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Abstract—In the last decade, enormous and renewed attention
to Artificial Intelligence has emerged thanks to Deep Neural
Networks (DNNs), which can achieve high performance in
performing specific tasks at the cost of a high computational
complexity. GPUs are commonly used to accelerate DNNs, but
generally determine a very high power consumption and poor
time predictability. For this reason, GPUs are becoming less
attractive for resource-constrained, real-time systems, while there
is a growing demand for specialized hardware accelerators that
can better fit the requirements of embedded systems. Following
this trend, this paper focuses on hardware acceleration for the
DNNs used by Baidu Apollo, an open-source autonomous driving
framework. As an experience report of performing R&D with
industrial technologies, we discuss challenges faced in shifting
from GPU-based to FPGA-based DNN acceleration when per-
formed using the DPU core by Xilinx deployed on an Ultrascale+
SoC FPGA platform. Furthermore, it shows pros and cons of
today’s hardware acceleration tools. Experimental evaluations
were conducted to evaluate the performance of FPGA-accelerated
DNNs in terms of accuracy, throughput, and power consumption,
in comparison with those achieved on embedded GPUs.

I. INTRODUCTION

During the last decade, renewed attention to Artificial
Intelligence has consistently emerged thanks to the impressive
performance achieved by Deep Neural Networks (DNNs) in
several applications, including computer vision, robotics, and
autonomous driving, reaching and overcoming human accu-
racy in some specific tasks, [1], [2]. This is mainly due to the
capability of DNNs of extracting high-level features from raw
data using learning algorithms applied to a large amount of
data, which allow achieving an effective representation of the
input space. This comes at the cost of high computation com-
plexity and memory requirement, which challenge computing
platforms to achieve real-time performance combined with
energy efficiency [3]. To obtain high throughput, Graphics
Processing Units (GPUs) are typically used as hardware
accelerators (HAs) to accelerate DNNs during training and in-
ference phases. Nevertheless, their power consumption (in the
order of hundreds of watts) often results to be prohibitive [4]
for resource-constrained embedded systems. Moreover, GPUs
exhibit poor time execution predictability, which is instead
a critical requirement in safety-critical systems, such as au-
tonomous vehicles.

A promising alternative to GPUs are FPGA SoCs. Such plat-
forms enable the deployment of problem-specific HAs meet-
ing the computational and memory requirements of complex

DNNs while maintaining a contained power consumption [5].
FPGA-based platforms proved their capabilities in power ef-
ficiency, combined with low latency, and timing predictability
in different deep learning (DL) applications [6], [7]. Although
great performance and power efficiency can be achieved by
customizing the FPGA hardware of a heterogeneous embedded
platform for DNN inference [8], [9], significant efforts and
expertise are required to enable efficient acceleration, often
leading to long development times. DL algorithms are having
a big impact in the autonomous driving field and currently
represent its core technology for implementing perception
tasks. Autonomous vehicle technologies are progressively mi-
grating from research laboratories to public roads, promising
to decrease accidents and traffic congestion, as well as taking
automated mobility to the next level.

Contribution. This paper focuses on Baidu Apollo, a pop-
ular open-source autonomous driving framework [10], which
includes a set of Caffe-based [11] DNNs running on Nvidia
GPUs. We discuss all the challenges that we addressed to
accelerate the Apollo DNNs inference on a Xilinx SoC FPGA
embedded platform (Zynq Ultrascale+ MPSoC ZCU102),
hence offering a valid alternative to GPU acceleration. This
required analyzing in details the design of the Apollo DNNs
and their role in the Apollo Perception System. The Vitis AI
framework by Xilinx was adopted to accelerate the Apollo
DNNs. The paper individually addresses the acceleration of
each DNN, highlithing the issues that were encountered and
discussing the adopted solutions against other alternative ones.
It then provides an experimental evaluation of the accelerated
DNN performance that focuses on DNN accuracy, throughput,
and power consumption comparing FPGA-based against GPU-
based acceleration. This work represents a complex engineer-
ing effort to accelerate a complete and mature perception
system on an FPGA-enabled embedded device, also showing
the pros and cons of today’s acceleration tools.

II. RELATED WORK

DNN optimization for acceleration. The deployment of
DNNs on edge devices requires dealing with compression
techniques to address the typically limited resources available
on embedded devices. Several methods have been proposed to
compress DNNs. The compact model [12] technique aims at
designing smaller base models still achieving acceptable appli-
cation accuracy. Data quantization [13] aims at reducing the



number of bits with which weights and activations are repre-
sented. Network sparsification [14] reduces the complexity of
the DNN by compressing the amount of connections/neurons.
Regarding data quantization techniques, the numerical preci-
sion with which weights are stored and computed strongly
impacts the accuracy and efficiency of the network. Typically,
the training step is performed leveraging high numerical
precision representations: 32-bit floating-point (FP32). Nev-
ertheless, quantization to integer is crucial for obtaining high-
performance and power efficiency in the inference phase: FP
operations are computationally demanding and require plenty
of energy [15]. Lower numerical precision representations are
reasonably effective during inference, e.g., 8-bit integer (INT8)
[16]. Various quantization techniques have emerged. They can
be classified as belonging to 1) post-training quantization
(PTQ) [17] or 2) quantization-aware training (QAT) [18]
techniques. PTQ is performed after a high-precision model has
been trained. Firstly, a floating-point model has to be evaluated
using a small dataset representative of the task’s real input
data. Statistics about the interlayer activation distributions
are collected. As a final step, the quantization scales of the
model’s activation tensors are determined using optimization
objectives. This process is well known as calibration, and
the representative dataset used is the so-called calibration
dataset. Sometimes PTQ is not able to achieve acceptable task
accuracy. This is when you might consider using QAT. QAT
can improve the accuracy of quantized models including the
quantization error in the training phase. It enables the network
to adapt to the quantized weights and activations.
FPGA acceleration of DNNs. Multiply-and-accumulate are
DNNs fundamental operations, easily parallelized. To achieve
high performance, highly parallel computing paradigms are
used, including both temporal and spatial architectures [5].
The temporal one appears mostly in CPUs or GPUs, and
employ a variety of techniques to improve parallelism such as
vectors (SIMD) or parallel threads (SIMT). Whereas, spatial
architectures are employed for DNNs acceleration in ASIC
and FPGA-based designs. This paradigm is based on dataflow
processing, i.e., ALUs form a processing chain so that they
can pass data from one to another. The architecture increases
data reuse from low-cost memories in the memory hierarchy in
such a way to reduce energy consumption. Dataflow process-
ing and compression techniques have given researchers and
industries the possibility to propose multiple frameworks for
porting floating-point DNNs to FPGA-based platforms: Xilinx
Vitis AI [19], CHaiDNN [20], and FINN [21]. In this work,
we take Vitis AI as our reference framework that, to the best
of our records, is the most mature solution of this kind for
Xilinx platforms. Unfortunately, dealing with Vitis AI is not
always straightforward: using the framework with modern and
complex DNNs often requires dealing with the limitations of
the tools and the architecture of the accelerators.
DNN for autonomous systems. Shaheen et al. [22] dis-
cussed the limits of DNN models in adapting to changing
environments (to make an example, in autonomous systems),
and showing methods and techniques for continuous learning

in autonomous systems. Putra et al [23] proposed a method
for unsupervised continual learning applicable to autonomous
systems based on Spiking Neural Network (SNN). Viale et
al. [24] proposed CarSNN, an 8-bit-weight SNN model for
autonomous driving. To the best of our knowledge, this work
represents the first comprehensive attempt to accelerate DNN
models of a real-world perception system on an FPGA SoC
embedded platform.

III. MOTIVATION AND BACKGROUND

A. FPGA SoC platforms

FPGA SoCs are heterogeneous computing platforms typ-
ically composed of two subsystems: a Processing System
(PS), incorporating multiple ARM-based processors combined
with an FPGA Programmable Logic. These devices provide

Fig. 1: Illustration of a typical FPGA SoC architecture.

higher integration, lower power consumption, and higher time
predictability compared to GPU-based ones. Moreover, they
can leverage high bandwidth communication bus between
the processors and the FPGA. This is achieved through the
standard (multi-manager and multi-subordinate) interface for
interconnections, i.e., the ARM Advanced Microcontroller Bus
Architecture Advanced eXtensible Interface (AMBA AXI) [25],
known simply by the name of AXI. Software tasks run on the
processors in PS. The FPGA logic can host custom hardware
devices or peripherals, such as HAs, i.e., hardware components
designed to perform specific functionality more efficiently than
standard software. HAs are activated by software tasks, issuing
an AXI request, whenever a hardware acceleration is needed.
The PS and the FPGA subsystems communicate through two
interfaces: the PS-FPGA interface and the FPGA-PS interface.
Communications between HAs and processors can also occur
through a shared DRAM memory controller located in PS
and directly accessible by the HAs. For our purposes, DNN
inference execution is a combination of executions on both
HAs and on processors. Note that software task execution is
typically required whenever the execution of a layer is not
supported by HAs (see Section IV).

B. Vitis AI

Vitis AI is a framework for Xilinx platforms that aims at
providing a set of tools for running complex DNN models on
FPGA SoC platforms. The framework comprises a quantizer
tool and a compiler tool, as shown in Figure 2. The quantizer
converts FP32 weights and activations to INT8 fixed-point



format representation, using a PTQ algorithm. The conversion
is performed at the cost of minimal accuracy loss [19](Vitis
AI Quantizer). The quantized model is then parsed by the
compiler, which builds a control-data flow representation of
the operations. The compiler optimizes instructions scheduling
and data reuse and produces an executable file containing
specialized instructions for executing the model. Quantization
and compilation steps are executed on powerful host machines.
Then, the executable file is loaded by a software application,
running on the target platform, developed through the Vitis
AI RunTime (VART) API. The accelerated DNN execution is
performed on the Deep Learning Processor Unit core (DPU
core), a specialized HA to be deployed on FPGA. The com-
piler reports issues whenever it finds operations not supported
for the DPU core. Following the official guidelines provided
by Xilinx, unsupported layers must be executed by deploying
software implementations running in the PS. This step can
require to split the network into multiple subnets. Under some

Fig. 2: The Vitis AI workflow and its two main tools (Quantizer and Compiler).

circumstances, we were able to execute unsupported DNN
layers on the DPU core by converting them to equivalent
layers compatible with the DPU core (see Section IV-B for
more details).

C. The Apollo Perception Module

Autonomous driving is a challenging task that requires
accurately sensing the environment to enable safe navigation.
The Baidu Apollo platform, designed for the deployment of
fully autonomous driving systems, has been implemented as
a modularized architecture. Modules are described by their
input/output (I/O) relationship to other modules. The per-
ception module is responsible for perceiving the surrounding
environment by analyzing sensor data (i.e., cameras, LiDAR,
etc.). The Apollo perception system relies on six DNNs: 1)
Lane Mark detector, to detect lanes in camera scenes; 2)
Denseline lane tracker, to track lanes, taking as input the
output of the lane detector; 3) Traffic light detector, to identify
traffic lights in camera scenes; 4) Traffic light recognition, to
classify lights status, starting from the output of the traffic
light detector; 5) Obstacle detector, to detect 3D objects in
camera scenes; 6) LiDAR-based detector, to complement the
information of the obstacle detector using LiDAR data.

Figure 3 reports a graphical representation of the perception
module. Models (1-5) input images coming from cameras,
while (6) inputs cloud points coming from the LiDAR [26].
Following the Caffe standard [11], each DNN is represented
through two files: a .prototxt describing the model struc-
ture and a .caffemodel containing weights and biases.

Fig. 3: Block diagram of the Apollo Perception Module.

IV. ACCELERATING APOLLO’S DNNS ON FPGA SOC

In the following we illustrate the Apollo DNNs and discuss
the challenges that were faced in moving them from GPU-
based to FPGA-based acceleration. The Vitis AI tool quantizes
DNNs using an 8-bit precision for both weights and activa-
tions. The quantization process requires a calibration dataset.
Unfortunately, the complete original Apollo dataset used for
training its DNNs is not publicly available. Nevertheless, we
found a valid alternative on the Apollo Scape website [27],
which contains a reasonable amount of unlabeled camera-
based images and LiDAR point-cloud data. An unlabeled
dataset is anyway enough to perform the calibration (as also
acknowledged by the Vitis AI documentation [19](Calibration
process)) because the calibration process is based on analyzing
the layer activations distribution. Next, we describe the steps
required for accelerating each of the DNN models on FPGA-
based platforms.

A. Denseline-lane tracker (DT)

Description. DT model is leveraged by the perception module
to detect and predict roadway lines. The model includes more
than 70 layers. It takes as input an RGB image acquired by
the camera and it outputs a tensor representing 9 feature maps,
with shape (80 x 192) each. The feature maps are then post-
processed by other components of the Apollo framework (not
analyzed in this paper).

Challenges. This DNN shows a simple architecture composed
of standard operation layers, such as convolutions, decon-
volutions, pooling, and simple element wise operations. No
particular challenges emerged in dealing with this model as
these layers are particularly suitable to the Vitis AI framework
– the functionalities of the standard Xilinx Vitis AI quantizer
and compiler were enough to accelerate the DNN.

B. Lane Mark detector (DarkSCNN or LMD)

Description. DarkSCNN is a YOLOv3-based model aiming
at visual localization. It exploits spatial relationships among
pixels to identify straight-shaped objects, even if partially
obstructed (such as lanes). This model has more than 700
layers, including convolutions, concatenations, fully connected
(FC), slices, and softmax. It inputs RGB images and outputs
detected objects shapes and the corresponding classification.



Challenges. The quantization process was successfully com-
pleted using the Vitis AI quantizer. Unfortunately, the compi-
lation process was not straightforward and reported four major
issues: (1) a compiler bug for a slice layer, (2) unsupported
axis concatenation for a concat layer, (3) limitations related
to the size of an FC layer, and (4) unsupported softmax
operations. To solve these issues, we proposed novel algo-
rithmic solutions that aim at converting DNNs to make them
compatible with Vitis AI. They are described next.
Slice2Conv algorithm. A slice layer is intended for splitting
an input tensor into multiple outputs along a given axis with
certain section indices (i.e., points where input tensor must
be divided), each named slice point. This first compilation
issue is caused by a bug discovered in the compiler. The
compiler checks that the number of slice points is equal to
the output tensors number. If not, the compilation process is
aborted. However, the official Caffe documentation [11](Slice
Layer) indicates that the number of slice points must be equal
to the output tensors number minus one. This bug has been
reported and confirmed by Xilinx in [28]. Thus, we were not
able to directly implement slice layers for the DPU. Analyzing
the operations available on the DPU, we realized that the
slice layer could be equivalently implemented through a set
of 60 convolution operations. Therefore, we conceived the
Slice2conv algorithm. To make the operations equivalent, we

Fig. 4: Example of the Slice2conv algorithm in action.

should find the correct dimension for the convolution kernels
and the value of their weights. Note that the output tensor
dimensions of a out W x out H convolution layer are:

out w =
in w − k w + 2p

s
+ 1, (1)

out h =
in h− k h+ 2p

s
+ 1, (2)

where in w and in h are the input tensor dimensions, k w
and k h are the kernel dimensions, and p and s are the padding
and stride of the convolutional kernel, respectively. The slice
input dimensions of the LMD are (60 x 80), while the required
output dimensions for the slice are (1 x 80). To implement the
slicing as a convolution we can then consider a convolutional
kernel with stride s = 1 and zero padding (p = 0), hence
obtaining the equivalent kernel size (k w x k h) by just
rearranging the above formulas as follows:

k w = in w + 1− out w = 80 + 1− 80 = 1, (3)

k h = in h+ 1− out h = 60 + 1− 1 = 60. (4)

Besides kernel dimensions, kernel weights must be properly
selected. A simple example can be used to explain this con-
cept. Figure 4 shows a convolution operation between a tensor

and a kernel to realize slicing. The output vector represents
the tensor row extrapolated by setting to 1 the kernel weight
in the same row position of that which must be extracted
by slicing (in this case the first one, i.e., D0, D1, D2, D3),
leaving the others set to 0. Unfortunately, this first attempt
was not successful due to a limitation of the DPU core, which
is capable to deal with kernels with a maximum dimension
equal to 16, [19](DPU operations), while we required (1 x
60) kernels.
Slice2MulConv algorithm. To overcome this limitation, we
replaced each of the 60 Slice2Conv convolutions with 5
convolution layers, having reduced kernel dimensions, thus
respecting the DPU constraints. We rearranged the slice opera-
tion by means of 300 convolutional layers, organized in 60 sets
of convolutions. Each set takes as input the same slice input
tensor with dimensions (60 x 80) and follows a 5-convolution
hierarchical fashion. The hierarchical organization means that
the convolutional layers execute one after the other. Each set is
responsible to output one of the 60 original slice layer output
tensor. Unlike the Slice2Conv algorithm, here, in each set,
the first four convolutional layers share the same kernel and
attempt at dividing the height dimension (60) of the input
tensor into 15 groups of 60/15 = 4 slice output tensors. The
shared kernel has dimension (15 x 1) and serves the purpose
of reducing the size of the input tensor, leading to a partial
output tensor with dimensions (4 x 80). The shared kernel has
all the weights set to 0, except for the weight corresponding
to the row labeled by a parameter named GroupID, which
is set to 1. The GroupID value is calculated as the integer
part of the division between the number of the output tensor
slice to be produced (a number in the range [0, 59]) and
4. Whereas, the fifth and last convolutional layer has kernel
dimensions (4 x 1) and all its weight values are set to 0, except
for the weight corresponding to the kernel row with index
slice index, which is set to 1. The slice index parameter
is calculated as the remainder of the previously-mentioned
division. To better clarify this behavior, an example is reported
in Figure 5, where the slice number 26 is obtained as output.
After computing the GroupID and slice index parameters,
the shared and last kernels weights are set. The input tensor
goes through the first convolution. The output of this phase
is an intermediate tensor with dimensions (46 x 80), which is
also the input of the second convolution. The same happens for
the third and fourth convolution, until we have an intermediate
tensor with dimension (4 x 80), which contains the slice output
number 26. Afterwards, the fifth convolution is performed to
extrapolate the right slice output tensor.

Regarding challenge (4), according to the Vitis AI man-
ual [19], the DPU incorporates a softmax core able to acceler-
ate softmax operations. Unfortunately, the softmax core is sep-
arated from the DPU core and is not managed directly by the
Vitis compiler. This means that it should be explicitly managed
through the VART APIs. The softmax core is designed to take
as input a tensor represented as INT8 values. This generated a
format representation mismatch since in this case the outputs
are in FP32 format. We were forced to address challenge (4) by



Fig. 5: Example of the Slice2MulConv algorithm in action. Dashed lines denote parts of the tensors that are not illustrated.

Fig. 6: In blue subnets running on DPU, in orange software operations.

implementing the softmax operation in software. For efficiency
reasons, this has been done by employing a LookUp Table
(LUT). This was feasible because the Quantizer provides the
range of fixed-point values processed by the DPU. For the
case of the LMD model, the range of 8-bit-width fixed-point
values is in the interval [-8.00, 7.9375], with a step precision of
0.0625. The LUT data structure contains precomputed values
of the 28 = 256 possible softmax values for inputs in the
range [-8.00, 7.9375]. It is implemented as a regular floating
point array (of dimension 256) and it is accessed by simply
taking into account the unsigned value of the input in two’s
complement representation. The choice of adopting a LUT
proved to be effective in drastically improving the performance
with respect to a standard software solution computing the
multiple exponential functions required by the softmax at
runtime. Finally, we were forced to implement equivalent
software layers also to solve challenges (2)-(3). Both concat
and FC layers required about 50 lines of C++ code. Overall,
this required to split the network into three subnets. The final
solution is graphically depicted in Figure 6.

C. Traffic Lights Detection (TLD)

Description. TLD model executes a detection task of traffic
lights through a YOLOv3-based network counting more than
80 layers. The network inputs images from the camera and
a Region of Interest (ROI) and outputs bounding boxes for
the detected traffic lights. As there might be more lights in
the ROI, the DNN leverages three custom layers to select the
proper ones according to their position and shape. If no lights
are detected, the status is marked as unknown.

Challenges. This DNN relies on custom layers whose imple-
mentation is unfortunately not publicly disclosed by Baidu.

Also, these networks were deployed using a modified version
of the Caffe framework to handle such custom layers, which
is not publicly available. Our attempts in retrieving any infor-
mation about these custom layers failed. The custom layers
are located in the final part of the model. Thus, we decided
to exclude them as a temporary solution and focus on the
rest of the network. The quantization phase passed with no
errors. Conversely, the compilation raised two issues related
to (1) a reshape layer and (2) a softmax layer – both of them
unsupported by the DPU (see Section IV-B for the softmax
layer). From the official Caffe documentation [11](Reshape
Layer), a reshape layer is meant for changing dimensions of a
tensor. Unfortunately, both (1) and (2) cannot be accelerated
on the DPU core. Thus, we were forced to deploy them in
software. Both layers are in the final part of the model. Thus,
no network split was required. The softmax was implemented
using the same LUT-based data structure discussed in the
section IV-B. Whereas, the reshape layer required a very few
lines of code to adjust the tensor dimensions.

D. Traffic Lights Recognition (TLR)

Description. TLR model aims at recognizing the color of
traffic lights. It includes around 20 layers, among convolution,
pooling, scale, and softmax ones. It inputs camera images, an
ROI, and the bounding boxes coming from the Traffic Lights
Detection model. The final softmax function outputs a vector
of size 4n (with n being the number of bounding boxes),
representing four scores for each bounding box related to the
classes ’unknown’, ’red’, ’yellow’, and ’green’. The highest
scores, if large enough, determines the traffic lights’ status.
Otherwise, the status is set to ’unknown’.

Challenges. After solving a minor issue related to the lack
of a bias parameter, which we found to be possible to be
safely set to zero after checking the Caffe manual [11](Scale
Layer), two major issues were reported by the compiler. They
were related to (1) a global average pool (GAP) layer and
(2) the unsupported softmax layer. Again, we were forced
to implement such layers in software. Since the GAP layer
is placed in the middle of the model, we split the network



into two sub-networks that can run on the DPU core. The

Fig. 7: TLR solution: in blue subnets on DPU, in orange software operations.

two sub-networks are connected by the software GAP layer.
Figure 7 reports a graphical representation of the proposed
solution. Finally, the software softmax inputs the output of
the second sub-network and was implemented using another
LUT, as discussed in Section IV-B. Whereas, the GAP layer
required a simple 15-line C++ function.

E. LiDAR-based Segmentation (LS)

Description. LS model is a CNN and performs obstacle detec-
tion by analyzing the point-cloud data provided by LiDARs. It
consists of around 30 layers. It inputs a feature map obtained
by a pre-processing conversion of the LiDAR point-cloud. The
network outputs 6-edge bounding boxes, where each bounding
box completely wraps an obstacle.

Challenges. The network takes as input a (6 x 672 x 672)
tensor. Unfortunately, the Vitis AI quantizer supports only gray
scale (1-channel) or RGB (3-channel) images—6-channels
tensors (as the one under analysis) are not supported by the
current implementation [19]. To overcome this limitation, we

Fig. 8: LS model input layers: A) original network, B) proposed solution.

replaced the 6-channel input layer of the network with two
3-channel input layers, each having shape (3 x 672 x 672).
Then, we deployed a concatenation layer on the channels to
restore the original input size of the network (6 x 672 x 672).
A graphical representation of the solution is reported in Figure
8). Thanks to these modifications we were able to successfully
quantize the network.

Proceeding with the compilation, two issues arose due to
(1) a slice unsupported layer and to (2) sigmoid unsupported
operations. In this case, to solve issue (1) we opted for
not employing the Slice2Conv or Slice2MulConv algorithms
presented in Section IV-B. This is because such a slice layer
has a simple structure that is not particularly computationally
intensive, while the implementation through equivalent DPU-
accelerated convolutions would have required the usage of
considerable logical resources on FPGA. Concerning issue (2),
no equivalent operations supported by the DPU were available
to accelerate sigmoid layers. Hence, they were implemented in
software using LUTs, following the same procedure described
for handling the softmax layer in the section IV-B.

F. Obstacle detection (OD)

Description. OD model aims at detecting 3D obstacles. It is
a YOLOv3-based DNN consisting of more than 70 layers. It
inputs images acquired from cameras and outputs bounding
boxes and the corresponding classifications for stationary and
dynamic object classes (cars, pedestrians, traffic cones, etc.)
Challenges. The quantization phase was completed success-
fully without issues. The compiler then reported two issues:
(1) unsupported parameter group for six convolution layers
(2) unsupported power, sigmoid, and reshape layers. Concern-
ing issue (1), the DPU supports only nominal convolution
(group=1) or depthwise-like convolution (group=number of
input channels). No approaches for converting these convo-
lutional layers to make them compatible with the DPU were
available to us. The same holds for issue (2). We were hence
forced to solve these issues by excluding the unsupported
layers from the compilation process and deploying them in
software, similarly as done for other DNNs.

In this case, to solve issue (1) we implemented the grouped
convolutions through a C++ function consisting of about 50
lines. To do so, we retrieved and employed the quantized
weights from the quantized model: this allowed us to perform
the convolution operations among fixed-point integers only,
avoiding expensive floating-point operations. The power and
sigmoid layers of the issue (2) were implemented in software
using LUTs, following the same procedure already described
for handling the softmax and sigmoid layers in Sections IV-B
and IV-E. Finally, the reshape layer was implemented as a C++
function according to its description from the Caffe manual
[11](Reshape Layer), as already discussed in section IV-C.

V. EXPERIMENTAL EVALUATION

This section reports the experimental evaluation we con-
ducted to assess the performance of the accelerated DNN
models. Our target platform is the Xilinx Zynq Ultrascale+ on
a ZCU102 board. The performance of the quantized networks
running on the FPGA SoC were also compared with the same
DNNs running on the Nvidia Xavier AGX SoC platform. Our
evaluation is based on three performance metrics: network
accuracy (Section V-B), throughput (Section V-C), and power
consumption (Section V-D). While, the DPU configuration we
adopted is reported in Section V-A. We deployed floating-point
DNNs on GPU platforms when evaluating accuracy to assess
the best achievable performance implied by our network mod-
ifications. To obtain a fair comparison, we evaluated floating-
point and quantized (INT8) DNNs running on GPU when
evaluating throughput and power. Models quantization for
GPU has been carried out using the TensorRT framework [29].
Just like the Vitis AI quantizer, the TernsorRT quantizer
leverages a PTQ quantization algorithm. However, note that
the algorithms used by the two quantizers may differ – no
public information is avaiable about their internal behavior.

A. DPU core configuration

In our experiment, the DPU was configured with the param-
eters recommended by Xilinx – the DPU operating frequency



Fig. 9: DNNs MSE and KL-Divergence evaluations for statistical mathematical results

is set to 325MHz, corresponding to the maximum frequency
guaranteed to meet the timing constraints [30]. The DPU
has two cores of the B4096 architecture, low RAM usage,
channel augmentation, and depthwise convolution enabled.
Since DNN models can have different independent processing
flows, the 2-core architecture has been chosen in order to
exploit processing parallelism. The report generated by the
Xilinx Vivado tool provides the following resource utilization
for the selected DPU configuration:

• 87.56% of Look-up-Tables (LUT): used to buffer data;
• 96.41% of LUT distributed RAM (LUTRAM): used as

small data buffers;
• 93.76% of flip-flops (FF): used to describe logic circuits;
• 98.68% of built-in RAM (BRAM): to store data;
• 76.43% of Digital Signal Processing (DSP): used to

process signals inside the FPGA;
Note that about more than 93% of the FPGA logic fabric is
used for deploying the DPU core. Due to this high resource
utilization, it is difficult to deploy other HAs on the FPGA fab-
ric. This is the reason for which we were forced to implement
DPU-unsupported layers using software approaches.

B. Accuracy

As mentioned above, the Apollo datasets are not publicly
available. Therefore, the accuracy of the original DNN models
cannot be directly compared with the accuracy of the quantized
ones. Thus, we opted for evaluating the accuracy of the net-
works using the unlabeled Apollo Scape dataset. Our accuracy
comparison is based on retrieving outputs from the quantized
networks running on FPGA SoC and comparing them with the
results obtained with the non-quantized networks running on
GPUs, using statistical metrics for evaluating accuracy in the
absence of the original labeled dataset [31], [32]. For com-
parison, we leveraged two evaluation metrics: Mean Squared
Error [33] (MSE) for comparing bounding box coordinates
and Kullback–Leibler Divergence [34] (KLD) for comparing
probability distributions of classifiers – the lower their values,
the better. The comparison results are reported in Figure 9. The
plots report MSE or KLD (y axis) for each of the 1000 test
images (x axis). We report only the most meaningful metrics
for each DNN model. Note that the fluctuation of the metrics

is very limited, and the same behavior was observed by testing
more than 1000 images per setting/metric. For each DNN, we
also report average, standard deviation and quantile (10% and
90%) values of the 1000 MSE or KLD samples.

Figure 9(a) regards the DT model. In this first case, the
results show that the MSE ranges between [0.00580, 0.00615].
Figure 9(b) reports the results for the LMD model. This
network has two outputs: one coming from an FC layer
(detection) and one from a softmax layer (classification). The
KLD metric was employed for evaluating the output of both
layers. The results for FC layer output show KLD values in the
range [0.00084, 0.0026]. Regarding the softmax output, KLD
values are in the range [0.061, 0.0625] (not reported in the
charts). Figure 9(c) shows the results for the TLD network.
The figure reports the metrics comparison for the bounding
box coordinates prediction. MSE values are in the range
[0.0011, 0.0016]. Figure 9(d) regards the TLR model. For this
network, the output vector represents a probability distribution.
Thus, here we used the KLD metric. We measured them in the
range [0.00008, 0.00082]. Figure 9(e) regards the LS network.
In this case, the comparison was carried out through MSE
evaluation. The results show that MSE values are quite stable
around 0.004343. Figure 9(f) regards the camera-based OD
network. Also, this comparison was carried out through MSE
calculation. The results range between [0.002418; 0.002449].
Take-away message. For all the tested scenarios, the evaluated
metrics showed how the quantized networks on FPGA SoC
well approximate the original floating-point networks.

C. Throughput
Table I, II and III report the average, peak and standard

deviation throughput performance in terms of Frames Per
Second (FPS), respectively. Three scenarios are reported for
each DNN under analysis: (1) INT8-quantized models running
on FPGA SoC (ZCU102 platform), (2) INT8-quantized models
running on GPU SoC (Xavier AGX platform), and (3) floating-
point (32-bit) models running on GPU SoC (Xavier AGX
platform). Each model was tested on 1000 images or 1000
LiDAR point-clouds.

The results show that the DNNs that rely most on DPU ac-
celeration, such as DT, TLD, and TLR models, provide consid-
erable performance improvements with respect to GPU-based



TABLE I: Average FPS on FPGA and GPU platforms.

DT LMD TLD TLR LS OD
INT8 FPGA 9.43 1.35 92.36 680.4 0.3 3.35
INT8 GPU 7.57 13.24 51.45 401.92 13.41 6.17
FP32 GPU 3.09 4.96 19.79 125.6 4.5 2.66

TABLE II: Peak FPS on FPGA and GPU platforms.

DT LMD TLD TLR LS OD
INT8 FPGA 9.43 1.43 95.22 713.31 0.34 3.37
INT8 GPU 8.43 13.96 52.17 404.32 14.04 7.46
FP32 GPU 3.26 5.62 21.67 127.21 4.97 2.67

TABLE III: Std deviation for FPS on FPGA and GPU platforms.

DT LMD TLD TLR LS OD
INT8 FPGA 0 0.04 1.47 13.11 0.02 0.01
INT8 GPU 1.44 2.52 5.49 18.22 0.58 0.9
FP32 GPU 0.27 0.47 2.12 2.38 0.25 0.031

acceleration (with and without quantization). Conversely, the
other networks that rely less on DPU acceleration exhibit
decreased performance on FPGA SoC with respect to GPU
SoC. This is mainly connected with the presence of DPU-
unsupported layers, which we were forced to run in software.
For instance, this is the case of the LS model.

Take-away message. As long as the majority of the layers
are able to execute on the DPU accelerator, FPGA SoCs are
a valid alternative to GPU SoCs for the execution of complex
DNNs for autonomous driving, and they can even achieve
better throughput performance.

D. Energy consumption

We evaluated the energy consumption of quantized and
non-quantized models. The measurements were conducted by
leveraging the on-board sensors available on the platforms
(both platforms share the very same energy sensor [35] [36]).
Figure 10 compares: (a) average and (b) peak power consump-
tion of each model for the same scenarios considered in the
previous experiment. The results show how the FPGA SoC
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Fig. 10: Average and peak power consumption for FPGA and GPU SoCs

platform is more power efficient compared to the GPU SoC
for both INT8-quantized and FP32 models. By comparing the
power consumption of INT8-quantized DNNs on GPU and

FPGA SoCs, it is possible to observe how the latter is capable
of providing an improvement of at least 75% and 59% for
average power consumption and peak power consumption,
respectively. As one may expect, the results are even better
when comparing against FP32 models running on GPUs. In
this case, the FPGA SoC platform can provide an improvement
of at least 77% and 72% for average power consumption and
peak power consumption, respectively.

Take-away message. FPGA SoC platforms are definitively
much more power efficient than GPU SoC ones for accelerat-
ing the tested DNN models.

VI. CONCLUSION

This work addressed the problem of accelerating modern
DNN models with FPGA technology. Specifically, we accel-
erated the DNNs of Baidu Apollo, a popular open-source
framework for autonomous driving, using an FPGA SoC
heterogeneous platform. This required to address a series of
challenges and propose new algorithmic solutions to deal
with the limitations of commercial tools and accelerators. The
performance of the FPGA-accelerated DNNs were compared
with the one obtained by leveraging GPU-based acceleration,
which is the standard approach used by Apollo and many
other systems. FPGA SoCs have shown improvements in terms
of power consumption and, in most cases, also throughput,
while providing comparable results for the DNN accuracy.
Future work will focus on improving the performance of the
accelerated DNNs by implementing the unsupported software
layers in FPGA logic. In conclusion, according to the authors’
experience, it must be noted that FPGA-based hardware ac-
celeration tools still seem to be too immature to handle the
acceleration of complex DNNs without excessive efforts, as it
is instead the case for GPU-based embedded platforms. In fact,
there are still many shortcomings in terms of supported layers
and operations. Nonetheless, given the considerable benefits
that FPGA acceleration can provide, it is advisable to continue
pushing on improving these DNN acceleration tools as their
limitations do not pertain to the FPGA technology itself but
rather to the maturity level of the surrounding ecosystem of
software and programmable logic modules. Overcoming these
issues would most likely drastically reduce the energy footprint
of embedded DNN-enabled systems, which are not limited to
autonomous vehicles and are expected to be ubiquitous in the
near future.
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