
Runtime Monitoring for Edge Applications
Daniel Casini1,2, Luca Abeni1, Mauro Marinoni1, and Alessandro Biondi1,2

1TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy
2Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy

Abstract—In edge computing, it is common to lack sufficient
computational resources to enable a physical separation between
applications, making resource sharing unavoidable. However,
resource-sharing techniques must ensure that mutually untrusted
applications colocated on the same nodes and core to meet timing
constraints. To this end, the Linux SCHED_DEADLINE scheduler
offers timing isolation and real-time guarantees through resource
reservation. However, configuring its parameters is complex, es-
pecially in the case of highly variable workloads that are common
in dynamic environments, e.g., as in mobility. This paper presents
an adaptive monitoring mechanism to dynamically reconfigure
SCHED_DEADLINE reservations based on runtime workload be-
havior. A kernel patch exports execution statistics, enabling real-
time parameter adjustments: it increases the runtime allocated
when a thread exhausts it before completing, and it reduces
the runtime when the resource reservation is underutilized. Our
prototype is implemented in Rust and supports the monitoring of
threads, process groups, containers, and VMs. Evaluation results
demonstrate the flexibility of the tool, showing how it is capable
to adapt to different scenarios.

Index Terms—edge computing, Linux scheduling, resource
reservation, isolation, real-time systems, monitoring.

I. INTRODUCTION

In recent years, the edge computing paradigm has gained
increasing interest due to the need to keep computations
closer to where data originates, providing advantages in terms
of latency, energy consumption, and privacy over traditional
cloud-based approaches that require data to be sent to central-
ized servers for processing [1]. However, resources are more
limited at the edge than in the cloud; therefore, efficiently
sharing edge computing nodes among various applications
from different tenants is crucial to achieving high resource
utilization.

A case in point is the mobility sector, where modern and
potentially autonomous vehicles must offload computationally
intensive tasks to the closest edge server along the move-
ment path. Traditional allocation techniques typically partition
computational resources in a coarse-grained manner, assigning
applications to cores or nodes in an exclusive way.

While it has the benefit of simplicity, such an approach
can lead to significant underutilization of computing platforms,
e.g., when lightweight workloads are assigned an entire core
due to the need for timeliness and timing isolations from other,
untrusted, workloads.

Linux-based edge nodes represent an excellent solution, as
they can provide low latency [2], [3] even for virtualized
applications [4], are flexible, and are compatible with a broad
range of software stacks (e.g., AI frameworks) thanks to a
large availability of device drivers and low-level support (e.g.,

for hardware accelerators) that may be incompatible with
specialized real-time operating systems such as VxWorks or
FreeRTOS.

Such systems can leverage the SCHED_DEADLINE ker-
nel scheduler [5], which allows for fine-grained virtualiza-
tion of computational resources, enabling flexible and effi-
cient resource sharing while ensuring strict timing guarantees
based on theoretical guarantees [6]. The SCHED_DEADLINE
scheduler implements a resource reservation mechanism, en-
capsulating each application within a virtual platform (VP)
composed of multiple virtual CPUs (vCPUs), each receiving
a guaranteed fraction of the overall CPU bandwidth and a
bounded latency (service delay) [7].

In addition to resource partitioning, SCHED_DEADLINE
also provides resource enforcement so that each application
receives no more than its allocated CPU bandwidth. Such an
enforcement is crucial in multi-tenant environments, where
different applications may not trust each other, and potential
software bugs or cyber-attacks suffered by an application can
affect the timing behavior of another application that may also
have a higher criticality.
SCHED_DEADLINE allows to provide resource reserva-

tion and real-time guarantees in various configurations: from
single Linux threads to entire virtual machines (VMs) (e.g.,
KVM/QEMU [8], [9]), up to containerized workloads. The
latter case requires an out-of-tree patch [10], which extends
SCHED_DEADLINE to allow multiple Linux processes to be
grouped into the same reservation using cgroups.

However, efficiently configuring SCHED_DEADLINE reser-
vations is challenging and requires tuning the budget parameter
(also called runtime, and denoted by Q) and period (P )
for each reservation. These parameters directly determine the
fraction of CPU bandwidth allocated (α = Q/P ) and the
worst-case latency delay (∆ = 2 · (P − Q)). This relation is
due to the theoretical properties of the scheduling algorithm
implemented by SCHED_DEADLINE [11], [12].

Improper configurations may lead to performance issues:
a too-small budget or a too-large period can violate real-time
constraints of the application leveraging improperly configured
SCHED_DEADLINE reservations, while a too-large budget or
a too-small period can lead to underutilization of the node.

In traditional safety-critical real-time systems, Q and P are
set during standard system design activities, which take place
offline, based on the known temporal properties of tasks, such
as worst-case execution time and activation period [13].

However, this approach is infeasible in dynamic environ-
ments, such as edge computing platforms supporting mobile
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applications, where workloads arrive unpredictably, and their
timing characteristics are often unknown. Furthermore, in
highly dynamic distributed edge applications, the workload
assigned to a reservation can vary significantly over time
due to external factors such as user mobility and time-of-day
fluctuations (e.g., higher computational demand during peak
hours and lower demand at night). In such scenarios, static
reservation parameters cannot guarantee efficient resource
utilization.
Contribution. This paper investigates dynamic runtime mon-
itoring mechanisms for SCHED_DEADLINE-based reserva-
tions, aiming to adaptively configure budget parameters based
on observed workload characteristics. Specifically, our ap-
proach leverages the CPU time accounting mechanisms pro-
vided by SCHED_DEADLINE to dynamically monitor the
execution time of tasks without requiring code instrumenta-
tion. A kernel patch exports execution statistics to user space,
allowing for precise runtime tracking. When a task consistently
exhausts its allocated runtime before completing, its budget is
increased to avoid violating real-time constraints. Conversely,
if a task does not fully use its reserved time, the allocation
is reduced to minimize wasted resources. To validate our
approach, we implement a runtime monitor in Rust, an ef-
ficient and memory-safe programming language. The monitor
can track individual threads, groups of threads (using Linux
cgroups), containerized workloads (e.g., Docker, Kubernetes),
and virtual machines (by monitoring their vCPU threads). We
perform extensive experiments in different scenarios to show
it allows dynamically tuning SCHED_DEADLINE reservations
in edge computing platforms to balance the need for temporal
isolation and timeliness with optimized resource utilization,
even in highly dynamic environments characterized by work-
load variations.

II. PROBLEM STATEMENT

The SCHED_DEADLINE scheduling policy [5] provided by
the Linux kernel implements a resource reservation mechanism
to allow encapsulating tasks (threads or processes) into virtual
platforms, each with a guaranteed fraction of the core CPU
bandwidth and with a bounded CPU service delay [7]. In
essence, SCHED_DEADLINE allows guaranteeing that a task
executes for Q time units (the so-called budget, or runtime)
every period P , enforcing temporal isolation and providing the
task with a configurable fraction Q/P of CPU time (named
“CPU bandwidth” from now on) with bounded service delay
(latency). The resource reservation mechanism implemented
by SCHED_DEADLINE is based on the Constant Bandwidth
Server algorithm [6] and both provide a resource partitioning
and an enforcement mechanism. The latter feature is particu-
larly important in open systems, where different applications
may not trust each other. SCHED_DEADLINE ensures that
each application receives no more than the allocated CPU
bandwidth, thus shielding other applications from possible
misbehaviours of malicious (or simply bugged) applications
that may otherwise harm their real-time behaviour. For ex-
ample, consider two co-located applications in which one

Fig. 1. Scheduling Virtual Machines or threads with SCHED_DEADLINE
reservations. The red borders represent the isolation boundaries provided by
SCHED_DEADLINE reservations.

Fig. 2. Example of temporal isolation with SCHED_DEADLINE.

starts to execute continuously due to a cyber-attack, interfering
with the other. Without adequate protections, this can cause
considerable delays or a denial-of-service. If applications are
instead encapsulated within SCHED_DEADLINE reservation,
the budgeting mechanisms ensures that the attacked applica-
tion executes no more than for the assigned CPU fraction, thus
protecting the other applications and considerably increasing
the security from timing attacks occurring at the CPU level.

The SCHED_DEADLINE policy can be used to serve ei-
ther Linux threads and processes, virtual machines (e.g.,
KVM/QEMU), or containers. The first two options are shown
in Figure 1. Threads, processes, and VMs are supported by the
mainline Linux scheduler, while an out-of-tree kernel patch is
required to manage containers [10].

Each SCHED_DEADLINE CPU reservation must be prop-
erly configured by assigning an appropriate runtime and period
(the two key parameters Q and P ).

The theoretical properties of SCHED_DEADLINE [6], [12]
make a link between these values and the fraction of CPU
bandwidth and the CPU service delay provided to the work-
load running in the reservation. In particular:

• α = Q/P is the CPU bandwidth provided to the
reservation;

• ∆ = 2 · (P −Q) is the CPU service latency.
When reservations are properly configured,

SCHED_DEADLINE allows different applications to be
co-located in the same platform (e.g., edge node) thanks to
the resource isolation mechanism (implemented by budget
enforcement). Figure 2 shows the advantage: two (temporally)-
untrusted applications requiring both three cores in parallel
to perform a parallel operation, one with a requirement of
50% of the core bandwidth and one with the 20% would
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be allocated to six cores using classical coarse-grained
allocation solutions (i.e., each application is exclusively
allocated to an appropriate number of dedicated cores to
avoid CPU interference). Differently, SCHED_DEADLINE
allows co-locating multiple applications on three cores, also
leaving some spare bandwidth for other tasks.

As mentioned, the SCHED_DEADLINE parameters (runtime
and period) have to be properly configured to provide the
desired properties. Indeed, an inaccurate configuration of a
CPU reservation may lead to the following issues:

• If the budget is too small or the period is too large real-
time constraints cannot be guaranteed.

• If the budget is too large or the period is too small the
edge node can be underutilized.

In traditional (safety-critical) real-time systems, the runtime
and period parameters are set based on the temporal properties
of the tasks running within the reservation, i.e., the (maximum)
execution time and the period, which are known a-priori [7],
[13], [14]. However, the situation is much more complex in the
context of open systems in which the workloads are dynamic.

Indeed, platform-specific execution time estimates are often
unknown or not accurate and applications can even have
non-periodic activation patterns. Hence, tools for estimating
these parameters are needed. While the problem of estimating
an appropriate value for the SCHED_DEADLINE period has
been previously addressed [15], [16], assigning an appropriate
runtime to an offloaded application is still an open issue for
modern systems based on SCHED_DEADLINE.

This paper focuses on the configuration of the runtime
parameter, providing an integrated solution to monitor the
computational requirements of the virtualized workload run-
ning inside a reservation and tuning the reserved CPU time ac-
cordingly. The provided solution directly uses the mechanisms
provided by SCHED_DEADLINE and is suitable for dynamic
workloads because it does not require code instrumentation.

III. DYNAMIC DETECTION OF RUNTIMES

When scheduling one or more activities (e.g., single threads,
processes, containers, VMs) with SCHED_DEADLINE (possi-
bly using the real-time control group scheduling patchset [10]
in the case of containers), the experienced QoS can be
controlled if the tasks’ periods and runtimes are known. As
previously discussed, the QoS of virtualized software workload
is controlled by the SCHED_DEADLINE parameters (runtime
and period) and the activation period of one or more activities
can be estimated through tracing and frequency-based analy-
sis [15].

Nevertheless, even with a suitable period, the problem
of monitoring the tasks’ runtimes still needed to be ad-
dressed. This information is crucial to set the budget for
SCHED_DEADLINE reservations.

This scheduling approach–called dynamic detection of run-
times–is similar to feedback scheduling [17], [18] (and adap-
tive reservations [19] in particular). However, adaptive reser-
vations are implemented by reading some observed value (the
so-called scheduling error) used by a control algorithm to

set some actuator (the reserved runtime). An overview of our
approach is shown in Fig. 3.

Observing the scheduling error requires instrumenting the
code to mark the beginning (and/or the end) of each activation
of the real-time task (named “job” in real-time jargon). For
example, a periodic task can be implemented as in Figure 4,
where the wait_for_next_activation() call marks
the end of each periodic activity. Unfortunately, it is often
not possible to know a-priori the structure of applications
offloaded to edge nodes, which could not follow this code
structure.

Hence, a different approach based on monitoring the exe-
cution time of each task has been adopted. The monitoring
mechanism is designed to be applied to generic code, even
to non-real-time applications, and takes advantage of the
SCHED_DEADLINE features.

As already introduced, this scheduling policy reserves a
budget of time units to be executed every period to the sched-
uled task: these quantities are stored in the dl_runtime and
dl_period variables, respectively.

Then, the CPU time accounting mechanism implemented
by the Linux kernel can be used to measure how much
time the task actually executed for. As an example,
the kernel has been patched to export this information
through the sched_getattr() system call. Such a sys-
tem call is generally used to read the scheduling pol-
icy (SCHED_DEADLINE, SCHED_FIFO, SCHED_RR, or
SCHED_OTHER) and the scheduling parameters (runtime,
deadline, period, or priority) of a task and accepts a “flags”
parameters to allow future extensions. Our patch introduces a
new “SCHED_GETATTR_FLAG_RUNTIME” flag that allows
reading the amount of time a task has executed. If the amount
of time executed by a task in a period of length dl_period
is smaller than dl_runtime, then the reserved runtime can
be decreased; otherwise, it must be increased.

The resulting runtime monitor is based on the following
design principles:

DP1 SCHED_DEADLINE is used to ensure that a task (or
a group of tasks) can execute for at most Q time units
(dl_runtime) every P time units (dl_period);

DP2 A kernel patch is used to periodically monitor the
amount of execution time used by each task;

DP3 If a task (or group of tasks) executes for the maximum
reserved time, it is assumed that the reserved time is too
small. Hence, Q is increased;

DP4 If the initial value of Q is too small (e.g., because no
initial estimate of the execution time is available at the
beginning), then a too long time can elapsed until the
reserved time is enough:
• To compensate this effect, if the tasks consume the

whole reserved time for multiple times in a row, then
the ”speed” at which Q is increased is accelerated.

• This feature is implemented by using a variable l -
called adaptation rate - which is doubled every time
that executed time increases and is set to 1 when the
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Fig. 3. Overview of the proposed runtime monitoring framework, with the kernel-level patch, dynamic adaptation, and multi-scheduling entity applicability.

while (!finished) {
wait_for_next_activation();

/* ...do something... */
/* (job body) */

}

Fig. 4. Example of periodic task.

executed time does not increase.
Notice that in order for the feedback algorithm to work,

the allocated runtime cannot be set exactly to the maximum
measured execution time, but it must be set to a slightly larger
value (otherwise the tasks would not be able to execute for
more than the detected time, and the allocated runtime would
not increase).

Hence, if some tasks execute for C time units over P time
units, Q is not set as Q = C but as Q = C ∗(1+ovh), with ovh
defined as the allocation overhead. Finally, to account for the
adaptation rate l mentioned above, the equation is updated as
Q = C · (1 + ovh · l).

The pseudocode of the algorithm is reported in Algorithm 1.
In the algorithm, a circular array is used to compute the

maximum of the last N samples (line 17). N is the size of
the circular array - i.e., the number of previous samples used to
compute the maximum and ovh is the overallocation overhead.
N and ovh are configurable parameters of the algorithm.

The adaptation rate is initially set to 1 (line 10). The
variable cmax_old, which stores the last observed maximum
execution time in the reservation, is initially set to −1, in such
a way that the adaptation process is performed only if at least
two execution time values have been observed (line 18, for
the startup phase).

The algorithm doubles the adaptation rate if the maximum
execution time observed in the sliding window of N instances
(cmax) is greater than the maximum execution time observed
in the previous activation cmax_old, meaning that the allo-
cated budget is not enough (line 19). Otherwise, the adaptation
rate is set to 1 (line 21).

Finally, the new budget (dl_runtime) is set (line 25).
Please note that, for simplicity in the presentation, the mon-

itor in Algorithm 1 considers a single thread in a reservation.
Nonetheless, our algorithm and implementation can be used
to monitor multiple reservations simultaneously, regardless of
the encapsulated scheduling entity (threads, VMs, containers).

Algorithm 1 Runtime Monitoring and Update
1: function MONITORANDUPDATE(P, Q, ID)
2: Input: P (task period)
3: Input: Q (initial runtime estimation)
4: Input: ID (task identifier)
5: Parameter: N (size of the circular array)
6: Parameter: ovh (overallocation overhead)
7: ▷ Set sched. params for res. ID
8: dl_runtime ← Q; dl_period ← P
9: ▷ Set algorithm parameters

10: l ← 1; ▷ Adaptation rate
11: cmax_old ← -1; ▷ Last max. exec. time
12: circular_array ← circular array of size N
13: while true do ▷ Start periodic monitoring
14: wait for T time units
15: c ← GET EXECUTED TIME(ID)
16: INSERT(circular_array, c)
17: cmax ← GET MAX(circular_array)
18: if cmax_old ̸= −1 then
19: if cmax > cmax_old then
20: l← l · 2
21: else
22: l← 1
23: cmax_old ← cmax
24: ▷ Budget adaptation
25: dl_runtime ← dl_runtime ·(1 + ovh · l)

IV. IMPLEMENTATION AND USAGE

The proposed runtime monitoring and adaptation algorithm
has been implemented in a runtime monitor which is able
to monitor single threads (as described above) or groups of
threads (using the Linux cgroups feature). Docker/Podman
(or Kubernetes) containers are handled through their cgroups,
while KVM-based VMs can be handled by monitoring their
virtual CPU threads (running a monitor as a daemon inside the
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Fig. 5. Estimated runtimes for two periodic real-time tasks, starting from
unrealistically low initial estimations.
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Fig. 6. Response times for the two periodic real-time tasks of Figure 5.

VM is also possible). The monitor needs to be both efficient
(introducing a small overhead) and safe (avoiding bugs due to
wrong memory accesses), and the Rust language looked like
a good compromise between efficiency and safety. Hence, the
monitor has been implemented in Rust.

Usage. The monitoring program can be used in different ways:
• As a wrapper that is able to start the monitored programs

and monitor/manage them.
• As a standalone program that can monitor one or more

existing threads (also setting the reserved runtime).
• As a daemon providing a REST API, which can receive

the IDs of the threads to be monitored.

V. EXPERIMENTAL RESULTS

To evaluate the effectiveness and the performance of the
presented runtime monitor, experiments have been performed
using a node based on an AMD Ryzen 7 5700U CPU running
at 1.8 GHz. The node runs Ubuntu 24.04.2 with a custom 6.10
Linux kernel patched as described in Section III.
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Fig. 7. Estimated runtimes for two periodic real-time tasks, starting from
realistic initial estimations.
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Fig. 8. Response times for the two periodic real-time tasks of Figure 7.

Robustness to initial runtime misestimation. In a first
experiment, we tested the ability of the monitor to infer
correct runtimes even when the initial runtime estimations are
unrealistically low. Figure 5 shows the evolution of the runtime
allocated to two periodic threads with execution time 10ms
and 20ms (the two tasks have period 100ms). To stress the
robustness of the algorithm, the original runtime estimations
have been set to two completely underestimated values (2ms).
As it is possible to see from the figure, the allocated runtime
rapidly increases to a maximum value (set to 80% of the
period), thanks to the multiplicative effect of the adaptation
rate l; this allows recovering from the delay accumulated by
the tasks in the initial periods, when the allocated runtime
was not large enough. After this delay is recovered, the
allocated runtime decreases to a value slightly larger than the
thread’s execution time (this small overallocation is due to the
overallocation overhead ovh). Figure 6 shows the effect of these
runtime allocations on the tasks’ response times: the response
times initially increase to very large values, but after few
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Fig. 9. Estimated runtimes for two periodic real-time tasks with varying
execution times.

monitoring cycles they become equal to the threads’ execution
times, showing that the monitoring and feedback algorithms
worked correctly.

Experiments with a better initial runtime estimation. After
verifying that the monitor can tolerate initial underestimations
of the runtimes, the effect of more correct estimations has been
tested. Figure 7 and Figure 8 show the results of a different
experiment in which the initial runtime estimation was more
accurate (Q = 8ms). As it is possible to see from the figure,
in this case the runtime converges more quickly to the correct
value and the response times are much more controlled.

Experiment with a mode switch. To check how the run-
time monitor can cope with variations in the runtime, the
experiment has been repeated with two tasks having variable
execution times: the first one starts with an execution time
equal to 5ms, after some time switches to a different mode of
execution, in which it has an execution time equal to 15ms,
and then switches to 10ms, while the second one has three
modes: it starts with an execution time equal to 10ms, then
switches to 30ms, and then to 20ms. The evolution of the
estimated runtime is displayed in Figure 9, showing that the
monitor is able to correctly cope with the changes in the tasks’
execution time, quickly adapting to the variations in the tasks’
behaviour.

Monitoring a QEMU VM. After verifying that the runtime
monitor is able to correctly estimate the runtime needed by
tasks executing on the host machine, some experiments have
been performed to test its behaviour with VMs.

In particular, a QEMU/KVM VM (with one single virtual
CPU) has been started, using the runtime monitor to estimate
the runtime of the QEMU’s virtual CPU thread (QEMU creates
a Linux thread for each virtual CPU). Inside the VM, two real-
time applications have been sequentially executed: the first one
is composed of one single periodic thread (named “thread1”
and having period 100ms and execution time 10ms), and the
second one is composed of two periodic threads (“thread2”,
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Fig. 10. Estimated runtime for a VM’s virtual CPU thread, when executing
various real-time applications.
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Fig. 11. Response times for the threads of the real-time applications running
inside the VM of Figure 10.

with period 200ms and execution time about 15ms, and
“thread3”, with period 300ms and execution time about
40ms).

The estimated runtime is displayed in Figure 10. From the
figure it is possible to see that the runtime estimation is orig-
inally very low (around 2ms) because the VM is idle; when
the first real-time application (composed of thread1, with
(C = 10ms,P = 100ms)) starts, the runtime is increased
to the correct value and stays almost constant during the
execution of the application. When the application terminates,
the runtime estimation experiences a spike to the maximum
value, probably because the guest OS kernel needs some time
to save the application’s results and to terminate it. Then,
the runtime estimation returns around 2ms (idle VM), with
some slight increases probably due to some activity on the
VM console. After some time, a second real-time application
(composed of thread2 with (C = 15ms,P = 200ms) and
thread3 with (C = 40ms,P = 300ms)) starts (around
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time 17s) and the estimated runtime increases, stabilizing
around the correct value after a small spike. When thread2
terminates and thread3 remains the only active real-time
thread, the estimated runtime decreases to the new correct
value; finally, when the application finishes the estimated
runtime experiences a spike (this is similar to what happened
when the first application terminated) and then returns to 2ms
(idle VM).

Figure 11 reports the response times of the three threads,
showing that the monitor is able to keep them under con-
trol (the only thread experiencing a high response time is
thread3, at the beginning of its execution when the runtime
estimation is not accurate yet). As a side note, it is interesting
to notice that when thread2 finishes the response time of
thread3 stabilizes (because it stops suffering interference
from thread2 execution).

VI. RELATED WORK

Co-locating different applications on physical computa-
tional resources has been an open problem for the last two
decades [7], [17]. The complexity arises from the hetero-
geneous constraints of the various application scenarios, the
evolution of hardware platforms, the addressed workloads, and
the integration with software stacks. In critical applications
with limited resources, accurately monitoring resource utiliza-
tion and assigning the computational platform’s share becomes
paramount [20], [21]. The problem is characterized by several
challenges: accurate workload estimation, proper allocation of
shared resources, and the capability to enforce this allocation
with robust mechanisms.

Several works have been presented in the literature to exploit
different virtualization mechanisms. Abeni et al. [8] proposed
a solution to enforce isolation among KVM-based virtual
machines exploiting the standard SCHED_DEADLINE. They
also proposed an analysis whose model is coherent with the
implementation details.

Methods for leveraging SCHED_DEADLINE for executing
deep networks have also been proposed [22].

Containers are becoming the most used and studied in the
edge context due to their lightweight approach and limited
overhead. Struhár et al. [23] have proposed an overview of the
topic. In particular, Telschig et al. [24] presented a real-time
container architecture for dependable distributed embedded
applications with different criticalities and an implementation
based on lxc. Abeni et al. [10] proposed a preliminary exten-
sion of the SCHED_DEADLINE scheduling class to enforce
container isolation. Cucinotta et al. [25] exploited such an
isolation mechanism to improve the colocation of containers in
edge infrastructures. Barletta et al. [26] studied issues related
to the use of container-based solutions in the field of industrial
edge nodes. Fiori et al. [27] proposed an extension to the
Kubernetes platform called RT-Kubernetes to better exploit
the advantages of SCHED_DEADLINE to isolate containers
in modern orchestration infrastructures. Other works targeted
WebAssembly virtualization [28]–[30].

Most of these works focus on implementing isolation mech-
anisms without considering the problem of adequately tuning
the allocated resources and adapting such parameters in the
case of dynamic workloads [31].

Their runtime allocation is crucial to handling variable
workloads. Initially, authors focused on simple scenarios with
single real-time tasks. Lu et al. [18] proposed a scheduling
algorithm applying feedback control techniques to handle run-
time variations of task execution times. Cervin and Eker [32]
presented an approach to schedule control tasks characterized
by high computational variability, such as hybrid controllers.
Abeni et al. [19] integrated feedback control with bandwidth
reservation to guarantee the effective availability of the allo-
cated resources, showing the results of the proposed solution
to manage multimedia applications.

Another work [16] proposed a solution for multimedia ap-
plications that combines a monitor to observe task activations
and a feedback mechanism to adapt scheduling parameters.
The solution was based on the ad-hoc API of the AQuoSA
project and cannot be seamlessly integrated into modern
solutions based on containers and VMs.

Struhar proposed the REACT framework [33] to orches-
trate containers with real-time constraints, which was further
extended [1].

Barletta et al. [34] proposed k4.0s, an extension based on
Kubernetes focusing on the real-time constraints for the indus-
trial application field. Similarly, Lumpp et al. [35] presented
RT-Kube, which is an extension of Kubernetes able to monitor
deadline violations and adapt container parameters for au-
tonomous robots. In the context of more general performance-
sensitive applications, methods to distribute the workload in
Amazon AWS have been proposed [36].

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a dynamic monitoring approach for
SCHED_DEADLINE reservations to dynamically detect reser-
vation budgets at runtime based on observed workload mea-
surements.

The approach and its implementation in Linux enables
efficient resource in dynamic real-time edge environments
without requiring application instrumentation and leverages
Rust to be both efficient and safe.

Future work will focus on integrating runtime monitoring
with dynamic period estimation [15] and orchestration [27].
Furthermore, another possible research direction consists of
layering a (possibly machine-learning-based) lightweight pre-
dictor to forecast workload spikes and pre-adjust the budget
proactively.
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