
www.embedded-world.eu

Challenges in Virtualizing Safety-Critical

Cyber-Physical Systems

Alessandro Biondi, Mauro Marinoni,

and Giorgio Buttazzo

Scuola Superiore Sant’Anna

Pisa, Italy

{alessandro.biondi, mauro.marinoni,

giorgio.buttazzo}@santannapisa.it

Claudio Scordino and Paolo Gai

Evidence SRL

Pisa, Italy

{claudio, pj}@evidence.eu.com

Abstract — Embedded computing platforms are evolving

towards heterogeneous architectures that require new software

support for simplifying their usage, optimizing the available

resources, and providing a predictable runtime behavior for

managing concurrent safety-critical applications. This paper

describes the main challenges in providing such a software support

through virtualization techniques, while taking into account safety

requirements, security issues, and real-time performance. An

automotive application is considered as a case of study to illustrate

some of the presented concepts.

Keywords — Heterogeneous platforms, embedded computing,

real-time systems, virtualization, hypervisor.

I. INTRODUCTION

The design of computing infrastructures for modern cyber-
physical systems is facing with two major trends that are
significantly steering the development process of embedded
software. On one hand, the last years have been characterized
by a continuous increase of the software complexity to meet
more and more richer functional requirements and to support
new technologies. At the same time, computing platforms are
evolving toward heterogeneous designs that integrate multiple
components such as multicore processors, general-purpose
graphic processing units (GPGPUs), and field programmable
gate arrays (FPGAs), which allow power-efficient parallel
execution of multiple software systems at the cost of a paradigm
shift in their development.

These two trends are increasingly pushing software
designers to integrate a higher number of functions in the same
hardware platform, typically resorting to methodologies such
as component-based software design (CBSD) and also facing
with the problem of incorporating legacy software.
Furthermore, in many industrial fields, integration is considered
the most affordable solution to problems related to space,
weight, power, and cost (SWaP-C).

Virtualization of computational resources established as a
de-facto technique to address these needs while efficiently
exploiting the processing power of modern platforms.
Virtualization is typically achieved via hypervisors (also called
virtual machine monitors), which allow executing multiple

software domains upon the same platform, each of them
possibly executing a different operating system (OS). The
domains benefit from the illusion of disposing of a dedicated
computing platform, while in reality the access to the shared
computational resources is regulated by the hypervisor, which
typically offers to the domains sets of virtualized memory
address spaces, CPUs, and possibly peripherals. Nowadays, this
technology is increasingly adopted to realize multi-OS
solutions [22] for mixed-criticality systems, integrating a
mission-critical real-time operating system (e.g., to perform
sensing, control, and actuation tasks), with rich, non-critical
operating systems such as Linux, which exploit a large
availability of drivers, libraries, and connectivity stacks.
Realistic designs possibly also include the integration of legacy
software systems as-a-whole, i.e., with their original operating
system, drivers, and configurations, thus favoring the evolution
of cyber-physical systems towards centralized schemes with
few but powerful computing platforms.

Orthogonally to such major trends, designers of new-
generation embedded software cannot neglect safety and
security needs, which inevitably affect the functionality
provided by virtualization stacks. The former are driven by
increasingly stringent legal regulations and certifiability
requirements, while the latter are becoming of paramount
importance due to the exposure of embedded computing
platforms by means of network connections. The integration of
components with different safety and security levels (also
known as MILS systems) may pose hazards in guaranteeing key
requirements of the critical software such as timing constraints
and data integrity and confidentiality. For instance, if no proper
isolation mechanisms are provided by the hypervisor, a
malfunctioning or an attack interesting a low-critical domain
may arbitrarily delay the execution of critical tasks, thus
compromising the system behavior or strongly jeopardizing its
performance.

The joint consideration of all such a kind of aspects poses
several challenges in the development of suitable virtualization
layers. The scope of this short paper is to discuss some of such
challenges, with a particular focus on temporal and spatial
isolation of software domains, timing predictability, resource

contention, and the management of hardware-based security
technologies.

II. BACKGROUND

A. Hypervisors

The concept of Hypervisors dates back to the 60's [13], but
it became significant in the last decade as a fundamental
solution to harness the complexity of the modern hardware
platforms, and the multiple applications executing concurrently
on top of them. This need for isolation could be declined in
different ways depending on the specific application
requirements and the underlying platform executing it.

A platform on which the hypervisor executes is denoted as
the host machine, and each virtual machine managed by the
hypervisor is called a guest. The two main features upon which
is based the classification of a hypervisor concern the type of
implementation and the abstraction provided to the guest virtual
machine. There are two types of hypervisor:

● Type-1, also called native or bare-metal, which
directly run on the hosting hardware to control it and
to handle guest operating systems;

● Type-2, also called hosted, where the hypervisor is
provided as an extension to an operating system that is
executed on the host while the guests run as tasks..

Another element of distinction comes from the API exposed
by the host to the generic guest OS:

● In fully virtualized solutions the guest executes in a
transparent manner and without software
modifications, while the hypervisor provides the API
to emulate the underlying platform;

● In a paravirtualized implementation the guest is aware
of the presence of virtualization. Thus it uses an API
similar, but not identical, to that of the underlying
hardware. This allows to create specific solutions and
reduce the overhead.

Due to the advantages of higher flexibility and no
modifications required in the guest domains, the hardware
manufacturers started providing virtualization extensions to
support full virtualization, which allow minimizing the
overheads resulting from the emulation of the underlying
platform.

B. Existing solutions

The wide range of application scenarios and platforms
fostered the creation of a significant number of hypervisors,
each of them with a focus on a subset of the several issues
concerning virtualization. Moreover, the profound interaction
between the hypervisor and the hardware platform leads to a
considerable effort when porting the hypervisor to a new
architecture, also due to the extensive use of specific platform
features to improve performance. The result is a reduced set of
hypervisors available for each particular platform.

Since some application fields, like mainframes, cloud
infrastructures, and virtualized network infrastructures highly
benefit from virtualization and massively relies on Linux,
several hypervisors pivoting on the latter have been developed.

Among the firsts and one of the most famous is Xen [14], which
executes Linux in a privileged domain called dom0. The wide
range of supported platforms is considered one of its main
advantages, but also as a drawback because it has lead to a
considerable codebase. A similar approach is followed by KVM
[15], which is a virtualization infrastructure available in the
mainline kernel that turns it into a type-1 hypervisor. Jailhouse
[16] is a type-1 partitioning hypervisor, more concerned with
isolation rather than virtualization, aiming at creating a small
and lightweight hypervisor targeting industrial-grade
applications. Like Xen, Jailhouse requires Linux to provide the
management interface, which allowed keeping the size of
source code small. Like KVM, it is loaded from a regular Linux
system, but when started, it takes full control of the hardware
and splits the hardware resources into isolated compartments
(called cells) that are entirely dedicated to guest software
programs (called inmates). One cell runs the Linux OS and is
known as the root cell, that is similar to the dom0 in Xen, but
the root cell doesn't assert full control over hardware resources
as dom0 does.

When dealing with embedded systems and their possible
requirements regarding safety and security, it is essential to
exploit solutions characterized by a small codebase both for
SWaP and certification issues. Xvisor [17] is a type-1
hypervisor, aiming at providing an entirely monolithic, light-
weight and portable virtualization solution. The most appealing
characteristic of Xvisor is that it provides full virtualization, and
therefore supports a wide range of unmodified guest operating
systems. NOVA [18] is an academic hypervisor designed at TU
Dresden. It follows the micro-kernel approach, and it has been
developed using the C++ programming language. Another
significant feature is the fixed-priority preemptive scheduler
with execution time budgets and priority inheritance. XtratuM
[19] is a hypervisor specially designed for real-time embedded
systems, providing fixed priority scheduling, and relying on
paravirtualization. Fiasco [20] is a hypervisor based on the L4
ABI and is implemented using the C++ programming language.
The Fiasco kernel is enriched by a broad set of user-space
components, collectively called L4 Runtime Environment
(L4Re). Attempts have been made to exploit the TrustZone
security features available on modern ARM processors into
hypervisors. An example is the SierraVisor [21] hypervisor.

Despite all the effort from these and other projects, there are
still significant issues to be addressed before being able to
provide a considerable level of isolation and virtualization for
modern heterogeneous platforms. The next section outlines
some of the more significant ones.

III. MAJOR CHALLENGES

A. Achieving effective isolation on multicores

Isolation capabilities are of paramount importance for an
hypervisor to be used within a mixed-criticality system. Two
types of isolation can be identified: spatial and temporal. Most
(if not all) solutions provide support for spatial isolation of
memory spaces, which is typically achieved by means of
memory virtualization leveraging memory management units
(MMU). Temporal isolation is generally realized by reserving

www.embedded-world.eu

dedicated CPUs to a domain, or by implementing bandwidth
reservation schemes for the CPU time, e.g., by reserving a
budget of execution time that is periodically provided to a
domain by the hypervisor scheduler.

Although these features are primary, and in fact are widely
supported by open-source and commercial hypervisors, they are
not enough to guarantee an effective isolation on commercial
off-the-shelf (COTS) multicore platforms. Indeed, even if the
domains access separate memory regions, and execute upon
disjoint sets of CPUs, mutual interference is still possible due
to the implicit contention of architectural resources such as
caches and memory banks. These resources are typically not
under the control of the hypervisor, but rather they are
transparently managed by chip subsystems (e.g., the memory
controller) that in most cases are not conceived to enforce
isolation nor to guarantee timing predictability [5][6].

For instance, consider a quad-core platform with private
level-1 caches for each core and a shared level-2 cache, as it is
illustrated in Figure 1. Suppose that a critical real-time
operating system is executing upon the first core, while the
remaining three cores are dedicated to execute a general-
purpose Linux domain. The execution of the critical domain
results in fetching data and code from the main memory,
consequently populating the level-2 shared cache (green box in
the figure). In parallel, the Linux domain can also populate the
same cache, with the result that the content stored by the critical
domain can be evicted, hence provoking cache misses at the
next access. This phenomenon may generate large and
unpredictable interference across domains, thus breaking
isolation by introducing a strong coupling of their timing
properties. Conversely, if the Linux domain is subject to an
attack or a malfunctioning such that it floods the system with
memory transactions, proper isolation mechanisms should
shield the critical domain.

To further complicate the problem, inter-domain
interference can also arise when accessing the main memory,
e.g., in correspondence to cache misses. The access to DRAM
memories is subject to highly variable delays that depends on
the actual memory location to be accessed and simultaneous

pending memory transactions. Furthermore, DRAM memory
controllers generally resort to scheduling algorithms that re-
order memory accesses with the aim of improving throughput.
While these algorithms provide benefits in the average-case,
they leave room for pathological scenarios that lead to high
worst-case latencies, hence harming the system predictability.

In the literature, several clever solutions have been proposed
to solve this kind of issues in non-virtualized multicore systems.
Software-based approaches such as cache coloring or cache
lockdown [7] can be employed to partition the amount of cache
used by a core, or more in general by a set of software tasks.
Reservation of memory bandwidth [5] and bank-aware memory
allocators [7] have also been proposed to control the contention
in accessing the main memory. Nevertheless, to the best of our
records, adequate support for such techniques is limited in
commercial hypervisors.

Modica et al. [8] realized effective isolation mechanisms for
shared caches and main memories in an open-source hypervisor
targeting ARM platforms. The authors developed a new virtual
memory allocator that employs cache coloring to statically
isolate the amount of shared cache reserved to each domain.
Furthermore, a bandwidth reservation mechanism to access the
main memory has been integrated with the hypervisor
scheduler. Their experimental results showed that inter-domain
interference can increase the execution time of state-of-the-art
benchmarks up to the 50%, while the realized mechanisms can
restore isolation at the price of degrading average-case
performance.

B. Virtualization of FPGAs and GPGPUs

Heterogeneous platforms that include FPGAs and/or
GPGPUs represent very attractive and powerful solutions to
implement modern cyber-physical systems, but at the same time
they introduce new problems in terms of resource management.
Concerning virtualized systems, FGPAs and GPGPUs should
also be controlled by the hypervisor and made available to
domains in a controlled manner.

Modern FPGAs dispose of dynamic partial reconfiguration
(DPR) capabilities, which allow reprogramming a portion of the
FPGA area while the rest continues to operate. This interesting
feature may be used to virtualize the FPGA area supporting
several hardware modules and accelerators in time sharing,
whose overall area consumption exceeds the one that is actually
available in the platform. A framework [11] has also been
proposed to ensure that the reconfiguration and area contention
delays are predictable, thus making realistic the adoptance of
this technique in the context of critical systems. Static FPGA
virtualization is also possible by controlling its configuration
phases. Unfortunately, no integration within a hypervisor is
today available.

Dually, work has also been dedicated to the development of
software mechanisms to integrate the advantages of GPGPU
into the virtualization paradigm. Hong et al. [23] provided an
overview of the state-of-the-art of virtualization techniques,
hardware supports, and scheduling mechanisms for multiple
concurrent requests. They also outlined a list of challenges that
still require being addressed to improve the exploitation of

Figure 1 - Inter-core interference in accessing a shred level of cache

GPGPUs, ranging from overheads reduction to energy
management, from scalability and space optimization to
security.

Another issue consists in the fact that modules deployed
onto the FPGA and GPGPUs can typically act as memory
masters on the system bus, hence (i) generating additional
memory interference (e.g., see [10]) that complicates the
problems discussed in the previous section, and (ii) potentially
exposing memories to an uncontrolled access that may bypass
the spatial isolation. The first problem needs to be addressed
with adequate support, such as specialized software-based
memory bandwidth controllers, or in the case of FPGAs with
the development of hardware bandwidth controllers deployed
onto the FPGA and managed by the hypervisor. The second
problem requires dealing with virtualization techniques and
components such as I/O MMUs.

C. Supporting hardware-based security technologies
Due to the external exposure by means of network and bus

connections, security issues became central aspects in the
design and development of modern embedded computing
systems. Although a rich set of software-based techniques have
been developed to increase the security level of a software
system, cyber attacks are also increasingly becoming more and
more complex, defeating most attack mitigation techniques
and/or exploiting wrong software configurations. With the
intent of providing a robust support to implement security
features, chip makers are moving towards architectures that
offer hardware-based solutions to realize trusted execution
environments (TEEs). TEEs must be strictly isolated for the
normal execution environment and should also dispose of
dedicated computing resources.

One of the most popular of such technologies is TrustZone
developed by ARM. TrustZone provides hardware-based
isolation of two execution worlds: secure, conceived to support
the execution of a TEE, and non-secure, which is provided to
host the execution of a rich (classical) operating system.
TrustZone-enabled chips may also include support for secure
boot, i.e., cryptographic validation of the firmware to be
executed, and cryptographic hardware accelerators. The
introduction of such features poses new challenges when
realizing a security-aware virtualization stack.

First, there is the need to virtualize such hardware-based
security technologies to allow the coexistence of multiple
domains each potentially comprising a TEE running in a
virtualized secure world. Initial attempts in this direction have
been made by Cicero et. al [9], which proposed an open-source
dual-hypervisor solution where two jointly-configured
hypervisors are employed to virtualize secure and non-secure
worlds, respectively, both orchestrated by a monitor firmware
that handles world switches and dispatches interrupt signals.
This solution avoids the existence of a single point of failure
and aims at containing the run-time overhead. Remarkable
efforts have also been spent by Hua et al. [12], which proposed
a centralized solution to virtualize TrustZone by building upon
the Xen hypervisor.

Second, hypervisors should offer the virtualization of
cryptographic hardware resources, possibly guaranteeing strict
integrity and confidentiality of data even in the presence of side-

channel attacks. Built-in support for software-based attack
mitigation techniques such as data execution prevention (DEP),
address-space layout randomization (ASLR), and control flow
integrity (CFI) are also desirable. The latter require careful
attention when integrated with virtualization mechanisms.

Third, to the end of supporting component-based software
design and possibly open environments, hypervisors should
provide software authentication mechanisms also at the level of
domains, paying particular attention at rollback-based attacks.
The authors believe that list is not limited to the above-
mentioned challenges and that security-related aspects will
likely steer the design of future virtualization software.

IV. THE AUTOMOTIVE CASE

As a proof of concept, this section describes a realistic
scenario related to the automotive domain in which
virtualization is applied. The described solution, from the
RETINA project [1], aims at providing an AUTOSAR-
compliant software stack for next-generation automotive
systems. The stack allows the integration of components with
different criticality levels onto modern multi-core SoCs,
reducing the overall time-to-market and manufacturing costs.

At the lowest level, the stack consists of an hypervisor to
enforce isolation (thus, reliability and safety) between the guest
operating systems. The RETINA project relies on Jailhouse [2],
a small and lightweight type-1 hypervisor developed by
Siemens and released as Open-Source software. The hypervisor
supports both x86-64 and ARM-based platforms, provided the
availability of hardware virtualization instructions. Rather than
providing resource virtualization and scheduling (like e.g. the
Xen hypervisor), Jailhouse focuses on isolation and resource
partitioning. For this reason, there is no intra-core scheduling
(i.e., each core cannot run more than one guest OS) and
resources are statically assigned to only one guest. This static
approach allows to:

● provide average latencies and jitters similar to bare-
metal solutions, due to the low run-time overhead;

● ease potential certification processes in the future,
thanks to a very small codebase.

On top of the hypervisor, the RETINA project runs two
guest OSs with different criticality levels. The real-time and
safety-critical tasks are run by the ERIKA Enterprise RTOS [3].
ERIKA Enterprise is a tiny RTOS (i.e. a few KBs of footprint)
designed and certified for the automotive market. It is
developed by Evidence Srl and released as Open-Source
software under a dual licensing model.

The less critical tasks (e.g., HMI, logging, etc.), instead, are
executed on a Linux guest, improved through the
PREEMPT_RT real-time patch [4] when needed. The
communication between the two OSs is done by means of a
library exposing an API similar to the one specified by the
AUTOSAR COM standard. The library is meant to be used by
an AUTOSAR Run-Time Environment (RTE) generator
developed by Evidence Srl for its RTOS. Most critical tasks are
run using the SCHED_DEADLINE Linux scheduler [17].

www.embedded-world.eu

Figure 2 summarizes the main components of the
automotive software stack described above.

Figure 2 - Multi-OS automotive software stack developed for the

RETINA project.

V. CONCLUSIONS

This paper presented some of the major challenges in
providing a software support for exploiting modern
heterogeneous platforms for complex safety-critical systems
consisting of several interacting components with real-time
requirements. Virtualization techniques, successfully used to
isolate the behavior of software components running on the
same processor, are considered to be extended for managing
other architectural resources, such as shared memories, and
other computational units, such as FPGAs and GPUs. Issues
concerning safety, security, and real-time performance are also
discussed and illustrated using a case of study taken from the
automotive domain.

REFERENCES

[1] RETINA EUROSTARS project, http://retinaproject.eu/

[2] Siemens, Jailhouse hypervisor, https://github.com/siemens/jailhouse

[3] Evidence Srl, ERIKA Enterprise RTOS, http://www.erika-
enterprise.com/

[4] The Linux Foundation, Real-Time collaborative project,
https://wiki.linuxfoundation.org/realtime

[5] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:
Memory bandwidth reservation system for efficient performance isolation
in multi-core platforms,” in 19th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2013, pp. 55–64

[6] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni, “PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms,” in 19th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), April 2014.

[7] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R.
Pellizzoni, “A survey on cache management mechanisms for real-time
embedded systems,” ACM Comput. Surv., vol. 48, no. 2, Nov. 2015.

[8] P. Modica, A. Biondi, G. Buttazzo, and A. Patel, “Supporting temporal
and spatial isolation in a hypervisor for arm multicore platforms,” in
Proceedings of the 18th IEEE International Conference on Industrial
Technology (ICIT 2018), Feb. 2018.

[9] G. Cicero, A. Biondi, G. Buttazzo, and A. Patel, “Reconciling Security
with Virtualization: A Dual-Hypervisor Design for ARM TrustZone,” in
Proceedings of the 18th IEEE International Conference on Industrial
Technology (ICIT 2018), Feb. 2018

[10] B. Forsberg, A. Marongiu and L. Benini, "GPUguard: Towards
supporting a predictable execution model for heterogeneous SoC,"
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017, Lausanne, 2017, pp. 318-321

[11] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo,
“A framework for supporting real-time applications on dynamic
reconfigurable FPGAs,” in Proc. of the IEEE Real-Time Systems
Symposium (RTSS 2016), December 2016, pp. 1–12

[12] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vTZ: Virtualizing
ARM trustzone,” in In Proc. of the 26th USENIX Security Symposium,
2017.

[13] R. Adair, R. Bayles, L. Comeau, and R. Creasy. “A virtual machine
system for the 360/40,” Technical Report 320-2007, IBM Corporation,
Cambridge Scientific Center, May 1966.

[14] Xen project, https://www.xenproject.org/

[15] Linux Kernel Virtual Machine, http://www.linux-
kvm.org/page/Main_Page

[16] Jailhouse project page, https://github.com/siemens/jailhouse

[17] J. Lelli, C. Scordino, L. Abeni, D. Faggioli, “Deadline scheduling in the
Linux kernel”, Software: Practice and Experience, 46(6): 821-839, June

2016.

[18] Nova hypervisor, http://www.hypervisor.org

[19] XtratuM project page, http://www.xtratum.org

[20] Fiasco project page, https://l4re.org/fiasco/

[21] SierraVisor, http://www.openvirtualization.org

[22] PikeOS hypervisor, https://www.sysgo.com/products/pikeos-hypervisor/

[23] Hong, Cheol-Ho & Spence, Ivor & Nikolopoulos, Dimitrios, “GPU

Virtualization and Scheduling Methods: A Comprehensive Survey”.
ACM Computing Surveys. 50. 1-37, 2017.

http://retinaproject.eu/
https://github.com/siemens/jailhouse
http://www.erika-enterprise.com/
http://www.erika-enterprise.com/
https://wiki.linuxfoundation.org/realtime
https://www.xenproject.org/
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
https://github.com/siemens/jailhouse
http://www.hypervisor.org/
http://www.xtratum.org/
https://l4re.org/fiasco/
http://www.openvirtualization.org/
https://www.sysgo.com/products/pikeos-hypervisor/

