
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022 4469

An I/O Virtualization Framework With I/O-Related
Memory Contention Control for Real-Time Systems
Niccolò Borgioli , Student Member, IEEE, Matteo Zini , Daniel Casini , Member, IEEE, Giorgiomaria Cicero,

Alessandro Biondi, Member, IEEE, and Giorgio Buttazzo, Fellow, IEEE

Abstract—Modern applications are often characterized by a
tight interaction with I/O devices. At the same time, many appli-
cation domains are also facing a shift toward an integrated
approach where multiple applications with mixed levels of safety
and security need to co-exist on top of a shared hardware plat-
form, which is typically managed by a hypervisor. This gives rise
to the need for a predictable mechanism allowing multiple virtual
machines to share I/O devices, while at the same time control-
ling contention delays when they access global memory. To deal
with these shortcomings, this article proposes an I/O virtualiza-
tion framework providing support for controlling the I/O-related
memory contention by leveraging the ARM QoS-400 regulators.
Extensive experiments are performed to compare the proposed
solution with the Xen hypervisor, showing improvements up to
8× when controlling the I/O-related memory contention.

Index Terms—Edge computing, I/O virtualization, memory-
contention, real-time systems.

I. INTRODUCTION

MANY application domains (e.g., avionics, automotive,
etc.) that traditionally adopted dedicated hardware con-

trol units for implementing specific functions are now moving
toward an integrated approach where multiple, logically dis-
tinct subsystems can co-exist on the same hardware. This
trend shift has been dictated by the need to contain the
growth of physical electronic control units, combined with the
availability of powerful embedded platforms equipped with
multiple heterogeneous cores and even with GPU-based and
FPGA-based hardware accelerators, which offer an unmiss-
able opportunity to reduce the size, weight, power, and cost
required by each component (often called SWaP-C [1]).

On the other hand, such a paradigm shift gave rise to several
new challenges due to the usage of virtual machines (VMs)
to execute applications in isolation, using a fraction of the
available hardware resources.

Manuscript received 5 August 2022; accepted 5 August 2022. Date of pub-
lication 29 August 2022; date of current version 24 October 2022. This work
was supported in part by Huawei and the Italian Ministry of University and
Research (MIUR), through the SPHERE Project Funded Within the PRIN-
2017 Framework under Grant 93008800505. This article was presented at
the International Conference on Embedded Software (EMSOFT) 2022 and
appeared as part of the ESWEEK-TCAD special issue. This article was
recommended by Associate Editor A. K. Coskun. (Corresponding author:
Niccolò Borgioli.)

Niccolò Borgioli, Matteo Zini, and Giorgiomaria Cicero are with the
TeCIP Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy (e-mail:
niccolo.borgioli@santannapisa.it).

Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo are with the TeCIP
Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy, and also with the
Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna,
56127 Pisa, Italy.

Digital Object Identifier 10.1109/TCAD.2022.3202434

Hypervisor technology is a standard solution for running
multiple VMs (also called domains) on the same hardware
platform while providing safety, security, and predictabil-
ity features employing a vast range of isolation techniques
designed over the decades [2], [3], [4], [5], [6]. Providing
such a virtual platform requires dealing with several nontriv-
ial phenomena, e.g., CPU and memory interference, which
are often tackled by implementing mechanisms for CPU and
memory-bandwidth reservation [2], or cache coloring [6].

Furthermore, additional issues arise from the tight
interaction of modern applications with I/O devices, e.g.,
in autonomous driving [7] or robotics [8], which calls for
methods to virtualize shared I/O devices transparently.

The management of I/O devices is also crucial for reduc-
ing the delays due to memory contention when cores and I/O
devices simultaneously access a globally shared memory (usu-
ally, a DDR memory). To limit the lateness that the memory
traffic might introduce during I/O operations, some platforms
(e.g., the Xilinx Zynq Ultrascale+ MPSoC [9]) are equipped
with hardware regulators capable of controlling the number of
memory transactions allowed from each device in a given time
interval [10], [11], thus introducing a reservation mechanism
to control the I/O-related memory traffic.

Such regulators offer a new opportunity to deal with the
memory contention generated by I/O devices and, in the
context of a virtualized device, design and implement a com-
prehensive I/O virtualization mechanism capable of controlling
the impact of the traffic generated by I/O devices as a whole.

By leveraging such peripherals provided by modern embed-
ded platforms, a predictable I/O virtualization mechanism
should be able to: 1) virtualize I/O devices and make them
available to VMs in a seamless and fully transparent manner;
2) control the impact of I/O devices on the memory contention;
and 3) provide guarantees of I/O performance in terms of
longest blackout delay and bandwidth (i.e., using a bounded-
delay [12] (α,�) model) for I/O devices, both in transmission
and reception.

This Article: This article proposes a robust I/O virtu-
alization framework for mixed-criticality real-time systems
that allows controlling I/O-related memory interference by
means of ARM QoS-400 regulators. It has been implemented
upon CLARE-Hypervisor as a software solution in order to
be compatible with any type of I/O device. It comprises
both a device-independent part, which includes the I/O vir-
tualization scheduler and the related data structures and a
device-dependent part. For the latter part, we considered the
virtualization of the gigabit Ethernet MAC (GEM) controller
of the Xilinx Ultrascale+ MPSoC [9] as a relevant example of
a complex I/O device to virtualize. Finally, it reports the results
of an extensive experimental study that has been performed to

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2246-5186
https://orcid.org/0000-0003-2750-7437
https://orcid.org/0000-0003-4719-3631

4470 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

evaluate the proposed solution by comparing with the Xen
hypervisor [13], and reporting on different I/O performance
metrics based on a bounded-delay model [12].

II. BACKGROUND

Hardware Platform: The Xilinx Zynq UltraScale+ MPSoC
is a heterogeneous platform equipped with FPGA-based pro-
grammable logic (PL) and a processing system (PS). The PS
comprises a Cortex R5 dual-core processor (named RPU) and
a quad-core ARM Cortex A53 processor (named APU). The
RPU has a single-level private cache for each core, while the
APU has a two-level cache, where the first one is private
to each core and separate for data and instructions, and the
second level is shared among all the cores. The various com-
ponents in the PS (e.g., cores and I/O devices) and the PL
are interconnected by means of the ARM advanced microcon-
troller bus architecture advanced eXtensible interface (AMBA
AXI) interface [14]. Cores, I/O devices, and the PL can store
and retrieve data by interacting with a globally shared off-chip
DDR memory.

Particularly interesting to us, the Ultrascale+ MPSoC pro-
vides several ARM CoreLink QoS-400 Regulators [10]. These
regulators are designed to limit over time the number of AXI
transactions (and, hence, the memory traffic) issued by the
device they are connected to.

The QoS-400 supports three different types of regulations.
The outstanding transaction regulation, which permits the user
to specify the maximum number of requests the AXI master
can simultaneously issue, the transaction latency regulation,
which, by means of a feedback loop, exploits the QoS value
included to every AXI request to attempt to achieve the desired
requests’ latency, and the transaction rate regulation. Most rel-
evant to this work, the transaction rate regulation feature acts
in accordance to a variant of the TSPEC specifications (RFC
2215) and can be controlled with three parameters, separately
available for read and write requests: r (average rate), which
indicates the average allowed transactions per clock cycle; b
(burstiness allowance), which represents an additional budget
of transactions that can be consumed by the device at a rate
higher than r; and p (peak rate), which is the maximum rate of
transactions per clock cycle. These values are expressed as a
12-bit fraction of the desired number of transactions per clock
cycle.

CLARE-Hypervisor: CLARE-Hypervisor [15] is a bare-
metal type-1 hypervisor. It integrates cutting-edge mecha-
nisms to host safe, secure, and time-predictable VMs that
can execute in isolation upon the same hardware platform.
CLARE-Hypervisor has been designed for modern heteroge-
neous platforms, such as FPGA-based SoCs, to better exploit
and control their computational resources. CLARE-Hypervisor
follows a fully static approach with off-line configurations and
optimization to allocate the onboard resources to the VMs.
Physical devices are statically assigned to a single domain,
while physical CPUs may host multiple virtual CPUs with
real-time scheduling policies (e.g., fixed-priority scheduling).
The hypervisor mitigates the interdomain interferences by
statically assigning partitions of the last-level cache (LLC)
(via cache-coloring) to the physical cores, partitioning the
DRAM following a bank-aware approach, and implement-
ing a memory-bandwidth reservation budgeting the memory
transactions issued by the virtual CPUs.

Fig. 1. High-level overview of the considered platform.

III. DESIGN AND IMPLEMENTATION

The I/O virtualization mechanisms presented in this article
consider devices that need to be shared among VMs. The ones
that are for the exclusive use of a VM can be accessed in pass-
through and treated as simpler cases of the shared ones (details
are provided in the following). Similarly to other propos-
als (e.g., hypervisors such as Xen [13], or other mechanisms
proposed in scientific papers [16], [17], [18], [19], [20]), in our
architecture (shown in Fig. 1) all the shared physical devices
are exclusively assigned to a single VM by the hypervisor,
called I/O-management VM (I/O VM in short), following a
pass-through approach. The I/O VM implements a software-
defined sharing mechanism using shared-memory buffers and
an I/O scheduler to dispatch the accesses to each I/O device.
In our implementation, the I/O VM is powered by FreeRTOS
and can support the interaction with both FreeRTOS-based and
Linux-based VMs. The I/O VM can be either assigned to a
dedicated core or to a core shared with another VM. In the
latter case, it is recommendable to assign the highest priority
to the I/O VM to guarantee low-latency I/O.

A. Threat Model

The threat scenario considered in this work assumes that
any VM (excluding the I/O VM) is untrusted. This means
that an attacker could exploit a compromised guest VM to
attack the other guest VMs. The attacks considered in this sce-
nario are packet sniffing, packet manipulation, and I/O-related
denial of service (DoS). In general, in a similar architecture,
the packet sniffing and manipulation could happen in three
specific areas: 1) the device memory; 2) the private memory
of a guest; and 3) the memory shared between a guest and the
I/O VM. In our architecture, thanks to the isolation capabili-
ties of the hypervisor, area 1) can only be accessed by the I/O
VM, area 2) by the interested guest VM only, and area 3) by
the I/O VM and the interested VM only. Packet sniffing and
manipulation are, hence, mitigated by design. An I/O-related
DoS attack can be performed by generating I/O traffic from
a malicious guest VM or an external data source connected
to the system. They both have an impact on: 1) the dispatch-
ing of the I/O data of other guests, possibly introducing large
I/O-related scheduling delays; 2) the on-chip memory traffic
due to memory transactions issued by peripheral I/O devices;
and 3) the processor workload, due to the interrupts raised by
I/O devices. Protection mechanisms against these threats are
highlighted later in this article when presenting the features of
the proposed I/O virtualization mechanism.

B. Design Principles

Next, we describe our design principles and how they are
addressed in our solution.

BORGIOLI et al.: I/O VIRTUALIZATION FRAMEWORK WITH I/O-RELATED MEMORY CONTENTION CONTROL 4471

1) Design for Safety and Robustness to Security Attacks:
I/O VM: Our I/O virtualization mechanism is designed to fol-
low the best practices for safety and security. For example, the
usage of an I/O-management VM allows avoiding implement-
ing I/O management features inside the hypervisor. Indeed,
implementing I/O-management inside the hypervisor increases
its codebase (since drivers need to be ported within the hyper-
visor), which is not a good practice for safety and security,
as the hypervisor’s attack surface increases and significantly
complicates certification.

Wait-Free Queues: The I/O virtualization mechanism uses
wait-free ring buffers designed for robustness in a mixed-
criticality environment so that if the producer corrupts the
content of the shared memory, the code of the consumer will
never crash, and vice versa. This reduces the extent of packet
sniffing and manipulation attacks (see Section III-A).

I/O-Related Memory Traffic Regulation: QoS regulators are
used to mitigate adverse effects due to excessive I/O-related
memory contention and an excessive number of I/O-related
interrupts, which need to be processed by both the hypervi-
sor and the guest VM. This also allows bounding the effects
of security attacks, where an attacker may take control of
an I/O device and flood the system with a storm of I/O
data, thus potentially compromising the system’s performance
or causing a DoS, which can be instead forbidden thanks
to the QoS regulation on I/O devices. This helps address
DoS attacks on the on-chip memory buses due to memory
transactions issued by I/O devices on the platform and
attacks on the processor workload due to interrupts raised by
I/O devices.

Round-Robin I/O Scheduling: As discussed in detail in the
following, the I/O VM implements a round-robin inter-VM
and interdevice arbitration. This choice makes the I/O virtu-
alization mechanism fair, predictable, and robust to security
attacks. Note that round-robin is a predictable policy (also used
in locking protocols [21]) for which worst-case bounds can be
provided (see [16]). Its fairness also provides important fea-
tures for security: a misbehaving VM continuously sending I/O
data due to a security breach would never exacerbate the worst-
case timing performance of other VMs because it will never
get more than its assigned fair share given by round-robin, as
long as other VMs and devices need to communicate. This,
together with the memory-bandwidth regulation capabilities
provided by CLARE-Hypervisor, mitigates DoS attacks from
a malicious guest VM, which are discussed in Section III-A.
Nevertheless, our solution can be easily extended to support
other schedulers, e.g., priority-based ones.

2) Measurable Real-Time Performance Using the (α,�)
Model: The I/O virtualization mechanism is designed to allow
measuring the real-time performance of the I/O using a
bounded-delay model [12] (α,�). The bounded-delay model,
originally proposed in 2001 by Mok et al. [12] (α,�), is
a well-known metric for real-time systems to measure the
performance of mechanisms such as CPU-time resource reser-
vation. In this article, we inherit this metric from the context
of virtual CPUs and we use it (for the first time, to the best
of our knowledge) in the context of I/O virtualization, design-
ing our approach to provide measurable real-time performance
using the (α,�) model, where the parameters are reinter-
preted to fit I/O performance for each I/O peripheral as
follows.

1) α refers to the bandwidth (in the long run) with which
I/O data can be transmitted or received.

2) � refers to the maximum time-span elapsed between the
reception/transmission of two data unit (e.g., network
packets) while the system is continuously receiv-
ing/transmitting data.

The I/O-related traffic regulation must allow the designer to
control α and � to meet the performance requirements.

3) Extensibility to Other Devices and Platforms: While an
I/O virtualization mechanism inevitably needs to cope with
several hardware-dependent aspects, we designed our solu-
tion in a modular manner, dividing its components into a
device-independent part and a device-dependent part. This
makes the approach more general and easily portable for other
I/O devices and systems. As a relevant example of a complex
I/O device to virtualize, we focus on the GEM provided by
the Xilinx Ultrascale+ to present the device-dependent part
and carefully evaluate our solution.

Our approach can be extended to support also other periph-
erals and platforms. Extensibility to other hardware platforms
is favored by the fact that our virtualization approach is
purely software-based and it does not rely on special hard-
ware features. Other design alternatives might involve the
usage of hardware-assisted virtualization. For example, Intel
VT-d [22] or SR-IOV [23]. These solutions may indeed pro-
vide benefits to the performance of the I/O virtualization
mechanism. However, most of them are device-specific and
cannot be generalized to all I/O devices (e.g., a legacy CAN
bus). Furthermore, SR-IOV is not available for the AXI-
based peripherals considered in this article, while VT-d is a
technology by Intel that is not available in the Ultrascale+
because it is an ARM-based embedded platform. Differently,
our software-based mechanism provides a device-independent
layer that can be generalized to any type of I/O device.

4) Full Transparency to the Final User: The I/O virtual-
ization mechanism must allow the user to interact with the
device from a guest VM in a fully transparent way, exactly
as if the VM was granted direct and dedicated access to the
physical device. This is ensured through the I/O virtualization
driver implemented in each guest OS.

5) Regulation of the Impact of the I/O on Performance:
The performance of the I/O virtualization mechanism with-
out using QoS regulation should be no worse than existing
I/O virtualization solutions from other hypervisors, e.g., Xen,
and should improve the performance of a target VM or
device when QoS regulators are used to reduce the I/O-related
interference.

C. Device-Independent Features

Next, we start discussing the device-independent features of
our I/O virtualization mechanism.

The I/O VM Scheduler: The proposed I/O virtualization
solution can manage I/O traffic from/to multiple VMs and
devices with the I/O scheduler. As shown in Fig. 2, the sched-
uler provides two queues of requests for each pair of VM and
I/O devices: 1) one is for data flowing from the VM to the
device and 2) the other for data flowing from the device to
the VM. Each queue is managed in a first-in-first-out (FIFO)
fashion. The access to the I/O is orchestrated using a round-
robin algorithm based on the concept of data quantum, which
denotes the minimum amount of data that can be meaning-
fully exchanged (e.g., one frame in the case of Ethernet). The
round-robin scheduler handles both received and transmitted
packets.

4472 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 2. Wait-free queues used to share data among guest VMs and the I/O
scheduler, which runs in the I/O VM.

Wait-Free Queues: The data sharing between I/O and guest
VMs is implemented through shared-memory, wait-free [24]
ring buffers of N elements, each of size M bytes. Each of these
elements is composed of a field of size M−1 bytes for the I/O
data unit and a one-byte flag. This flag is used to identify if a
buffer field is full or empty and allows to perform atomic write
and read operations. Thanks to these flags, there is no need to
share head and tail counters between the two VMs; instead, the
producer (or consumer) can store privately only the head (or
tail). The addresses of the shared memory regions are retrieved
at runtime by the VMs using dedicated hypercalls (that we
implemented on purpose in CLARE-Hypervisor), which also
return the size M of the hosted ring buffers and the number
N of elements. Wait-free ring buffers allow two VMs (a pro-
ducer and a consumer) to exchange data without experiencing
lock-related delays, as there are no race conditions on state
variables [24].

The canonical push and pop operations can be performed
on these buffers. If the producer incurs in an overflow, push
returns FALSE and the data quantum is discarded. If this hap-
pens in a Guest VM (i.e., during the transmission phase) this
event is notified to the upper layers which will eventually take
care of retry to retransmit the data quantum again. If this hap-
pens in the I/O VM (reception phase), the data quantum is
lost. Otherwise, push returns TRUE.

If the consumer incurs in an under-run, i.e., if there are no
elements in the queue, the pop returns FALSE. If this happens
in a Guest VM (in the reception IRQ handler) then there are
no more received data to handle and the IRQ terminates. If
this happens in the I/O VM (in the transmission phase of the
scheduler) this means that there are no more data to transmit
for the given guest and the scheduler skips to the reception
phase for that guest. Otherwise, pop returns TRUE.

A data memory barrier for store operations is needed both
in push and pop, to avoid the out-of-order execution of
loads/stores that may bring the element in an inconsistent state
from other cores.

Shared-Memory Configuration: For each guest-I/0 device
couple, and for each needed direction (input and output), a
memory region shared with the I/O VM is reserved to host the
wait-free ring buffers. CLARE-Hypervisor handles the assign-
ment of these shared memory regions and implements access
control to guarantee that each of them can be accessed only
by the authorized VMs.

Each of these shared memory regions is uncached to pre-
serve cache-related isolation of VMs, which is provided by
CLARE-Hypervisor through cache-coloring, without wasting a
cache color for each VM-to-VM communication. Note that the
number of cache colors for partitioning a shared cache level,

e.g., L2, may be very low on many platforms. For instance,
on the Xilinx Ultrascale+ they are at most 16 (and only 4
if L1 caches are not partitioned), and each color reserved for
inter-VM communication would imply a corresponding phys-
ical memory area that only stores the inter-VM buffers. The
latter may be much smaller than the area itself, hence, origi-
nating a consistent memory waste. Furthermore, note that the
bandwidth of I/O peripherals is typically lower than the one
available to processors to perform uncached memory accesses
so that keeping the inter-VM buffers uncached does not intro-
duce a bottleneck. For instance, on a Xilinx Ultrascale+, the
uncached memory access bandwidth is more than 2 GB/s,
which is larger than the bandwidth of high-performance I/O
peripherals such as the GEM (1 Gb/s).

I/O Regulators: The I/O virtualization mechanism also
allows to set the QoS regulation values of I/O devices by pro-
viding functions to change the values of all the three regulation
parameters, i.e., the average rate, the peak rate, and the bursti-
ness allowance (discussed in Section II). Technically speaking,
these functions modify the value of the ar_r, ar_p, ar_b
and aw_r, aw_p, aw_b registers of the QoS-400, which
are used to regulate the average rate, peak rate, and bursti-
ness, and enable the regulation by setting the value of the
related bit in the qos_cntl register. Therefore, our virtual-
ization mechanism is able to control the average number of
transactions per time unit emitted by each I/O device and, con-
sequently, its communication speed. This allows controlling
I/O-related interference, both in terms of I/O-related memory
contention and in the number of I/O-related interruptions that
are generated (which then need to be managed both at the
hypervisor and at the VM level, thus, possibly causing con-
siderable delays). In this way, VMs can be properly isolated
also at the level of the I/O traffic generated by the devices
they use.

Furthermore, the I/O virtualization mechanism allows spec-
ifying the size, expressed in a number of words, of every
AMBA AXI transaction. For example, in the case of the GEM
Ethernet of the Ultrascale+, its value can be modified by the
user by writing in the amba_burst_length field of the
dma_config register of the GEM module. The value chosen
as burst size indicates the maximum number of fixed-length
words that can be merged into a single transaction. This param-
eter is important for regulation purposes: indeed, lower values
of the burst length allow for a fine-grained regulation of AXI
transactions (and, hence, memory traffic). The word size is
architecturally defined. Thus, to convert any regulation value
to the corresponding allowed bandwidth in bytes per second,
the fraction expressed by the content of the registers must
be multiplied by the clock frequency, the burst size, and the
word-size values.

IV. ETHERNET-SPECIFIC FEATURES

As a representative case of a complex device that can be
virtualized by the proposed I/O virtualization mechanism, we
consider the GEM. The required Ethernet-specific features are
spread between: 1) the Ethernet (physical) driver, used by the
I/O VM to access the actual GEM device and 2) the I/O
virtualization driver, used by any Guest VM to transparently
interact with the GEM device through the I/O virtualization
stack. Fig. 3 shows the two drivers interact with each other to
allow any guest to transmit and receive Ethernet frames.

BORGIOLI et al.: I/O VIRTUALIZATION FRAMEWORK WITH I/O-RELATED MEMORY CONTENTION CONTROL 4473

Fig. 3. Overview of the I/O virtualization software stack.

A. Ethernet Driver

Each guest VM has a unique MAC address assigned at boot
time by the I/O VM, which allows to perform packet rout-
ing on the data link layer. To allow granular control on the
network traffic generated and received by the VMs, we have
implemented a bare-metal driver to interact with the GEM con-
troller [9] of the Ultrascale+ MPSoC. Unfortunately, to date,
Xilinx does not provide a complete Ethernet driver allowing
the degree of granularity required to implement the virtual-
ization mechanism. The implementation of the driver required
to properly validate our I/O virtualization framework costed
us six person-months of work. This driver auto negotiates the
link speed (gigabit, megabit, etc.) based on the physical link
properties.

Packets transmission and reception are handled by the driver
by means of GEM frame buffers and Buffer Descriptors
(G-BDs). Frame buffers are arrays where the actual Ethernet
frame received or to be transmitted is stored. G-BDs are data
structures defined by the GEM driver that are used to describe
the frame buffers used to store packets received and to trans-
mit by storing the frame buffer address, the frame size, the
G-BD status flag (i.e., either free, preprocess, post-process,
or hardware), and another flag that marks the last descrip-
tor in the queue. G-BDs are organized in two queues (one
for transmission and one for reception) to handle multiple
frames. To distinguish between G-BDs for transmission and
reception, these are defined as G-BD TX and G-BD RX, respec-
tively. On top of these data structures, shared by the driver
and the device, the I/O scheduler adds further data struc-
tures to handle packets reception and transmission of the
different guests. The I/O scheduler handles one packet at a
time.

Reception: To handle and dispatch packets among the Guest
VMs, the I/O scheduler leverages three additional data struc-
tures: the RX Frames queue, the Scheduler Buffer Descriptor
(S-BD) queue, and the VM Buffer Descriptor (VM-BD)
queues. The RX Frames queue is used to store the status of
the frame buffers’ queue holding a flag denoting whether the
related frame buffer is in use or not. The S-BD queue includes
a pointer to a frame buffer and a counter of the number of VMs
that frame needs to be delivered to (useful for multicast or
broadcast packets). Finally, a VM-BD queues is provided for
each Guest VM sharing the device. Each VM-BD is a pointer
to an S-BD, which allows the RX ISR to easily dispatch the
received frame to the correct Guest VM without the need to
copy it. Thanks to this structure, the scheduler can retrieve
the next packet to be dispatched to a given Guest VM without
scanning the S-BD. This, in combination with the counter in
the S-BD, allows to easily handle multicast frames without
introducing additional copies of the received data.

Fig. 4. Data structures used to receive an Ethernet frame.

Since both the S-BD and VM-BD queues need to be manip-
ulated by the driver’s RX ISR and by the scheduler, these
have been implemented as wait-free queues where the ISR
acts as producer and the scheduler as a consumer. The flow
of a received frame from the Ethernet device to the shared
memory queue consists of the following steps, which are also
shown in Fig. 4 with the same numbering.

1) The Ethernet device obtains the first G-BD associated
with a free frame buffer.

2) The Ethernet device writes the packet received into the
obtained frame buffer. When a packet write completes
an RX interrupt is raised.

3) The RX ISR makes a free S-BD point the just copied
frame buffer. Then, depending on how many VMs are
interested to that packet (e.g., multicast communication),
the counter is set accordingly.

4) Still in the ISR, a pointer to the just created S-BD is
inserted in the VM-DB queue of each VM that will
receive that frame.

5) Then, the ISR recycles the G-BD RX used by assigning
to it a new free Frame Buffer obtained from the RX
Frames Queue.

6) When the scheduler dispatches a VM RX packet, it
extracts the next VM-BD from that VM queue.

7) The frame pointed by that buffer descriptor is copied in
the wait free queue of the respective VM.

With this design, the S-BD queue avoids dangerous race con-
ditions between the RX ISR and the scheduler by leaving the
management of the G-BD RX to the ISR only.

Transmission: Similarly to the reception case, the I/O
scheduler leverages the TX Frames queue to manage packet
transmissions.

This queue holds the status of the TX frame buffer’s queue
by storing a flag that specifies if the related frame buffer is in
use. The flow of a frame transmitted from a Guest VM shared-
memory queue through the Ethernet device is described by the
following steps, which are also shown in Fig. 5 with the same
numbering.

1) The scheduler checks, in round-robin order, whether the
current Guest VM has a new packet to transmit.

2) If there is a packet to transmit, the scheduler gets the
index of the first free Frame Buffer from the TX Frames
Queue. Otherwise, the scheduler considers the next wait-
free queue in round-robin order.

3) Then, the scheduler pops the content of the shared
memory element in the acquired Frame Buffer.

4474 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 5. Data structures used to transmit an Ethernet frame.

4) The driver allocates a new G-BD TX pointing to that
Frame Buffer and triggers the device to transmit.

5) The Ethernet device gets the next buffer descriptor TX
that needs to be handled.

6) The Ethernet device transmits the frame buffer pointed
by that BD and raises a TX ISR, which recycles the
used G-BD TX and frame buffer.

B. I/O Virtualization Driver

On the guest side, an I/O virtualization driver has been
designed and developed to handle frames transmission and
reception through the shared memory buffers introduced in
the previous section. The implementation of this driver strictly
depends on the target operating system: the proposed I/O
virtualization software stack supports Linux and FreeRTOS.
Nevertheless, our implementation is highly portable to other
configurations since the two OSes are representative of refer-
ence rich and bare-metal OSes, respectively, and among the
most used ones for real-time applications.

In Linux, the driver is implemented as an etherdevice in
a kernel module. The virtual device is recognized by Linux
as a regular Ethernet interface, thus enabling the OS to send
and receive packets as if it were interacting with a physical
Ethernet device. In this way, the I/O virtualization mecha-
nism is fully transparent to the user. When the module is
loaded, it registers on the kernel the net_device_ops
structure that defines four callback functions required by
the Linux kernel to interact with the driver: ndo_init,
ndo_open, ndo_close, and ndo_start_xmit. In addi-
tion to these functions, it registers the rx_isr_callback
used to manage the RX interrupts received from the I/O VM.

Fig. 6 illustrates the role of such two main functions.
The ndo_init function is called on interface registration

(when the module is loaded) and allocates the private space
required by the driver to hold all the required data structures.
Then the ndo_open function is called when the interface
is opened (e.g., when ifconfig eth0 up is executed).
This function first retrieves (through a dedicated hypercall)
the shared memory regions used to communicate with the
I/O VM. Then, such regions are mapped to virtual addresses
and marked as noncacheable. To complete the driver config-
uration, this function retrieves the MAC address assigned to
the VM by performing a pop operation from the RX buffer.

Fig. 6. I/O virtualization driver for Linux.

Finally, it configures the rx_isr_handler ISR handler
to manage RX notification interrupts coming from the I/O
VM and enables packet transmission requests from the kernel.
The ndo_close is called when the interface is closed (e.g.,
when ifconfig eth0 down is executed), freeing all the
resources allocated by ndo_open.

In Linux, Ethernet frames are described by means of socket
buffers. These structures contain the frames to be transmitted
plus some additional information used by the kernel to manage
packets. Whenever the Linux kernel needs to transmit a new
frame through this interface, the ndo_start_xmit callback
function is invoked by passing as an argument a socket buffer
that contains the data to be transmitted. This function performs
the following steps: 1) it notifies the kernel that the device is
busy, temporarily disabling the callback mechanism to avoid
nested callback invocations; 2) it pushes the frame into the TX
shared buffer; 3) it frees the frame descriptor received from
the kernel; and finally, 4) it re-enables callback invocations.

On the reception side, whenever the I/O VM pushes a frame
into the RX shared buffer, it also raises an interrupt for the tar-
get guest VM. The rx_isr_handler manages this interrupt
as follows: 1) it gets the size of the next frame and allocates a
socket buffer to contain that frame; 2) it pops the frame from
the RX shared buffer by copying it into the socket buffer; 3) it
submits the socket buffer to the network layer of the kernel;
and 4) it marks the interrupt as handled.

To further improve the driver performance, we have also
implemented a new API (NAPI), an interface widely used in
the Linux kernel to reduce the overhead due to the interrupt
context switch by disabling interrupts and polling for new
incoming packets if the RX traffic is above a given thresh-
old. When NAPI is active, whenever the driver receives an
RX notification interrupt (handled by rx_isr_handler),
instead of popping and forwarding to upper layers (steps 1–3)
only one frame from the shared buffer, it keeps performing
these steps until the buffer is empty (or no more space to
allocate socket buffers is available).

In FreeRTOS, the I/O virtualization driver is imple-
mented similarly to the Linux driver. In FreeRTOS, new
Ethernet interface drivers should be defined as port-
ings. These interfaces should provide two main func-
tions which are used by the FreeRTOS kernel to inter-
act with it: xNetworkInterfaceInitialise and
xNetworkInterfaceOutput. The first one is invoked
by the kernel to initialize the driver interface. This func-
tion sets up all the data structures required to manage
the wait-free queues. Moreover, it configures an ISR han-
dler to manage the RX notification interrupts raised by
the I/O VM. This ISR performs the same steps explained

BORGIOLI et al.: I/O VIRTUALIZATION FRAMEWORK WITH I/O-RELATED MEMORY CONTENTION CONTROL 4475

in the previous section but notifies the received packet
to the TCP/IP stack of the FreeRTOS kernel using the
xSendEventStructToIPTask function. Whenever the
TCP/IP stack requires a new packet to be transmitted,
the xNetworkInterfaceOutput callback function is
invoked. This function receives as arguments a descriptor of
the frame to be transmitted and a flag that specifies whether
it needs to wait for the transmission to complete or not
before returning. Then, this function performs the same steps
explained for transmission in the previous section.

Why Not Using Virtio? One of the most famous solutions
to implement the I/O virtualization driver on Linux is using
Virtio [25]. Therefore, one may argue about why not use
virtio instead of devising a new solution. Virtio is a widely
used standard open interface that allows different guest VMs
to share simple I/O devices. Concerning Virtio-net (the vari-
ant dedicated to networking), the proposed solution requires
implementing a more efficient shared memory communica-
tion mechanism. Virtio requires the support of Virtqueues.
Virtqueues are descriptors that point to a buffer, which can be
used to store an incoming/outgoing frame. Our solution instead
can operate without requiring additional data structures, but
only by adding a flag for each element in the wait-free
queue. This allows to reduce the communication overhead
while maintaining the same wait-free properties. Conversely,
the solution proposed in this work leverages hardware inter-
rupts shared between a guest and the I/O VM and thus avoids
the overhead caused by the intervention of the hypervisor.
Furthermore, virtio does not support I/O-related interference
control through QoS regulation, which is a key feature of our
approach. Nevertheless, we do not exclude providing support
for virtio in future work to foster interoperability.

V. EXPERIMENTAL EVALUATION

This section reports an extensive experimental study that has
been performed to evaluate: 1) the performance of our solution
with respect to the I/O virtualization mechanism available in
the popular Xen hypervisor; 2) the impact of QoS regulation
on I/O virtualization performance, using the QoS-400 regula-
tors [10]; and 3) the resilience of the proposed mechanism to
DoS attacks based on the flooding of I/O data via the network.

A. Experimental Setup

The considered setup is composed of three VMs: one I/O
VM and two Guest VMs, respectively, powered by FreeRTOS
and Linux. The same setup is applied on both Xen and
CLARE-Hypervisor, with the only difference being the fact
that the I/O VM is used only for our solution with CLARE-
Hypervisor. This setup uses the four Cortex-A53 cores pro-
vided by the Ultrascale+ SoC on the ZCU102 board by Xilinx.
The first two cores (0 and 1) are exclusively assigned to the
Linux Guest VM; core 2 is shared by the Linux Guest and
the I/O VM; core 3 is assigned solely to the FreeRTOS Guest.
Core 2 hosts two virtual CPUs belonging to two different VMs:
the hypervisor is configured to schedule the VMs with a fixed-
priority scheduler where the I/O VM has higher priority, thus
guaranteeing that the I/O operations are not interfered with by
the Linux VM. Fig. 1 shows the described architecture.

In all the experiments, the sizes of the wait-free buffers
were set to be large enough so that they never become full. In
the experiments where QoS regulation is considered, we var-
ied the average rate configuration parameter of the QoS-400

since it is the only one responsible for the long-term behavior
of the device when it is subject to a heavy traffic load [11].
Therefore, different QoS configurations correspond to a differ-
ent average number of transactions per time unit emitted by
the Ethernet device. Ten relevant configurations were tested,
where each one halves the traffic rate compared to the previous
one. Excluding the first configuration value where the regu-
lator is turned off, in the other nine ones the average rate
value of the regulator is, respectively, set to 0 × 100, 0 × 80,
0 × 40, 0 × 20, 0 × 10, 0 × 8, 0 × 4, 0 × 2, and 0 × 1, which,
as discussed in Section III-C, correspond to 15.5, 7.7, 3.9,
1.9, 0.97, 0.48, 0.24, 0.12, and 0.06 million transactions per
second. The burst size was set to one word per transaction,
since a lower value permits a more fine-grained control of the
amount of generated traffic in terms of bytes allowed to transit
by the QoS-400. The presence of additional memory traffic
was considered, leveraging memory accesses from the CPU
cores and the general-purpose DMA located in the low-power
domain of the Ultrascale+ MPSoC [9] (named LPD-DMA).
Both were exploited to create additional interference to the
Ethernet device. In particular, the LPD-DMA was chosen since
the interconnects traversed by its memory requests are in part
shared with the ones traversed by the Ethernet’s requests.

B. Measuring Bandwidth and Latency

We start providing the results of an experimental evaluation
we performed to compare our solution with the state-of-the-
art Xen hypervisor [13]. We selected Xen as a reference for
comparison since it is a widely adopted hypervisor in many
domains. Moreover, the embedded platform used in this work
officially supports Xen and provides a rich documentation.

Comparing With Xen: In this comparison, the Ethernet band-
width and latency of the Linux Guest VM were monitored for
the following five configurations.

The DMA QoS regulator (considered in C5) can be applied
to our solution only since it is not supported by Xen.

We considered two metrics: 1) TCP and 2) UDP bandwidth,
measured by iPerf3 (i.e., a tool commonly used to measure
network performances), and ICMP latency, using the ping
command. Each run of a bandwidth test was performed for
50 s, while each run of the latency test corresponds to 100
ping measurements. Fig. 7 reports the result of some relevant
configurations, where the interfering LPD-DMA was regulated
with the looser regulation (i.e., 0 × 8) that allows obtaining
good Ethernet performance to avoid penalizing the LPD-DMA
excessively. Reported values refer to the transmission phase,
but analogous measurements were obtained for the reception.
It is worth observing how the proposed solution performs
better than Xen, even without using QoS regulation and with-
out interfering memory traffic (C1), with improvements up
to 60% and 14% in terms of bandwidth and latency, respec-
tively. This is attributed to the lightweight implementation and
the wait-free design choices we performed in our virtualization
solution. Moreover, when the other guest VM generates traffic

4476 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

(a) (b) (c)

Fig. 7. Comparison of the proposed solution with Xen using TCP and UDP Ethernet communication. (a) TCP. (b) UDP. (c) Latency.

Fig. 8. Bandwidth and latency of the proposed solution in the presence of
DMA traffic and varying DMA QoS regulators. (a) iPerf3 bandwidth. (b) Ping
latency.

(C2 and C3), our solution is resilient to this interference thanks
to the round-robin scheduling policy used by the I/O VM. For
example, when the other Guest VMs are configured to gener-
ate a considerable amount of Ethernet traffic (C3), in the Xen
configuration the bandwidth drops by 66% and the latency
doubles, while in the proposed solution both metrics remain
constant. When also the LPD-DMA disturbance is active on
the platform (C4), both Xen and our solution have a drop
in bandwidth and an increase in latency. However, thanks to
the QoS-regulation (C5), our solution can reduce the effect of
DMA disturbance on system performance, with improvements
up to 8× compared to Xen.

Varying the QoS Regulation: Fig. 8 shows how bandwidth
and latency vary with the QoS regulation of the interfering
LPD-DMA device. Xen-related measurements are not reported
in these plots as Xen does not support QoS regulation for I/O.
This regulation can help mitigate the Ethernet performance
drop due to LPD-DMA traffic. By limiting the LPD-DMA
traffic to 0.48 million transactions per second (0 × 8 regula-
tion), we can note that the proposed solution recovers similar
performance as observed without DMA disturbances (C3).

Comparing an ICMP Ping: To further explore the
performance of our solution, we also compared it against
a classical software architecture without a hypervisor. In

TABLE I
COMPARISON OF MINIMUM, MEAN, AND AVERAGE TIME TO PING A PC

CONNECTED ON THE LOCAL NETWORK (IN μS)

particular, we measured the time taken to complete an ICMP
ping from Linux to a remote PC over the local network. The
test was performed under four different configurations: by run-
ning the ping from Linux: 1) without any hypervisor; 2) with
hypervisor and our I/O virtualization framework; 3) same as
2) but with some interfering traffic (10 packets/s, simultane-
ously produced by the FreeRTOS guest VM); and 4) same
as 2) but with higher interfering traffic (100 packets/s). The
experiment was repeated 1 000 times for each case: the results
are reported in Table I and show that both the interfering traf-
fic and the I/O virtualization introduce delays in the order of
a few hundreds of μs. Note that when the FreeRTOS VM is
also producing Ethernet traffic, the delay suffered in the aver-
age case by the Linux VM is almost negligible and in the order
of noise for this kind of measurement. It is worth noting that
when increasing the amount of Ethernet traffic generated by
the guest VMs, the latency experienced by each of the VM
does not increase significantly. This is attributed to the fact
that, in these conditions, the round-robin scheduling allows
giving reasonable fairness guarantees to the guest VMs.

C. Measuring I/O Performance With the α/� Model

We report a set of experiments we devised to empirically
quantify the I/O performance according to an α/� model.

Different memory load configurations were tested:
no-traffic, in which the two guest VMs are not execut-
ing any memory-intensive task, and no other I/O device is
enabled; CPU-traffic, in which the two guest VMs are
both continuously executing the memory-bandwidth intensive
task included in the Isolbench [26] benchmarks on all the
cores at their disposal; CPU-DMA-traffic, in which, in
addition to the Isolbench executions already introduced in the
CPU-memory-traffic configuration, also the LPD-DMA was
configured to continuously move data between two memory
buffers, thus increasing the I/O-related memory contention.

Isolbench [26] is a Linux-based benchmarks suite designed
to measure the memory bandwidth and latency of a system.

BORGIOLI et al.: I/O VIRTUALIZATION FRAMEWORK WITH I/O-RELATED MEMORY CONTENTION CONTROL 4477

(a) (b) (c)

Fig. 9. Measurements of the α parameter (in packets per second) obtained by running the I/O virtualization framework under different configurations when
the QoS regulation is varied. (a) IOVM_RX. (b) IOVM_TX. (c) GUEST_LINUX_RX.

Fig. 10. Measurements of the � parameter (in nanoseconds) obtained by running the I/O virtualization framework under different configurations when the
QoS regulation is varied. (a) IOVM_RX. (b) IOVM_TX. (c) GUEST_LINUX_RX.

For our purposes, the memory-bandwidth intensive task was
partially modified to constantly generate heavy memory traf-
fic and to permit its execution also on the FreeRTOS
guest. The load produced in the CPU-traffic and
CPU-DMA-traffic configurations was measured thanks to
the AXI Performance Monitors available on the platform [9].

The Ethernet traffic for the experiments was generated by
directly connecting the ZCU102 board to a personal com-
puter (hereinafter referred to as “test PC”) through a Gigabit
Ethernet link. On the test PC, the traffic was generated using
the packETH tool. Transmission (TX) and Reception (RX)
performance were measured independently. The tests were car-
ried out under the following network traffic conditions: RX, in
which traffic is generated from the test PC to the board; TX,
in which traffic is generated by one of the guest VMs on the
board to the test PC. We generated the maximum amount of
traffic that can be managed without losing packets.

A wide set of experiments were performed, collecting
several different performance metrics.

1) IOVM_RX and IOVM_TX, which measure the time
elapsed between two consecutive receptions or transmis-
sions interrupts handled by the I/O VM,1 respectively.

2) IOVM_RX_SCHED and IOVM_TX_SCHED, which mea-
sures the time elapsed between two consecutive received
packet dispatches to a given Guest VM by the I/O VM
or two consecutive transmissions performed by the I/O
VM for a given Guest VM’s frame (pop from TX shared
buffer), respectively.

3) GUEST_LINUX_RX and GUEST_LINUX_TX, which
measures the time elapsed between two consecutive
reception interrupts handled by the Linux Guest VM or
two consecutive successful insertions of a Linux Guest
VM’s frame into the TX shared buffer, respectively.

1The RX (resp., TX) interrupt is raised when the hardware concludes the
reception (resp., transmission) of a complete frame.

4) GUEST_FREERTOS_RX and GUEST_FREERTOS_TX,
defined as in the previous point but considering the
FreeRTOS domain.

All the described metrics were gathered under the ten differ-
ent QoS memory-bandwidth regulations of the Ethernet device
and in the three memory load configurations.

Overall, a total of 240 different experiments were carried
out considering all the possible setups. All the tests were
performed by sending 10 000 consecutive packets. The data
obtained by every run was aggregated to obtain the maximum
and average values for the configuration under analysis.

Results: Next, we discuss some relevant configurations we
selected from the extensive set of experiments we performed
to explore the performance of the proposed I/O virtualization
framework as a function of the GEM Ethernet QoS regu-
lation. In this way, we aim at building the foundations for
future research that will enable the design-space exploration
of complex platform-aware systems that may leverage these
measurements to achieve design-level goals, such as response
times, minimum throughput, maximum I/O latency, and band-
width. These measures will constitute the basic building block
to infer empirical models able to predict the behavior of a
virtualized system under memory-bandwidth regulation.

Figs. 9 and 10 report several results where the α and �
parameters were experimentally evaluated. With stringent reg-
ulations for the Ethernet device both α and � degrade, because
that implies reducing the memory bandwidth with a direct
impact on the time required to copy a packet from/to the device
memory.

With the same regulation and configuration, transmission
and reception exhibit different behaviors. In particular, trans-
mission is more resilient to the effects of the QoS regulation
with respect to the reception. When transmitting, for observ-
ing a reduction in the performance, the memory bandwidth
shall be below 3.9 million transactions/s (0 × 40 configura-
tion of the QoS-400). When receiving, limiting the bandwidth

4478 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 11. I/O VM processing time under DoS attack (ns).

to 7.7 million transaction/s (0 × 80) already degrades the
performance. The designer may configure different QoS regu-
lations for the read and write operations of a device to achieve
the same transmission and reception performance.

Moreover, also the variation of memory traffic and the
presence of an additional device (in our experiments the
DMA) degrades the I/O performance. This can be observed
in Figs. 9(b) and 10(b), both α and �, respectively, decrease
and increase with the presence of such disturbances.

However, when the effects of QoS regulation start affecting
the performance of this setup (e.g., regulation 0 × 40 in trans-
mission), a similar degradation is obtained in the setup without
additional traffic. Furthermore, by constraining the memory
traffic with certain configurations of the QoS-400 (0 × 20 in
transmission), the performance degradation of both α and �
when also adding the LPD-DMA traffic becomes comparable
to the cases in which the LPD-DMA traffic is not present.

D. Resiliency to DoS Attacks

Next, we consider the scenario of a DoS attack, where an
attacker continuously sends network packets to the platform,
and we show that the proposed solution allows mitigating its
effects by varying the QoS value of the regulator of the GEM.
To this end, we measured the I/O VM processing, which spans
from the reception of an interrupt for a packet and its success-
ful insertion into the Guest VM’s queue and includes the I/O
scheduler computation time due to the round-robin arbitration
and the time required for the execution of the reception ISRs.
In particular, the RX ISRs raised by the Ethernet device pre-
empt the execution of the I/O scheduling task of the I/O VM.
For this reason, the I/O scheduler processing time depends on
the amount of RX interrupts received.

The attacker traffic was generated using the packETH tool.
Fig. 11 shows the positive effect of QoS regulation, which
reduces the speed of the Ethernet device writes and, thus, the
frequency of RX interrupts. This experiment was performed
using the memory load configurations defined in Section V-C.

Since the rate of packets is high, the number of these
interrupts deeply impacts the execution time of the I/O sched-
uler and, in some cases, it might even prevent the scheduler
from being executed. Fig. 11 shows that for up to 3.9 mil-
lion of transactions per second (regulation 0 × 40 of the
QoS-400 GEM Ethernet regulator) the DoS attack strongly
affects the performance. However, when the regulation is set
to 1.9 millions of transactions per second (0 × 20) or lower,
this interference is almost negligible and does not impact the
latency introduced by the I/O scheduler to dispatch packets.

These results demonstrate that the regulation employed by
the QoS-400 plays a key role in guaranteeing the desired
performance of the I/O scheduler in the presence of high
incoming traffic. This also allows us to protect the system from

a denial-of-service attack, which otherwise would completely
stall the I/O scheduler preventing the dispatch of any packet.

VI. RELATED WORK

Several prior works targeted I/O virtualized systems.
Pérez et al. [17] considered the XTratum hypervisor [18],
comparing different I/O strategies. Kim et al. [27] proposed a
priority boosting mechanism for virtual CPUs. Other works
targeted the Quest-V separation kernel [19], [20], [28]: a
summary of such works is reported by West et al. [29].

Targeting the Linux kernel, Kim et al. [30] presented a
mechanism to dynamically prioritize I/O operations, so as to
improve I/O throughput and latency for data-intensive appli-
cations, while Craciunas et al. [31] designed a system calls
scheduler to implement an I/O resource manager.

Several works have been done to guarantee predictable
I/O [32], [33], [34] in the context of BlueVisor [32], where
I/O virtualization is implemented through custom hardware
components prototyped in FPGA. Custom hardware mech-
anisms to handle I/O have been previously proposed by
Pellizzoni and Caccamo [35]. Another work presented a frame-
work to limit the traffic introduced in the I/O bus by I/O
peripherals [36]. Schwaricke et al. [37] leveraged virtio to
implement an interdomain communication mechanism, where
a DMA handles inter-VM data transfers, but without tar-
geting I/O virtualization. As in our proposal, [37] uses the
QoS-400 regulators, but with a different objective, i.e., reg-
ulating the memory interference generated by DMA-based
inter-VM data transfers. Richter et al. [38] implemented a
scheduling mechanism for mitigating the interference gen-
erated by malicious VMs using the SRIO-V technology
(not present in the Ultrascale+), and without considering
real-time requirements and I/O-related memory contention.
Pu et al. [39] presented a thorough experimental comparison
of average-case performance metrics of different solutions to
run CPU-bound and I/O-bound workloads in different VMs
for cloud computing. Casini et al. [16] proposed a latency
analysis of I/O virtualized systems, but without providing
implementation and not considering I/O regulators. Other
researches considered scheduling algorithms to improve I/O
with coprocessing units [40]. Li et al. [41], [42] proposed
a framework (called VATC) to improve the performance of
the Xen network virtualization, by introducing networking
priorities and a rate-limiting mechanism to avoid starvation
for low-priority domains. However, [41], [42] do not support
the memory-traffic regulation of I/O devices. The relevance
of I/O-related memory contention in the schedulability anal-
ysis has been highlighted by Kim et al. [43], [44]. The
usage of the QoS-400 regulators has been considered very
recently by Sohal et al. [45], who proposed a framework
to predict the timing behavior of tasks by analyzing their
memory demand and by Serrano-Cases et al. [46], who stud-
ied different QoS options provided by the Xilinx Ultrascale+
MPSoC. Zini et al. [11] presented an extensive study of
I/O-related memory contention and its regulation using the
QoS-400 regulators, but without considering I/O virtualization.
Table II positions our paper with respect to a selection of the
most closely related research, classifying each paper according
to: the consideration of (RT) real-time constraints or (Section)
security features, the consideration of I/O virtualization (I/O
virt.), the nature of this article [(Prac./Th.), i.e., practical or
theoretical], and the usage of QoS regulators for virtualized
I/O devices (I/O reg.).

BORGIOLI et al.: I/O VIRTUALIZATION FRAMEWORK WITH I/O-RELATED MEMORY CONTENTION CONTROL 4479

TABLE II
POSITION WITH RESPECT TO A SELECTION OF RELATED RESEARCH

Overall, to the best of our knowledge, no previous work pro-
vided an I/O virtualization mechanism capable of controlling
the I/O-related memory contention.

VII. CONCLUSION

This article proposed an I/O virtualization mechanism capa-
ble of controlling the I/O-related memory contention pro-
duced by virtualized devices, implementing it on a Xilinx
Ultrascale+ MPSoC using the QoS-400 regulators. Then, we
showed how the GEM can be virtualized using our framework.
Finally, we reported the results of an extensive evaluation we
performed to compare with the Xen hypervisor, which showed
improvements up to 8×, and to derive the (α,�) parameters.
A key research direction for future work consists in using
profiled (α,�) parameters and the mechanisms developed in
this article as a key building block to derive automatic strate-
gies to configure the regulation of the memory traffic to meet
both I/O and CPU-time performance. Other directions for
future research include the evaluation of different scheduling
strategies for the I/O VM, the use of hardware-assisted virtual-
ization [47], and the design of mechanisms to simultaneously
handle I/O devices and hardware accelerators [4], [50].

REFERENCES

[1] G. Heiser, “Virtualizing embedded systems—Why bother?” in Proc.
48th ACM/EDAC/IEEE Design Autom. Conf. (DAC), 2011, pp. 901–905.

[2] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms,” in Proc. IEEE 19th Real-Time Embedded
Technol. Appl. Symp. (RTAS), 2013, pp. 55–64.

[3] F. Restuccia, A. Biondi, M. Marinoni, and G. Buttazzo, “Safely
preventing unbounded delays during bus transactions in FPGA-based
SoC,” in Proc. IEEE 28th Annu. Int. Symp. Field-Programmable Custom
Comput. Mach. (FCCM), 2020, pp. 129–137.

[4] N. Capodieci, R. Cavicchioli, P. Valente, and M. Bertogna, “SiGAMMA:
Server based integrated GPU arbitration mechanism for memory
accesses,” in Proc. 21st Int. Conf. Real-Time Netw. Syst. (RTNS), 2017,
pp. 48–57.

[5] A. Biondi et al., “SPHERE: A multi-SoC architecture for next-
generation cyber-physical systems based on heterogeneous platforms,”
IEEE Access, vol. 9, pp. 75446–75459, 2021.

[6] P. Modica, A. Biondi, G. Buttazzo, and A. Patel, “Supporting temporal
and spatial isolation in a hypervisor for arm multicore platforms,” in
Proc. IEEE Int. Conf. Ind. Technol. (ICIT), 2018, pp. 1651–1657.

[7] S. Bateni, Z. Wang, Y. Zhu, Y. Hu, and C. Liu, “Co-optimizing
performance and memory footprint via integrated CPU/GPU memory
management, an implementation on autonomous driving platform,” in
Proc. IEEE Real-Time Embedded Technol. Appl. Symp. (RTAS), 2020,
pp. 310–323.

[8] D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg, “Response-
time analysis of ROS 2 processing chains under reservation-based
scheduling,” in Proc. 31st Euromicro Conf. Real-Time Syst. (ECRTS),
2019, pp. 1–23.

[9] Zynq UltraScale+ Device—Technical Reference Manual, Xilinx,
San Jose, CA, USA, 2020.

[10] ARM CoreLink QoS-400 Network Interconnect Advanced Quality of
Service—Supplement to ARM CoreLink NIC-400 Network Interconnect
Technical Reference Manual, ARM, Cambridge, U.K., 2016.

[11] M. Zini, G. Cicero, D. Casini, and A. Biondi, “Profiling and control-
ling I/O-related memory contention in COTS heterogeneous platforms,”
Softw. Pract. Exp., vol. 52, no. 5, pp. 1095–1113, 2021.

[12] A. Mok, X. Feng, and D. Chen, “Resource partition for real-time
systems,” in Proc. 7th IEEE Real-Time Technol. Appl. Symp., 2001,
pp. 75–84.

[13] P. Barham et al., “Xen and the art of virtualization,” SIGOPS Oper. Syst.
Rev., vol. 37, no. 5, pp. 164–177, 2003.

[14] AMBA AXI and ACE Protocol Specification, ARM, Cambridge, U.K.,
2020.

[15] “Clare software stack.” 2022. [Online]. Available: https://accelerat.eu/
clare

[16] D. Casini, A. Biondi, G. Cicero, and G. Buttazzo, “Latency analysis
of I/O virtualization techniques in hypervisor-based real-time systems,”
in Proc. 27th IEEE Real-Time Embedded Technol. Appl. Symp. (RTAS),
2021, pp. 306–319.

[17] H. Pérez, J. J. Gutiérrez, S. Peiro, and A. Crespo, “Distributed architec-
ture for developing mixed-criticality systems in multi-core platforms,”
J. Syst. Softw., vol. 123, pp. 145–159, Jan. 2017.

[18] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned embedded archi-
tecture based on hypervisor: The XtratuM approach,” in Proc. Eu.
Dependable Comput. Conf., Apr. 2010, pp. 67–72.

[19] M. Danish, Y. Li, and R. West, “Virtual-CPU scheduling in the quest
operating system,” in Proc. 17th IEEE Real-Time Embedded Technol.
Appl. Symp., 2011, pp. 169–179.

[20] E. Missimer, K. Missimer, and R. West, “Mixed-criticality scheduling
with I/O,” in Proc. 28th Euromicro Conf. Real-Time Syst. (ECRTS),
Jul. 2016, pp. 120–130.

[21] B. B. Brandenburg, “Multiprocessor real-time locking protocols,”
in Handbook of Real-Time Computing. Singapore: Springer, 2020,
pp. 1–99.

[22] D. Abramson et al., “Intel virtualization technology for directed I/O,”
Intel Technol. J., vol. 10, no. 3, pp. 179–192, 2006.

[23] “PCI-SIG. SR-IOV Website.” 2022. [Online]. Available:
http://pcisig.com/

[24] M. Torquati, “Single-producer/single-consumer queues on shared cache
multi-core systems,” 2010, arXiv:1012.1824.

[25] R. Russell, “Virtio: Towards a de-facto standard for virtual I/O devices,”
SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 95–103, Jul. 2008.

[26] P. K. Valsan, H. Yun, and F. Farshchi, “Taming non-blocking caches to
improve isolation in multicore real-time systems,” in Proc. IEEE Real-
Time Embedded Technol. Appl. Symp. (RTAS), 2016, pp. 1–12.

[27] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee, “Task-aware virtual machine
scheduling for I/O performance,” in Proc. VEE, 2009, pp. 101–110.

[28] Y. Li, R. West, Z. Cheng, and E. Missimer, “Predictable communication
and migration in the Quest-V separation kernel,” in Proc. IEEE Real-
Time Syst. Symp., 2014, pp. 272–283.

[29] R. West, Y. Li, E. Missimer, and M. Danish, “A virtualized separation
kernel for mixed-criticality systems,” ACM Trans. Comput. Syst., vol. 34,
no. 3, p. 8, Jun. 2016.

[30] S. Kim, H. Kim, J. Lee, and J. Jeong, “Enlightening the I/O path: A
holistic approach for application performance,” in Proc. 15th USENIX
Conf. File Storage Technol. (FAST), Santa Clara, CA, USA, 2017,
pp. 345–358.

[31] S. S. Craciunas, C. M. Kirsch, and H. Röck, “I/O resource management
through system call scheduling,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5,
pp. 44–54, Jul. 2008.

[32] Z. Jiang, N. C. Audsley, and P. Dong, “BlueVisor: A scalable real-
time hardware hypervisor for many-core embedded systems,” in Proc.
Real-Time Embedded Technol. Appl. Symp., Apr. 2018, pp. 75–84.

[33] Z. Jiang, N. Audsley, and P. Dong, “BlueIO: A scalable real-time hard-
ware I/O virtualization system for many-core embedded systems,” ACM
Trans. Embed. Comput. Syst., vol. 18, no. 3, p. 19, 2019.

[34] Z. Jiang, K. Yang, Y. Ma, N. Fisher, N. C. Audsley, and Z. Dong,
“I/O-GUARD: Hardware/software co-design for I/O virtualization with
guaranteed real-time performance,” in Proc. 58th ACM/ESDA/IEEE
Design Autom. Conf. (DAC), 2021, pp. 1159–1164.

[35] R. Pellizzoni and M. Caccamo, “Impact of peripheral-processor
interference on WCET analysis of real-time embedded systems,” IEEE
Trans. Comput., vol. 59, no. 3, pp. 400–415, Mar. 2010.

[36] E. Betti, S. Bak, R. Pellizzoni, M. Caccamo, and L. Sha, “Real-time
I/O management system with cots peripherals,” IEEE Trans. Comput.,
vol. 62, no. 1, pp. 45–58, Jan. 2013.

[37] G. Schwäricke et al., “A real-time virtio-based framework for predictable
inter-VM communication,” in Proc. IEEE Real-Time Syst. Symp. (RTSS),
2021, pp. 27–40.

4480 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

[38] A. Richter, C. Herber, S. Wallentowitz, T. Wild, and A. Herkersdorf,
“A hardware/software approach for mitigating performance interference
effects in virtualized environments using SR-IoV,” in Proc. IEEE 8th
Int. Conf. Cloud Comput., 2015, pp. 950–957.

[39] X. Pu et al., “Who is your neighbor: Net I/O performance interference
in virtualized clouds,” IEEE Trans. Services Comput., vol. 6, no. 3,
pp. 314–329, Jul.–Sep. 2013.

[40] S. Zhao, Z. Jiang, X. Dai, I. Bate, I. Habli, and W. Chang,
“Timing-accurate general-purpose I/O for multi- and many-core systems:
Scheduling and hardware support,” in Proc. 57th ACM/IEEE Design
Autom. Conf. (DAC), 2020, pp. 1–6.

[41] C. Li, S. Xi, C. Lu, C. D. Gill, and R. Guerin, “Prioritizing soft real-
time network traffic in virtualized hosts based on Xen,” in Proc. 21st
IEEE Real-Time Embedded Technol. Appl. Symp., 2015, pp. 145–156.

[42] C. Li, S. Xi, C. Lu, R. Guérin, and C. D. Gill, “Virtualization-aware
traffic control for soft real-time network traffic on Xen,” IEEE/ACM
Trans. Netw., vol. 30, no. 1, pp. 257–270, Feb. 2022.

[43] N. Kim, S. Tang, N. Otterness, J. H. Anderson, F. D. Smith, and
D. E. Porter, “Supporting I/O and IPC via fine-grained os isolation
for mixed-criticality real-time tasks,” in Proc. 21st Int. Conf. Real-Time
Netw. Syst. (RTNS), 2018, pp. 191–201.

[44] N. Kim, S. Tang, N. Otterness, J. H. Anderson, F. D. Smith, and
D. E. Porter, “Supporting I/O and IPC via fine-grained OS isolation
for mixed-criticality real-time tasks,” Real-Time Syst., vol. 56, no. 4,
pp. 191–201, 2020.

[45] P. Sohal, R. Tabish, U. Drepper, and R. Mancuso, “E-warp: A system-
wide framework for memory bandwidth profiling and management,” in
Proc. IEEE Real-Time Syst. Symp. (RTSS), 2020, pp. 345–357.

[46] A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla,
“Leveraging hardware QoS to control contention in the Xilinx Zynq
UltraScale+ MPSoC,” in Proc. 33rd Euromicro Conf. Real-Time Syst.
(ECRTS), 2021, pp. 1–26.

[47] Z. Jiang and N. Audsley, “VCDC: The virtualized complicated device
controller,” in Proc. 29th Euromicro Conf. Real-Time Syst. (ECRTS),
2017, pp. 1–21.

[48] Z. Jiang, N. Audsley, P. Dong, N. Guan, X. Dai, and L. Wei, “MCS-
IOV: Real-time I/O virtualization for mixed-criticality systems,” in Proc.
IEEE Real-Time Syst. Symp. (RTSS), 2019, pp. 326–338.

[49] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “A holistic memory
contention analysis for parallel real-time tasks under partitioned schedul-
ing,” in Proc. 26th IEEE Real-Time Embedded Technol. Appl. Symp.
(RTAS), 2020, pp. 239–252.

[50] F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo, “AXI
HyperConnect: A predictable, hypervisor-level AXI interconnect for
hardware accelerators in FPGA SoC,” in Proc. 57th ACM/ESDA/IEEE
Design Autom. Conf. (DAC), San Francisco, CA, USA, Sep. 2020,
pp. 1–6.

Niccolò Borgioli (Student Member, IEEE) received
the master’s degree (cum laude) in embedded com-
puting systems engineering jointly offered by the
Scuola Superiore Sant’Anna, Pisa, Italy, and the
University of Pisa, Pisa, in 2020. He is currently pur-
suing the Ph.D. degree with the Real-Time Systems
(ReTiS) Laboratory, Scuola Superiore Sant’Anna of
Pisa.

His research interests include the design and
implementation of real-time operating systems
and hypervisors, cyber-physical systems, machine

learning, and cybersecurity.

Matteo Zini received the master’s degree
(cum laude) in embedded computing systems
engineering jointly offered by the Scuola Superiore
Sant’Anna of Pisa, Pisa, Italy, and the University
of Pisa, Pisa, in 2020. He is currently pursuing the
Ph.D. degree with the Real-Time Systems (ReTiS)
Laboratory, Scuola Superiore Sant’Anna of Pisa.

His research interests include the design and
implementation of real-time operating systems
and hypervisors, cyber-physical systems, and
analysis of the effects of memory interference on
schedulability.

Daniel Casini (Member, IEEE) received the mas-
ter’s degree (cum laude) in embedded computing
systems engineering jointly offered by the Scuola
Superiore Sant’Anna of Pisa, Pisa, Italy, and the
University of Pisa, Pisa, in 2016, and the Ph.D.
degree (with Hons.) in computer engineering from
the Scuola Superiore Sant’Anna of Pisa in 2020.

He is an Assistant Professor with the Real-
Time Systems (ReTiS) Laboratory, Scuola Superiore
Sant’Anna of Pisa. In 2019, he has been visiting
scholar with the Max Planck Institute for Software

Systems, Saarbrücken, Germany. His research interests include software pre-
dictability in multiprocessor systems, schedulability analysis, synchronization
protocols, and the design and implementation of real-time operating systems
and hypervisors.

Giorgiomaria Cicero received the master’s degree
(cum laude) in embedded computing systems engi-
neering jointly offered by the Scuola Superiore
Sant’Anna of Pisa, Pisa, Italy, and University of Pisa,
Pisa, in 2017.

He is Senior Research Fellow with the Real-
Time Systems (ReTiS) Laboratory, Scuola Superiore
Sant’Anna of Pisa, and a CEO ad a Co-Founder with
Accelerat Srl, Ghezzano, Italy, a spin-off company
of Scuola Superiore Sant’Anna focused on soft-
ware solutions for safe, secure, and time-predictable

cyber-physical systems. He has been visiting trainee with the European Space
Agency (ESTEC, Netherlands), Noordwijk, The Netherlands. His research
interests include software predictability in multiprocessor systems and het-
erogeneous platforms, system-level cyber-security hardening techniques, and
design and implementation of real-time operating systems and hypervisors.

Alessandro Biondi (Member, IEEE) received the
master’s degree (cum laude) in computer engineer-
ing from the University of Pisa, Italy, in 2013, within
the excellence program, and the Ph.D. degree in
computer engineering from the Scuola Superiore
Sant’Anna, Pisa, Italy, in 2017, under the supervi-
sion of Prof. G. Buttazzo and Prof. M. Di Natale.

He is an Associate Professor with the Real-
Time Systems (ReTiS) Laboratory, Scuola Superiore
Sant’Anna. In 2016, he has been visiting scholar
with the Max Planck Institute for Software Systems,

Saarbrücken, Germany. His research interests include design and imple-
mentation of real-time operating systems and hypervisors, schedulability
analysis, cyber-physical systems, synchronization protocols, and safe and
secure machine learning.

Dr. Biondi was recipient of six Best Paper Awards, one Outstanding Paper
Award, the ACM SIGBED Early Career Award in 2019, and the EDAA
Dissertation Award in 2017.

Giorgio Buttazzo (Fellow, IEEE) received the
graduated degree in electronic engineering from
the University of Pisa, Pisa, Italy, the M.S.
degree in computer science from the University of
Pennsylvania, Philadelphia, PA, USA, in 1987, and
the Ph.D. degree in computer engineering from the
Scuola Superiore Sant’Anna of Pisa, Pisa, in 1991.

He is a Full Professor of computer engineering
with the Scuola Superiore Sant’Anna of Pisa. He
has authored 7 books on real-time systems and more
than 300 papers in the field of real-time systems,

robotics, and neural networks.
Dr. Buttazzo receiving 13 Best Paper Awards. He has been Editor-in-Chief

of Real-Time Systems, and an Associate Editor of the ACM Transactions on
Cyber-Physical Systems.

Open Access funding provided by ‘Scuola Superiore “S.Anna” di Studi Universitari e di Perfezionamento’ within the CRUI-CARE Agreement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

