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Abstract — Embedded computing platforms are evolving 

towards heterogeneous architectures that require new software 

support for simplifying their usage, optimizing the available 

resources, and providing a predictable runtime behavior for 

managing concurrent safety-critical applications. This paper 

describes the main challenges in providing such a software support 

through virtualization techniques, while taking into account safety 

requirements, security issues, and real-time performance. An 

automotive application is considered as a case of study to illustrate 

some of the presented concepts. 
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I.  INTRODUCTION 

The design of computing infrastructures for modern cyber-
physical systems is facing with two major trends that are 
significantly steering the development process of embedded 
software. On one hand, the last years have been characterized 
by a continuous increase of the software complexity to meet 
more and more richer functional requirements and to support 
new technologies. At the same time, computing platforms are 
evolving toward heterogeneous designs that integrate multiple 
components such as multicore processors, general-purpose 
graphic processing units (GPGPUs), and field programmable 
gate arrays (FPGAs), which allow power-efficient parallel 
execution of multiple software systems at the cost of a paradigm 
shift in their development. 

These two trends are increasingly pushing software 
designers to integrate a higher number of functions in the same 
hardware platform, typically resorting to methodologies  such 
as component-based software design (CBSD) and also facing 
with the problem of incorporating legacy software. 
Furthermore, in many industrial fields, integration is considered 
the most affordable solution to problems related to space, 
weight, power, and cost (SWaP-C). 

Virtualization of computational resources established as a 
de-facto technique to address these needs while efficiently 
exploiting the processing power of modern platforms. 
Virtualization is typically achieved via hypervisors (also called 
virtual machine monitors), which allow executing multiple 

software domains upon the same platform, each of them 
possibly executing a different operating system (OS). The 
domains benefit from the illusion of disposing of a dedicated 
computing platform, while in reality the access to the shared 
computational resources is regulated by the hypervisor, which 
typically offers to the domains sets of virtualized memory 
address spaces, CPUs, and possibly peripherals. Nowadays, this 
technology is increasingly adopted to realize multi-OS 
solutions [22] for mixed-criticality systems, integrating a 
mission-critical real-time operating system (e.g., to perform 
sensing, control, and actuation tasks), with rich, non-critical 
operating systems such as Linux, which exploit a large 
availability of drivers, libraries, and connectivity stacks. 
Realistic designs possibly also include the integration of legacy 
software systems as-a-whole, i.e., with their original operating 
system, drivers, and configurations, thus favoring the evolution 
of cyber-physical systems towards centralized schemes with 
few but powerful computing platforms. 

Orthogonally to such major trends, designers of new-
generation embedded software cannot neglect safety and 
security needs, which inevitably affect the functionality 
provided by virtualization stacks. The former are driven by 
increasingly stringent legal regulations and certifiability 
requirements, while the latter are becoming of paramount 
importance due to the exposure of embedded computing 
platforms by means of network connections. The integration of 
components with different safety and security levels (also 
known as MILS systems) may pose hazards in guaranteeing key 
requirements of the critical software such as timing constraints 
and  data integrity and confidentiality. For instance, if no proper 
isolation mechanisms are provided by the hypervisor, a 
malfunctioning or an attack interesting a low-critical domain 
may arbitrarily delay the execution of critical tasks, thus 
compromising the system behavior or strongly jeopardizing its 
performance. 

The joint consideration of all such a kind of aspects poses 
several challenges in the development of suitable virtualization 
layers. The scope of this short paper is to discuss some of such 
challenges, with a particular focus on temporal and spatial 
isolation of software domains, timing predictability, resource 



contention, and the management of hardware-based security 
technologies. 

 

II. BACKGROUND 

A. Hypervisors 

The concept of Hypervisors dates back to the 60's [13], but 
it became significant in the last decade as a fundamental 
solution to harness the complexity of the modern hardware 
platforms, and the multiple applications executing concurrently 
on top of them. This need for isolation could be declined in 
different ways depending on the specific application 
requirements and the underlying platform executing it. 

A platform on which the hypervisor executes is denoted as 
the host machine, and each virtual machine managed by the 
hypervisor is called a guest. The two main features upon which 
is based the classification of a hypervisor concern the type of 
implementation and the abstraction provided to the guest virtual 
machine. There are two types of hypervisor: 

● Type-1, also called native or bare-metal, which 
directly run on the hosting hardware to control it and 
to handle guest operating systems; 

● Type-2, also called hosted, where the hypervisor is 
provided as an extension to an operating system that is 
executed on the host while the guests run as tasks..  

Another element of distinction comes from the API exposed 
by the host to the generic guest OS: 

● In fully virtualized solutions the guest executes in a 
transparent manner and without software 
modifications, while the hypervisor provides the API 
to emulate the underlying platform;  

● In a paravirtualized implementation the guest is aware 
of the presence of virtualization. Thus it uses an API 
similar, but not identical, to that of the underlying 
hardware. This allows to create specific solutions and 
reduce the overhead. 

Due to the advantages of higher flexibility and no 
modifications required in the guest domains, the hardware 
manufacturers started providing virtualization extensions to 
support full virtualization, which allow minimizing the 
overheads resulting from the emulation of the underlying 
platform. 

B. Existing solutions 

The wide range of application scenarios and platforms 
fostered the creation of a significant number of hypervisors, 
each of them with a focus on a subset of the several issues 
concerning virtualization. Moreover, the profound interaction 
between the hypervisor and the hardware platform leads to a 
considerable effort when porting the hypervisor to a new 
architecture, also due to the extensive use of specific platform 
features to improve performance. The result is a reduced set of 
hypervisors available for each particular platform. 

Since some application fields, like mainframes, cloud 
infrastructures, and virtualized network infrastructures highly 
benefit from virtualization and massively relies on Linux, 
several hypervisors pivoting on the latter have been developed. 

Among the firsts and one of the most famous is Xen [14], which 
executes Linux in a privileged domain called dom0. The wide 
range of supported platforms is considered one of its main 
advantages, but also as a drawback because it has lead to a 
considerable codebase. A similar approach is followed by KVM 
[15], which is a virtualization infrastructure available in the 
mainline kernel that turns it into a type-1 hypervisor. Jailhouse 
[16] is a type-1 partitioning hypervisor, more concerned with 
isolation rather than virtualization, aiming at creating a small 
and lightweight hypervisor targeting industrial-grade 
applications. Like Xen, Jailhouse requires Linux to provide the 
management interface, which allowed keeping the size of 
source code small. Like KVM, it is loaded from a regular Linux 
system, but when started, it takes full control of the hardware 
and splits the hardware resources into isolated compartments 
(called cells) that are entirely dedicated to guest software 
programs (called inmates). One cell runs the Linux OS and is 
known as the root cell, that is similar to the dom0 in Xen, but 
the root cell doesn't assert full control over hardware resources 
as dom0 does. 

When dealing with embedded systems and their possible 
requirements regarding safety and security, it is essential to 
exploit solutions characterized by a small codebase both for 
SWaP and certification issues. Xvisor [17] is a type-1 
hypervisor, aiming at providing an entirely monolithic, light-
weight and portable virtualization solution. The most appealing 
characteristic of Xvisor is that it provides full virtualization, and 
therefore supports a wide range of unmodified guest operating 
systems. NOVA [18] is an academic hypervisor designed at TU 
Dresden. It follows the micro-kernel approach, and it has been 
developed using the C++ programming language. Another 
significant feature is the fixed-priority preemptive scheduler 
with execution time budgets and priority inheritance. XtratuM 
[19] is a hypervisor specially designed for real-time embedded 
systems, providing fixed priority scheduling, and relying on 
paravirtualization. Fiasco [20] is a hypervisor based on the L4 
ABI and is implemented using the C++ programming language. 
The Fiasco kernel is enriched by a broad set of user-space 
components, collectively called L4 Runtime Environment 
(L4Re). Attempts have been made to exploit the TrustZone 
security features available on modern ARM processors into 
hypervisors. An example is the SierraVisor [21]  hypervisor. 

Despite all the effort from these and other projects, there are 
still significant issues to be addressed before being able to 
provide a considerable level of isolation and virtualization for 
modern heterogeneous platforms. The next section outlines 
some of the more significant ones. 

 

III. MAJOR CHALLENGES 

A. Achieving effective isolation on multicores 

Isolation capabilities are of paramount importance for an 
hypervisor to be used within a mixed-criticality system. Two 
types of isolation can be identified: spatial and temporal. Most 
(if not all) solutions provide support for spatial isolation of 
memory spaces, which is typically achieved by means of 
memory virtualization leveraging memory management units 
(MMU). Temporal isolation is generally realized by reserving 
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dedicated CPUs to a domain, or by implementing bandwidth 
reservation schemes for the CPU time, e.g., by reserving a 
budget of execution time that is periodically provided to a 
domain by the hypervisor scheduler. 

Although these features are primary, and in fact are widely 
supported by open-source and commercial hypervisors, they are 
not enough to guarantee an effective isolation on commercial 
off-the-shelf (COTS) multicore platforms. Indeed, even if the 
domains access separate memory regions, and execute upon 
disjoint sets of CPUs, mutual interference is still possible due 
to the implicit contention of architectural resources such as 
caches and memory banks. These resources are typically not 
under the control of the hypervisor, but rather they are 
transparently managed by chip subsystems (e.g., the memory 
controller) that in most cases are not conceived to enforce 
isolation nor to guarantee timing predictability [5][6]. 

For instance, consider a quad-core platform with private 
level-1 caches for each core and a shared level-2 cache, as it is 
illustrated in Figure 1. Suppose that a critical real-time 
operating system is executing upon the first core, while the 
remaining three cores are dedicated to execute a general-
purpose Linux domain. The execution of the critical domain 
results in fetching data and code from the main memory, 
consequently populating the level-2 shared cache (green box in 
the figure). In parallel, the Linux domain can also populate the 
same cache, with the result that the content stored by the critical 
domain can be evicted, hence provoking cache misses at the 
next access. This phenomenon may generate large and 
unpredictable interference across domains, thus breaking 
isolation by introducing a strong coupling of their timing 
properties. Conversely, if the Linux domain is subject to an 
attack or a malfunctioning such that it floods the system with 
memory transactions, proper isolation mechanisms should 
shield the critical domain. 

To further complicate the problem, inter-domain 
interference can also arise when accessing the main memory, 
e.g., in correspondence to cache misses. The access to DRAM 
memories is subject to highly variable delays that depends on 
the actual memory location to be accessed and simultaneous 

pending memory transactions. Furthermore, DRAM memory 
controllers generally resort to scheduling algorithms that re-
order memory accesses with the aim of improving throughput.  
While these algorithms provide benefits in the average-case, 
they leave room for pathological scenarios that lead to high 
worst-case latencies, hence harming the system predictability. 

In the literature, several clever solutions have been proposed 
to solve this kind of issues in non-virtualized multicore systems. 
Software-based approaches such as cache coloring or cache 
lockdown [7] can be employed to partition the amount of cache 
used by a core, or more in general by a set of software tasks. 
Reservation of memory bandwidth [5] and bank-aware memory 
allocators [7] have also been proposed to control the contention 
in accessing the main memory. Nevertheless, to the best of our 
records, adequate support for such techniques is limited in 
commercial hypervisors.  

Modica et al. [8] realized effective isolation mechanisms for 
shared caches and main memories in an open-source hypervisor 
targeting ARM platforms. The authors developed a new virtual 
memory allocator that employs cache coloring to statically 
isolate the amount of shared cache reserved to each domain. 
Furthermore, a bandwidth reservation mechanism to access the 
main memory has been integrated with the hypervisor 
scheduler. Their experimental results showed that inter-domain 
interference can increase the execution time of state-of-the-art 
benchmarks up to the 50%, while the realized mechanisms can 
restore isolation at the price of degrading average-case 
performance.  

 

B. Virtualization of FPGAs and GPGPUs 

Heterogeneous platforms that include FPGAs and/or 
GPGPUs represent very attractive and powerful solutions to 
implement modern cyber-physical systems, but at the same time 
they introduce new problems in terms of resource management. 
Concerning virtualized systems, FGPAs and GPGPUs should 
also be controlled by the hypervisor and made available to 
domains in a controlled manner.  

Modern FPGAs dispose of dynamic partial reconfiguration 
(DPR) capabilities, which allow reprogramming a portion of the 
FPGA area while the rest continues to operate. This interesting 
feature may be used to virtualize the FPGA area supporting 
several hardware modules and accelerators in time sharing, 
whose overall area consumption exceeds the one that is actually 
available in the platform. A framework [11] has also been 
proposed to ensure that the reconfiguration and area contention 
delays are predictable, thus making realistic the adoptance of 
this technique in the context of critical systems.  Static FPGA 
virtualization is also possible by controlling its configuration 
phases. Unfortunately, no integration within a hypervisor is 
today available. 

Dually, work has also been dedicated to the development of 
software mechanisms to integrate the advantages of GPGPU 
into the virtualization paradigm. Hong et al. [23] provided an 
overview of the state-of-the-art of virtualization techniques, 
hardware supports, and scheduling mechanisms for multiple 
concurrent requests. They also outlined a list of challenges that 
still require being addressed to improve the exploitation of 

Figure 1 - Inter-core interference in accessing a shred level of cache 



GPGPUs, ranging from overheads reduction to energy 
management, from scalability and space optimization to 
security. 

Another issue consists in the fact that modules deployed 
onto the FPGA and GPGPUs can typically act as memory 
masters on the system bus, hence (i) generating additional 
memory interference (e.g., see [10]) that complicates the 
problems discussed in the previous section, and (ii) potentially 
exposing memories to an uncontrolled access that may bypass 
the spatial isolation. The first problem needs to be addressed 
with adequate support, such as specialized software-based 
memory bandwidth controllers, or in the case of FPGAs with 
the development of hardware bandwidth controllers deployed 
onto the FPGA and managed by the hypervisor. The second 
problem requires dealing with virtualization techniques and 
components such as I/O MMUs. 

C. Supporting hardware-based security technologies 
Due to the external exposure by means of network and bus 

connections, security issues became central aspects in the 
design and development of modern embedded computing 
systems. Although a rich set of software-based techniques have 
been developed to increase the security level of a software 
system, cyber attacks are also increasingly becoming more and 
more complex, defeating most attack mitigation techniques 
and/or exploiting wrong software configurations. With the 
intent of providing a robust support to implement security 
features, chip makers are moving towards architectures that 
offer hardware-based solutions to realize trusted execution 
environments (TEEs). TEEs must be strictly isolated for the 
normal execution environment and should also dispose of 
dedicated computing resources.  

One of the most popular of such technologies is TrustZone 
developed by ARM. TrustZone provides hardware-based 
isolation of two execution worlds: secure, conceived to support 
the execution of a TEE, and non-secure, which is provided to 
host the execution of a rich (classical) operating system. 
TrustZone-enabled chips may also include support for secure 
boot, i.e., cryptographic validation of the firmware to be 
executed, and cryptographic hardware accelerators. The 
introduction of such features poses new challenges when 
realizing a security-aware virtualization stack. 

First, there is the need to virtualize such hardware-based 
security technologies to allow the coexistence of multiple 
domains each potentially comprising a TEE running in a 
virtualized secure world. Initial attempts in this direction have 
been made by Cicero et. al [9], which proposed an open-source 
dual-hypervisor solution where two jointly-configured 
hypervisors are employed to virtualize secure and non-secure 
worlds, respectively, both orchestrated by a monitor firmware 
that handles world switches and dispatches interrupt signals. 
This solution avoids the existence of a single point of failure 
and aims at containing the run-time overhead. Remarkable 
efforts have also been spent by Hua et al. [12], which proposed 
a centralized solution to virtualize TrustZone by building upon 
the Xen hypervisor. 

Second, hypervisors should offer the virtualization of 
cryptographic hardware resources, possibly guaranteeing strict 
integrity and confidentiality of data even in the presence of side-

channel attacks. Built-in support for software-based attack 
mitigation techniques such as data execution prevention (DEP), 
address-space layout randomization (ASLR), and control flow 
integrity (CFI) are also desirable. The latter require careful 
attention when integrated with virtualization mechanisms. 

Third, to the end of supporting component-based software 
design and possibly open environments, hypervisors should 
provide software authentication mechanisms also at the level of 
domains, paying particular attention at rollback-based attacks. 
The authors believe that list is not limited to the above-
mentioned challenges and that security-related aspects will 
likely steer the design of future virtualization software. 

 

IV. THE AUTOMOTIVE CASE 

As a proof of concept, this section describes a realistic 
scenario related to the automotive domain in which 
virtualization is applied. The described solution, from the 
RETINA project [1], aims at providing an AUTOSAR-
compliant software stack for next-generation automotive 
systems. The stack allows the integration of components with 
different criticality levels onto modern multi-core SoCs, 
reducing the overall time-to-market and manufacturing costs. 

At the lowest level, the stack consists of an hypervisor to 
enforce isolation (thus, reliability and safety) between the guest 
operating systems. The RETINA project relies on Jailhouse [2], 
a small and lightweight type-1 hypervisor developed by 
Siemens and released as Open-Source software. The hypervisor 
supports both x86-64 and ARM-based platforms, provided the 
availability of hardware virtualization instructions. Rather than 
providing resource virtualization and scheduling (like e.g. the 
Xen hypervisor), Jailhouse focuses on isolation and resource 
partitioning. For this reason, there is no intra-core scheduling 
(i.e., each core cannot run more than one guest OS) and 
resources are statically assigned to only one guest. This static 
approach allows to: 

● provide average latencies and jitters similar to bare-
metal solutions, due to the low run-time overhead; 

● ease potential certification processes in the future, 
thanks to a very small codebase. 

On top of the hypervisor, the RETINA project runs two 
guest OSs with different criticality levels. The real-time and 
safety-critical tasks are run by the ERIKA Enterprise RTOS [3]. 
ERIKA Enterprise is a tiny RTOS (i.e. a few KBs of footprint) 
designed and certified for the automotive market. It is 
developed by Evidence Srl and released as Open-Source 
software under a dual licensing model. 

The less critical tasks (e.g., HMI, logging, etc.), instead, are 
executed on a Linux guest, improved through the 
PREEMPT_RT real-time patch [4] when needed. The 
communication between the two OSs is done by means of a 
library exposing an API similar to the one specified by the 
AUTOSAR COM standard. The library is meant to be used by 
an AUTOSAR Run-Time Environment (RTE) generator 
developed by Evidence Srl for its RTOS. Most critical tasks are 
run using the SCHED_DEADLINE Linux scheduler [17]. 
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Figure 2 summarizes the main components of the 
automotive software stack described above. 

 

Figure 2 - Multi-OS automotive software stack developed for the 

RETINA project. 

 

V. CONCLUSIONS 

This paper presented some of the major challenges in 
providing a software support for exploiting modern 
heterogeneous platforms for complex safety-critical systems 
consisting of several interacting components with real-time 
requirements. Virtualization techniques, successfully used to 
isolate the behavior of software components running on the 
same processor, are considered to be extended for managing 
other architectural resources, such as shared memories, and 
other computational units, such as FPGAs and GPUs. Issues 
concerning safety, security, and real-time performance are also 
discussed and illustrated using a case of study taken from the 
automotive domain. 
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