
A Linux-Based Support for Developing Real-Time Applications on Heterogeneous
Platforms with Dynamic FPGA Reconfiguration?

Marco Pagania,∗, Alessandro Biondia, Mauro Marinonia, Lorenzo Molinaria, Giuseppe Liparib, Giorgio Buttazzoa

aScuola Superiore Sant’Anna, Pisa
bUniversité de Lille, CNRS, Centrale Lille, UMR 9189 – CRIStAL

Abstract

Computing platforms for next-generation cyber-physical systems are evolving towards heterogeneous architectures
comprising different processing elements and hardware accelerators. In particular, SoC-FPGA platforms, including
multiple general-purpose processing cores tightly coupled with an FPGA fabric, represent an attractive solution due to
their flexibility, efficiency, and timing predictability. On these platforms, dedicated hardware accelerators implemented on
the FPGA fabric can offload computationally intensive activities from general-purpose processing cores. Furthermore,
dynamic partial reconfiguration allows virtualizing the FPGA resources by sharing them among multiple hardware
accelerators over time.

Although very promising, FPGA-based hardware acceleration also introduces new challenges, such as managing and
scheduling multiple concurrent acceleration and reconfiguration requests. The FRED framework has been proposed
to address these challenges while preserving the predictability required by real-time systems. FRED is based on a
device model that matches the capabilities of contemporary SoC-FPGA platforms and comes with an ad-hoc scheduling
infrastructure designed to guarantee bounded response times for DPR-enabled accelerated tasks. This paper presents
Fred-Linux, the reference implementation of the FRED framework for GNU/Linux. Fred-Linux allows developing
rich applications while leveraging predictable FPGA-based hardware acceleration for performing heavy computations.
Fred-Linux has been developed using the Zynq-7000 and Zynq-UltraScale+ by Xilinx as reference platforms, and it can
be easily ported and extended on other platforms thanks to its modular design.

Keywords: Heterogeneous Computing, FPGA, DPR, Real-time, Linux

1. Introduction

In the last decade, computer platforms for embedded
systems evolved towards heterogeneous architectures that
comprise different processing elements and hardware ac-
celerators. Such a development has been driven by the
growing computational demand of modern cyber-physical
systems such as autonomous vehicles and advanced robots.
These systems need to acquire large amounts of data from
multiple sensors and process them within precise timing
constraints for performing the required control and mon-
itoring actions. Such requirements result in the need to
execute complex computing workloads such as machine
learning, encryption, and advanced signal processing algo-
rithms within precise timing constraints. Heterogeneous
systems can meet this computational demand while re-
taining a high energy efficiency level by distributing the

?This work has been supported by the EU H2020 project AMPERE
under the grant agreement no. 871669.

∗Corresponding author
Email addresses: marco.pagani@santannapisa.it (Marco

Pagani), alessandro.biondi@santannapisa.it (Alessandro Biondi),
mauro.marinoni@santannapisa.it (Mauro Marinoni),
giuseppe.lipari@univ-lille.fr (Giuseppe Lipari),
giorgio.buttazzo@santannapisa.it (Giorgio Buttazzo)

computational workload among their different processing
elements.

In particular, SoC-FPGA platforms, which comprise a
system-on-chip device tightly coupled with FPGA hardware-
programmable fabric, are especially suitable for real-time
embedded systems due to the highly predictable nature of
FPGA-based hardware acceleration. Compared to other
types of hardware acceleration on heterogeneous platforms,
like GPU co-processing, FPGA-based acceleration allows
for precise control of the logic design. This feature is crucial
for implementing predictable-by-design hardware acceler-
ators and memory subsystems, which can provide high
time predictability. As such, FPGA-based acceleration is
attractive in several safety-critical domains.

Modern SoC-FPGA platforms support dynamic partial
reconfiguration (DPR), which allows reconfiguring a por-
tion of the FPGA fabric while the remaining logic cells
continue to operate without interruption. By leveraging
DPR, multiple hardware accelerators can share the same
fabric resources in time-multiplexing. This capability is
particularly interesting when considering that many real-
time applications consist of periodic or sporadic activities.
Hence, employing statically allocated hardware modules for
accelerating recurrent software activities can result in an

Preprint submitted to Journal of Future Generation Computer Systems October 6, 2021

underutilization of the FPGA fabric since logic resources
may remain idle for a considerable amount of time. On
the contrary, by leveraging DPR, it is possible to dynami-
cally deploy the required hardware accelerators only when
software activities actually need them.

However, although FPGA-based hardware acceleration
offers numerous advantages for real-time systems, it also
presents new challenges. For instance, scheduling concur-
rent acceleration requests while guaranteeing predictable
delays is not trivial, especially when considering that the
FPGA reconfiguration interface can reconfigure at most
one portion of fabric at a time. The FRED framework [1]
has been proposed as a solution to predictably handle
FPGA-based hardware accelerators under DPR. FRED is
based on a scheduling infrastructure designed to guarantee
bounded response times for software activities that make
use of hardware acceleration. The FRED scheduling in-
frastructure has been built upon a platform model that
matches modern SoC-FPGA platforms.

1.1. Contribution
This paper presents a novel version of Fred-Linux,

the reference implementation of the FRED framework for
GNU/Linux originally proposed in [2]. Fred-Linux has been
used to accelerate various kinds of workloads, including
computer vision, matrix algebra, and inference of neural
networks [3] implemented with the popular FINN frame-
work [4]. The new version presented in this work provides a
rich set of improvements and new features over the previous
version of [2]. First of all, the central software component
of Fred-Linux has been entirely redesigned from scratch in
a more modular fashion to better support future extensions
of the FRED framework. Second, new important features
such as support asynchronous acceleration requests and
watchdog timers for detecting Hw-tasks stalls are intro-
duced. Third, on the kernel side, device reconfiguration is
now managed by a new low-level driver based on the Linux
vendor-independent FPGA manager framework. With this
new reconfiguration driver, Fred-Linux now fully supports
both the Zynq-7000 and Zynq UltraScale+ platforms by
Xilinx. On the developer side, the client API has been
significantly extended to be more flexible. A Python API
has been also introduced to support the popular PYNQ
framework [5]. Finally, the new implementation has been
tested with a realistic case-study application using stan-
dard components such as Qt, OpenCV, and Video for Linux
(V4L). The evaluation results show that real-world applica-
tions can practically benefit from Fred-Linux, being capable
of leveraging time-predictable FPGA-based hardware ac-
celeration in a feature-rich operating system environment
such as GNU/Linux with low overhead. Fred-Linux is
distributed under the GNU General Public License. The
source code and the documentation are freely available
online [6].

2. Related Work

Contemporary SoC-FPGA heterogeneous platforms al-
low leveraging FPGA-based hardware acceleration while
DPR allows virtualizing the FPGA resources in the time
domain. Nevertheless, the complexity of HW/SW co-
scheduling and the non-negligible reconfiguration still poses
considerable challenges. In particular, real-time applica-
tions can benefit from DPR, but mechanisms and analyses
are required to enforce and guarantee timing constraints.
However, timing analysis for such systems is still an open
research topic since many proposed approaches focus on
specific elements or apply oversimplified assumptions not
matching real platforms’ capabilities.

Many research effort has been spent on the reconfig-
uration interface, which is a crucial component enabling
DPR. Dittmann and Frank [7] approached the issue of
scheduling reconfiguration requests on a single shared non-
preemptive reconfiguration interface, such as the Xilinx
ICAP port. Duhem et al. [8] proposed a fast ICAP con-
troller to reduce the overhead, using high-speed configura-
tion and easy-to-use readback capabilities, coupled with a
corresponding model for the reconfiguration overhead esti-
mation. It enhances the performance by exploiting DMA,
ICAP overclocking, bitstream pre-load into the controller,
and bitstream compression. An analysis of the challenges of
runtime reconfiguration in real-time systems was presented
by Damschen et al. [9], which shows the massive impact of
conflicts accessing a shared main memory during reconfigu-
ration. They applied these results in the development of a
runtime reconfiguration support under WCET guarantees.
Valente et al. [10] proposed a detailed characterization of
the components involved in the reconfiguration in order to
provide a worst-case bound on the cost. This result allowed
them to define the profitability of the DPR reconfiguration
in real-time systems. The advantages of DPR-based solu-
tions in terms of HW-tasks execution predictability and
speed-up have been investigated by Pezzarossa et al. [11] to
evaluated the improvements over a pure software solution
and the trade-off between the use of multiple specialized
accelerators combined with DPR instead of the use of a
more general accelerator, both in terms of performances
and memory footprint. Several ways to integrate DPR
capabilities in real-time applications have been explored
in order to mitigate the reconfiguration costs and reduce
the related pessimism. Goossens et al. [12] addressed the
problem of multi-mode systems, analyzing the impact of
mode changes for FPGA-accelerated application, proposing
a mode change protocol and test for the verification of the
timing constraints.

Handling DPR at the task level is even more challenging
since the reconfiguration time deeply affects the response
times. Danne and Platzner [13] proposed a model requiring
oversimplistic assumptions, such as preemptability of HW-
tasks, negligible reconfiguration time, and no allocation
constraints. The model proposed by Saha et al. [14] also
analyzes preemptable HW-tasks on homogeneous partitions

2

with FPGA reallocation at each HW-task termination,
inducing an area waste and increasing the pessimism in the
analysis. Biondi et al. [1] proposed the FRED framework, a
predictable infrastructure to supporting DPR of hardware
accelerators. It can be implemented on existing platforms
being based on a more detailed platform model. Saha
et al. [15] proposed a co-scheduling framework for the
execution of both periodic and aperiodic real-time tasks
on DPR platforms that minimizes aperiodic tasks rejection
while guaranteeing the feasibility of the periodic tasks.

Fruitfully exploiting DPR features on FPGA-based plat-
forms requires robust and user-friendly support from the
operating system perspective. The ARTICo3 framework
proposed by Rodriguez et al. [16] provides an automated
toolchain and runtime support to create and execute re-
configurable systems without additional user intervention
transparently. Moreover, it allows adapting resources to
tune the trade-off among computing performance, energy
consumption, and fault tolerance.

However, predictable mechanisms and algorithms are
mandatory when considering real-time applications to al-
low the definition of safe and tight bound. Lübbers and
Platzner [17] presented ReconOS, an operating system
that extends the traditional multi-threading programming
model to HW-tasks running on a reconfigurable FPGA.
The initial version addressed fully reconfigurable FPGAs
and was later extended to include support for partial recon-
figuration [18]. Interactions among threads are managed
by common POSIX-like abstractions (e.g., semaphores,
shared memory). R3TOS is an operating system proposed
by Iturbe et al. [19] supporting the dynamic allocation of
HW-tasks on an FPGA without the need for a preconfig-
ured partitioning and static interconnections. The authors
introduce a module, called HWuK, responsible for schedul-
ing HW-tasks, performing their allocation, and managing
the reconfiguration. A drawback of R3TOS is its intrin-
sic dependency on the reconfiguration interface (already a
bottleneck for reconfiguration activities), which is further
loaded for data communications. Pagani et al. [20] pro-
posed a prototype implementation of the FRED framework
over the FreeRTOS [21] kernel to show the applicability of
the approach.

The Linux community has also shown interest in lever-
aging FPGA fabric. Brodersen proposed BORPH [22],
which extends the Linux kernel to allow co-scheduling of
SW-tasks and HW-tasks. However, the project is discon-
tinued and does not consider modern platforms. More
recently, the Linux community developed the FPGA Man-
ager, a subsystem that allows reprogramming FPGAs in
a vendor-agnostic fashion [23]. While the FPGA Manager
is a major improvement over the previous vendor-specific
interfaces, its responsibilities are understandably limited to
low-level FPGA management. Hence, it does not include
a scheduling infrastructure nor a standard interface for
FPGA modules.

This paper presents a novel implementation of the
FRED framework for leveraging FPGA acceleration, ad-

dressing some limitations present in previous work. The
proposed solution has been designed to efficiently use the
available resources by including zero-copy data transfer
mechanisms, support for asynchronous acceleration re-
quests, and support for watchdog timers for stall detection.
Furthermore, it does not impose any specific paradigm for
the HW-task design (e.g., stream processing, data flow)
and it is easily extendable to different platforms (currently
supports the Zynq-7000 and the Zynq UltraScale+ by Xil-
inx). The proposed implementation is integrated with the
standard Linux FPGA manager to enhance its usability in
real-world systems.

3. Background: the FRED framework

This section briefly reviews the FRED framework pro-
posed in [1], on which this work is based. FRED is a
framework designed for supporting predictable hardware
acceleration of real-time applications using DPR. It allows
hosting in time-sharing a larger number of hardware accel-
erators with respect to the number of accelerators that can
be statically allocated on the physical fabric. The FRED
framework is based on a general platform model conceived
to account for several real-world technological constraints
present on modern SoC-FPGA platforms.

3.1. Platform model
FRED considers heterogeneous computing platforms

consisting of one or more general-purpose processors cou-
pled with a dynamically-reconfigurable FPGA. Both sides
of the platforms, the general-purpose processors and the
FPGA, have access to a shared memoryM, as illustrated
in Figure 1. The FPGA fabric contains b logic blocks,
which represents an abstraction of the specific physical
cells available on the fabric. The FPGA fabric is statically
partitioned into a set of nP partitions P = {P1, ..., PnP

},
where each partition Pk is composed of bk logic blocks,
with

∑nP

k=1 bk ≤ b. Logic blocks are not shared among
partitions. Each partition Pk is further split into nSk slots
of bSk logic blocks, such that ∀Pk ∈ P, nSk · bSk ≤ bk. Logic
blocks are not shared among the slots.

The FRED naming convention gets its inspiration from
the terminology used in the real-time community for parti-
tioned scheduling. Unfortunately, this established naming
convention conflicts with Xilinx’s terminology. For this
reason, please remember that FRED’s slots correspond to
reconfigurable partitions (floorplanned using Pblocks) in
Xilinx terminology. In contrast, FRED’s partitions are just
logical containers (i.e., groups) of slots.

Partitions have been introduced since HW-tasks tend
to have heterogeneous resource requirements depending
on the specific function implemented. However, due to
technological constraints, when a HW-task is implemented
in a slot (Pblock), it occupies the entire area, regardless of
the number of resources actually being used. Nevertheless,
a FRED design may use several HW-tasks with similar

3

resource requirements. Hence, it is convenient to define the
concept of partition as a group of slots having the same size
to improve resource utilization. Furthermore, a partition
can include multiple slots as the designer may want to run
multiple HW-tasks parallel.

The geometrical placement of the slots belonging to
the nP partitions within the physical FPGA fabric, i.e.,
the problem of floorplanning, is beyond the scope of this
paper. Interesting solutions were proposed for addressing
this problem. For instance, Seyoum et al. proposed an
automated floorplanner based on optimization via Mixed-
Integer Linear Programming (MILP) [24].

�1

�2

���

…

FPGA CPUs

Core

Core

Core

…

��

Figure 1: FRED platform model.

3.2. Application model
FRED considers two kinds of computational activi-

ties: (i) software tasks (SW-tasks), and (ii) hardware tasks
(HW-tasks). SW-tasks are conventional software activities
running on one of the general-purpose processors, while
HW-tasks are instances of hardware accelerators designed
to be configured and executed on the FPGA fabric. SW-
tasks can speedup parts of their computation by requesting
the execution of HW-tasks on the FPGA fabric. More
formally, a FRED application is composed of two sets of
activities; (i) a set of nS SW-tasks ΓS = {τ1, ..., τnS

}, and
(ii) a set of nH HW-tasks ΓH = {τH1 , ..., τHnH

}.
Communication between SW-tasks and HW-tasks is

supported by allowing HW-tasks to directly access the
shared memory M. The problem of modeling memory
contention between SW-tasks and HW-tasks is beyond the
scope of this paper (the interested reader can refer to [25,
26]). However, for the scope of this work, the WCET of
the HW-tasks can be empirically determined by executing
all HW-tasks concurrently using a dedicated test bench to
simulate the maximum contention scenario. Furthermore, it
is worth noting that the contention depends entirely on the
hardware platforms since HW-tasks are implemented using
dedicated logic resources and typically produce regular
transaction patterns that can be well characterized both
in logic simulation and execution. Please refer to the
work of Restuccia et al. for further details about memory
contention for FPGA accelerators [27].

3.3. Hardware task and reconfiguration interface model
Each HW-task τHi ∈ ΓH is an instance of a hardware

accelerator requiring bHi logic blocks and having a worst-
case execution time (WCET) CHi . A HW-task can execute

only after being configured on one of the slots available on
the FPGA fabric. Once started, the execution of HW-tasks
cannot be preeempted.

FRED assumes that the heterogeneous platform is
equipped with an FPGA reconfiguration interface (FRI),
which can dynamically reconfigure a slot at run-time to
deploy HW-tasks. Each slot can accommodate at most one
HW-task [28, 29]. The FRI has been modeled to match the
capabilities and limitations of real-world platforms (such
as [30, 28]). Hence, it is assumed that:

1. the FRI can reconfigure a slot without affecting the
execution of the HW-tasks currently running in other
slots;

2. a negligible amount of processor cycles are used for
reconfiguring a slot, i.e., the FRI is fed by a paired
direct memory access (DMA) engine. Hence, the
processor does not busy wait until reconfiguration
completes;

3. the FRI can reconfigure at most one slot at a time.

To reconfigure a given HW-task τHi into a slot, the FRI
has to program all its logic blocks, independently of the
number bHi of logic blocks required by τHi . Each HW-task
τHi can be reconfigured in any of the slots belonging to
a single partition. The partition hosting a HW-task τHi
is denoted as P (τHi) and referred to as affinity. For all
HW-tasks with affinity P (τHi) = Pk, it must be bHi ≤ bSk .

The FRI is characterized by a throughput ρ, meaning
that rSk = bSk /ρ units of time are needed to reconfigure a
slot of a given partition Pk. Hence, the time ra needed
to reconfigure a HW-task τHa such that P (τHa) = Pk is
ra = rSk .

3.4. Software task model
Each SW-task τi ∈ ΓS can make use of the HW-tasks in

ΓH to accelerate its computations and is subject to timing
constraints. Each SW-task τi uses a set H(τi) ⊆ ΓH of mi

HW-tasks and alternates the execution of mi + 1 software
sub-tasks with the execution of the mi HW-tasks in H(τi);
thus, the execution of a SW-task τi can be represented as
a sequence

τi := 〈τi,1, τHa , τi,2, τHb , . . . , τi,mi+1〉,

where {τHa , τHb , . . .} ∈ H(τi) and τi,j is the j-th sub-task
of τi. Two acceleration schemes are supported, namely
synchronous and asynchronous. Under synchronous ac-
celeration, whenever the execution of a HW-task τHa is
requested, the corresponding SW-task self-suspends until
the completion of τHa . The beginning of the self-suspension
phase coincides with the termination of the sub-task that
issued a request for a HW-task. In a dual manner, the
completion of a HW-task coincides with the release of the
next sub-task. Conversely, when asynchronous acceleration
is used, the execution a SW-task can continue after issuing
the execution of a HW-task. A synchronization method is

4

1 sw_task(τi)
2 {
3 <...>
4 <prepare input data for τH

a >
5 fred_accel(τH

a);
6 <retrieve output data from τH

a >
7 <...>
8 <prepare input data for τH

b >
9 fred_accel(τH

b);
10 <retrieve output data from τH

b >
11 <...>
12 }

Listing 1: Pseudo-code of the implementation skeleton of a SW-task.

then later invoked to wait for the completion of the execu-
tion of the HW-task, possibly self-suspending the calling
SW-task as under synchronous acceleration if the HW-task
is not yet completed. At most, one acceleration request at a
time can be pending for each SW-task in both synchronous
and asynchronous acceleration schemes. Please note that
while a single SW-task can have at most one acceleration
request can be pending at a time, multiple SW-tasks can
concurrently issue multiple acceleration requests.

Each SW-task τi has a cumulative WCET Ci and is
periodically (or sporadically) released with a period (or
minimum inter-arrival time)of Ti units of time, hence gen-
erating an infinite sequence of execution instances (denoted
as jobs). Finally each SW-task τi is subject to timing con-
straints; that is, each of its jobs must complete its execution
within a deadline Di relative to its activation time.

Each HW-task can be used by at most one SW-task,
that is

⋂
τi∈ΓS H(τi) = ∅. Listing 1 reports a pseudo-

code that is representative of the body of a SW-task τi
using mi = 2 HW-tasks in the set H(τi) = {τHa , τHb } with
synchronous acceleration. The statement <...> represents
some code block containing a sequence of instructions that
will be executed on the general-purpose processor.

The SW-task illustrated in Listing 1 is described by
the sequence 〈τi,1, τHa , τi,2, τHb , τi,3〉: the first sub-task τi,1
consists of lines 3-5, the second sub-task τi,2 of lines 6-9 and
the third sub-task τi,3 of lines 10-11. fred_accel(τHj) is
a blocking system call, which is in charge of (i) requesting
the execution of τHj and (ii) suspending the execution of τi
until the completion of τHj . Note that at line 4 τi,1 prepares
the input data for τHa . Similarly, τi,2 retrieves the output
data produced by τHa at line 6 and prepares the input data
for τHb at line 8. A sample schedule of a SW-task that uses
two HW-tasks is illustrated in Figure 2.

3.5. Scheduling Infrastructure
The FRED framework comes with a scheduling mecha-

nism to handle the contention of the FRI and the FPGA
slots. The scheduling mechanism is based on a multi-level
queueing structure as illustrated in Figure 3, which includes
(i) np partition queues (one for each partition), needed to
schedule the requests for HW-tasks with affinity to the

Figure 2: Sample schedule of a SW-task using two HW-tasks. The
up-arrow denote the release of the SW-task τi.

same partition, and (ii) a FRI queue to schedule the re-
configuration requests. The partition queues are ordered
according to the first-in-first-out (FIFO) policy. Each time
a SW-task issues an execution request R for a HW-task, R
is assigned a ticket marked with the current absolute time.
Then, R is inserted into its corresponding partition queue
(depending on the affinity of the HW-task). The partition
queues enqueue a request as long as there are no free slots
into the corresponding partition. The FRI queue is fed by
the partition queues and is ordered by increasing ticket time.
This mechanism guarantees that acceleration requests are
served with predictable worst-case delays, which have also
been analytically bounded by response-time analysis [1].

Figure 3: Multi-level queuing structure for scheduling HW-tasks. The
FPGA area is divided into two partitions P0 and P1.

3.6. Response-time analysis
For the sake of completeness, the response-time analysis

for the FRED framework (from [1]) is reported next. Non-
preemptive management of the FRI, as used by Fred-Linux,
is considered.

Theorem 1 (from [1]). Consider an arbitrary HW-task
request Ra for τHa issued by a SW-task τi. Let Pk = P (τHa)
be the affinity of τHa . Under non-preemptive management
of the FRI, the maximum delay ∆a incurred by Ra is upper-
bounded by

∆NP
a = ∆P

a +NHmax
k × rmaxk (1)

where
∆P
a =

∑
τj,τi

max
τH

b
∈H(τj)

{
∆slot
b + rb

}
, (2)

∆slot
b =

{
CH

b

nS
k

if P (τHb) = Pk

0 otherwise,

NHmax
k =

∣∣{τHb ∈ ΓH : P (τHb) = Pk}
∣∣, and

rmaxk = maxτH
b
∈ΓH{rb : P (τHb) , Pk}.

5

Please refer to [1] for a precise formalization of the
scheduling rules and a complete description of the response-
time analysis.

4. Platform support

This section describes a system design for supporting
the FRED framework on top of Xilinx’s SoC-FPGAs plat-
forms, such as Zynq-7000 and Zynq UltraScale+, which
have been chosen as the reference platforms for FRED due
to their popularity. Depending on the specific generation,
they include a cluster of ARM Cortex-A v7 or v8 processors
tightly coupled with a reconfigurable FPGA fabric. The
internal structure of Xilinx SoC-FPGAs is divided into
two main functional blocks: (i) the processing system (PS)
block and, (ii) the programmable logic (PL) block [31]. The
PS block includes the cluster of Cortex-A processors, a
set of memory controllers for driving external memories, a
small amount of on-chip RAM, and various I/O peripherals.
On recent platforms, such as the Zynq UltraScale+, the
PS also includes a cluster of Cortex-R processors and two
MicroBlaze-based processing units named platform man-
agement unit (PMU) and configuration security unit (CSU).
The PMU is in charge of platform and power management,
while the CSU monitors system integrity and safety. The
PL block includes a reconfigurable FPGA fabric consisting
of a bidimensional array of programmable logic resources.
The specific quantity and type of logic resources depend
on the specific generation and SoC model. The units in-
cluded in the PS side, i.e., ARM cores, memory controllers,
and peripherals, are interconnected through AMBA AXI
memory-mapped interfaces. The AMBA AXI standard
allows simultaneous, bi-directional data exchange between
master and slave interfaces. The master interface initiates
the transactions, and the slave interface responds to the
requests. Multiple interfaces can be connected together
through an interconnect block. The interconnect arbitrates
the transactions and performs protocol and data-width
conversions. The same AXI infrastructure is exported to
the PL though a set of memory-mapped AXI interfaces
exported. These AXI interfaces can be used to extend the
system by connecting additional logic modules deployed on
the PL.

4.1. System support design
The FRED support design provides the foundations for

the software support, enabling the interleaving of dynamically-
reconfigured HW-tasks on the PL fabric. Figure 4 provides
a schematic representation of the design. The PL area is
partitioned into two main regions: (i) a static region, and
(ii) a reconfigurable region for hosting hardware accelerators.
The static region contains the AXI interconnection infras-
tructure, namely a set of AXI Interconnects (discussed in
Section 4.1.4), and may host other support modules in an
application-dependent fashion. The reconfigurable region is
sub-partitioned into a set of slots that are logically grouped

into partitions as detailed in Section 3. As discussed in [1],
a slotted approach is more suitable for real-time systems
since no allocation and defragmentation overhead is in-
troduced. Moreover, Xilinx tools natively support static
partitioning (using Pblocks [28]), which allows constraining
the implementation of a logic module to a geometrical re-
gion of the FPGA. Therefore, a FRED design flow can be
implemented using commercial design tools without relying
on third-party experimental solutions, which would instead
be required for a slotless approach.

AXI S AXI S

PS AXI HP slave ports

PL to Memory
Interconnect

PS AXI GP master ports

PS Interconnects

DRAM Controller

AXI
Interconnect Concat

APU
(ARM Cores)

AXI
Interconnects

AXI
Interconnects

AXI
Interconnects

PR decoupler PR decoupler

Slot NSlot 0

PS

PL

Hardware
Accelerator 0

AXI MAXI S INT

Hardware
Accelerator N

AXI MAXI S INT

Regs Regs

Figure 4: Fred-Linux support design for Xilinx platforms.

According to shared-memory communication paradigm
of FRED discussed in Section 3, each HW-task must be
able to autonomously access memory regions that are also
available to the processors. Xilinx’s SoC-FPGAs provide
three alternatives for implementing such memory regions:
(i) using the internal on-chip memory; (ii) using PL re-
sources to build custom memories on the PL (using BRAM
logic blocks); or (iii) using the main (off-chip) DRAM mem-
ory. Alternative (i) is not viable since the on-chip memory
is limited to 256 KB on both Zynq UltraScale+ and Zynq-
7000 [31, 32], and hence may be unsuitable for supporting
shared-memory communication for systems with multiple
HW-tasks. Alternative (ii) may determine a loss of avail-
able FPGA resources since implementing large memory
buffers on PL consumes a significant amount of BRAM
logic blocks. Conversely, alternative (iii) allows taking ad-
vantage of the high-performance AXI ports (HP ports) that
grant direct access to the DRAM controller from the PL.
Fred-Linux follows the latter approach, implementing the
shared-memory communication paradigm using the off-chip
DRAM memory.

In FRED, each HW-task has affinity to a partition and
can be configured and executed in any slot belonging to
that partition. This requirement implies that each slot
must be able to host any HW-tasks associated with his
partition. Given the technological constraints of Xilinx’s
SoC-FPGA platforms [28], this requirement can be fulfilled

6

by defining a common interface that must implement by
each HW-task deployed on the system, which is presented
next.

4.1.1. Common interface
The proposed common interface for HW-tasks consists

of (i) at least one AXI master interface, (ii) an AXI-Lite
slave interface exporting a predefined set of control registers
and eight data registers, and (iii) an interrupt signal to send
notifications. The AXI master interfaces (denoted as AXI
M in Figure 4) allow HW-tasks to access the main memory
through the PS DRAM controller, hence implementing the
shared-memory paradigm. In this way, HW-tasks can au-
tonomously retrieve the data they need to process without
the need for intervention by the processors. It is worth
noting that bus mastering is also crucial for supporting
high-performance hardware accelerators that need to pro-
cess large amounts of data.

The AXI-Lite slave interface (denoted as AXI S in Fig-
ure 4) allows mapping the control and data register of
HW-tasks into the address space seen by the processors so
that they can be controlled by Fred-Linux. All HW-tasks
must implement the same set of control and data regis-
ters map to allow the usage of a common software driver.
The eight data registers are used to exchange memory
pointers whose meaning depends on the specific function
implemented by the HW-task. Finally, the interrupt signal
(denoted as INT in Figure 4) is meant to be connected to
the interrupt controller for notifying the completion of the
HW-task to the processors.

Fred-Linux has been designed with high-level synthe-
sis support in mind to simplify the implementation of
computationally-intensive functions as FPGA-based hard-
ware accelerators using the popular Vivado HLS tool. The
system designer can generate Fred-Linux-compliant HW-
tasks by wrapping the C or C++ code of the functions to
be accelerated into the common top-level wrapper reported
in Listing 2. Vivado HLS will automatically generate the
standard interface logic thanks to its interface synthesis ca-
pabilities. In addition to HLS, it is also possible to develop
HW-tasks directly using hardware description languages
such as VHDL or Verilog for achieving higher performance.
In this case, a VHDL stub is provided by Fred-Linux, while
the Xilinx Vivado suite already provides HDL code stubs
for implementing the AXI master and AXI-Lite slave inter-
faces.

4.1.2. Dynamic partial reconfiguration support
In Xilinx’s SoC-FPGAs, the software running on the

PS can fully or partially reconfigure the PL fabric using the
processor configuration access port (PCAP). The PCAP is
fed by a DMA engine that can be programmed to transfer
a bitstream from the system memory to the PL configura-
tion memory. On recent Zynq UltraScale+ platforms, the
configuration DMA is included in the CSU unit, while on
the Zynq-7000 series, it is included in the device config-
uration interface (DevC) subsystem. Compared to other

Listing 2: Vivado HLS code for implementing HW-tasks.

1 void slot_i(args_t *id, args_t args[ARGS_SIZE], volatile
data_t *mem_in, volatile data_t *mem_out)

2 {
3 // AXI Lite control bus
4 #pragma HLS INTERFACE s_axilite port=return bundle=

ctrl_bus
5 #pragma HLS INTERFACE s_axilite port=id bundle=ctrl_bus
6 #pragma HLS INTERFACE s_axilite port=args bundle=ctrl_bus
7

8 // AXI Master memory ports
9 #pragma HLS INTERFACE m_axi port=mem_in offset=slave

bundle=mem_bus
10 #pragma HLS INTERFACE s_axilite port=mem_in bundle=

ctrl_bus
11 #pragma HLS INTERFACE m_axi port=mem_out offset=slave

bundle=mem_bus
12 #pragma HLS INTERFACE s_axilite port=mem_out bundle=

ctrl_bus
13

14 fred_hwacc_body(id, args, mem_in, mem_out);
15 }

configuration paths, such as the internal processor configu-
ration access port (ICAP), the PCAP is driven by control
logic included on the PS side of the device. Hence, it does
not consume additional PL fabric resources to be instan-
tiated. The Xilinx’s standard toolchain does not support
bitstreams relocation [28], i.e., the same bitstream cannot
be used to program the same HW-tasks in different slots.
This limitation can be overcome by synthesizing a differ-
ent bitstream for each slot of the partition to which the
corresponding HW-task belongs. More formally, for each
HW-task τHi ∈ ΓH , belonging to partition Pk, there are
nSk bitstreams, one for each slot. This approach trades
a higher memory consumption with the advantage of not
requiring third-party bitstreams relocation tools, which the
vendors do not guarantee. However, we believe that this
does not constitute a limitation since partial bitstreams
images are typically in the order of a few megabytes.

4.1.3. Slot decouplers
During the FPGA reconfiguration process, the behavior

of the area under reconfiguration is undefined since its
logic resources may be in an inconsistent state. In partic-
ular, logic resources may produce transient signals while
being programmed. These signals can cause troublesome
spurious transactions in other modules, such as the AXI
interconnects or the system interrupt controller. To protect
the system for these events, each reconfigurable slot is pro-
tected by a partial reconfiguration decoupler (denoted as
PR decoupler in Figure 4), a Xilinx’s library IP that binds
the wires of the slot interface to safe logic values during
the reconfiguration process [28]. Fred-Linux controls each
decoupler through a single control register mapped into the
system address space through an AXI-Lite slave interface.

7

4.1.4. Interconnections
In the FRED platform model, all HW-tasks employ

bus mastering techniques to access the system memory
and share data with SW-tasks running on the ARM cores.
Hence, bus and memory access represent a crucial con-
tention point. The problem of controlling bus and memory
contention in a predictable fashion is beyond the scope of
this paper — the research community proposed different
techniques for improving memory and bus predictability,
which can be integrated into the FRED system support
system design (the interested reader can refer to [33, 34, 35].

Within the scope of Fred-Linux, the interconnection
infrastructure of the support design has been designed to
evenly distribute the bandwidth supplied by the HP ports
to all HW-tasks. If the number of HP ports available to the
PL are enough to connect the master interface of each slot
to a dedicated port, then this scheme is followed. Otherwise,
the master interfaces of the slots are connected to a slot-
level N-to-1 interconnect block [36, 37] to obtain a single
AXI master interface, which in turn can be connected to one
of the available HP ports through a port-level interconnect.
It is worth noting that the support design only depends
on the total number of slots and not on the number of
HW-tasks.

4.2. Floorplanning
As mentioned in Section 3.1, the problem of floorplan-

ning (i.e., the geometrical placement of the slots on the
FPGA fabric) is beyond the scope of this paper. However,
it is worth mentioning that simple designs, containing few
slots, can be floorplanned manually by the system designer.
Larger designs can be automatically floorplanned using
FLORA [24], an automated floorplanner based on opti-
mization via Mixed-Integer Linear Programming (MILP).
Moreover, the entire development flow of a Fred-Linux ap-
plication can be automatized (including the generation of
the static part) using DART [38]. These tools enrich the
ecosystem around the runtime support presented in this
paper.

5. Linux support

This section describes the architecture of the Fred-Linux
software support, which is built on top of the hardware
design presented in previous section. The software sup-
port has been designed in a modular fashion, relying as
much as possible on user-space components for improving
maintainability, portability, and extendability. Its internal
architecture is shown in Figure 5. The central component of
the software support is a user-space server process, named
fred-server, which is in charge of managing acceleration
requests from SW-tasks.

Periodic SW-tasks can be implemented as regular Linux
processes or threads using the POSIX-compliant SW-task
body presented in Listing 3. The SW-task body repeatedly

(i) performs computations by invoking one or more HW-
tasks and (ii) makes use of POSIX’s clock_nanosleep()
function for suspending and waiting for the next activation.
Since Linux makes use of virtual memory, each SW-task
process can access only its own private virtualized address
space. On the other hand, HW-tasks are custom hardware
components directly accessing the physical address space
where the DRAM memory is mapped through the AXI
bus. Implementing the shared-memory paradigm of FRED
(described in Section 3) requires the development of an effi-
cient mechanism to share data between the virtual and the
physical memory domains. Recent SoC-FPGA platforms
like the Zynq UltraScale+ include an IOMMU that allows
AXI masters deployed in the PL to have a virtualized view
of the system memory. However, older platforms like the
Zynq-7000 do not include an IOMMU. Hence, HW-tasks
are limited to a physical view of the system memory. To
provide a uniform yet efficient implementation of the com-
munication mechanism, Fred-Linux relies on a zero-copy
design, using coherent memory buffers as communication
channels between SW-tasks and HW-tasks. Zero-copy data
movement is achieved using Linux’s memory management
which implements paged virtual memory. This memory
management technique allows mapping the memory pages
that constitute the shared memory buffers into the virtual
address space of a process by configuring its page table.
This operation is performed, during the system initializa-
tion stage, using the Linux’s dma_common_mmap() function.
In this way, a SW-task and a HW-task can share the same
memory buffer without any additional overhead.

Listing 3: Pseudo-code stub for a SW-task.

1 void sw_task_stub(void *args)
2 {
3 struct timespec ts;
4 int period_ms = <task_period>;
5

6 /* Get current time */
7 clock_gettime(CLOCK_MONOTONIC, &ts);
8 /* Set next activation */
9 time_add_ms(&ts, period_ms);

10

11 while (true) {
12 /* SW-task body: */
13 { <First software chunk> }
14 { <Call HW-task> }
15 { <Second software chunk> }
16 { <Call HW-task> }
17 { <Third software chunk> }
18

19 /* Sleep until next activation */
20 clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &ts,

NULL);
21 /* Set next activation */
22 time_add_ms(&ts, period_ms);
23 }
24 }

8

5.1. Kernel-space components
Fred-server leverages a custom kernel-level support for

performing the low-level operations required to control
the hardware components of the system support design.
It consists of (i) a custom kernel module for allocating
the memory buffers employed to share data between SW-
and HW-tasks, and (ii) a semi-custom low-level FPGA
driver for managing device reconfiguration with the FPGA
manager framework. The latter is device-specific: Fred-
Linux comes with two different versions for the Zynq-7000
device and the more modern Zynq UltraScale+ platforms.
These components are discussed next in details. Fred-server
also relies on the UIO framework for managing HW-tasks,
i.e., accessing control and data registers, and observing the
interrupt lines.

5.1.1. Buffers allocator module
The shared-memory infrastructure described in Sec-

tion 3 has been implemented through a set of memory
buffers allocated by a custom kernel allocator module.
The allocator module uses the Linux DMA layer to al-
locate physically-contiguous, uncached memory buffers to
exchange data between SW-tasks and HW-tasks. When
loaded, the allocator module creates a new character de-
vice named fred_buffctl, which is used by fred-server
during the initialization phase for requesting the allocation
of memory buffers. Each allocation request is performed
using the ioctl syscall, passing the required buffer size as
an argument. On the kernel side, when the driver receives
an allocation request, it creates a new character device
named fred_buffN (where N refers to the buffer identifier
that is assigned by the module) and allocates a new con-
tiguous memory buffer, associated with the device, using
the dma_alloc_coherent() function of the Linux DMA
layer. The character device is the means by which the
buffer is accessible from user-space.

Once the buffer device has been created, it can be ac-
cessed by a SW-task through memory mapping using the
Linux mmap() syscall. When a SW-task calls (from user-
space) the mmap() on a buffer character device, the associ-
ated memory buffer will be mapped into its virtual address
space. Inside the allocator module (on the kernel side), the
mapping is performed using the dma_common_mmap() func-
tion of the Linux DMA layer. Once the buffer is mapped
into the SW-task’s virtual address space, it can be accessed
by the SW-task to read and write data without any sys-
tem overhead. Since the buffer is uncached, no flush and
invalidate operations are required on the cache. On the
other side, a HW-task can access the same buffer through a
physical memory address. The buffers’ physical addresses
are passed to the HW-tasks by fred-server using the set of
data registers of their interface (see Section 4.1.1). In this
way, SW-tasks and HW-tasks can efficiently share data
without any additional copy operation or operating system
overhead. It is worth observing that, with this design, the
SW-tasks never deal directly with memory management

operations. From the programmer’s perspective, the pro-
cess of mapping these buffers, likewise all other interactions
with fred-server, is assisted by the client support library
described in Section 6. During the system shutdown phase,
fred-server releases the buffer devices created during the
initialization phase using the ioctl syscall again on the
fred_buffctl control device.

5.1.2. FPGA driver
The FPGA Manager is a component of the Linux’s

FPGA subsystem that allows reprogramming FPGAs un-
der Linux in a vendor-agnostic fashion [23]. The FPGA
Manager has multilayered architecture consisting of an
upper layer and a lower layer. The upper layer presents
to the programmer a vendor-agnostic API that hides all
the platform-specific details. Conversely, the lower layer
consists of an FPGA driver, which provides a concrete im-
plementation of the operations invoked by the upper layer
for reconfiguring the FPGA. The FPGA driver is in charge
of low-level operations such as modifying the bitstream and
programming the configuration DMA, which are necessary
for reconfiguring the FPGA. Since these operations are
inherently platform-dependent, Xilinx provides a specific
FPGA driver for the Zynq-7000 and another for the Zynq
UltraScale+.

The high-level interface exported by the FPGA Man-
ager includes a set of operations for loading a bitstream
using Linux’s firmware layer or using the In-kernel API.
However, the high-level interface lacks support for I/O mul-
tiplexing, i.e., polling over a set of file descriptors using the
select(), poll(), or the Linux-specific epoll() system
call. Such a capability is required by fred-server being an
event-driven application that leverages I/O multiplexing
for monitoring multiple events sources. Furthermore, the
current version (2019.2) of the Zynq UltraScale+ FPGA
driver does not support direct bitstream copy from a con-
tiguous buffer. Instead, for each reconfiguration request,
the driver internally allocates a contiguous uncached mem-
ory buffer using the dma_alloc_coherent() function of
the Linux DMA layer. Once the buffer has been allocated,
the driver copies the bitstream image to the buffer and
then calls the fpga_load method of the embedded energy
management interface (EEMI) to begin the reconfiguration
process. Then, the request is handled by the ARM trusted
firmware (ATF) and dispatched to the PMU through an
inter-processor interrupt (IPI). The PMU handles the re-
quest and configures the CSU’s DMA using the xilfpga
software library [39].

The overhead introduced by the copy operation in the
current release of the Zynq UltraScale+ FPGA driver and
the lack of support for I/O multiplexing by the FPGA
Manager make these components unsuitable for the inten-
sive usage of partial reconfiguration as required by FRED.
To overcome these limitations, the low-level Zynq Ultra-
Scale+ FPGA driver has been extended for supporting
both I/O multiplexing and the direct load of contiguous
bitstream images. These new functionalities are exported

9

to the user through a set of four sysfs attributes. The first
two attributes are used for passing a reference to a contigu-
ous bitstream image to the driver. The third attribute is
used for starting the reconfiguration. Once the reconfig-
uration is started, the fourth attribute can be monitored
through POSIX standard I/O multiplexing methods, such
as select() and poll() or the Linux-specific epoll(),
to receive a notification when the reconfiguration is com-
pleted. Please note that the aforementioned extended
FPGA driver is still compatible with the FPGA manager
framework. Hence, the FPGA can still be reconfigured us-
ing the regular high-level interface exported by the FPGA
Manager upper layer.

5.2. User-space components
Fred-server is the central user-space component of Fred-

Linux. From an architectural perspective, fred-server is
an event-driven application that handles service requests
coming from multiple event sources like SW-tasks issuing
acceleration requests, HW-tasks notifying their comple-
tion, and other hardware events like the completion of
the FPGA reconfiguration process. From a functional per-
spective, fred-server interacts with the rest of the system
by means of two main software interfaces, one dedicated
to inter-process communications with SW-tasks and the
other to communicate with Linux and the kernel support,
as illustrated in Figure 5. The communication interface
between fred-server and SW-tasks is implemented using
UNIX domain sockets. In this way, SW-tasks are entirely
decoupled from fred-server.

During the initialization phase, fred-server reads a set
of files describing the system layout and the available HW-
tasks. Then, according to such a system description, it
initializes the support, using the allocator kernel module
to instantiate the memory buffers used for both bitstreams
and data sharing. After the initialization phase, the server
opens a listening socket used by SW-tasks to establish a
new connection. Once the connection is established, the
SW-task can send requests to the server.

From a client programmer perspective, communication
functions between SW-tasks and fred-server are encapsu-
lated into a client support library (see Sec. 6) to ease the
development process. It is worth noticing that SW-tasks
never directly interact with the hardware, nor they are
required to perform privileged operations. Indeed, fred-
server mediates any interaction between client SW-tasks
and the platform hardware.

5.2.1. Fred-server internals
Fred-server is written in standard C99 using POSIX and

Linux APIs. Compared to the previous version from [2],
the fred-server has been redesigned in a modular fashion
according to the reactor design pattern. The reactor pat-
tern is an event handling pattern used for implementing
event-driven applications capable of serializing and dis-
patching service requests concurrently issued from multiple

event sources [40, 41]. In particular, the reactor pattern
decouples the responsibility of receiving and demultiplex-
ing events from the responsibility of actually handling
events. This characteristic is particularly useful within
FRED, since multiple software and hardware event sources
like SW-tasks, HW-tasks, FPGA reconfiguration interface,
etc. need to be handled in different ways. In this con-
text, the reactor pattern allows implementing each event
handler with a different class derived from a common ab-
stract base class. This approach conforms to the single
responsibility principle [42] since each handler class needs
to change only if the handling logic of the corresponding
event needs to change. Moreover, it also respects the open-
close design principle [42] since new classes of events (e.g.,
handling IPC signals) can be managed by implementing a
new handling class without the need of modifying existing
handler classes. Please note that, although C99 does not
provide native language support for object-oriented pro-
gramming, there are established techniques for supporting
the object-oriented programming paradigm in C99 [43, 44].
The internal architecture of the fred-server is illustrated
in Figure 6, highlighting the most relevant interactions
between its key internal components. In more detail, the
fred-server is composed of the following components:

• The Event_Handler is the abstract base class defin-
ing the interface of an event handler object. It must
be inherited by all concrete event handlers classes,
which have the responsibility of serving a specific type
of event. All event handler instances contain a handle
component, which is tied, during the initialization of
each instance, to an operating system object (i.e., a
file description) identifying the actual event source.

• The Reactor abstract base class defines the interface
for registering handlers and for running the event
loop. Concrete implementations must provide meth-
ods for (i) registering new event handlers and (ii)
implementing the event loop logic for cyclically wait-
ing over the handles provided by the set of registered
events handlers. When an event occurs (i.e., a han-
dle becomes ready), the event loop serves the event
by calling the event handling logic contained in the
event handler object that owns the handle. Reactors
rely on synchronous event demultiplexers provided
by the operating system (e.g., poll, select, etc.) for
waiting on the set of registered handles. Currently,
Fred-Linux provides two concrete implementations
of the reactor that must be used in a mutually ex-
clusive way depending on the specific needs. The
first implementation is based on the poll function of
the POSIX standard. The second implementation is
based on the more recent epoll mechanism provided
by Linux. The main advantage of the epoll function
is that its time complexity is constant (i.e., O(1))
with respect to the number of monitored handles.
On the contrary, the time complexity of the classic

10

fred-server

/dev/uioN/dev/fred/buffN

FPGA manager
driver Buffers allocator module UIO (Linux internal)

/dev/fred/buffN/dev/fred/buffN /dev/fred/buffctl /dev/uioNUIOsysfs

Reactor
IPC

Accelerated
processes
(tasks)

Accelerated
processes
(tasks)

SW-tasks

User

kernel

Low-level components

SchedulerEvent
handlers

Listen

Figure 5: Overview of the fred-server.

poll function is linear with the number of handles.
However, given the limited number of event sources
present in a typical Fred-Linux design, and consid-
ering the limited amount of overhead introduced by
the whole event handling logic, the performance gap
between the two implementations is very marginal in
practical cases.

• The Software_Task_Listener module is a concrete
event handler that is in charge of registering SW-tasks
during the initialization phase. This handler contains
a listening socket handle. Whenever this handler
receives a valid initialization request from a SW-task,
it creates a new SW_Task object that handles the new
connection socket and registers it to the reactor.

• The Sw_Task_Client module is a concrete handler
representing an active SW-task and containing its
connection socket handle. Each Sw_Task_Client is
associated with a set of Hw_Tasks objects, repre-
senting the HW-tasks that the SW-task can call to
accelerate its execution. Moreover, it owns a set of
Data_Bufferer objects, which are coherent buffers
objects used to exchange data with the associated
HW-tasks.

• The Slot module is a concrete handler representing a
“physical socket” for HW-tasks, i.e., a fixed portion of
the FPGA area where a HW-task can be plugged in
by means of partial reconfiguration. When initialized,
the Slot starts in the empty state, meaning that no
HW-task is actually configured into the physical slot.
Once the Slot has been reserved to a SW-task, it
goes into the reserved state where it is ready for
reconfiguration. After reconfiguration, the Slot goes
into the ready state, meaning that the contained
HW-task is ready to execute. At the end of the
HW-task execution, the Slot goes into an idle state
waiting to be reconfigured. However, if the same
HW-task needs to be executed again and the slot has

not been used for another HW-task in the meanwhile,
the reconfiguration process is skipped to save time.
The Slot object controls HW-task configured in the
corresponding slot and the related decoupler using, in
turn, the Slot_Drv and Decoup_Drv low-level compo-
nents. These components allow decoupling the FRED
control logic from the responsibility of performing
the low-level control actions, which clearly depend
on the specific platform. In particular, the Slot_Drv
component exports the file handle owned by the Slot
object that is used by the reactor to know that the
contained HW-task completed its execution.

• The Dev_Rcfg module is a concrete handler that
represents the reconfiguration device. It relies on a
low-level component called Rcfg_Drv for controlling
the specific reconfiguration engine of the platform.
The handle exported by the Rcfg_Drv is used by the
reactor to know when a reconfiguration is completed.

• The Signal_Receiver module is an optional con-
crete handler that can be used for handling inter-
process communication signals using Linux’s signalfd
function. If this handler is registered to the reactor,
it allows receiving and handling standard signals like
SIGTERM and others.

• The Timer module is a concrete handler that imple-
ments a watchdog timer for monitoring stalls and
execution overruns of HW-tasks. Stalls and overruns
are particularly dangerous as they can significantly
jeopardize the whole system. For instance, if a HW-
task never completes its execution, the slot in which it
is configured remains unusable. When an overrun or a
stall are detected, the interested HW-task is disabled
and can no longer be requested by SW-tasks. Inter-
nally, the module includes a timer sub-component
implemented using Linux’s timerfd API.

• The Scheduler module is a central component in
charge of implementing the FRED scheduling policy

11

described in Section 3. All event handlers components
notify the scheduler when an event occurs. In turn,
the scheduler performs the required actions.

• The Sys_Layout module models the physical layout
of the system. A Fred-Linux system is composed of
a set of partitions, each of them containing a set of
slots, and a set of HW-tasks. During the initialization
process, the Sys_Layout module parses two config-
uration files that describe the system layout. The
first file specifies the layout of the FPGA in terms of
partitions and slots. The second file defines the avail-
able HW-tasks. According to the content of these
files, the Sys_Layout modules initialize the system
by instantiating all the components and registering to
the reactor (i) all hardware-related handlers such as
Dev_Rcfg all Slot, and (ii) the initial software han-
dlers such as Sw_Task_Listener and Signal_Recev.

6. Client support library API

The client support library provides a lightweight API
that can be used by programmers for developing FPGA-
accelerated applications with Fred-Linux. Both a C and a
Python version of the library are available. For simplicity,
only the former is discussed in the following. Note that,
since SW-tasks are completely decoupled from fred-server
through UNIX domain sockets, additional client APIs for
other languages can be easily developed as long as they
follow the same communication protocol with fred-server.

Listing 4 reports the functions composing the client
support library API. The fred_init function initiates the
communication with fred-server by initializing an opaque
handler of type struct fred_data that holds the state of
the connection. After the initialization phase, a SW-task
can request the association with one or more HW-tasks
using the fred_bind function. Such a function takes as
input the id of the HW-task and initializes an opaque
handler fred_hw_task, which contains a set of references to
the data buffers used to share the data between the SW-task
(i.e., the current process or thread) and the HW-task. These
buffers can be mapped into the address space of the calling
SW-task using the fred_map_buff function, which takes
as input the fred_hw_task handle of the HW-task and
the index of the buffer, returning a pointer to the mapped
buffer. The service functions fred_get_buffs_count and
fred_get_buff_size can be used to query the number and
the size of the buffers used by an HW-task, respectively.

Once the SW-task has completed its initialization phase,
binding with its associated HW-tasks and mapping the re-
spective data buffers, it can proceed with its computations.
Each computation starts with the SW-task filling the shared
buffers with the input data and proceeds by sequentially
calling one or more HW-tasks using the fred_accel func-
tion. The fred_accel is a blocking function that suspends

Listing 4: Client support library API functions.

1 struct fred_data;
2 struct fred_hw_task;
3

4 /*---*/
5

6 int fred_init(struct fred_data **self);
7

8 int fred_bind(struct fred_data *self, struct fred_hw_task
**hw_task, uint32_t hw_task_id);

9

10 int fred_accel(struct fred_data *self, const struct
fred_hw_task *hw_task);

11

12 void fred_free(struct fred_data *self);
13

14 /*---*/
15

16 int fred_async_accel(struct fred_data *self, const struct
fred_hw_task *hw_task);

17

18 int fred_async_wait_for_accel(struct fred_data *self);
19

20 /*---*/
21

22 int fred_get_buffs_count(const struct fred_data *self,
struct fred_hw_task *hw_task);

23

24 ssize_t fred_get_buff_size(const struct fred_data *self,
struct fred_hw_task *hw_task, int buff_idx);

25

26 /*---*/
27

28 void *fred_map_buff(const struct fred_data *self, struct
fred_hw_task *hw_task, int buff_idx);

29

30 void fred_unmap_buff(const struct fred_data *self, struct
fred_hw_task *hw_task, int buff_idx);

the SW-tasks until the invoked HW-task completes its exe-
cution. Alternatively, the SW-task can asynchronously call
one or more HW-tasks using the fred_async_accel func-
tion. In this way, the SW-task can proceed with its execu-
tion in parallel with the HW-task. Then, it can synchronize
with the HW-task using the fred_async_wait_for_accel
function, which suspends the calling SW-task until the
HW-task completes and the result becomes available. Af-
ter the HW-task completion, the SW-task will resume its
execution and can retrieve the data processed by the HW-
task by accessing the shared buffers as regular memory.
It is worth noting that the design of the HW-task does
not change depending on the selected acceleration mode
(synchronous or asynchronous). Finally, during the system
shutdown phase, the SW-task can unmap all the shared
buffers using the fred_unmap_buff and close the session
with fred-server by calling the fred_free function. List-
ing 5 shows the pseudo-code of a SW-task implemented
using the C API provided by the client support library. For
the sake of clarity, the SW-task only uses a single HW-task
and the code to handle errors is omitted.

12

Event_Handler

Slot Sw_Task_Client

Reactor

Sys_Layout

Poll_ReactorEpoll_Reactor

Data_Buffers

Hw_Task

Partition

epoll()

Sw_Task_Listener Dev_Rcfg Signals_Recv

epoll()

Scheduler

Decoup_Drv

Slot_Drv

Rcfg_Drv

dispatches

«use»«use»

register

register

«or»

Parser Bitstream_Buffers

Timer

Figure 6: Internal components of the fred-server.

Listing 5: Pseudo-code stub of a SW-task using the C API.

1 void sw_task(void *args)
2 {
3 struct timespec ts;
4 int period_ms = <task_period>;
5

6 struct fred_data *fred;
7 struct fred_hw_task *hw_task;
8 uint32_t hw_task_id = <hw_task_id>;
9

10 void *buff_in = NULL;
11 void *buff_out = NULL;
12

13 /* Initialize communication and bind a HW-task */
14 fred_init(&fred_data);
15 fred_bind(fred_data, &hw_task, hw_task_id);
16

17 /* Map the buffers */
18 buff_in = fred_map_buff(fred, hw_task, 0);
19 buff_out = fred_map_buff(fred, hw_task, 1);
20

21 /* Get current time */
22 clock_gettime(CLOCK_MONOTONIC, &ts);
23 /* Set next activation */
24 time_add_ms(&ts, period_ms);
25

26 while (true) {
27 /* Fill input buffer */
28 buff_in[i] = <....>
29

30 /* Call the HW-task */
31 fred_accel(fred_data, hw_task);
32

33 /* Read output data buffer */
34 <....> = buff_out[i]
35

36 /* Sleep until next activation */
37 clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &t,

NULL);
38 /* Set next activation */
39 time_add_ms(&t, period_ms);
40 }
41 }

7. Case study application

This section presents a case study application that
makes use of Fred-Linux for speeding up real-time process-
ing of live images acquired by a USB webcam and integer
matrix multiplications. The case study application has
been implemented in C++11 using Qt and V4L on top of
Xilinx Petalinux, and has been executed and tested on the
Digilent’s Zybo board, which includes a Zynq-7010 SoC
supported by 512 MB of DDR3 memory.

The application comprises four processing functions im-
plemented as both HW-tasks and functionally-equivalent
software procedures for evaluation purposes. Three pro-
cessing functions are image processing filters (FastX, gradi-
ent map, and Sobel) designed using the popular OpenCV
library. The HW-tasks filters are built with Vivado HLS us-
ing the available OpenCV subset, while the equivalent soft-
ware implementations are built using the typical OpenCV
C++ API. The filters are implemented as a stack of OpenCV
functions inspired by Xilinx’s guidelines provided in [45].
Figure 7 shows the output of the image filters using a test
image as input. Finally, the last processing function is an
integer matrix multiplier implemented in both HLS and
C++ using the naive O(n3) algorithm.

The amount of logic resources required to allocate all
HW-tasks in a static fashion (i.e., deployed altogether
on the FPGA at the same time) exceeds the amount of
resources available on the physical FPGA. Hence, using
hardware acceleration for all tasks would be unfeasible with
standard approaches. Fred-Linux allows to virtually extend
the amount of logic of resources hence making possible to
accommodate all the accelerators in timesharing.

7.1. Case study architecture
From a system perspective, the application is composed

of four SW-tasks and four HW-tasks. Each SW-task is a
cyclic thread that calls a processing function during each
job. Each HW-task implements a hardware processing func-
tion. The SW-tasks can operate in two modes: (i) software

13

Figure 7: Test image processed using filter processing functions.
Clockwise from the top: Test image, FastX filter, gradient map
(Gmap) filter, Sobel filter.

mode and (ii) hardware mode. In the software mode, the
SW-task processes the data using the software implemen-
tation of the processing function; in hardware mode, the
SW-task relies on hardware acceleration by invoking the
corresponding HW-task to perform the computation. SW-
tasks are scheduled using the SCHED_FIFO policy, which
implements static-priority scheduling on Linux. Hence,
they cannot be preempted by regular processes which are
scheduled using the default SCHED_OTHER class.

In the default configuration, the image filters are config-
ured for processing images of 640× 480 pixels with 24-bit
color depth, while the matrix multiplier performs 30 multi-
plications of 64× 64 matrices. The hardware implementa-
tions of the processing functions have been wrapped within
the Fred-Linux standard HW-task interface presented in
Listing 2 and translated into RTL implementations using
Vivado HLS 2017.4. The equivalent software versions are
compiled as regular C++ functors or functions using GCC
6.2.1.

The input data for the image filters are acquired through
a USB webcam using the V4L framework. A schematic rep-
resentation of the internal architecture of the application
is presented in Figure 8. The frame grabber thread copies
the frames acquired by the webcam into a shared buffer
implemented as a cyclic asynchronous buffer (CAB) [46].
The CAB mechanism is designed to support asynchronous
lock-free communication between cyclic activities with dif-
ferent periods. In this way, the image processing SW-tasks
can read the frames from the buffer without blocking, even
when having different periods. After reading the image
from the CAB, each SW-task processes the input frame
depending on the current processing mode. If the SW-task
is set in software processing mode, the frames are processed
using the OpenCV software procedure, and the output is
directed to a Qt image (QImage) buffer. If the SW-task is
set for hardware processing, the frames are copied from the

cyclic buffer to the input buffer of the correspondent im-
age processing HW-task. Once the copy is completed, the
HW-tasks execution request is sent to fred-server, and the
SW-task is suspended. After the completion of a HW-task,
the calling SW-task resumes its execution and retrieves
the processed frame form the HW-task’s output buffer,
which is associated with a QImage object to avoid another
additional copy. Finally, independently from the operating
mode, the resulting image is stored in a QImage buffer that
can be passed to the Qt window component to be displayed.

HW-task
Gmap

Frame
grabber
thread

CAB
shared
buffer

HW-task
FastX

HW-task
Sobel

V4L /
Linux

Qt4 /
Linux

HW-task
Mmul

Display

Mouse/Keyboard

Webcam

SW-task
FastX

SW-task
Gmap

SW-task
Mmul

SW-task
Sobel

Figure 8: Structure of the case study application.

7.1.1. Programmable logic partitioning
The Zynq PL FPGA fabric is divided into a static region

and a reconfigurable region according to the Fred-Linux
support design described in Section 4.1. The static region
contains a set of AXI Interconnects and other support
modules like a video output module. In contrast, the
reconfigurable region is organized in partitions and slots
for dynamically hosting the HW-tasks. More specifically,
the reconfigurable region is divided into two partitions,
each containing one slot. The first partition P0 contains
roughly 32% of the total logic resources (5600 LUTs), while
the second partition P1 includes 14% of the total logic
resources (2400 LUTs). The remaining resources, 9600
LUTs, corresponding to approximately 54% of the total,
are reserved for the static region.A graphical representation
of the partitioning is presented in Figure 9. The design has
been manually floorplanned using Vivado 2017.4. The total
resource distribution is slightly more uneven since special-
purpose cells like DSPs and BRAMs are not homogeneously
distributed on the fabric.

 Static

P0

P1

Figure 9: Representation of the FPGA fabric partitioning.

14

Exec. time FastX Gmap Sobel Mmul
SW avg (ms) 58.222 55.521 68.823 65.080
SW max (ms) 62.864 56.690 71.119 70.112
HW avg (ms) 4.905 4.770 4.864 23.662
HW max (ms) 5.068 4.879 4.976 23.748
Avg. speed up 11.869 11.639 14.146 2.751

Table 1: Results of speedup evaluation experiments.

The FastX and the matrix multiplier HW-tasks are
associated to the largest partition P0 as they require more
resources. The Sobel and Gmap HW-tasks are associated
to partition P1. Since both partitions are composed of a
single slot, only one bitstream is required for each HW-task.

8. Performance evaluation

This section presents the results of a set of experiments
aimed at evaluating the performance of Fred-Linux using
the case study application on a Xilinx Zynq-7000 platform.
Furthermore, this section also reports on an experimental
evaluation to investigate on the reconfiguration through-
put on the modern Xilinx Ultrascale+ platform using the
standard Linux support provided by the vendor.

8.1. Speedup evaluation experiments
This first set of experiments has been carried out to

evaluate the speedup achieved for each processing function
by means of hardware acceleration with respect to pure
software implementations. One experiment per processing
function has been performed by configuring the case-study
application to run only a single SW-task to avoid interfer-
ences. Each experiment consists in running the SW-task
both in software and hardware mode for 10× 103 times.

Under both operating modes, the SW-task is profiled us-
ing a logic analyzer connected to the GPIO pins controlled
by the ARM core inside the PS. It is worth noting that,
even if there is no contention among SW-tasks since only
one is running, the system load caused by the Qt frame-
work, fred-server, and Linux is still present. The results
of the experiments are summarized in Table 1. It is worth
observing that execution times of the hardware implemen-
tations of the image processing functions are similar despite
implementing different algorithms. These similarities can
be explained by observing that the execution time of image
filter HW-tasks is dominated by the time required to access
memory and that they process images of the same size, i.e.,
640× 480 pixels with 24-bit color depth, hence, they move
the same amount of data from and to the DRAM system
memory.

8.2. System acceleration experiment
A second experiment has been then carried out to eval-

uate the performance improvement achievable with DPR-
enabled hardware acceleration by means of Fred-Linux
considering the whole application. For this purpose, the
application is configured to concurrently run with all four

SW-tasks at the same time. In order to evaluate the sys-
tem speedup enabled by Fred-Linux, the experiment is
composed of two separate runs. In the first run, all the SW-
tasks are configured to run in software mode while, in the
second run, all SW-tasks are set for running in hardware
mode.

The main difference with respect to the first set of ex-
periments is that now all SW-tasks execute and perform
acceleration request to fred-server concurrently. Hence,
when a SW-task running in hardware mode (i.e., calling
an HW-task) performs an acceleration request, it can ex-
perience a delay because there are no available free slots
or the reconfiguration interface is busy. The parameters
of all software activities involved in this test, including
SW-tasks, are summarized in Table 2. The results of the
experiment are reported in Table 3 comparing the observed
response times of the SW-tasks while running in software
and hardware modes in a 30-minute run. Figure 10 presents
a distribution of the response times, while Figure 11 shows
a distribution of the reconfiguration times observed during
the test.

Overall, the results of this practical evaluation show
that the resource virtualization mechanism provided by
Fred-Linux allows improving the performance of case study
application thought hardware acceleration using a set of
HW-tasks that are impossible to statically allocate on the
FPGA due to the unavailability of a sufficient amount of
resources.

Activity name Relative
Priority

Period
[ms]

fred-server (process) 0 -
Qt event loop thread 0 -
Frame grabber thread 1 33.3
Plain image copy thread 2 50
SW-task Sobel (thread) 3 80
SW-task Gmap (thread) 3 80
SW-task FastX (thread) 3 120
SW-task Mmul (thread) 3 120

Table 2: Priorities and periods of software activities.

Activity Response time [ms]
SW avg HW avg SW max HW max

SW-task Sobel 180.024 48.978 616.779 111.154
SW-task Gmap 161.861 50.173 731.724 96.756
SW-task FastX 118.670 65.125 515.957 106.558
SW-task Mmul 102.304 53.017 274.588 108.384

Table 3: Comparison of the observed response times for SW-tasks in
both software and hardware modes.

8.3. Common interface resource consumption
The FRED common interface requires 627 LUTs, 894

Flip-Flops, 1 BRAM tile, and 0 DSPs. This accounts for
3.65 % of LUTs, 2.6 % of Flip-Flops, 0 % of DSPs, and
3.33 % of BRAM tiles available on the Zynq-7010 SoC used
in this evaluation. Please note that the interface is not

15

0 100 200 300 400 500 600 700 800
0

500

1,000

O
cc
ur
re
nc
es

Sobel SW

0 100 200 300 400 500 600 700 800
0

5,000

10,000
Sobel HW

0 100 200 300 400 500 600 700 800
0

500

1,000

O
cc
ur
re
nc
es

Gmap SW

0 100 200 300 400 500 600 700 800
0

5,000

10,000

Gmap HW

0 100 200 300 400 500 600 700 800
0

1,000

2,000

O
cc
ur
re
nc
es

FastX SW

0 100 200 300 400 500 600 700 800
0

2,000
4,000
6,000

FastX HW

0 100 200 300 400 500 600 700 800
0

2,000

4,000

Execution time [ms]

O
cc
ur
re
nc
es

MMult SW

0 100 200 300 400 500 600 700 800
0

2,000
4,000

Execution time [ms]

MMult HW

Figure 10: Comparison of response times distributions for SW-tasks in software and hardware mode.

−1 0 1 2 3 4 5 6 7 8 9 10 11 12
0

5,000
10,000

Reconfiguration times [ms]

O
cc
ur
re
nc
es

Figure 11: Distribution of the reconfiguration times.

dependent on the memory used for sharing data. From the
HW-tasks perspective, on-chip RAM and off-chip DRAM
are both accessible in the global address space using an
AXI master interface connected to the AXI slave ports
exported by the processing system.

8.4. Overhead evaluation
The overhead introduced by the implementation of

Fred-Linux presented in this work has also been eval-
uated. In particular, the overhead introduced by fred-
server when serving requests issued by SW-tasks has been
measured while running the case-study application. Fig-
ure 12 presents the distribution of the execution times
measured for each activation of the fred-server process dur-
ing a 30-minute run. The longest-observed execution times
is 243.7 µs, while the average execution time resulted in
72.4 µs. These measurements account for both the inter-
process communication and the server process execution. It
is worth noting that the overhead introduced by fred-server

does not depend on the amount of data shared among
SW-tasks and HW-tasks.

0 25 50 75 100 125 150 175 200 225 250
0

10,000
20,000

Overhead [µs]

O
cc
ur
re
nc
es

Figure 12: Distribution of the overhead introduced by the fred-server.

8.5. Reconfiguration throughput evaluation
To better assess the viability of the approach used by

FRED, which is based on an intense usage of DPR, a
further experiment has been conducted to evaluate the re-
configuration throughput on the modern Zynq Ultrascale+
platform by Xilinx. The PCAP reconfiguration interface
has been used. For each reconfiguration, the FPGA man-
ager driver running on the ARM Cortex-53 cores of the
Zynq Ultrascale+ issues a reconfiguration request to ATF
using the EEMI interface. In turn, ATF forwards the re-
quest to the PMU using an inter-processor interrupt. The
PMU MicroBlaze core serves the request by programming
the CSU’s DMA for transferring the required bitstream.
It is worth noting that the Linux kernel cannot directly
access the CSU registers under normal conditions. This
because the Linux kernel runs at exception level 1 (EL1)

16

non-secure state, while the CSU registers can normally
be accessed only at exception level 3 (EL3) secure state.
The need for such a complex architecture arises from the
heterogeneous nature of the platform. The Zynq Ultra-
Scale+ SoC includes multiple processing cores that can
independently execute software components with different
safety and trustworthiness levels. If any software could
autonomously perform actions that can affect the entire
platform (e.g., reconfiguring the FPGA fabric), it could
jeopardize the safety of the whole system. For this rea-
son, on the Zynq UltraScale+ the responsibility of platform
management has been delegated to the PMU, which acts as
a trusted central component. This experiment aims at char-
acterizing the reconfiguration throughput while traversing
this complex path that involves the PMU.

The evaluation has been performed on the ZCU102
board, which includes the Zynq UltraScale+ XCZU9EG
chip. In order to assess how the reconfiguration through-
put varies with respect to the size of the slot, the same
HW-task has been cloned and implemented in three dif-
ferent partitions containing a single slot. These partitions
represent respectively 1/16, 1/8, and 1/4 of the PL fab-
ric resources available on the XCZU9EG chip. The re-
sults of this evaluation are reported in Figure 13. The
bars above and below the samples represent the minimum
and maximum observed throughput values over more than
500× 103 reconfiguration events. A minimum throughput
of 635 MiB/s has been observed while reconfiguring the
smallest slot (1/16), while the maximum throughput of
673 MiB/s has been observed during the reconfiguration of
the larger slot (1/4). These results can be explained by
considering the fixed overhead introduced by both the IPI-
based communication mechanism and the xilfpga library for
configuring the CSU DMA. In general, the reconfiguration
time can be modeled as the sum of a fixed overhead com-
ponent and a variable component that linearly grows with
the bitstream size. Hence, the fixed overhead component
becomes proportionally less relevant for larger bitstreams.
This evaluation confirms that the PCAP reconfiguration
throughput on the Zynq UltraScale+ has been vastly im-
proved over the previous Zynq-7000 platforms, where it
was limited to 145 MiB/s [20]. This improvement makes
partial reconfiguration even more profitable for real-time
embedded systems, as leveraged by Fred-Linux.

1/16 1/8 1/4

640

660

680

700

Resources share (CLB LUTs)

T
hr
ou

gh
pu

t
[M

iB
/
s]

Figure 13: Reconfiguration throughput with respect to the number
of PL resources available on the Zynq UltraScale+ XCZU9EG.

9. Conclusions

This paper presented a novel implementation of the
FRED framework for GNU/Linux. The proposed imple-
mentation has been discussed in detail, highlighting novel
features such as a completely redesigned software architec-
ture as well as the support for asynchronous acceleration,
watchdog timers, and Zynq UltraScale+ MPSoCs through
the FPGA manager. The implementation has been tested
with a case-study application using standard components
such as OpenCV and Video for Linux. Experimental re-
sults show that real-world applications can benefit from
time-predictable FPGA-based hardware acceleration in a
GNU/Linux feature-rich operating system environment.
Future work should investigate the possibility of integrat-
ing the proposed implementation on top of a hypervisor
with strong isolation capabilities, providing a safe platform
for developing Cyber-Physical Systems [47]. Further de-
velopments include improving integration with upcoming
releases of Xilinx’s FPGA manager driver and minimizing
kernel-level code by moving memory buffers allocation and
management in userspace.

References

[1] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, G. But-
tazzo, A Framework for Supporting Real-Time Applications
on Dynamic Reconfigurable FPGAs, in: Proc. of the IEEE
Real-Time Systems Symposium (RTSS 2016), 2016, pp. 1–12.

[2] M. Pagani, A. Balsini, A. Biondi, M. Marinoni, G. Buttazzo, A
linux-based support for developing real-time applications on het-
erogeneous platforms with dynamic fpga reconfiguration, in: 2017
30th IEEE International System-on-Chip Conference (SOCC),
IEEE, 2017, pp. 96–101.

[3] B. B. Seyoum, M. Pagani, A. Biondi, S. Balleri, G. Buttazzo,
Spatio-Temporal Optimization of Deep Neural Networks for Re-
configurable FPGA SoCs, IEEE Transactions on Computers (01)
(5555) 1–1. doi:10.1109/TC.2020.3033730.

[4] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, K. Vissers, Finn: A framework for fast, scalable
binarized neural network inference, in: Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2017, pp. 65–74.

[5] Xilinx, Pynq - python productivity for zynq.
URL http://www.pynq.io/

[6] Fred-linux repository.
URL https://gitlab.retis.sssup.it/m.pagani/fred-docs

[7] F. Dittmann, S. Frank, Hard real-time reconfiguration port
scheduling, in: Proc. of the Conference on Design, Automation
and Test in Europe (DATE), 2007.

[8] F. Duhem, F. Muller, P. Lorenzini, FaRM: Fast Reconfigura-
tion Manager for Reducing Reconfiguration Time Overhead on
FPGA, in: Reconfigurable Computing: Architectures, Tools and
Applications, Springer Berlin Heidelberg, Berlin, Heidelberg,
2011, pp. 253–260.

[9] M. Damschen, L. Bauer, J. Henkel, CoRQ: Enabling Runtime
Reconfiguration Under WCET Guarantees for Real-Time Sys-
tems, IEEE Embedded Systems Letters 9 (3) (2017) 77–80.
doi:10.1109/LES.2017.2714844.

[10] G. Valente, T. Di Mascio, G. D’Andrea, L. Pomante, Dynamic
partial reconfiguration profitability for real-time systems, IEEE
Embedded Systems Letters (2020) 1–1doi:10.1109/LES.2020.
3004302.

[11] L. Pezzarossa, A. T. Kristensen, M. Schoeberl, J. Sparsø, Using
dynamic partial reconfiguration of FPGAs in real-Time systems,

17

http://dx.doi.org/10.1109/TC.2020.3033730
http://www.pynq.io/
http://www.pynq.io/
https://gitlab.retis.sssup.it/m.pagani/fred-docs
https://gitlab.retis.sssup.it/m.pagani/fred-docs
http://dx.doi.org/10.1109/LES.2017.2714844
http://dx.doi.org/10.1109/LES.2020.3004302
http://dx.doi.org/10.1109/LES.2020.3004302

Microprocessors and Microsystems 61 (2018) 198–206. doi:
https://doi.org/10.1016/j.micpro.2018.05.017.

[12] J. Goossens, X. Poczekajlo, A. Paolillo, P. Rodriguez, AC-
CEPTOR: A Model and a Protocol for Real-Time Multi-Mode
Applications on Reconfigurable Heterogeneous Platforms, in:
Proceedings of the 27th International Conference on Real-
Time Networks and Systems, RTNS ’19, Association for Com-
puting Machinery, New York, NY, USA, 2019, p. 209–219.
doi:10.1145/3356401.3356420.
URL https://doi.org/10.1145/3356401.3356420

[13] K. Danne, M. Platzner, Periodic real-time scheduling for FPGA
computers, in: Proc. of the 3rd Int. Workshop on Intelligent
Solutions in Embedded System, 2005.

[14] S. Saha, A. Sarkar, A. Chakrabarti, Scheduling dynamic hard
real-time task sets on fully and partially reconfigurable platforms,
IEEE Embedded Systems Letters 7 (1) (2015) 23–26.

[15] S. Saha, A. Sarkar, A. Chakrabarti, R. Ghosh, Co-Scheduling
Persistent Periodic and Dynamic Aperiodic Real-Time Tasks
on Reconfigurable Platforms, IEEE Transactions on Multi-Scale
Computing Systems 4 (1) (2018) 41–54. doi:10.1109/TMSCS.
2017.2691701.

[16] A. Rodríguez, J. Valverde, J. Portilla, A. Otero, T. Riesgo,
E. De la Torre, FPGA-Based High-Performance Embedded
Systems for Adaptive Edge Computing in Cyber-Physical Sys-
tems: The ARTICo3 Framework, Sensors 18 (6). doi:10.3390/
s18061877.
URL https://www.mdpi.com/1424-8220/18/6/1877

[17] E. Lübbers, M. Platzner, ReconOS: Multithreaded Programming
for Reconfigurable Computers, ACM Transactions on Embedded
Computing Systems 9 (1) (2009) 8:1–8:33.

[18] E. Lübbers, M. Platzner, Cooperative multithreading in dynam-
ically reconfigurable systems., in: Proc. of the Int. Conference
on Field Programmable Logic and Applications (FPL), 2009.

[19] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego,
T. Arslan, Microkernel Architecture and Hardware Abstraction
Layer of a Reliable Reconfigurable Real-Time Operating System
(R3TOS), ACM Transactions on Reconfigurable Technology and
Systems 8 (1) (2015) 5:1–5:35.

[20] M. Pagani, M. Marinoni, A. Biondi, A. Balsini, G. Buttazzo,
Towards real-time operating systems for heterogeneous reconfig-
urable platforms, in: Proc. of the 12th Workshop on Operating
Systems Platforms for Embedded Real-Time Applications (OS-
PERT 2016), 2016.

[21] R. T. E. Ltd., Freertos real-time operating system.
URL http://www.freertos.org/

[22] H. K.-H. So, R. Brodersen, A Unified Hardware/Software Run-
time Environment for FPGA-based Reconfigurable Computers
Using BORPH, ACM Transactions on Embedded Computing
Systems 7 (2) (2008) 14:1–14:28.

[23] The linux driver implementer’s api guide, fpga subsystem.
URL https://www.kernel.org/doc/html/latest/driver-api/
fpga/fpga-mgr.html

[24] B. B. Seyoum, A. Biondi, G. C. Buttazzo, Flora: Floorplan
optimizer for reconfigurable areas in fpgas, ACM Trans. Embed.
Comput. Syst. 18 (5s). doi:10.1145/3358202.
URL https://doi.org/10.1145/3358202

[25] M. Hassan, R. Pellizzoni, Bounding DRAM interference in COTS
heterogeneous MPSoCs for mixed criticality systems, IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems 37 (11) (2018) 2323–2336.

[26] D. Casini, A. Biondi, G. Nelissen, G. Buttazzo, A holistic mem-
ory contention analysis for parallel real-time tasks under par-
titioned scheduling, in: 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), IEEE, 2020,
pp. 239–252.

[27] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, G. Buttazzo,
Modeling and analysis of bus contention for hardware accelera-
tors in fpga socs, in: 32nd Euromicro Conference on Real-Time
Systems (ECRTS 2020), Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

[28] Xilinx, Vivado Design Suite User Guide: Dynamic Function

eXchange.
[29] C. Beckhoff, D. Koch, J. Torresen, Go Ahead: A Partial Re-

configuration Framework, in: Proc. of the 20th Annual IEEE
Int. Symposium on Field-Programmable Custom Computing
Machines, 2012.

[30] D. Koch, Partial Reconfiguration on FPGAs: Architectures,
Tools and Applications, Springer-Verlag New York, 2012.

[31] Xilinx, Zynq-7000 AP SoC Technical Reference Manual.
[32] Xilinx, Zynq UltraScale+ Device - Reference Manual, uG1085.
[33] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, G. Buttazzo,

Modeling and Analysis of Bus Contention for Hardware
Accelerators in FPGA SoCs (Artifact), Dagstuhl Artifacts Series
6 (1) (2020) 4:1–4:3. doi:10.4230/DARTS.6.1.4.
URL https://drops.dagstuhl.de/opus/volltexte/2020/
12394

[34] M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, G. But-
tazzo, A Bandwidth Reservation Mechanism for AXI-Based
Hardware Accelerators on FPGAs, in: S. Quinton (Ed.), 31st
Euromicro Conference on Real-Time Systems (ECRTS 2019),
Vol. 133 of Leibniz International Proceedings in Informatics
(LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 2019, pp. 24:1–24:24. doi:10.4230/LIPIcs.
ECRTS.2019.24.
URL http://drops.dagstuhl.de/opus/volltexte/2019/10761

[35] F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, G. Buttazzo,
Axi hyperconnect: a predictable, hypervisor-level interconnect
for hardware accelerators in fpga soc, in: 2020 57th ACM/IEEE
Design Automation Conference (DAC), IEEE, 2020, pp. 1–6.

[36] Xilinx Inc., AXI Interconnect, LogiCORE IP Product Guide,
pG059.

[37] Xilinx Inc., SmartConnect, LogiCORE IP Product Guide,
pG247.

[38] B. Seyoum, M. Pagani, A. Biondi, G. Buttazzo, Automating the
design flow under dynamic partial reconfiguration for hardware-
software co-design in fpga soc, in: Proceedings of the 36th
Annual ACM Symposium on Applied Computing, SAC ’21,
Association for Computing Machinery, New York, NY, USA,
2021, p. 481–490. doi:10.1145/3412841.3441928.
URL https://doi.org/10.1145/3412841.3441928

[39] Xilinx, Xilinx Standalone Library Documentation, XilFPGA
Library.

[40] D. C. Schmidt, Reactor: An object behavioral pattern for con-
current event demultiplexing and dispatching, 1995.

[41] A. Petersen, Patterns in C, 2005.
[42] R. C. Martin, Design principles and design patterns, Object

Mentor 1 (34) (2000) 597.
[43] M. Samek, Object-Oriented Programming in C, 2019.
[44] A.-T. Schreiner, Object oriented programming with ansi-c.
[45] Xilinx, Accelerating OpenCV Applications with Zynq-7000 All

Programmable SoC using Vivado HLS Video Libraries.
[46] G. C. Buttazzo, Hartik: A real-time kernel for robotics applica-

tions, in: Real-Time Systems Symposium, 1993., Proceedings.,
IEEE, 1993, pp. 201–205.

[47] A. Biondi, F. Nesti, G. Cicero, D. Casini, G. Buttazzo, A safe,
secure, and predictable software architecture for deep learning in
safety-critical systems, IEEE Embedded Systems Letters 12 (3)
(2019) 78–82.

18

http://dx.doi.org/https://doi.org/10.1016/j.micpro.2018.05.017
http://dx.doi.org/https://doi.org/10.1016/j.micpro.2018.05.017
https://doi.org/10.1145/3356401.3356420
https://doi.org/10.1145/3356401.3356420
https://doi.org/10.1145/3356401.3356420
http://dx.doi.org/10.1145/3356401.3356420
https://doi.org/10.1145/3356401.3356420
http://dx.doi.org/10.1109/TMSCS.2017.2691701
http://dx.doi.org/10.1109/TMSCS.2017.2691701
https://www.mdpi.com/1424-8220/18/6/1877
https://www.mdpi.com/1424-8220/18/6/1877
https://www.mdpi.com/1424-8220/18/6/1877
http://dx.doi.org/10.3390/s18061877
http://dx.doi.org/10.3390/s18061877
https://www.mdpi.com/1424-8220/18/6/1877
http://www.freertos.org/
http://www.freertos.org/
https://www.kernel.org/doc/html/latest/driver-api/fpga/fpga-mgr.html
https://www.kernel.org/doc/html/latest/driver-api/fpga/fpga-mgr.html
https://www.kernel.org/doc/html/latest/driver-api/fpga/fpga-mgr.html
https://doi.org/10.1145/3358202
https://doi.org/10.1145/3358202
http://dx.doi.org/10.1145/3358202
https://doi.org/10.1145/3358202
https://drops.dagstuhl.de/opus/volltexte/2020/12394
https://drops.dagstuhl.de/opus/volltexte/2020/12394
http://dx.doi.org/10.4230/DARTS.6.1.4
https://drops.dagstuhl.de/opus/volltexte/2020/12394
https://drops.dagstuhl.de/opus/volltexte/2020/12394
http://drops.dagstuhl.de/opus/volltexte/2019/10761
http://drops.dagstuhl.de/opus/volltexte/2019/10761
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2019.24
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2019.24
http://drops.dagstuhl.de/opus/volltexte/2019/10761
https://doi.org/10.1145/3412841.3441928
https://doi.org/10.1145/3412841.3441928
https://doi.org/10.1145/3412841.3441928
http://dx.doi.org/10.1145/3412841.3441928
https://doi.org/10.1145/3412841.3441928

	Introduction
	Contribution

	Related Work
	Background: the FRED framework
	Platform model
	Application model
	Hardware task and reconfiguration interface model
	Software task model
	Scheduling Infrastructure
	Response-time analysis

	Platform support
	System support design
	Common interface
	Dynamic partial reconfiguration support
	Slot decouplers
	Interconnections

	Floorplanning

	Linux support
	Kernel-space components
	Buffers allocator module
	FPGA driver

	User-space components
	Fred-server internals

	Client support library API
	Case study application
	Case study architecture
	Programmable logic partitioning

	Performance evaluation
	Speedup evaluation experiments
	System acceleration experiment
	Common interface resource consumption
	Overhead evaluation
	Reconfiguration throughput evaluation

	Conclusions

