the FPGA area while the modules

programmed on the rest of the area continue to operate. This feature opens a new dimension in

resource management for FPGAs and, similarly to multitasking for classical processors, it allows

virtualizing the available area by interleaving the configuration of multiple hardware modules that

would not fit in the available area under a static allocation [3].

Authors’ addresses: Biruk B. Seyoum, b.seyoum@santannapisa.it, Scuola Superiore Sant’Anna, Via G. Moruzzi, 1, Pisa,

Pisa, 56124; Alessandro Biondi, al.biondi@santannapisa.it, Scuola Superiore Sant’Anna, Via G. Moruzzi, 1, Pisa, Pisa, 56124;

Giorgio C. Buttazzo, g.buttazzo@santannapisa.it, Scuola Superiore Sant’Anna, Via G. Moruzzi, 1, Pisa, Pisa, 56124.

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2019.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

XXXX-XXXX/2019/10-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: October 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Biruk B. Seyoum, Alessandro Biondi, and Giorgio C. Buttazzo

However, to properly exploit the power of FPGA-based SoCs, today’s technologies still require a

considerable expertise with hardware design and, with respect to software development, involve

complex design flows in which some steps must be manually performed. Despite FPGA vendors,

such as Xilinx, are pushing for improving the programmability of FPGAs, e.g., by means of high-

level synthesis (HLS) and tools such as SoC Accel, there are still some design steps that do not

dispose of proper automated tools to perform the corresponding tasks.

In particular, consider the design flow under DPR. The first stage corresponds to the synthesis of

the behavioral description of hardware modules (written in hardware description languages such

as Verilog or VHDL, or obtained via HLS), which are converted into gate-level net-lists. The second

stage consists of floor-planning, i.e., the geometrical placement within the FPGA fabric of regions

in which the net-lists will be implemented. Finally, the last stage requires the implementation (and

the corresponding routing) of the net-lists within the regions selected in the previous stage.

Unfortunately, the floorplanning requires the manual intervention of the designer, which has

to be experienced with FPGAs. The floorplanning for partial reconfiguration (PR) is even more

complex than the standard floorplanning for static areas, as it involves generating placements that

must also adhere to an additional set of non-trivial PR-related constraints [13]. Also, the decisions

made during floor-planning may severely impact resource utilization and performance. To achieve

a fully-automated design flow for FPGAs, hence enhancing their programmability, automated

solutions to perform the floor-planning are required.

Contribution. This paper aims at filling this gap in the design flow for partial reconfiguration

by proposing FLORA, an automated floor-planner based on optimization via Mixed-Integer Lin-

ear Programming (MILP). Differently from previous proposals, the proposed approach adopts a

novel fine-grained modeling of FPGA resources, taking into account several realistic technological

constraints mandated by commercial FPGA design tools. FLORA has been tested on platforms by

Xilinx using a synthetic benchmark suite and its performance has been compared with other two

state-of-the-art floorplanners.

Paper Structure. The remainder of this paper is organized as follows. Section 2 provides an

analysis of the state-of-the-art based on a categorization of previously-proposed floorplanners

for PR. Section 3 presents the adopted FPGA model with some background analysis. Section 4

provides a systematic definition of the floorplanning problem. The proposed MILP formulation

of the floorplanning problem, the definitions of the constraints, and the objective function are

presented in Section 5. Section 6 reports the experimental results. Finally, Section 7 concludes the

paper and discusses possible future work.

2 RELATEDWORK
Over the years, several authors proposed different FPGA floor-planners for partial reconfiguration.

Earlier works [12, 16] focused on floor-planning by considering only a single type of resource

(mostly CLBs), while later works [1, 6, 15] started to consider different types of resources (CLBs,

BRAMs, DSPs) with a uniform layout on the FPGA fabric. Both of these approaches considered

a simplified model of the device and therefore they would not be suitable for real-world FPGA

families, which consist of heterogeneous resources with a non-uniform distribution. Furthermore,

with the new generations of FPGA families, the requirements for DPR became more complex. This

section only focuses on reviewing the works that targeted heterogeneous resources distributed in a

non-uniform manner.

The approaches proposed in the literature can be differentiated by those that apply a direct
representation of the FPGA fabric, and those that apply an indirect representation.

, Vol. 1, No. 1, Article . Publication date: October 2019.

FLORA: FLoorplan Optimizer for Reconfigurable Areas in FPGAs 3

Direct representation. Few works adopted a direct representation of the solution space for their

floor-planning algorithm [10, 14]. Among the solutions that do not use heuristics and optimization,

Vipin et al. [14] proposed an iterative algorithm defining each tile of resources as a kernel. Their

approach uses primary information about the types and locations of each kernel, and prioritizes

regions based on the type and number of their resource requirement. Other authors [10] achieved

improvements on the quality of the solution obtained by this approach.

Specifically, Rabozzi et al. [10] proposed two algorithms, (HO) and (O), based on a MILP formu-

lation. The first algorithm (HO) improves the quality of sub-optimal solutions of other heuristic

approaches, such as [5]. The second algorithm (O) directly encodes the floor-planning problem

as a MILP formulation. Similar to [14], the authors adopted a strategy for reducing the minimum

reconfigurable unit into tiles. (HO) is dependent on the solution of other approaches while (O)

is capable of exploring the whole solution space. As the problem instance gets harder (higher

utilization and higher number of reconfigurable regions), (O) was reported [10] as being very slow

to even find a feasible solution and it had to be initialized with a sub-optimal solution of other

algorithms. A key characteristic of [10] is that the authors partitioned the FPGA fabric into abstract

rectangles called portions. This reduced the solution space to be explored at the expense of reducing

the precision of the formulation.

The solution proposed in this paper strongly differs from the one in [10] as (i) it uses a more

fine-grained modeling strategy of the FPGA fabric and (ii) it supports more realistic (and updated

with respect to the today’s FPGA technology) constraints mandated by synthesis tools for partial

reconfiguration. Furthermore, as it will be detailed in Section 6, our solution significantly improves

on the performance of [10].

Indirect representation. Indirect representations of the FPGA fabric were proposed by using

different methods, such as slicing trees, sequence pairs [5], and binary trees, while other authors

constructed different types of higher-level abstract structures to characterize the distribution of

resources on the FPGA area [8, 9, 11]. In a follow up work [9, 11], Rabozzi et al. proposed an

improvement to their earlier work, using again an MILP optimization but this time defining an

abstract structure called conflict graph to describe the feasible placements for all reconfigurable

regions and the conflicts between them. This approach improved the results achieved by (HO) and

(O). The same authors [9] tried to improve their work by employing a similar concept of conflict

graph and replacing the MILP optimization with genetic algorithms. Nguyen et al. [8] proposed a

floorplanner where a biparitioning heuristic is used to find a feasible placement. Similarly to [9, 11],

their algorithm first iteratively lists all the possible placements for each region on the FPGA fabric

and constructs a graph based on these placements.

Unfortunately, the approaches in [8, 9, 11] suffer of a crucial shortcoming when used in floor-

planning for partial reconfiguration: the resources required by each reconfigurable region must be
known in advance to generate the indirect representation (e.g., the conflict graph in [9, 11]) before

performing the actual optimization. This requirement may not be suitable for all cases in which

the amount of resources within each reconfigurable region must be computed at the stage of

optimization. For instance, if floorplanning optimization is jointly considered with a partitioning

phase to assign reconfigurable modules to reconfigurable regions, such as in [4], the resource

requirement of the regions is not known a-priori as it depends on the reconfigurable modules they

host. That is, each reconfigurable region must dispose of enough resources to host all hardware

modules assigned to it, which are unknown before starting the optimization. Note that a two-stage

approach that first partitions the modules into a set of reconfigurable regions, and then performs

the floorplanning, may lead to sub-optimal solutions.

For this reason, this work focuses on a direct representation of the FPGA fabric.

, Vol. 1, No. 1, Article . Publication date: October 2019.

4 Biruk B. Seyoum, Alessandro Biondi, and Giorgio C. Buttazzo

3 BACKGROUND ANDMODELING
This section briefly describes the general architecture of FPGAs, together with a set of technological

constraints related to floor-planning for partial reconfiguration, and the corresponding model

adopted in this paper. This work is based on the 7-series Virtex and Zynq FPGA families from

Xilinx, but can easily be adapted for older FPGA families by disabling some of the constraints

related to modern FPGA families

3.1 FPGA architecture and technological constraints
FPGAs are characterized by heterogeneous resources distributed in a non-uniform manner across

the fabric. The configurable fabric of Xilinx FPGAs is divided into quadrants named clock regions. As
it is illustrated in Fig. 1(a), each clock region includes columns of different configurable resources,

such as CLBs, BRAMs, or DSPs.

A single column in a clock region is named tile and contains resources of the same type. The

number of resources in a tile varies depending on the FPGA family. For example, in the Virtex 7

family FPGAs, a CLB tile contains 50 CLBs, while BRAM and DSP tiles contain 10 BRAMs and 20

DSPs each, respectively.

Xilinx FPGAs, in particular 7-series devices, also contain specific tiles denoted as interconnect
tiles, which serve to realize routing. These tiles are placed back-to-back in groups of two as shown

in Fig. 1(a) (black boxes). Finally, the configurable fabric is also characterized by a central clock

column and by forbidden regions (such as clock buffers).

The problem of floorplanning for partial reconfiguration consists in geometrically placing re-
configurable regions (RR) within the total area available on the fabric. Each RR can host multiple

hardware modules (one at a time). Note that the placement of RRs cannot be arbitrary, as Xilinx

tools pose the following constraints:

• RRs must be rectangular;

• the vertical boundaries of each RRs cannot be placed between pairs of back-to-back intercon-

nect tiles;

• forbidden regions cannot be included in RRs; and

• the horizontal boundaries of each RR shall be aligned to the boundary of a tile (i.e., the height

of RRs spans a full clock-region) to improve the design performance.
1

The solution proposed in this paper is able to hande all these constraints.

Note that, as shown in Fig. 1(a), the central clock column of Xilinx FPGAs divides the FPGA into

left and right regions. Since clock regions do not pose particular constraints for placing the vertical

boundaries of RRs, it is convenient to fuse each pair of horizontally adjacent clock regions into a

single one, which is denoted as fused clock region in Fig. 1(a). To simplify terminology, from now

on fused clock regions will be simply denoted by clock regions.

3.2 Model
The FPGA area is identified with a discrete Cartesian coordinate system, placing the origin at the

bottom-left corner. Each unit on the x-axis denotes a line that separates columns of resources (CLB,

BRAM, DSP, interconnects, central clock column), while each unit on the y-axis represents a line

that separates clock regions (see Fig. 1(a)). Note that a different granularity is adopted between

1
This constraint is driven by combining a less restrictive Xilinx PR constraint and a good design practice. The constraint

states that two RRs cannot be stacked on top of each other in the same clock region (i.e., they cannot share columnar

resources in the same clock region). Aligning horizontal boundaries of RRs to clock regions is a good design practice in

that doing so allows the designer to take advantage of the fabric’s native reset-after-reconfiguration feature to improve

synchronization and avoid implementing a custom reset-after-reconfiguration logic for the RRs.

, Vol. 1, No. 1, Article . Publication date: October 2019.

FLORA: FLoorplan Optimizer for Reconfigurable Areas in FPGAs 5

x axis

y axis

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

CLB tile BRAM tileDSP tile

central clock column forbidden region

Fused clock
region

Individual

clock

region

Interconnects

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0
3
6
9
12
15
18
21
24
27

x axis

R
es
.
in

cl
o
ck
-r
eg
io
n
1

CLBs
BRAM
DSP

(b)

1

Fig. 1. (a) Resource layout of a sample FPGA and (b) its resource fingerprint.

the axes. The FPGA area is hence said to beW columns wide and H clock regions high. The area

includes Nint pairs of back-to-back interconnect columns, and the x coordinate of the line separating

the z-th pair is denoted by Iz , with z = 1, . . . ,Nint. For instance, in Fig. 1(a), Nint = 1 and I1 = 5.

This work considers the problem of floor-planning a set R = {R1, . . . , RNr } of Nr RRs. Each

reconfigurable region Ri is characterized by a vector ci of resource requirements, where ci,t denotes
the amount of resources required by Ri for each type t ∈ {CLB, BRAM, DSP}. Clearly, the amount

of resources required by each RR must be enough to host any hardware module that can be

programmed into it (i.e., ci must reflect a component-wise maximum of the resource requirements

of each module).

Once a floor plan is obtained, each reconfigurable region Ri can be characterized by a tuple

ri = (xi ,yi ,wi ,hi) where xi and yi represent its bottom-left coordinates, andwi and hi represent
its width and height, respectively. A valid floor plan must hence guarantee that the following

inequalities hold for each reconfigurable region Ri ∈ R:

xi +wi ≤W ∧ yi + hi ≤ H . (1)

Forbidden regions are encapsulated within minimal-bounding rectangles, which are identified

with the same tuple used for RRs: the parameters specifying the rectangle associated with the k-th
forbidden region are denoted by δk = (xk ,yk ,wk ,hk).

RRs may be connected (e.g., to realize direct communication channels): Qi,k denotes the number

of wires connecting Ri to Rk , where Qi,k = 0 if the two RRs are not connected.

FPGA resource finger-printing. This paper adopts a new modeling strategy to cope with the

heterogeneous distribution of FPGA resources over the x-axis. As illustrated in Fig. 1(b), the

distribution of resources can be modeled with piece-wise functions ft (x), where ft (x
∗) denotes the

amount of resources of type t included in a clock region within the range [0,x∗]. For instance, in
Fig. 1, ft (9) = 12 when t =CLB since the range [0, 9] in the clock region includes the tiles of the

first, second, third, and ninth columns, each composed of three CLBs.

, Vol. 1, No. 1, Article . Publication date: October 2019.

6 Biruk B. Seyoum, Alessandro Biondi, and Giorgio C. Buttazzo

Using the function ft (x), it is possible to analytically define ηi,t , which represents the total

amount of type t ∈ {CLB, BRAM, DSP} of resource within a reconfigurable region Ri , i.e.,

ηi,t = hi · (ft (xi +wi) − ft (xi)). (2)

Note that these functions are defined by assuming the same distribution of resources across

all FPGA rows, i.e., by neglecting the existence of forbidden regions: this is because a valid floor

plan cannot comprise RRs that include forbidden regions, and hence there is no need to explicitly

model their (negative) contribution to the resources available in an area. In other words, the impact

of forbidden regions is binary: either a placement is valid, and they do not have to be taken into

account, or it is not, and hence it has no meaning to compute the resources within an area.

4 PROBLEM DEFINITION
This paper proposes an approach based on Mixed-Integer Linear Programming (MILP) to compute

a floor plan for a set {R1, . . . ,RNr } of Nr RRs under the modeling strategies reported in Section 3.2.

A valid floor plan is characterized by the following properties:

• the geometrical placement satisfies the constraints reported in Section 3.1;

• for each reconfigurable region Ri , and for each resource type t ∈ {CLB, BRAM, DSP}, it holds

that Ri encompasses at least ci,t units of resources of type t ; and
• RRs do not overlap.

The floor-planning algorithm takes as input (i) a description of the resource distribution on the

FPGA area, i.e., its layout, from which it is possible to obtain functions ft (x), and the set of forbidden
regions; (ii) the set of RRs with their resource requirements ci; and (iii) the interconnections

between regions characterized by the number of wires that implement each connection. The logical

and computational components of the FPGA that are required to implement the communication

between RRs and the static region (such as AXI interconnects) are considered as part of the static

region. The algorithm outputs the coordinates and the sizes of each RR.

4.1 Evaluation metrics
The floor-planning problem can have multiple valid solutions—i.e., as long as a valid geometrical

placement is found for each RR, the floor-planning is considered correct. However, not all valid

floor-plans lead to the same performance. This work considers the following two metrics to evaluate

the solutions produced by the proposed algorithm.

Wasted resources (WR): The wasted resources inside a reconfigurable region Ri refer to the

amount of extra resources contained in the area in which Ri is geometrically placed beyond the

amount of resources required by the RR. Since different numbers of resources are available for each

type, and since the types differ in function, each wasted resource is associated to a type-specific

weight. Formally, let νt be the cost associated to wasting a resource of type t . Then, the WR metric

ω is defined as

ω =
Nr∑
i=1

∑
t ∈{CLB, BRAM, DSP}

νt · (ηi,t − ci,t), (3)

where ηi,t denotes the number of resources of type t included in Ri and ci,t denotes the amount of

resources of type t required by Ri .
This metric accounts for the weighted number of wasted resources within each region Ri

(i = 1, . . . ,Nr). A natural choice for the weights νt corresponds to the case in which the number

of wasted resources are normalized to the total amount of resources Tt available for each type t ,
i.e., νt = 1/Tt . Note that, besides favoring the extensibility of a floor-plan, lowering the number of

wasted resources may reduce the reconfiguration time. Indeed, the smaller the RR, the lower the

, Vol. 1, No. 1, Article . Publication date: October 2019.

FLORA: FLoorplan Optimizer for Reconfigurable Areas in FPGAs 7

size of the corresponding bitstream. As the reconfiguration process consists in copying a bitstream

into the FPGA configuration memory, smaller bitstreams correspond to shorter reconfiguration

times.

Maximum inter-region wire-length (MIW): The wire-length between two reconfigurable re-

gions Ri and Rk is defined as the product of (i) the Manhattan distance between the centroids of Ri
and Rk , and (ii) the total number Qi,k of wires between them.

Let S be a set that contains all the interconnections between RRs in the design. The elements of

this set are tuples of the form (Ri ,Rk ,Qi,k) where Ri ∈ R, Rk ∈ R, and Qi,k ≥ 0 is the number of

wires betweenRi andRk that realize the corresponding interconnection. To support the presentation
of the MIW metric, Pi,x and Pi,y are defined as the centroids of a region Ri in the x and y axes,

respectively. The centroids can be simply computed as Pi,x = xi +wi/2 and Pi,y = yi + hi/2.
Finally, the inter-region wire-length between regions Ri and Rk can mathematically be defined

as the product of the Manhattan distance between the centroids of the RRs and the number of wires

between them. The total inter-region wire-length, Ω, is then obtained as the sum of the wire-length

between all interconnected regions, that is

Ω =
∑

(Ri ,Rk ,Qi,k)∈S

Qi,k · | (Pi,x − Pk,x) | + | (Pi,y − Pk,y) |
(4)

The MIW metric can be extended to account for connections between a RR and a portion of the

static region (e.g., in which an AXI interconnect is placed) by considering the centroid of the latter.

These metrics (WR and MIW) can either be singularly considered or combined in a single

performance index (e.g., each weighted by a scalar factor). In both the cases, they can be used

to define an objective function to be minimized at the stage of optimization: this is addressed in

Section 5.5. Although this paper focuses on these two metrics, the proposed solution is prone to be

extended for supporting other metrics such as the aspect ratio of RRs and the wire-length for the

connections between RRs and I/O ports.

5 MILP FORMULATION
This section presents the proposed MILP formulation to perform floorplanning. First (Sec. 5.1), the

main optimization variables are introduced and then the constraints are presented. The constraints

are split into (i) structural constraints (Sec. 5.2), (ii) constraints related to resource availability
(Sec. 5.3), and (iii) constraints to avoid splitting interconnects (Sec. 5.4). Finally, the objective function
to be optimized is presented (Sec. 5.5).

5.1 Optimization Variables
The following binary and real variables are defined to formulate the floorplanning problem as a

MILP.

For each reconfigurable region Ri ∈ R, we define the following variables:

• {xi ,yi ,wi ,hi } ∈ R≥0: bottom-left coordinates and width-height values of Ri , respectively;
• βi, j ∈ {0, 1}: a binary variable such that βi, j = 1 if the j-th clock region is included in Ri ,
βi, j = 0 otherwise;

For each pair of reconfigurable regions (Ri ,Rk) ∈ R × R, with Ri , Rk we define:

• a binary variable γi,k ∈ {0, 1} such that γi,k = 1 if and only if the bottom-left corner of Ri is
placed on the left of the bottom-left corner of Rk (or they are aligned), i.e., xi ≤ xk .

For each reconfigurable region Ri ∈ R and for each FPGA resource type t ∈ {CLB, BRAM, DSP},

we define:

• ηi,t ∈ R≥0, which specifies the number of resources of type t included in Ri .

, Vol. 1, No. 1, Article . Publication date: October 2019.

8 Biruk B. Seyoum, Alessandro Biondi, and Giorgio C. Buttazzo

Note that, even though most of the optimization variables are defined as real variables, their

integrality will be enforced by the following constraints. This choice has been made to limit the

number of integer variables, hence aiming at minimizing the branching of the MILP solver. Some

of the following constraints make use of a large numerical constantM to represent infinity, which
is formally defined asM = fCLB(W) · H + 1.

5.2 Structural constraints
The constraints reported in this section ensure the structural integrity of the RRs.

First, we enforce that each RR must be at least be one column wide and one clock region high

(positive area), and that its rightmost x coordinate and its top y coordinate must not exceed the

boundaries of the fabric.

Constraint 1. ∀Ri ∈ R,

wi ≥ 1, hi ≥ 1

xi +wi ≤W , yi + hi ≤ H
(5)

Second, another constraint is provided to enforce the contiguity of the RRs on the y axis with

respect to variables βi, j . Indeed, if a RR includes the j-th and the (j + 2)-th clock region, then it

must also include the (j + 1)-th one.

Constraint 2. ∀Ri ∈ R, ∀j = 1, . . . ,H − 2,

βi, j+1 ≥ βi, j + βi, j+2 − 1 (6)

Proof. If Ri includes the j-th and the (j + 2)-th clock regions, then βi, j+2 = βi, j . Hence, Eq. (6)
can be rewritten as βi, j+1 ≥ 1 + 1 − 1 = 1, correctly enforcing the desired property. If any of the

terms βi, j+2 and βi, j is zero, then the constraint can be rewritten as βi, j+1 ≥ −1 or βi, j+1 ≥ 0, not

enforcing any constraint. □

The height of a RR can then be obtained by enforcing the following simple constraint.

Constraint 3. ∀Ri ∈ R,hi =
∑H

j=1 βi, j

Finally, it is of paramount importance to encode a constraint to enforce that RRs must not overlap

each other.

Constraint 4. ∀(Ri ,Rk) ∈ R × R,Ri , Rk , ∀j = 1, . . . ,H ,

xk ≥ xi +wi − (3 − γi,k − βi j − βk, j) ·M (7)

Proof. Consider two reconfigurable regions Ri and Rk . Without loss of generality, assume that

Ri is the one with the leftmost x coordinate for its bottom-left corner (on any of the two if they

have the same coordinate), i.e., xi ≤ xk . In this case, it holds that γi,k = 1. Note that, if the two

RRs overlap, then they must share a clock region, say the j-th one. Hence, it must also hold that

βi, j = βk, j = 1 and it follows that the term (3−γi,k −βi j −βk, j) is zero. Consequently, the constraint
degenerates to xk ≥ xi +wi , correctly enforcing that the two regions do not overlap (the left vertical

boundary of Rk is after, or overlapped with, the right vertical boundary of Ri). In all other cases, the

term (3 − γi,k − βi, j − βk, j) is positive and hence the right-hand side of the constraint degenerates

to a negative number: as a result, no constraint is enforced. □

Since forbidden regions are also modeled as rectangles, an analogous constraint can be enforced

to avoid overlapping RRs with forbidden regions.

Furthermore, a simple if-then constraint is provided to enforce the definition of variables γi,k .

, Vol. 1, No. 1, Article . Publication date: October 2019.

FLORA: FLoorplan Optimizer for Reconfigurable Areas in FPGAs 9

5.3 Resource constraints
This section presents the constraints that need to be enforced in order to satisfy the resource

requirements of each RR by leveraging the resource finger-printing model presented in Section 3.2.

Unfortunately, it is not directly possible to encode the resource requirements as linear constraints

due to the following two reasons. First, note that Equation (2) is not linear and hence it cannot be

directly encoded in a MILP. Second, even if treating each piece of functions ft (x) individually, a
multiplication by the optimization variable hi would be anyway required to obtain the total amount

of resources available in an area, hence originating quadratic constraints.

These issues are solved by linearizing Equation (2) with the help of a limited set of auxiliary

variables and a pre-processing of functions ft (x). As a first step, for each reconfigurable region Ri ,
for each clock region j = 1, . . . ,H , and for each type of resource t , an auxiliary variable µi, j,t is
defined as

µi, j,t = βi, j · (ft (xi +wi) − ft (xi)). (8)

In this way, the number of resources of type t available in Ri can be simply expressed by summing

the resource contribution provided by each clock region, i.e., ηi,t =
∑H

j=1 µi, j,t , and the resource

requirement can be finally enforced as follows:

Constraint 5. ∀Ri ∈ R, ∀j = 1, . . . ,H , ηi,t ≥ ci,t

To encode such a constraint in MILPs, both ft (x) and Equation (8) must be linearized. To this

end, before starting the optimization, each function ft (x) is compressed by identifying macro-ranges

that can be expressed by a linear function, rather than a sequence of steps—see Figure 2. This

strategy allows for a significant reduction of the number of variables and constraints of the MILP

formulation.

Let Nmr be the total number of macro-ranges identified in ft (x), andMRk be the k
th
macro-range.

A pair of auxiliary variables Z2k and Z2k−1 is defined for each macro-rangeMRk such that, given a

coordinate x , it falls withinMRk if and only if the corresponding variables comply to the following

two requirements:

REQ1 Z2k = Z2k−1 = 1; and

REQ2 among all other pairs said variables related to other macro-ranges, only one variable of the

pair is set = 1.

2 3

2

4

1

5 7

1st
macro-range

61

3rd
macro-range

2nd
macro-range

x

y

3

4

f_t(x)

Fig. 2. Example of compression of functions ft (t) for the purpose of linearization.

5.3.1 Example. We first explain the compression and linearization of ft (x) with an intuitive

example and then provide the generic mathematical formulation. Consider the case of function

ft (x) illustrated in Figure 2 (continuous line), where three macro-ranges have been identified: [0, 3),
[3, 4), and [4,W). Suppose that auxiliary variables Z1,Z2 correspond to the first macro-range, Z3,Z4

, Vol. 1, No. 1, Article . Publication date: October 2019.

10 Biruk B. Seyoum, Alessandro Biondi, and Giorgio C. Buttazzo

to the second one, and Z5,Z6 to the third one. By observing the linear bounds placed above the

first and third macro-ranges (vertical dashed lines), it is possible to rewrite ft (x) as

ft (x) =

x 0 ≤ x < 4,

3 4 ≤ x < 5,

x − 1 5 ≤ x <W .

(9)

Hence, function ft (x) can be expressed by means of the following three constraints:

ft (x) ≥ x −M(2 − Z1 − Z2) ∧ x ≥ ft (x) −M(2 − Z1 − Z2)

ft (x) ≥ 3 −M(2 − Z3 − Z4) ∧ 3 ≥ ft (x) −M(2 − Z3 − Z4)

ft (x)≥(x − 1)−M(2 − Z5 − Z6)∧(x − 1)≥ ft (x)−M(2 − Z5 − Z6)

(10)

The intuition behind these constraints is that, once a coordinate x falls inside a macro-range,

only the corresponding pair of auxiliary variables will be set—hence correctly enforcing the

corresponding constraint, while all the other constraints will take no effect. For instance, if x
falls in the second macro-range, then Z3 = Z4 = 1, the second constraint is enforced, and the other

two are disabled as one between Z3 and Z4 is zero, and one between Z5 and Z6 is zero. Consequently,

it results that ft (x) ≥ 3 ∧ 3 ≥ ft (x), which implies ft (x) = 3.

5.3.2 Computing the macro-ranges. With the above example in place, the linearization of functions

ft (x) can now be formalized. Each macro-rangeMRk is defined by a tuple (λk ,Λk ,θk ,αk) where:

• λk ∈ R and Λk ∈ R are constant values that represent the slope and the intercept of the linear
function that describesMRk (linear functions are considered in the form λk · x + Λk);

• θk ∈ R and αk ∈ R are constant values that represent the left and right vertical bounds of

MRk , respectively, i.e., θk ≤ x < αk .

Algorithm 1 is proposed to automatically compress functions ft (x), and is meant to be executed

for each resource type t ∈ [CLB, BRAM, DSP] before setting up the MILP. The algorithm outputs

the macro-ranges described by the corresponding tuples).

Algorithm 1: pseudo-code for compressing functions ft (x).

1 x1 = 0 ;

2 x2 = 1 ;

3 k = 1 ;

4

5 do {

6 / / Compute t h e s l o p e
7 λk = (ft (x2) − ft (x1))/(x2 − x1) ;
8

9 do {

10 x2+ = 1 ;

11 λ′k = (ft (x2) − ft (x1))/(x2 − x1) ;
12 } while (λk == λ′k)

13

14 / / Compute t h e i n t e r c e p t
15 θk = ft (x1) − λk · x1 ;
16

17 <add macro−range > MRk := (λk , θk , x1, x2 − 1)

18 x1 = x2 − 1 ;

19 k+ = 1 ;

20 } while (x2! =W) ;

, Vol. 1, No. 1, Article . Publication date: October 2019.

FLORA: FLoorplan Optimizer for Reconfigurable Areas in FPGAs 11

The algorithm explores the x axis of the FPGA area (from 0 up to the maximum widthW) and tries

to identify contiguous steps in function ft (x) that can be merged into the same macro-range. This

is accomplished by computing the slope of the line passing between the two points that would

delimit a macro-range (line 7), and moving the right-hand-side point of the macro-range until the

slope does not change (line 12). Then, the intercept of the line passing between the two points is

also computed (line 15), and the tuple of the corresponding macro-range is saved (line 17). From

this point on, the algorithm starts looking for the next macro-range. This procedure is repeated

until the maximum value on the x axis is reached.

5.3.3 Deriving the constraints. Given a coordinate x and a function ft (x) with the corresponding

set of macro-ranges {MR1, . . . ,MRNmr }, requirements REQ1 and REQ2 mentioned above can be

enforced with the the following constraint.

Constraint 6. ∀k = 1, ...,Nmr

M · Z2k−1 ≥ x − θk + ϵ

M · Z2k ≥ αk − x

Nmr∑
k=1

Z2k−1 + Z2k = Nmr + 1

(11)

where ϵ > 0 is an arbitrarily small positive number.

Proof. By definition of constants θk and αk , when x falls in the k
th

macro-range it holds

θk ≤ x < αk . Hence, both the right-hand-sides of the first two inequalities in Eq. (11) are positive

and Z2k and Z2k−1 are forced to be set to 1. This satisfies REQ1. Note that there are k − 1 macro-

ranges on the left of MRk and Nmr − k macro-ranges on the right of MRk . For the former ones,

i.e.,MR j with j < k , it holds that x is always greater than their left boundary (θ j): hence, variables
Z2j−1 are forced to 1 by the first inequality in Eq. (11). Meanwhile, the corresponding variables Z2j
remain unconstrained (the right-hand-side of the second inequality is negative, hence Z2j can take

both 1 or 0). Following the same reasoning, the contrary holds for all the macro-ranges on the right

of MRk , i.e., for each macro range Mj with j > k variable Z2j is constrained to 1 while variable

Z2j−1 remains unconstrained.

Now, note that there are k − 1 variables forced to 1 for macro-range on the left of MRk , and
Nmr − k variables forced to 0 for the ones on the right. As shown at the beginning of the proof,

when x falls in the k
th

the two corresponding variables are forced to 1. Therefore, there are

(k − 1)+ (Nmr −k)+ 2 = Nmr + 1 variables forced to 1, while the others are unconstrained. The last

inequality in Eq. (11) forces such variables that would be unconstrained to be zero, hence matching

REQ2. □

Note that the constraints in Equation (10) follow a specific pattern: (i) they enforce upper- and

lower-bounds for ft (x) in a macro-range MRk , and (ii) provide a term M · (2 − Z2k−1 − Z2k) to

disable the constraint when the coordinate x does not fall in MRk . Following this rationale, the

constraints in Equation (10) can be generalized for each macro-rangeMRk as follows:

ft (x) ≥ λk · x + Λk −M · (2 − Z2k−1 − Z2k)

∧

λk · x + Λk ≥ ft (x) −M · (2 − Z2k−1 − Z2k).

(12)

Therefore, every time a term of the form ft (x) has to be involved in a constraint, it is sufficient

to create an auxiliary variable and enforce the two corresponding auxiliary constraints reported in

, Vol. 1, No. 1, Article . Publication date: October 2019.

12 Biruk B. Seyoum, Alessandro Biondi, and Giorgio C. Buttazzo

Equation (12) (the auxiliary variable should simply replace ft (x) in the constraints). Thanks to this

result, we are finally ready to express Equation (8) by means of linear constraints.

Constraint 7. ∀Ri ∈ R,∀j = 1, ...,H ,∀t ∈[CLB, BRAM, DSP]

µi, j,t ≥ 0

µi, j,t ≤ βi, j ·M

µi, j,t ≤ ft (xi +wi) − ft (xi)

µi, j,t ≥ ft (xi +wi) − ft (xi) − (1 − βi, j) ·M

(13)

Proof. The objective is to show that Equation (13) and Equation (8) are equivalent. There are

two cases: βi, j = 1 and βi, j = 0. When βi, j = 1, the first two constraints in Eq. (13) become

µi, j,t ≥ 0 and µi, j,t ≤ M and hence have no effect. Furthermore, the last two constraints in Eq. (13)

become µi, j,t ≤ ft (xi +wi) − ft (xi) and µi, j,t ≥ ft (xi +wi) − ft (xi), which essentially reduce to

a single constraint µi, j,t = ft (xi +wi) − ft (xi). Note that the combination of the four constraints

results in Equation (8). When βi, j = 0, the first two constraints in Eq. (13) become µi, j,t ≥ 0 and

µi, j,t ≤ 0, which reduce to a single constraint µi, j,t = 0. The last two constraints in Eq. (13) become

µi, j,t ≤ ft (xi +wi) − ft (xi) and µi, j,t ≥ −M , which still allow forcing µi, j,t to zero. In this case,

note that also Eq. (8) gives µi, j,t = 0. Hence the constraints follow. □

5.4 Avoid splitting interconnects
As stated in Section 3.1, RR vertical boundaries cannot be placed in the middle of back-to-back

interconnect columns. Formally, it must be enforced that, for each reconfigurable region Ri ∈ R,

and for each interconnect z = 1, . . . ,Nint, it holds xi , Iz ∧ xi +wi , Iz . Since these two conditions
can be enforced in the same manner, it is sufficient to show how to deal with the first one (xi , Iz).
An auxiliary binary variable σi,z is first defined such that σi,z = 1 if xi > Iz (the left vertical

boundary of Ri is after the central column) and σi,z = 0 if xi < Iz (the left vertical boundary of Ri is
before the central column). When xi = Iz , σi,z can be either 0 or 1. This definition can be enforced

with the following auxiliary constraints:

∀Ri ∈ R,∀z = 1, . . . ,Nint,

xi ≥ Iz −M · (1 − σi,z) ∧ xi ≤ Iz +M · σi,z . (14)

Note that the second inequality of the above constraint forces σi,z = 1 when xi > Iz , while the
first one forces σi,z = 0 when xi < Iz .

The main constraint to enforce xi , Iz can be finally presented.

Constraint 8. ∀Ri ∈ R, ∀z = 1, . . . ,Nint,

xi − Iz ≤ −ϵ +M · σi,z

xi − Iz ≥ ϵ − (1 − σi,z) ·M
(15)

where ϵ > 0 is an arbitrarily small positive number.

Proof. Remember that M is a numerical constant used to represent infinity. There are three

cases. If xi > Iz , then σi,z = 1 and the two constraints become xi ≤ Iz − ϵ +∞ and xi ≥ Iz + ϵ ,
which are both true. If xi < Iz , then σi,z = 0 and the two constraints become xi ≤ Iz − ϵ and

xi ≥ Iz + ϵ −∞, which are both true. Finally, when xi = Iz then σ becomes either 0 or 1 (i.e., the

auxiliary constraint of Eq. (14) does not constrain σ to a single value). Hence, under this condition,

both constraints cannot be true at the same time. Overall, the case xi = Iz is not allowed by the

constraint, while all other cases are allowed. □

, Vol. 1, No. 1, Article . Publication date: October 2019.

FLORA: FLoorplan Optimizer for Reconfigurable Areas in FPGAs 13

5.5 Objective function
The proposed MILP formulation can be integrated with several objective functions. As stated in

Section 4.1, in this work we selected to minimize a linear combination of the MIW and WR metrics.

Hence, the objective function to be minimized can be expressed as

min {a · Ω/Ωmax + b · ω/ωmax }, (16)

where Ω and ω respectively represent the total MIW and WR as defined in Equations (3) and (4),

while Ωmax and ωmax are the maximum values for MIW and WR, respectively, which are used for

normalization purposes. Finally, a ∈ [0, 1] and b ∈ [0, 1] are two tunable real weights to balance the
contribution of the two metrics to the objective function. Specific values for these parameters will

be used in the experimental evaluations discussed in the next section.

5RRs 10RRs 15RRs 20RRs 25RRs

0

0.2

0.4

0.6

0.8

1
* – Only FLORA reached optimality

∆ – Both algorithms reached optimality

70
%

70
%

70
%

70
%

70
%

∆ ∆
*

*

75
%

75
%

75
%

75
%

75
%

∆
∆

*

*

80
%

80
%

80
%

80
%

80
%

∆
*

*

85
%

85
%

85
%

85
%

85
%

*
*

number of RRs

M
IW

im
p
ro

ve
m

en
t

(*
10

0%
)

1

(a)

5RRs 10RRs 15RRs 20RRs 25RRs

0

0.2

0.4

0.6

0.8

1

* – FLORA reached optimality

70
%

70
%

70
%

70
%

70
%

*

* *
*

75
%

75
%

75
%

75
%

75
%

*
* *

*
80

%

80
%

80
%

80
%

80
%

* * *

85
%

85
%

85
%

85
%

85
%

* *

number of RRs

M
IW

im
p
ro
ve
m
en
t

(*
10
0%

)

1

(b)
Fig. 3. MIW improvement of (a) FLORA w.r.t [O], and (b) FLORA w.r.t. [9].

5RRs 10RRs 15RRs 20RRs 25RRs

0

0.2

0.4

0.6

0.8

1

* – Only FLORA reached optimality
∆ – Both algorithms reached optimality

70
%

70
%

70
%

70
%

70
%

∆

∆ *

75
%

75
%

75
%

75
%

75
%

∆

∆ *

80
%

80
%

80
%

80
%

80
%

∆ ∆

85
%

85
%

85
%

85
%

85
%

∆

number of RRs

W
R

im
p

ro
ve

m
en

t
(*

10
0%

)

1

(a)

5RRs 10RRs 15RRs 20RRs 25RRs

0

0.2

0.4

0.6

0.8

1

* – FLORA reached optimality

70
%

70
%

70
%

70
%

70
%

*

*

*

75
%

75
%

75
%

75
%

75
%

*
*

*

80
%

80
%

80
%

80
%

80
%

*

*

85
%

85
%

85
%

85
%

85
%

*

number of RRs

W
R

im
p
ro
ve
m
en
t

(*
10
0%

)

1

(b)

Fig. 4. WR improvement of (a) FLORA w.r.t [O], and (b) FLORA w.r.t. [9].

5RRs 10RRs 15RRs 20RRs 25RRs

0

0.2

0.4

0.6

0.8

1

* – Only FLORA reached optimality
∆ – Both algorithms reached optimality

70
%

70
%

70
%

70
%

7
0%

∆

*

75
%

75
%

75
%

75
%

7
5%

∆

80
%

80
%

80
%

80
%

80
%

∆

85
%

85
%

85
%

85
%

8
5%

*

number of RRs

M
IW

+
W

R
im

p
ro

ve
m

en
t

(*
10

0%
)

1

(a)

5RRs 10RRs 15RRs 20RRs 25RRs

0

0.2

0.4

0.6

0.8

1

* – FLORA reached optimality

7
0%

7
0%

7
0%

7
0%

7
0%

* *

7
5%

7
5%

7
5%

7
5%

7
5%

*

8
0%

8
0%

8
0%

8
0%

8
0%

*

8
5%

8
5%

8
5%

8
5%

8
5%

*

number of RRs

M
IW

+
W

R
im

p
ro
ve
m
en
t

(*
10
0%

)

1

(b)

Fig. 5. WR and MIW improvement of (a) FLORA w.r.t [O], and (b) FLORA w.r.t. [9].

, Vol. 1, No. 1, Article . Publication date: October 2019.

14 Biruk B. Seyoum, Alessandro Biondi, and Giorgio C. Buttazzo

6 EXPERIMENTAL RESULTS
The proposed solution, denoted by FLORA, has been implemented in C++ leveraging the Gurobi

solver v.7.0.2 as MILP optimization engine. A visualization tool was also developed to graphically

analyze the floorplanning generated by the solver, which served for debugging purposes.

Three experimental sessions have been conducted. In the first one, FLORA has extensively been

compared against (i) the [O] algorithm from [10] and (ii) the floorplanner based on a genetic

algorithm (GA) proposed in [9], for a state-of-the-art test suite. It bears repeating that the solution

proposed in [9] works upon an indirect representation of the FPGA area (see Sec. 2), and hence the

comparison against FLORA is not perfectly fair in the sense that the approach of [9] is conceived

for more stringent assumptions (the resource requirements of the RRs has to be fixed at the stage

of optimization). Conversely, the [O] algorithm is the most mature solution working on a direct

representation of the FPGA area (see Sec. 2). In the second experimental session, FLORA has been

compared against [10] and [9] for benchmark circuits. Finally, in the third experimental session,

FLORA has been tested upon a case study and compared against the case of a manual floorplanning:

the solution computed by FLORA has also been synthesized on a Xilinx Zynq-7020 and executed.

6.1 State-of-the-art test suite
A first comparison was performed by using the same synthetic test suite used by the authors

of [10] and [9]
2
. This test suite, which is targeted at Virtex-5XC5VLX110T devices, consists of 20

circuits with {5, 10, 15, 20, 25} RRs and a percentage of occupancy of resources in the set {70% , 75%
, 80% , 85%} that in the following will be referred to as utilizations. Since both FLORA and [O] can

guarantee the optimality of solutions, the comparison with [O] has two objectives. The first one is

to demonstrate that the optimal solutions computed by FLORA (when optimizing singularly for

each metric or for the combination of the metrics) are better than the optimal solutions from [O].

This allows demonstrating the benefits of adopting the fine-grained modeling strategy of the FPGA

area employed by FLORA. The second objective of the comparison with [O] is to demonstrate that

FLORA reaches optimal solutions faster than [O].

Since the GA-based floorplanner in [9] cannot guarantee the optimality of its solutions (in

essence, it is a heuristic approach), our objective in comparing FLORA with [9] is to demonstrate

that in the same running time FLORA provides better solutions than [9] (even for cases where

FLORA did not find the optimal solution in the limited running time). To compare FLORA with

the GA-based algorithm in [9] we generated an indirect representation of the FPGA area, called

conflict graph, as mandated by the authors in their paper. The conflict graph contains all the feasible

placements for the RRs and the corresponding placement conflicts.

The first experimental session was conducted in two different settings. The first setting involves

evaluating the quality of solutions obtained by all the three algorithms (i) for each individual metric

supported by the objective function of Sec. 5.5, i.e., for the cases (a = 1, b = 0) and (a = 0, b = 1);

and (ii) for the combination of both metrics (a = 1, b = 1). In this setting, the running time of all

algorithms was limited to 60 minutes. This entails limiting the execution time of the MILP solver in

both FLORA and [O] to 3600s and applying an input stopping parameter based on elapsed time for

the approach of [9]. Please note that the time limit was required to compare against [9], as genetic

algorithms cannot guarantee optimal solutions and hence a user-defined stopping condition is

required to terminate the algorithm.

In the second setting, FLORA and [O] were compared with respect to the elapsed time required

to obtain optimal solutions when the objective function accounts for both MIW and WR metrics

2
At "http://home.deib.polimi.it/santambr/prj/floorplacer/floorplanner.tar.gz", the authors had kindly shared both their work

and the test suite they used. The test suite has been adapted to convert slices into CLBs.

, Vol. 1, No. 1, Article . Publication date: October 2019.

FLORA: FLoorplan Optimizer for Reconfigurable Areas in FPGAs 15

(a = 1 and b = 1 in Eq. (16)). This configuration of the objective function was chosen as it was

the most challenging optimization problem out of the three mentioned for the first setting. Both

algorithms were run without a time limit.

The experiments of the first setting were conducted on a 2.4 GHz Intel Core Duo machine running

Linux equipped with 2GB of RAM, while in the second setting a 40-core Intel Xeon E5 machine

running at 2.40 GHz with 130 GB of RAM was used. Each test was run five times and the average

measurements are reported here. It should be noted that, in order to find good solutions in faster

times, the authors of [10] provided to [O] initial sub-optimal solutions obtained from their other

algorithm named HO still proposed in [10] (see Sec. 2). The same can be done with FLORA (by

enforcing a lower-bound to the objective function, as it was done for the HO algorithm). However,

to better illustrate the net difference between the two approaches, this comparison targeted the

case in which no initial solutions are provided.

First setting. Figures 3, 4 and 5 report the results of the experiments conducted in the first mode by

grouping the benchmarks in the test-suite by the number of RRs and reporting the results for each

utilization value. In these figures, the ∆ symbol on the top of each bar implies that both FLORA and

[O] reached optimality (within the given time limit), whereas the * symbol is meant to indicate that

only FLORA was able to achieve optimality. The absence of these symbols on the top of the bars

means that the comparison was based on the best sub-optimal solutions obtained within the time

limit. Hence, for each test case, the comparison between FLORA and [O] was either (i) between

two optimal solutions from both algorithms, or (ii) two sub-optimal solutions from both algorithms,

or (iii) an optimal solution from FLORA and a sub-optimal solution from [O]. It is important to

point out that there was no case in which only [O] was able to achieve optimality.
Figures 3(a) and 3(b) report the average inter-region wire-length improvement of FLORA against

[O] and [9], respectively. As it can be seen from Figure 3(a), FLORA significantly improved the

MIW metric with respect to [O], while producing optimal solutions for most of the test cases (70%

of the solutions by FLORA were optimal, while only the 25% of [O]’s solutions were optimal).

From Figure 3(a), it can also be noted that, in the cases with less than 20 RRs, the improvement of

the MIW metric provided by FLORA is considerably high (up to 75.5%). By exploiting the more

fine-grained modeling of the FPGA, FLORAwas able to explore solutions that cannot be represented

in the model adopted by [O], and was consequently able to produce placements with significantly

lower MIW values compared to [O]. A similar trend can be observed in Figure 3(b) against the

approach from [9], although the improvement is not as high as the one against [O] (up to 20%), but

still definitively not negligible. As one can expect, even when utilizing a fine-grained model, the

improvement of the MIW metric diminishes for larger numbers of RRs against both algorithms:

this is because larger numbers of RRs lead to more “compact” placements with no much room to

move the RRs around

Figure 4 reports the improvements in terms of the WR metric. Also in this case, FLORA improves

upon both [O] and [9] for all the cases, and it was possible to obtain performance improvements

up to 20% and 22% compared to [O] and [9], respectively.

Finally both the evaluation metrics were combined in the objective function: the results of this

experiment are reported in Figure 5. It should be noted that this is a difficult optimization problem.

Indeed, as it can be seen in Figure 5(a), neither [O] nor FLORAmanaged to provide optimal solutions

for test cases beyond 10 RRs and 70% of utilization within the time limit. However, the sub-optimal

solutions produced by FLORA resulted in better placements in all the test cases against [O] and [9].

With FLORA, it was also possible to compute solutions with up to 7% and 5% improvements against

[O] and [9], respectively, under the most difficult cases (25 RRs).

, Vol. 1, No. 1, Article . Publication date: October 2019.

16 Biruk B. Seyoum, Alessandro Biondi, and Giorgio C. Buttazzo

7
0
%

7
5
%

8
0
%

8
5
%

7
0
%

7
5
%

8
0
%

8
5
%

7
0
%

7
5
%

8
0
%

8
5
%

7
0
%

7
5
%

8
0
%

8
5
%

7
0
%

7
5
%

8
0
%

8
5
%

101

102

103

104

105

5 RRs 10 RRs 15 RRs 20 RRs 25 RRs

Number of RRs

T
im

e
to

re
a
ch

O
p
ti
m
a
li
ty

(s
ec
)

[O]

FLORA

Fig. 6. Run-time until optimality for FLORA and [O].

Second setting. The results related to the second experimental setting (i.e., where both FLORA

and [O] freely run until they both reach optimality) are reported in Figures 6 and 7. Figure 6 reports

the total run-time required by the algorithms to compute their corresponding optimal solutions. As

it can be noted from the figure, FLORA shows improvements of more than one order of magnitude

for the cases with 5 and 10 RRs. Furthermore, despite being based on a more fine-grained (i.e., more

complex) modeling of the FPGA area, the time required to produce optimal solutions are still lower

than those of [O] even for the cases with 15 or more RRs. For instance, in the most challenging

cases (20 and 25 RRs), FLORA reached optimality up to 5 hours before [O]. Figure 7 reports the

improvements achieved by FLORA by comparing the value of the objective function computed

for the optimal solutions produced by the two algorithms. As it can be seen, FLORA significantly

outperforms [O] in all the cases. Note that this is mainly because the design space that can be

expressed by FLORA is larger than the one of [O] as FLORA adopts a more fine-grained modeling

of the FPGA area.

5RRs 10RRs 15RRs 20RRs 25RRs

0

0.2

0.4

0.6

0.8

1

* – Only FLORA reached optimality
∆ – Both algorithms reached optimality

70
%

70
%

70
%

70
%

70
%

∆

∆
∆

∆
∆

75
%

75
%

75
%

75
%

75
%

∆

∆

∆ ∆ ∆

80
%

80
%

80
%

80
%

80
%

∆

∆

∆
∆ ∆

85
%

85
%

85
%

85
%

85
%

∆

∆

∆
∆ ∆

number of RRs

M
IW

+
W

R
im

p
ro

ve
m

en
t

(*
10

0%
)

1

Fig. 7. WR and MIW improvement of FLORA w.r.t. [O] by comparing optimal solutions.

6.2 Benchmark circuits
A second experimental session was performed to compare FLORA against both [O] and the work

in [9] on four benchmark circuits derived from the MCNC benchmark [2]. This standard ASIC

benchmark was adapted for FPGA by following an approach similar to the one adopted in [7]. A

, Vol. 1, No. 1, Article . Publication date: October 2019.

FLORA: FLoorplan Optimizer for Reconfigurable Areas in FPGAs 17

Table 1. Experimental results for the benchmark circuits.

Wire-length Execution time (sec)

Circuit #RRs [O] [9] FLORA [O] [9] FLORA

apte 9 6171 4978 4296 1789 3600 1641

xerox 10 20012 12009 11546 3600 3600 3600

hp 11 11579 5912 5887 3600 3600 1428

ami33 33 128123 98123 94312 3600 3600 3600

time limit of 60 minutes was used also in this experimental session. The objective function was

configured to deal with the MIW metric only (a = 1 and b = 0).

(a) (b)

Fig. 8. Floorplans generated (a) by FLORA and (b) manually.

The experimental results are reported in Table 1. Out of the four benchmark circuits, FLORA

was able to provide optimal solutions for two circuits (apte and hp), while [O] was able to produce

the optimal solution only in one case (apte). As it can be seen from the table, FLORA had largely

improved the MIW metric against [O] (by up to 95.8% for the hp circuit), while still achieving

non-negligible improvements with respect to [9] (e.g., 15.8% for apte). Despite the improvements

with respect to [9] are limited, it is worth observing that FLORA performs better or at least as [9]

without working on an indirect representation of the FPGA area (see Sec. 2 for the limitations

introduced by indirect representations).

6.3 Case study
The third experimental session targeted a case study focused on a partially-reconfigurable video

processing design to be implemented on a Xilinx Zynq-7020 SoC (Pynq board). The Vivado tool by

Xilinx was used. The design consists of 6 RRs, each hosting two alternative versions of a hardware

module; specifically, five RRs host image filters (fastx, fir, gaussian, gmap, and sobel) and one

hosts a matrix multiplier. All the hardware modules have been taken from the Xilinx HLS library.

Each image filter is available in two versions: one designed for 3x3 kernels and the other for 5x5

kernels. The matrix multiplier is also available in two versions: one designed for a 4x4 matrix

multiplication and another for an 8x8 multiplication. Each of such versions can be reconfigured

in the corresponding RR. The resource requirement of the reconfigurable modules is summarized

in Table 2. The "hosting region" column of Table 2 denotes the id of the RR which hosts the

, Vol. 1, No. 1, Article . Publication date: October 2019.

18 Biruk B. Seyoum, Alessandro Biondi, and Giorgio C. Buttazzo

corrosponding accelerator in the same row. The design is completed by static modules (i.e., not

subject to PR) that are automatically placed by the Vivado tool (no floorplanning is required)

Here, we compare the floorplan generated by FLORA against the best floorplan we were able to

manually find in terms of (i) time needed to obtain the floorplan, and (ii) sizes of the bitstreams for

each RR. FLORA was configured to optimize the WR metric only (i.e., a = 0 and b = 1) as the case

study does not involve direct connections between the RRs (the hardware modules communicate

with a shared-memory paradigm).

Table 2. Resource requirement of the reconfigurable modules in the case study.

Filter type Kernel

size

LUT FF BRAM DSP Hosting

Region

fastx 3x3 5004 4331 14 3 1

5x5 6128 6371 19 8 1

fir 3x3 1629 2400 2 39 2

5x5 2025 3476 4 48 2

gaussian 3x3 1889 2104 7 12 3

5x5 2414 3096 11 16 3

gmap 3x3 1710 2204 6 3 4

5x5 2014 3176 10 8 4

matrix_mul 4x4 3546 6081 14 12 5

8x8 4296 8945 24 20 5

sobel 3x3 1465 1923 4 3 6

5x5 1845 2212 7 6 6

The two floorplans are illustrated in Figure 8, which has been obtained by taking screenshots

from the Xilinx Vivado tool. The entire design utilizes 94% of the total FPGA resources of the

Zynq-7020: hence, generating a valid floorplan that satisfies all the resource requirements of the

RRs without violating the PR constraints is particularly challenging. To the best of our abilities,

the manual floorplanning of this design took approximately one hour and a half to obtain a valid

solution. Conversely, FLORA computed the optimal solution in only 10 seconds. Table 3 summarizes

the sizes of the partial bitstream of the modules used in the case study. Note that the floorplan

produced by FLORA led to partial bitstreams up to 26% smaller (see the 3x3 FIR filter module)

than those corresponding to the manual floorplan, while both designs (the manual and the one by

FLORA) are able to run at a clock speed of 125 MHz on the Pynq board (the input clock was used

without modification in the RRs). For instance, considering a reconfiguration interface with clock

speed of 100 MHz (a total reconfiguration bandwidth of 400 MB/s), in the manual floorplan it takes

1.87 ms to reconfigure the 3x3 FIR filter (the partial bitstream size is 749 kB), while it takes 1.38 ms

to reconfigure the same filter when the floorplan is generated by FLORA (the partial bitstream size

is 554 KB). Note that this reduction in reconfiguration time is a direct consequence of minimizing

the number of wasted resources in the RRs, which in turn led to smaller bitstreams.

7 CONCLUSIONS
This paper presented FLORA, a solution to automatically compute the floor planning of a set of

reconfigurable regions. Our approach leveraged mixed-integer linear programming and a fine-

grained direct modeling of the layout of the FPGA area, which also allows taking into account several

realistic technological constraints mandated by commercial FPGA synthesis tools. Experimental

results demonstrated that FLORA allows improving the maximum inter-region wire-length (up to

103%), the amount of wasted resources, and the solving time (even by one order of magnitude) with

, Vol. 1, No. 1, Article . Publication date: October 2019.

FLORA: FLoorplan Optimizer for Reconfigurable Areas in FPGAs 19

Table 3. Partial bitstream sizes for manual and FLORA generated floorplans along with clock speed of modules
in the case study.

Filter type Kernel

size

Manual

(KB)

FLORA

(KB)

fastx 3x3 806 737

5x5 1100 1000

fir 3x3 749 554

5x5 956 745

gaussian 3x3 1000 898

5x5 1200 1000

gmap 3x3 621 515

5x5 788 699

matrix_mul 4x4 1100 925

8x8 1300 1100

sobel 3x3 545 490

5x5 810 728

respect to other state-of-the-art approaches. For typical PR designs, which consist of an average

of 5 reconfigurable regions, the experimental evaluation revealed a 70% average improvement in

terms of inter-region wire-length, while exhibiting solving times that are one order of magnitude

lower than those of state-of-the-art methods.

Future work will attempt at integrating FLORA in the Vivado suite to implement a completely

automatic design flow under partial reconfiguration.

ACKNOWLEDGMENT
The Authors would like to thank Marco Pagani for providing the hardware modules in the video

processing engine case study and for his extended support during the implementation.

REFERENCES
[1] P. Banerjee, M. Sangtani, and S. Sur-Kolay. 2011. Floorplanning for Partially Reconfigurable FPGAs. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 30, 1 (Jan 2011), 8–17.

[2] MCNC benchmark Netlists for Floorplanning and Placement. 2012. . https://s2.smu.edu/~manikas/Benchmarks/

MCNC_Benchmark_Netlists.html. [Online; accessed 27-March-2019].

[3] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo. 2016. A Framework for Supporting Real-Time

Applications on Dynamic Reconfigurable FPGAs. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS).
[4] A. Biondi and G. Buttazzo. 2017. Timing-aware FPGA Partitioning for Real-Time Applications Under Dynamic Partial

Reconfiguration. In Proceedings of the 11th NASA/ESA Conference on Adaptive Hardware and Systems (AHS).
[5] C. Bolchini, A. Miele, and C. Sandionigi. 2011. Automated Resource-Aware Floorplanning of Reconfigurable Areas

in Partially-Reconfigurable FPGA Systems. In 2011 21st Int. Conf. on Field Programmable Logic and Applications.
https://doi.org/10.1109/FPL.2011.104

[6] L. Cheng and M. D. F. Wong. 2006. Floorplan Design for Multimillion Gate FPGAs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 25, 12 (Dec 2006), 2795–2805. https://doi.org/10.1109/TCAD.2006.882481

[7] Yan Feng and D. P. Mehta. 2006. Heterogeneous floorplanning for FPGAs. In 19th Int. Conf. on VLSI Design held jointly
with 5th Int. Conf. on Embedded Systems Design (VLSID’06). https://doi.org/10.1109/VLSID.2006.96

[8] Tuan D.A. Nguyen and Akash Kumar. 2016. PRFloor: An Automatic Floorplanner for Partially Reconfigurable FPGA

Systems. In Proceedings of the 2016 ACM/SIGDA Int. Symposium on Field-Programmable Gate Arrays (FPGA ’16).
[9] M. Rabozzi, G. C. Durelli, A. Miele, J. Lillis, and M. D. Santambrogio. 2017. Floorplanning Automation for Partial-

Reconfigurable FPGAs via Feasible Placements Generation. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 25, 1 (Jan 2017), 151–164. https://doi.org/10.1109/TVLSI.2016.2562361

[10] M. Rabozzi, J. Lillis, and M. D. Santambrogio. 2014. Floorplanning for Partially-Reconfigurable FPGA Systems via Mixed-

Integer Linear Programming. In 2014 IEEE 22nd Annual Int. Symposium on Field-Programmable Custom Computing
Machines. https://doi.org/10.1109/FCCM.2014.61

, Vol. 1, No. 1, Article . Publication date: October 2019.

https://s2.smu.edu/~manikas/Benchmarks/MCNC_Benchmark_Netlists.html
https://s2.smu.edu/~manikas/Benchmarks/MCNC_Benchmark_Netlists.html
https://doi.org/10.1109/FPL.2011.104
https://doi.org/10.1109/TCAD.2006.882481
https://doi.org/10.1109/VLSID.2006.96
https://doi.org/10.1109/TVLSI.2016.2562361
https://doi.org/10.1109/FCCM.2014.61

20 Biruk B. Seyoum, Alessandro Biondi, and Giorgio C. Buttazzo

[11] M. Rabozzi, A. Miele, and M. D. Santambrogio. 2015. Floorplanning for Partially-Reconfigurable FPGAs via Feasible

Placements Detection. In 2015 IEEE 23rd Annual Int. Symposium on Field-Programmable Custom Computing Machines.
https://doi.org/10.1109/FCCM.2015.16

[12] Love Singhal and Eli Bozorgzadeh. 2007. SPECIAL SECTION ON FIELD PROGRAMMABLE LOGIC AND APPLICA-

TIONS - Multi-layer floorplanning for reconfigurable designs. Computers and Digital Techniques, IET 1 (08 2007), 276 –

294. https://doi.org/10.1049/iet-cdt:20070012

[13] ug909-vivado-partial-reconfiguration user guide. 2018. . https://www.xilinx.com/support/documentation/sw_manuals/

xilinx2018_1/ug909-vivado-partial-reconfiguration.pdf. [Online; accessed 27-March-2019].

[14] Kizheppatt Vipin and Suhaib A. Fahmy. 2012. Architecture-Aware Reconfiguration-centric Floorplanning for Partial

Reconfiguration. In Proceedings of the 8th Int. Conf. on Reconfigurable Computing: Architectures, Tools and Applications
(ARC’12).

[15] Jun Yuan, Sheqin Dong, Xianlong Hong, and Yuliang Wu. 2005. LFF algorithm for heterogeneous FPGA floorplanning.

In Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005. https://doi.org/10.

1109/ASPDAC.2005.1466538

[16] Ping-Hung Yuh, Chia-Lin Yang, and Yao-Wen Chang. 2004. Temporal Floorplanning Using the T-tree Formulation. In

Proceedings of the 2004 IEEE/ACM Int. Conf. on Computer-aided Design (ICCAD ’04).

, Vol. 1, No. 1, Article . Publication date: October 2019.

https://doi.org/10.1109/FCCM.2015.16
https://doi.org/10.1049/iet-cdt:20070012
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug909-vivado-partial-reconfiguration.pdf
https://doi.org/10.1109/ASPDAC.2005.1466538
https://doi.org/10.1109/ASPDAC.2005.1466538

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Modeling
	3.1 FPGA architecture and technological constraints
	3.2 Model

	4 Problem definition
	4.1 Evaluation metrics

	5 MILP formulation
	5.1 Optimization Variables
	5.2 Structural constraints
	5.3 Resource constraints
	5.4 Avoid splitting interconnects
	5.5 Objective function

	6 Experimental Results
	6.1 State-of-the-art test suite
	6.2 Benchmark circuits
	6.3 Case study

	7 Conclusions
	References

