
Simple and General Methods for Fixed-Priority
Schedulability in Optimization Problems

Paolo Pazzaglia, Alessandro Biondi, and Marco Di Natale
Scuola Superiore Sant’Anna, Pisa, Italy

E-mail: {paolo.pazzaglia, alessandro.biondi, marco}@santannapisa.it

Abstract—This paper presents a set of sufficient-only, but
accurate schedulability tests for fixed-priority scheduling. The
tests apply to the general case of scheduling with constrained
deadline where tasks can incur in blocking times, be subject
to release jitters, activated with fixed offsets, or involved in
transactions with other tasks. The proposed tests come in a
linear closed-form with a number of conditions polynomial
in the number of tasks. All tests are targeted for use when
encoding schedulability constraints within Mixed-Integer Linear
Programming for the purpose of optimizing real-time systems
(e.g., to address task partitioning in a multicore system). The
tests are evaluated with a large-scale experimental study based
on synthetic workload, revealing a failure rate (with respect to the
state-of-the-art reference tests) of less than 1% in average, and at
most of 2% in a very small number of limit-case configurations.

I. INTRODUCTION

Timing and schedulability analysis is often seen as a ver-
ification and analysis tool, to be used to certify that a given
system configuration is safe and feasible with respect to timing
constraints. However, especially in the context of systems that
are feature rich and considering the availability of platforms
with multiple cores and multiple processing nodes, the burden
is often on the shoulders of the designer, who has to define the
execution platform and the software configuration, including
the design and allocation of the tasks. In this context, the
results of timing analysis should be used to define constraints
in a design optimization process, helping select the feasible
configuration with the best performance.

Examples of problems that require such a formulation are
the need to move applications from single core to multicores or
even manycores, partitioning the software tasks, or the design
of logical execution time frames, to restore determinism in the
communication between tasks in multicore systems [1], [2].

Feasibility constraints have been encoded for use in design
optimization in previous works. However, a common drawback
of most formulations is their complexity, which may prevent
an effective use in the optimization of problems of industrial
size. This is the reason why approximate (sufficient-only)
formulations with good accuracy could be quite helpful in
allowing a mathematical formalization and solution to several
problems of practical relevance.

This paper. In this work, we provide several extensions to
a schedulability formulation that was found to be effective in
the case of Rate Monotonic fixed-priority scheduling [3] and
only required a number of constraints that is quadratic in the
number of tasks. We show how the concept can be extended

to deal with a large number of cases of practical interest
including: scheduling with jitter, offsets, blocking times and
even transactional scheduling, in which tasks are bound to
execute in precedence constrained chains. Most important,
we provide a number of experiments that show how the
proposed formulation is extremely tight for task sets with
randomly generated periods (the most used benchmark in
research literature) with a pessimism that is always below 2%
and only for very heavily loaded systems. In addition, when
periods are selected from a set of pseudo-harmonic options,
the error drops to below 1%.

The rest of the paper is organized as follows: an analysis of
existing literature on the subject is followed by a definition of
the system model in Section II; the available analysis methods
are presented in Section III, and the proposed extensions in
Section IV. The experimental evaluation for the test cases is
discussed in Section V, and Section VI ends the paper.

A. Related Work

The worst-case response time Ri of a real-time task is often
computed with an iterative procedure [4] that is particularly
inefficient when implemented in a standard mathematical
optimization framework. The problem is discussed in [5],
where several options are considered. Possible approximations
include sufficient-only tests like the Liu and Layland utiliza-
tion bound [6] or the Hyperbolic bound [7], or the response
time bound in [8]. However, these sufficient bounds can be
quite pessimistic and the resulting solutions may be often sub-
optimal. More recently, efforts have been spent in finding more
efficient tests [9] and tighter upper bounds with quadratic-
time complexity [10], [11]. Some of these bounds applies also
to tasks with jitter, blocking, and cache-related preemption
delays, but are not expressed as linear conditions and hence,
not suitable for being encoded in optimization formulations
such as MILPs.

The test proposed in [12] is the source of a number of other
solutions, exact and approximate. In this work, the number of
conditions to be checked to ensure schedulability is found to
be finite and defined by a set of schedulability points. The
condition for each checking point can then be encoded as a
constraint to be combined in a disjunction with the constraints
from the other points. The set of points in [12] was first
found to be redundant in [13], where a subset of points for a
necessary and sufficient condition is defined. Finally, in [5],
even the set in [13] is found to be redundant and possibly
further reducible by solving a set of optimization problems.



However, even if these points are now a relatively small subset
of the original set, the encoding can still be prohibitively
large, especially considering that the computation of the set
of schedulability points requires presolving a set of additional
optimization problems.

Given that feasibility can be defined as the OR-combination
of constraints, the authors of [13] suggest that sufficient-only
tests can be easily derived by reducing the set of points to
be checked, but how to select the points to be retained is
not discussed. This selection is exploited in [3], where the
authors present a sufficient-only analysis for the schedulability
of Rate Monotonic task sets, restricting the test to a very small
subset of scheduling points. The proposed test is noticeably
less pessimistic than existing sufficient ones, it is linear, and
shows a performance extremely close to the exact test.

In this paper, we show how an intuition similar to the one
proposed in [3] is applicable to a wide range of different
task sets (including constrained deadlines, offsets, jitters, and
blocking times) and fixed-priority schedulers. The resulting
tests are polynomial-time in most cases, maintain low pes-
simism, good scaling properties and are directly suitable to be
used in optimization algorithms as a set of linear constraints.

II. SYSTEM MODEL

We consider a task set T , running on a uniprocessor,
composed of n periodic tasks τi, with i = 1, . . . , n. The
scheduling of the task set is preemptive, and tasks are ordered
following a Fixed Priority algorithm (thus including Rate
and Deadline Monotonic). The task index reflects the given
ordering, where τ1 has highest priority. In addition, hp(i)
denotes the set of tasks with higher priority than τi, while
lp(i) is the set of lower priority tasks. Arbitrary tie-breaking
for tasks with the same priority is assumed (i.e., in the worst-
case they can interfere each other). To lighten the adopted
notation, interfering tasks with the same priority of the one
under analysis are simply denoted as higher-priority tasks.

Each task τi is defined by a triplet {Ci, Di, Ti}, where Ci
represents its worst-case execution time, Di is the relative
deadline and Ti the period. The assumption of constrained
deadline, i.e. Di ≤ Ti, will be applied throughout the paper.
Ri is the worst-case response time experienced by τi. If the
condition Ri ≤ Di holds for all τi ∈ T , the task set is deemed
as schedulable; otherwise it is not schedulable.

While illustrating the schedulability tests in the following
sections, the complexity of the task set under analysis is
gradually increased. We will assume that the tasks τi ∈ T
may experience release jitter with values in [0, Ji], that their
periodic activation may be defined with a fixed initial offset
φi ∈ [0, Ti), and that each task τi may also suffer from
blocking bounded by a quantity Bi from lower priority tasks.

Furthermore, this work also considers the transactional
task model [14], in which a system consists of a set of NT
transactions Γ1, . . . ,ΓNT

. Each transaction Γi is defined as
a set of Ni tasks, where each task is denoted as τi,j , and is
periodically activated with period Ti. Each task τi,j is activated
with a fixed offset φi,j < Ti from the activation time of the
transaction, and can incur in a release jitter bounded by Ji,j .

Tasks are further characterized by a worst-case execution time
Ci,j and a deadline Di,j ≤ Ti such that Ji,k ≤ Di,j − Ci,j .
The tasks belonging to the same transaction share the same
priority. Hence, in this case, the set hp(i) is also used to denote
high-priority transactions.

III. ANALYSIS OF FIXED-PRIORITY SCHEDULING

The classical analysis of fixed-priority tasks executed upon a
single processor can be performed by computing the response
time Ri of each task and then verifying whether the inequality
Ri ≤ Di holds for all of them. The response time of a task
τi is given by the least positive fixed point of the following
recursive equation [4]: Ri = Ci +

∑
τj∈hp(i)dRi/TjeCj .

Solving this equation is a NP-HARD problem as demon-
strated by Eisenbrand and Rothvob [15]. Despite its computa-
tional complexity, this equation is also not well suited for being
used in a mathematical programming framework to optimize
or design a real-time system. Indeed, encoding this equation
in a MILP requires introducing integer variables to model
the ceiling term, which may significantly limit scalability as
the number of tasks increases. An alternative formulation for
an exact schedulability test under fixed-priority scheduling
consists in verifying the following condition for each task τi:

∃t ∈ [0, Di] | Ci +
∑

j∈hp(i)

dt/TjeCj ≤ t. (1)

Lehoczky et al. [12] demonstrated that the test of Equation (1)
does not require dealing with an impractical continuum, i.e.,
the range [0, Di], but rather it is sufficient to check a limited
number of points for an exact schedulability test. The set is
defined by Si = {aTk | k = 1, . . . , i; a = 1, . . . , bTi/Tkc},
with a size that depends on the ratio of the periods of the tasks.
The elements in Si are called schedulability points. Checking
that condition (1) holds for at least one t ∈ Si, t ≤ Di

for each τi ∈ T is then a sufficient and necessary test
for schedulability [12]. Anyway, the complexity of the exact
analysis of fixed-priority scheduling remains NP-HARD as
recently proven by Ekberg and Yi [16]. Furthermore, the use
of this test in a MILP formulation requires one constraint for
each point in the set Si and combining these constraints in a
single disjunction. A reduced sets of check points with respect
to Si has been found in [13], and finally in [5] a procedure
for a further reduction of the set of points for a necessary
and sufficient condition is proposed. Both methods improve
substantially on the size of the constraints, but can still result in
a quite large set in the worst case (formally, still of exponential
size). In addition, the reduced set in [5] requires solving a set
of nested optimization problems to be computed.

A simpler but tight sufficient-only condition could be useful
in many cases. This condition can be computed by leveraging
an observation originally provided in [13]. Given that feasibil-
ity is computed as the OR-combination of a set of conditions,
dropping some of them (hence, some of the schedulability
points) results in a sufficient-only test. Therefore, an efficient
schedulability test can be defined by finding a subset of Si,
possibly with a polynomial size in the number of tasks, which
guarantees schedulability performance very close to the exact



test, i.e., failing in detecting a schedulable task set only in a
very small number of cases.

In the case of tasks with a Rate Monotonic priority assign-
ment, Park and Park [3] showed that the adoption of a set
of check-points with a quadratic size in the number of tasks
results in a near-exact schedulability test. That set, denoted
hereafter as VRM

i , is defined for each task τi ∈ T as follows:

VRM
i =

{
aTk | k = 1, . . . , i; a = bTi/Tkc

}
. (2)

Intuitively, this set contains the points in the time interval
[0, Ti], when the last activation of each high-priority task
occurs, under the assumption of synchronous release and tasks
released as soon as possible. VRM

i is indeed a subset of Si.
The use of this set transforms Equation (1) into an O(n2)
number of linear conditions, and is suitable for use in MILP
formulations in which the task periods are fixed.

Despite the practical usefulness of this approach, unfortu-
nately and to the best of our knowledge, no similar results have
been presented under less restrictive assumptions such as (i)
tasks with arbitrary priority assignments, (ii) tasks with release
jitter or offsets, (iii) tasks that can incur in blocking times, and
(iv) task transactions. The next section aims at filling this gap,
offering a more general efficient analysis platform for Fixed
Priority schedulability based on linear formulas.

IV. EFFICIENT SCHEDULABILITY TESTS

This section presents a set of schedulability tests for
different task models with gradually-increasing complexity.
Following, in spirit, the work of Park and Park [3], our
objective consists in finding equations for the last activation
of high-priority tasks with respect to a scheduling window
to be analyzed, which changes model by model. Such points
will then be used to build approximate schedulability tests.
As it emerges in the following sections, the derivation of such
check-points is typically not straightforward, as it requires an
explicit consideration of the characteristics of the task sets
such as release jitters and offsets. Nonetheless, the approach
is general enough to be applied to any fixed priority ordering.

A. Tasks with constrained deadline
First, consider a task set T with arbitrary offsets and con-

strained deadlines. In this case, the formulation of the check-
points in (2) can easily be extended by restricting the set to the
points that lay before the deadline. Hence, the check-points for
a τi ∈ T is VCD

i =
{
aTk | k = 1, . . . , i; a = bDi/Tkc

}
∪{Di}.

The corresponding schedulability test is then given by:

∃v ∈ VCD
i | Ci +

∑
j∈hp(i)

⌈ v
Tj

⌉
Cj ≤ v. (3)

Similarly to [3], the number of linear conditions to be
checked for the entire task set T is O(n2).

B. Task sets with release jitter
Consider the case in which each periodic task τk ∈ T

may incur in a release jitter bounded by Jk ≤ (Tk − Ck).
In this case, the analysis presented above may be optimistic
and incorrect. Following the results in [17], to safely analyze
tasks with jitters, it is required to study the critical instant in

which (i) the task under analysis τi, and all high-priority tasks
have the first activation with maximum jitter at the same time;
and (ii) all successive instances are released with zero jitter.
This scheduling pattern is denoted as J .

Considering J , our objective is to propose an approximate
test based on the check-points that result from the last ac-
tivation of high-priority tasks within the scheduling window
under analysis. The test is derived for the case of constrained-
deadline tasks (no multiple pending jobs of the same task
can exist at the critical instant). The check-points of interest
strongly depend on the maximum release jitters of tasks, and
can be derived with the following theorem.

Theorem 1. Consider a task τi ∈ T under analysis and
assume that all tasks in T are released according to J .
Without loss of generality, let t = 0 be the time at which
the first activations of the tasks occur. The scheduling window
under analysis is [0, Di − Ji]. A higher priority task τk has
more than one activation in [0, Di−Ji] if Tk−Jk < Di−Ji,
and its last activation in the interval is defined as

Vi,k =

⌊
Di − Ji + Jk

Tk

⌋
Tk − Jk. (4)

Proof. After the first activation at t = 0, the second activation
of task τk occurs at time Tk − Jk. Hence, τk has more than
one activation in [0, Di − Ji] if Tk − Jk < Di − Ji. The first
periodic instance of τk starts at time −Jk. Hence, the length of
the interval in which periodic instances of τk overlap with the
scheduling window under analysis is Di−Ji+Jk. Since there
are bDi−Ji+Jk

Tk
c activations of τk that are fully-contained in

this interval, the last one occurs at the time defined by (4).

The set of check-points for analyzing τi can be computed
as the union of the points Vi,k defined by the above theorem,
plus its deadline, i.e.

VJi =
⋃

k∈hp(i)

{Vi,k} ∪ {Di − Ji}. (5)

The resulting schedulability test [17] consists in verifying the
following condition for each task τi ∈ T :

∃v ∈ VJi | Ci +
∑

j∈hp(i)

⌈
v + Jj
Tj

⌉
Cj ≤ v. (6)

corresponding to an O(n2) number of linear conditions.

C. Task sets with offsets

In several applications, the periodic activation of some tasks
is defined with a fixed starting offset; for instance, when it is
necessary to ensure an implicit synchronization of events. In
these cases, computing the worst-case response time under the
synchronous release hypothesis may be too pessimistic.

An effective approach to analyze such task sets is provided
by Pellizzoni and Lipari (Theorem 2 in [18]). To analyze a
generic task τi the possible critical instants and busy periods
are constructed by starting with the activation of an instance
of generic higher priority task τx, and considering all the other
tasks phased with the minimum activation offset that they may



experience with respect to any instance of τx. The response-
time analysis must then be performed by considering each
possible activation of a higher priority task τx as the beginning
(at t = 0) of a busy period that is a candidate critical instant.
The test is pessimistic, since such minimum offsets may never
occur at the same time, but is a good compromise between
simplicity and accuracy. Nevertheless, its complexity is still
polynomial and an approximate alternative is highly desirable.

The minimum distance between any release of τx ∈ T and
a the release of a different task τk can be computed as [18]

∆x,k = φk − φx +

⌈
φx − φk

GCD(Tx, Tk)

⌉
GCD(Tx, Tk), (7)

where GCD(Tx, Tk) is the greatest common divisor between
Tx and Tk. Note that ∆x,k cannot be negative.

Each time a new task τx is considered for the start of the
busy period, a new task set Tx is created by transforming the
tasks in the original set T , into corresponding tasks τ ′k with
offsets computed as φ′k = ∆x,k. The set T is schedulable if
all Tx are schedulable (from [18]).

For each choice of τx, it is now possible to identify the
check-points that correspond to the last activations of all the
high-priority tasks with respect to τi.

Theorem 2. Consider one set Tx and a task τ ′i ∈ Tx under
analysis in a problem window in which τ ′i is released at time
φ′i and [φ′i, φ

′
i +Di] is its scheduling window.

If φ′i < φ′k ≤ φ′i + Di, or φ′k ≤ φ′i ∧ Tk + φ′k < φ′i + Di,
then task τ ′k ∈ Tx has at least one activation in [φ′i, φ

′
i +Di],

and its last activation within this interval occurs at time

Vi,k,x =

⌊
Di + φ′i − φ′k

Tk

⌋
Tk + φ′k. (8)

Proof. There can be two cases: (i) the first release of τ ′k hap-
pens in [φ′i, φ

′
i +Di]; (ii) otherwise. In case (i), by definition,

there is at least one activation of τ ′k in [φ′i, φ
′
i + Di]. The

distance between the first activation and the end of the interval
of interest is given by Di+φ′i−φ′k. Task τ ′k has bDi+φ

′
i−φ

′
k

Tk
c

periodic activations that are fully contained into the scheduling
window of τ ′i . Hence, the last activation happens at the time
defined by Equation (8). In case (ii), an activation of τ ′k in
[φ′i, φ

′
i + Di] is possible only if the first activation of τ ′k

happens before the first activation of τ ′i , i.e., φ′k ≤ φ′i, and
its second activation is within the scheduling window of τ ′i ,
i.e., Tk + φ′k < φ′i + Di. Under these conditions, the same
reasoning discussed above can be applied to find the time of
the last activation of τ ′k in the interval of interest.

A set of check-points to study the schedulability of task
τ ′i ∈ Tx can be computed as the union of all the points Vi,k,x
provided by the above theorem, plus the deadline of τ ′i

VOFF
i,x =

⋃
k∈hp(i)

{Vi,k,x} ∪ {φ′i +Di}.

Leveraging the set VOFF
i,x , the following schedulability test [18]

must be performed for every set Tx and every task τ ′i ∈ Tx:

∃v ∈ VOFF
i,x | Ci +

∑
j∈hp(i)

⌈
v − φ′j
Tj

⌉
Cj ≤ v. (9)

If none of these condition is violated, then the original task set
T is schedulable. Since n sets Tx need to be checked with a
quadratic procedure, the total number of conditions is O(n3).

D. Task sets with blocking

When considering a task set in which some tasks may
suffer blocking from lower priority ones, e.g., due to locking
protocols, the schedulability tests presented above can be
extended by simply inflating Ci by the blocking term Bi.
Note that the formulation of the last activation of high-priority
tasks before the deadline is not affected by the blocking
times. Hence the computed check-points can also be used to
implement a schedulability test under blocking. The test has
the same complexity as the case without blocking.

E. Transactional task model

Transactional tasks (possibly also scheduled with offsets and
release jitter) are particularly interesting when dealing with
parallelized computations partitioned on multicore systems.
For instance, recent works on the LET model to guarantee
causality in multicore scheduling require the partitioning of
tasks into periodic sub-tasks (or LET frames) separated by
synchronization barriers, where shared data are communicated
between the cores [1], [19]. This architecture can be repre-
sented as a transactional model.

Following Theorem 2 in [14], a task τi,j in a transaction
can be analyzed by studying the critical instants arising when:

• τi,j is released with maximum jitter Ji,j at the beginning
of the problem window under analysis (t = 0 without
loss of generality);

• other tasks τi,k (k 6= j) belonging to the same transaction
Γi are consequently released with the corresponding
offsets with respect to τi,j , and no jitter;

• in all the other transactions Γx (x 6= i), one task τx,s is
synchronously released with τi,j with its maximum jitter,
and the remaining ones are released with their offsets
with respect to τx,s, and no jitter.

Let Λi,j be the set of all possible combinations of schedul-
ing patterns according to the above rules. In the following,
we denote by τ(λ) the set of tasks that in a pattern λ ∈ Λi,j
have the first activation synchronized with τi,j . The analysis
in [14] is based on the derivation of a bound on the maximum
interference that can be generated in each pattern λ ∈ Λi,j .

Our approach aims at computing the time of the last activa-
tion of each high-priority task in all the possible busy periods
originating from a candidate critical instant with respect to the
task τi,j under analysis.

First, we compute the time of the first activation of each
high-priority task τx,k, belonging to an arbitrary transaction
Γx, and occurring after the release of τi,j . This instant depends
on the task τx,s activated synchronously with τi,j [14]

Φx,k,s = Tx − (φx,s + Jx,s − φx,k) mod Tx. (10)

The interference generated by τx,k is then derived by
decomposing the part before Φx,k,s (also referred to as carry-



in by some authors), and denoted by I res
x,k,s; and the following

interference (computed as in (9))

Ix,k,s(t) =

{
I res
x,k,s +

⌈
t−Φx,k,s

Tx

⌉
Cx,k if Φx,k,s ≤ t

I res
x,k,s otherwise,

where t denotes the length of the analysis interval of interest.
The carry-in interference can be upper-bounded as

I res
x,k,s =

{
C̃x,k if Φx,k,s > (Tx −Dx,k)
0 otherwise,

(11)

where C̃x,k = min{Cx,k, (Φx,k,s − (Tx −Dx,k))}.
Next, we compute the check-points of interest. In patterns

λ ∈ Λi,j , the scheduling window of the task under analysis
is [0, Di,j − Ji,j ]. The interval that lasts from the first re-
lease of a high-priority task τx,k within [0, Di,j − Ji,j ], and
Di,j − Ji,j is given by Di,j − Ji,j −Φx,k,s. Hence, there are
bDi,j−Ji,j−Φx,k,s

Tx
c instances of τx,k that are fully-contained

into the scheduling window of τi,j . Consequently, the last
activation of τx,k in the window of interest is given by

Vi,j,x,k,s =

⌊
Di,j − Ji,j − Φx,k,s

Tx

⌋
Tx + Φx,k,s. (12)

Clearly, such points are valid only if task τx,k has at least one
activation in [0, Di,j − Ji,j ], i.e., Φx,k,s ≤ Di,j − Ji,j .

The set of check-points for verifying the schedulability of
τi,j assuming a scheduling pattern λ is finally given by

VT
i,j,λ =

{ ⋃
τx,s∈τ(λ)

⋃
x∈hp(i)

Nx⋃
k=1

{Vi,j,x,k,s}
}
∪ {Di,j − Ji,j}.

(13)
In conclusion, the proposed analysis consists in leveraging

the interference bound Ix,k,s(t) and the check-points in (13)
for each scheduling pattern to be analyzed. Formally, a task
τi,j is said to be schedulable if, ∀λ ∈ Λi,j ,

∃v ∈ VT
i,j,λ | Ci,j +

∑
τi,q∈Γi

q 6=i

I res
i,q,j +

∑
τx,s∈τ(λ)
x∈hp(i)

Nx∑
k=1

Ix,k,s(v) ≤ v.

where I res
i,q,j is the interference from tasks of the same trans-

action of τi,j , computed as in (11). The combinations in Λi,j
are O(maxNT

i=1{Ni}NT ), and each of them originates O(n)
scheduling points (one for each high-priority task).

V. EXPERIMENTAL EVALUATION

Large-scale experiments have been performed to assess the
performance of the proposed tests with respect to state-of-the-
art analysis methods for the models covered in this paper, i.e.,
response-time analysis exact tests for tasks with and without
blocking; the analyses in [17], [18], and [14] for tasks with
jitters, offsets, and involved in transactions, respectively.

We tested systems with n ∈ [5, 25] tasks and utilization
U from 0.7 to 0.95 with step 0.05 (relevant performance
differences have been observed only at high utilizations and
for small task sets). For every combination of parameters
(n,U), ν = 50000 task sets have been tested, for a total
of about 1 million sets. The utilizations of the tasks have
been generated with the UUnifast [20] algorithm, enforcing

TABLE I
MAXIMUM FAILURE RATES OF THE PROPOSED TESTS.

U 0.7 0.75 0.8 0.85 0.90 0.95

RM, ID < 1% < 1% < 1% 1.3% 1.7% 1.2%
RM, CD < 1% < 1% < 1% < 1% < 1% < 1%

RM, ID, O < 1% < 1% < 1% 1.2% 1.7% 1.2%
RM, ID, J < 1% < 1% < 1% 1.3% 1.6% 1.2%
RM, ID, B < 1% < 1% < 1% < 1% < 1% < 1%

FP, ID < 1% < 1% < 1% < 1% < 1% < 1%
RM, ID, Ps < 1% < 1% < 1% < 1% < 1% < 1%
RM, CD, Ps < 1% < 1% < 1% < 1% < 1% < 1%

Trans,RM,ID < 1% < 1% < 1% < 1% < 1% < 1%
Trans, RM, CD < 1% < 1% < 1% < 1% < 1% < 1%

Trans, RM, ID, J < 1% < 1% < 1% < 1% < 1% < 1%

Legend: RM: Rate Monotonic; FP: Fixed Priority; ID: Implicit deadline;
CD: Constrained deadline; Trans: Transactional tasks; O: with offsets; J:
with jitter; B: with blocking; Ps: Pseudo-harmonic sets

Fig. 1. Failure rate as a function of the number of tasks under RM, ID.

a minimum per-task utilization of 1%. Periods have been
randomly chosen (i) between 1 ms and 1 second, with uniform
distribution; or (ii) in a limited set of pseudo-harmonic periods
{1, 2, 5, 10, 15, 20, 25, 30, 45, 50, 75, 100} ms, to test more re-
alistic configurations. The execution time is then accordingly
computed as Ci = Ti ·Ui (rounded down to the first integer).

For the case of transactional task sets, we tested systems
with NT ∈ [3, 6] transactions, where every transaction has
Ni ∈ [2, 5] tasks, thus obtaining a number of total tasks
ranging from 6 to 30. For every combination of transac-
tions and utilizations U , 5000 tests have been performed.
Deadlines Di have been randomly generated in the interval
[Ci + αD(Ti − CI), Ti], with 0 ≤ αD ≤ 1, offsets φi in
[0, αoTi], with 0 ≤ αo < 1, and jitters Ji in [0, αJ(Di−Ci)],
with 0 ≤ αJ ≤ 0.2, all with uniform distribution. αD, αo,
and αJ are tunable parameters. For the general case of Fixed
Priority scheduling (i.e., not Rate Monotonic), task priorities
are randomly assigned. As a comparison metric we selected
the failure rate, computed as the normalized difference be-
tween the number of task sets deemed schedulable by our
tests, denoted by Ap, and those accepted by necessary and
sufficient state-of-the-art tests, denoted by Ae. The failure rate
is f = (Ae−Ap)/ν and provides the fraction of task sets for
which our tests fail in detecting a schedulable condition.

A. Experimental results

In the case of Rate Monotonic, implicit-deadline task sets,
Fig. 1 shows the failure rates as a function of the number



Fig. 2. Failure rate with variable deadlines (left), offsets (center) and jitter (right).

of tasks n. Quite interestingly, the maximum failure never
exceeds 2%. Fig. 2 shows the failure rate for task sets with
constrained deadlines, offsets, and jitters, as a function of
parameters αD, αo and αJ , respectively. Each point in the
plots reports the results aggregated for all the tested task
set sizes, i.e., averaging among all the tested task sets with
n ∈ [5, 25]. These parameters impact the failure rate of
our tests in different ways: while changing the offsets does
not affect the precision of the proposed test, tightening the
deadline and increasing the jitter generally corresponds to a
decrease of the failure rate. In all the tested configurations,
the failure rate resulted around (or below) 1%. Surprisingly
enough, low failure rates (< 1%) are also found for task
sets that include blocking, and in general all cases of Fixed
Priority scheduling (not Rate Monotonic), combining different
configurations of the parameters that control jitter, offsets, and
constrained deadlines. Extremely low values are also found for
all the task sets with pseudo-harmonic tasks.

In summary, the proposed tests revealed high schedulability
performance both for hard-to-schedule task sets (with block-
ing, high jitter, tight deadlines and arbitrary priorities) and
for easy-to-schedule sets (with pseudo-harmonic tasks), with
failure rates that are quite below uncertainties that are typically
associated with the determination of task parameters such as
the worst-case execution time. Finally, for all transactional task
sets, our experiments show extremely low failure rates for all
the jitter and deadlines values in the chosen ranges. A selection
of the results for the most relevant tests is reported in Table I.

VI. CONCLUSION

This paper presented approximate schedulability tests for
Fixed Priority scheduling under a wide range of assumptions
on the task model. The tests can be implemented with a limited
number of linear closed-form equations, and are suitable for
use in Mixed-Integer Linear Programs for the optimization of
real-time systems. A large-scale experimentation revealed very
low failure rates, showing a pessimistic outcome only in less
than 1% of the proposed tests cases with respect to state-of-
the-art schedulability tests (including exact ones).

REFERENCES

[1] M. Lowinski, D. Ziegenbein, and S. Glesner, “Splitting tasks for migrat-
ing real-time automotive applications to multi-core ecus,” in Industrial
Embedded Systems (SIES), 2016 11th IEEE Symposium on. IEEE,
2016, pp. 1–8.

[2] A. Biondi, P. Pazzaglia, A. Balsini, and M. Di Natale, “Logical execution
time implementation and memory optimization issues in autosar appli-
cations for multicores,” in International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2017.

[3] M. Park and H. Park, “An efficient test method for rate monotonic
schedulability,” IEEE Transactions on Computers, vol. 63, no. 5, pp.
1309–1315, 2014.

[4] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[5] H. Zeng and M. Di Natale, “An efficient formulation of the real-
time feasibility region for design optimization,” IEEE Transactions on
Computers, vol. 62, no. 4, pp. 644–661, 2013.

[6] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[7] E. Bini, G. C. Buttazzo, and G. M. Buttazzo, “Rate monotonic analysis:
the hyperbolic bound,” IEEE Transactions on Computers, vol. 52, no. 7,
pp. 933–942, 2003.

[8] R. I. Davis and A. Burns, “Response time upper bounds for fixed priority
real-time systems,” in Real-Time Systems Symposium, 2008. IEEE,
2008, pp. 407–418.

[9] R. I. Davis, A. Zabos, and A. Burns, “Efficient exact schedulability tests
for fixed priority real-time systems,” IEEE Transactions on Computers,
vol. 57, no. 9, pp. 1261–1276, 2008.

[10] E. Bini, A. Parri, and G. Dossena, “A quadratic-time response time upper
bound with a tightness property,” in Real-Time Systems Symposium, 2015
IEEE. IEEE, 2015, pp. 13–22.

[11] J.-J. Chen, W.-H. Huang, and C. Liu, “k2q: A quadratic-form response
time and schedulability analysis framework for utilization-based anal-
ysis,” in Real-Time Systems Symposium (RTSS), 2016 IEEE. IEEE,
2016, pp. 351–362.

[12] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: Exact characterization and average case behavior,” in Real
Time Systems Symposium, 1989., Proceedings. IEEE, 1989, pp. 166–
171.

[13] E. Bini and G. C. Buttazzo, “Schedulability analysis of periodic fixed
priority systems,” IEEE Transactions on Computers, vol. 53, no. 11, pp.
1462–1473, 2004.

[14] J. C. Palencia and M. G. Harbour, “Schedulability analysis for tasks with
static and dynamic offsets,” in Real-Time Systems Symposium, 1998.
Proceedings. The 19th IEEE. IEEE, 1998, pp. 26–37.

[15] F. Eisenbrand and T. Rothvoß, “Static-priority real-time scheduling: Re-
sponse time computation is np-hard,” in Real-Time Systems Symposium,
2008. IEEE, 2008, pp. 397–406.

[16] P. Ekberg and W. Yi, “Fixed-priority schedulability of sporadic tasks
on uniprocessors is np-hard,” in Real-Time Systems Symposium (RTSS),
2017 IEEE. IEEE, 2017, pp. 139–146.

[17] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
“Applying new scheduling theory to static priority pre-emptive schedul-
ing,” Software Engineering Journal, vol. 8, no. 5, pp. 284–292, 1993.

[18] R. Pellizzoni and G. Lipari, “Feasibility analysis of real-time periodic
tasks with offsets,” Real-Time Systems, vol. 30, no. 1-2, pp. 105–128,
2005.

[19] A. Biondi and M. D. Natale, “Achieving predictable multicore execution
of automotive applications using the LET paradigm,” in In Proc. of
the 24th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2018). IEEE, 2018.

[20] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.


