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ABSTRACT

Nowadays, the real-time domain cannot neglect modern hard-
ware architectures and the programming paradigms developed
to fully exploit their capabilities. This has shown the limita-
tions of classical task models, like the periodic one proposed
by Liu&Layland, and it is pushing for the adoption of more
realistic task models and the development of new schedula-
bility analyses to guarantee their timing constraints. Self-
suspending tasks are representative of enhanced task models
considering explicit suspensions of the execution, happening
when a task has to interact with an external device (e.g.,
through I/O operations) or to access shared resources. Real-
time analysis of such a task model cannot neglect to take
also into account temporal isolation techniques like band-
width reservations and hypervisors, required to manage the
complexity of actual software and the need of a modular de-
velopment. In this paper we present a novel scheduling algo-
rithm (H-CBS-SO) that provides temporal isolation for real-
time self-suspending tasks. We also propose the implemen-
tation of this algorithm in the Linux kernel. Finally, exper-
imental results are presented aiming at evaluating the per-
formance of the implementation in terms of run-time over-
head.

1. INTRODUCTION
Modern computation systems are characterized by a grow-

ing level of complexity due to an increasing number of cores
and the availability of heterogeneous dedicated subsystems.
To fully exploit this huge computation power, new program-
ming models and paradigms that highly rely on parallel exe-
cutions requiring synchronization among the different threads
have been developed.

One of the most well known among these approaches is the
fork-join one, that is used in a wide range of domains from
library for multicore-enabled applications like OpenMP, to
Map-Reduce applications that nowadays characterize cloud
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services. This and other synchronization issues need to be
managed with proper protocols [9] that could introduce self-
suspensions in the tasks execution. Another aspect is corre-
lated with the presence of dedicate computation units (e.g.,
FPGA, DSP, GPU), where threads offload highly optimized
elaborations to speedup the execution, like the use of a DSP
to perform signal processing (e.g., filtering, FFT). Nowa-
days, applications strongly rely on the communication among
nodes and with devices. These could range from sensors
acquisitions in the embedded domain to highly intercon-
nected systems in the automotive environment or disk-in-
tensive tasks in the BigData application field. All these
behaviors share the necessity for the task to self-suspend
waiting for some event.

Also real-time applications cannot neglect any more the
use of this features, but they need to be provided a way that
does not jeopardize timing constraints. The interest regard-
ing scheduling analysis for self-suspending tasks has grown
in recent years. However, the currently available results are
not comparable with those provided for more classical task
model due to the complexity of the problem [22].

Approaches to deal with the schedulability analysis of self-
suspending tasks can be dived in two main branches: sus-
pension-oblivious and suspension-aware. In the suspension-
oblivious approach [15, 16] the maximum suspension time
that each job of a task could endure is included in the worst-
case execution time (WCET) of the task. Even if this ap-
proach presents the same pessimism in the analysis as the
use of busy execution (i.e., the task actively waits for the
suspension to finish), it presents advantages at runtime be-
cause the task leaves the processor that could be used to
reduce response time of other tasks, serve aperiodic request
and best-effort activities or be reclaimed to reduce energy
consumption. Instead, suspension-aware analysis explicitly
considers suspensions in the task model and in the related
schedulability analysis.

The complexity of modern software solutions has driven
the adoption of a modular approach. This is now an estab-
lished common practice in terms of code design and imple-
mentation. In recent years, this view has been introduced
also for runtime execution to better exploit the computa-
tional power of modern platforms while reducing the com-
plexity of the analysis. Most of the proposed approaches are
based on the concept of resource reservation, that assigns a
fraction of the computation time provided by the platform
to each activity enforcing that no more than such an amount
is effectively given. The mechanism could be applied to a
huge range of platforms, from small embedded systems to
server farms.

The Constant Bandwidth Server (CBS) has been origi-



nally proposed by Abeni and Buttazzo [2] for multimedia
applications. They proposed it as a scheduling methodology
based on reserving a fraction of the processor bandwidth to
each task, under the EDF scheduling algorithm. Marzario et
al. identified that the CBS is not able to ensure hard reser-
vation due to the deadline aging problem [18]. The Hard
CBS [7] (H-CBS) has been proposed extending the origi-
nal CBS to implement hard reservation [20] (i.e., guarantee-
ing a minimum budget in any time interval). Bertogna et.
al. [6,8] presented the BROE algorithm to provide hard real-
time guarantee to tasks with an approach light enough to be
implemented even in small microcontrollers. BROE extends
the H-CBS to handle resource sharing in hard real-time Hier-
archical Scheduling Frameworks. Recently, an implementa-
tion of the Hard CBS algorithm called SCHED DEADLINE
[10] has been included in the mainline Linux.

Related work on self-suspending tasks. Richard iden-
tified that suspension-aware schedulability analysis of peri-
odic self-suspending tasks is NP-hard in the strong sense [21].
Ridouard et al. studied the suspension-aware schedulabil-
ity analysis of self-suspending tasks in uniprocessor systems
presenting several negative, but very interesting, results [22],
[23].

Abdeddäım and Masson [1] presented a timed automata
based model for self-suspending tasks and proposed a method
to test the sustainability of a schedule with respect to the
execution and self-suspension durations. Recently, Nelissen
et al. [19] have invalidated existing results on suspension-
aware analysis for uniprocessor systems. In this work they
presented an exact analysis for self-suspending task with one
self-suspension region and a sufficient test in the case of mul-
tiple self-suspension regions, both in case of fixed-priority
scheduling.

Liu and Anderson proposed suspension-aware schedula-
bility tests for self-suspending tasks in multiprocessor sys-
tems [12], [13], addressing both G-EDF and G-FP schedul-
ing policies. Liu and Anderson have also derived a tardiness
bound [14] for self-suspending tasks in the context of soft
real-time multiprocessor systems under G-EDF and G-FIFO
scheduling.

Contribution. This paper has three main contributions:

• we identify that the Hard CBS algorithm (and its cur-
rent implementation in mainline Linux) is not able to
provide resource reservation for self-suspending tasks
under suspension-oblivious analysis;

• a novel reservation algorithm called H-CBS-SO is pro-
posed, extending the H-CBS to support temporal iso-
lation among self-suspending tasks;

• since the novel algorithm has been implemented in
the Linux kernel, implementation details are presented
and experimental results aiming at evaluating the per-
formance of the implementation in terms of run-time
overhead are reported.

Paper structure. The remainder of the paper is orga-
nized as follows. Section 2 presents the system model, a
formal definition of the H-CBS scheduling algorithm and
the suspension-oblivious approach for self-suspending tasks.
In section 3 is described the proposed Constant Bandwidth
Server (H-CBS-SO) which is able to guarantee temporal iso-
lation for self-suspending tasks. Section 4 describes our im-
plementation of the H-CBS-SO algorithm into the Linux ker-

Figure 1: Example of a Task Isolation Framework.

nel, presenting a set of experimental results. Finally, Sec-
tion 5 states our conclusions.

2. BACKGROUND AND NOTATION
This paper considers a taskset Γ composed of n real-time

self-suspending tasks (SS-tasks) running upon a uniproces-
sor system. A SS-task alternates execution and self-sus-
pending phases; no limitation is given to the number of
interleaved phases. A SS-task τi is characterized by a worst-
case execution time (WCET) Ci, a maximum self-suspension
time Si, a period (or minimum interarrival time) Ti and an
implicit relative deadline Di = Ti. Each SS-task must start
and end with an execution phase (i.e., we made the realistic
assumption to not have self-suspensions at the beginning or
at the end of the “body” of the SS-task).

Each SS-task τi executes upon a dedicated reservation
server Si characterized by a budget Qi and a period Pi. In
this paper we will consider two different types of reservation
server algorithms: the H-CBS algorithm, briefly recalled in
the next section, and a novel algorithm, the H-CBS-SO, pro-
posed in Section 3. We assume that the reservation servers
are scheduled according to the EDF scheduling policy. An
example of the system configuration considered in this paper
is illustrated in Figure 1; this scheduling scheme is denoted
as Task Isolation Framework (TIF).

2.1 Overview of the H-CBS Algorithm
In this section, the rules of the Hard Constant Band-

width Server (H-CBS) [7], [18] are described in detail using
its budget-based formulation and its fundamental properties
are recalled. In the next section we will demonstrate that
the H-CBS algorithm is not suitable to directly support a
suspension-oblivious analysis of SS-tasks running upon H-
CBS servers.

The rules of a H-CBS server with period P and maximum
budget Q (bandwidth α = Q/P ) are summarized below. At
any time t, the server is characterized by an absolute dead-
line d(t) and a remaining budget q(t). When a job executes,
q(t) is decreased accordingly. The H-CBS server can be char-
acterized by three states: Idle, Ready and Suspended.

Below we report the algorithmic rules describing the H-
CBS server:

Definition 1 (H-CBS Algorithm).

• Rule 1 Initially, each server is Idle with q = 0 and
d = 0.



• Rule 2 When the H-CBS server is Idle and a job ar-
rives at time t, a replenishment time is computed as
tr = d(t)− q(t)/α:

1. if t < tr, the server becomes Suspended and it
remains suspended until time tr. At time tr, the
server becomes Ready, the budget is replenished
to Q and d← tr + P .

2. otherwise, if the server becomes Ready, the bud-
get is immediately replenished toQ and d← t+P ;

• Rule 3 When q = 0, the server becomes Suspended
and is suspended until time d. At time d, the server
becomes Ready, the budget is replenished to Q and the
deadline is postponed to d← d+ P .

• Rule 4 When the server has no more pending work-
load it turns to the Idle state, holding the current val-
ues for both budget q and deadline d.

To address the schedulability analysis of the H-CBS server,
we recall the following result:

Theorem 1 (Theorem 1 in [18]). Given a set of n H-CBS
servers (Qi, Pi), 1 ≤ i ≤ n, all the servers are schedulable
under EDF if and only if:

n
∑

i=1

Qi

Pi

≤ 1. (1)

The H-CBS server can be used to achieve temporal isola-
tion among a set of real-time tasks.

Theorem 2 (Theorem 2 in [18]). Given a set of n classical
sporadic tasks (i.e., without self-suspensions) having implicit
deadline, we associate each task to a H-CBS server Si. For
each H-CBS server Si, we define Qi = Ci and Pi = Ti = Di.
Then, this set of tasks, each one executing upon a dedicated
H-CBS, is schedulable with EDF if and only if the test of
Equation (1) holds.

The advantage of associating each task to an H-CBS server
is enabling the protection of the system from execution over-
runs of the tasks. In other words, scheduling the system
without the reservation servers, an execution overrun of a
task can impact on the schedulability of the whole system,
potentially allowing deadline misses on other tasks that are
not exceeding their WCET. On the contrary, when each task
executes upon a reservation server, all the overruns are pro-
tected by the budget exhaustion mechanism that stops the
execution of the task. In this way, only the task that is ex-
periencing an overrun is affected in terms of schedulability,
while it is possible to guarantee the deadlines of the other
tasks.

Proposition 1 (Isolation property of the H-CBS). Given
a set of n tasks, each one running upon a dedicated H-CBS
server as in Theorem 2, such that condition (1) holds, if
a task experiences an execution overrun (i.e., it exceeds its
WCET) then the schedulability of the other tasks will not be
affected.

Concerning self-suspending tasks, to the best of our knowl-
edge no suspension-aware schedulability tests have been pro-
posed for SS-tasks executing upon the H-CBS.

2.2 Suspension-oblivious analysis
The exact schedulability analysis of real-time systems with

self-suspending tasks has been shown to be a challenging
problem, even considering simplified task models executing
on a single processor [22], [21]. Of course, all the classical
schedulability analyses for sporadic tasks do not work in the
presence of self-suspending tasks.

In order to address the schedulability analysis of self-sus-
pending tasks with a tractable complexity, the suspension-
oblivious analysis approach [15,16] has been proposed. With
such an approach, for each self-suspending task, the maxi-
mum self-suspension time is accounted as execution time
inflating the task WCET. Then, all the typical existing anal-
yses for sporadic tasks can be applied to the whole taskset.
Clearly, this approach does not lead to an exact character-
ization of the schedulability region for SS-tasks, but has a
strong effectiveness to derive safe bounds on it.

More formally, this method consists in applying a transfor-
mation on the taskset parameters. Let Γ be a taskset of self-
suspending tasks as defined in our system model. We define
a new taskset Γ∗ of typical sporadic tasks as follows: for each
task τi ∈ Γ we define a task τ∗

i ∈ Γ∗ having C∗

i = Ci + Si,
T ∗

i = Ti and D∗

i = Di. Being Γ∗ a taskset of typical spo-
radic tasks, is possible to apply all existing schedulability
analysis techniques for such a task model.

Remark 1 (Suspension-oblivious analysis). If the taskset
Γ∗ is EDF schedulable then also Γ is EDF schedulable.

Overall, since we are accounting self-suspension times as
execution times, this approach is pessimistic and allows to
provide a sufficient only schedulability test. In fact, during
the self-suspensions, we have idle times that could be ex-
ploited by additional workload. It is worth observing that,
with suspension-oblivious analysis, we are modeling the task
as it would be executing (i.e., wasting processor cycles) dur-
ing each self-suspension.

3. H-CBS FOR SUSPENSION-OBLIVIOUS

ANALYSIS
When considering SS-tasks executing upon H-CBS servers,

one can try to extend the suspension-oblivious approach by
using the schedulability results from Theorem 1 and 2. That
is, given a set of n SS-tasks τi, each one executing upon a
dedicated H-CBS server Si, we could configure the server pa-
rameters as Qi = Ci + Si and Pi = Ti = Di by accounting
self-suspensions as execution times. Then, we could apply
Theorem 1 and 2 to verify whether the taskset is schedulable.
Unfortunately, the H-CBS algorithm is not directly suitable
to support such an approach to deal with the schedulability
analysis of self-suspending tasks, as the following example
illustrates.

Example 1 (H-CBS and SS-task without busy execution).
Consider a task τ with C = 1, S = 3 and D = T = 8.
Suppose the task τ be executed upon a reservation server
S having Q = C + S = 4 and P = T = 8. As Figure 2
shows, the task τ starts executing at t = 4, that is the latest
time at which τ can start executing still guaranteeing Q = 4
budget units until the deadline P = T = 8. Suppose now
that τ immediately self-suspends its execution: according
to the classical H-CBS formulation, since S has no more
workload to be served, the server S becomes Idle. At time
t = 7 the task can resume its execution. Hence, Rule 2 of the



H-CBS is applied. In this case we have tr = 8 − q(7)/α =
6: then, having t > tr (bandwidth check), the budget is
immediately replenished to Q and the deadline shifted at
d = 15. In this way, since the server (in the worst-case)
cannot start executing before d − Q = 11, the task τ will
miss its deadline. In other words, the reservation server
was not able to guarantee C time units of computation in
a period P , notwithstanding that the server budget was set
at Q = C + S.
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Figure 2: H-CBS serving a SS-task: a counterexample using
suspension-oblivious analysis.

Since under suspension-oblivious analysis suspensions are
treated as execution time, a second approach could be to
replace the task self-suspensions with busy executions, mod-
ifying the actual task implementation. With this approach,
when a task has to suspend (e.g., due to an I/O operation),
it starts a busy execution wasting processor cycles. The
busy execution ends when the task can be resumed from the
self-suspension. This solution, illustrated by the following
example, is clearly simple and has a strong practical effec-
tiveness.

Example 2 (H-CBS and SS-task with busy execution).
Consider a SS-task τ and a H-CBS server as in Example
1. We replace the self-suspension of τ with a busy execu-
tion. As shown in Figure 3, when τ self-suspends at time
t = 4, it continues executing wasting processor cycles until
t = 7. Thanks to busy execution, the server is now able to
guarantee C = 1 execution units over a period P = 8; this
is because the server remains active without performing any
bandwidth check.

As illustrated in Example 2, after replacing self-suspen-
sion with busy execution Theorem 1 and 2 allow to check
for the system schedulability of a SS-task running upon a
H-CBS server with Q = C + S. However, while replac-
ing self-suspensions with busy executions does not provide
any benefits when a suspension-oblivious analysis is used,
it is clearly worse when other performance metrics are con-
sidered. For example, since the busy execution consists in
wasting processor cycles, it is not possible to reclaim the
idle-time generated from the self-suspensions, which could
be used to serve non real-time workload or improve the aver-
age response-times of the tasks. In the same way, also when
energy constrained systems are addressed, it is preferable to
avoid busy executions still guaranteeing the schedulability
of the system.
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Figure 3: H-CBS serving a SS-task where self-suspensions
have been replaced with busy executions.

The key observation is that using busy execution, if a
server with pending workload is the highest priority one (i.e.,
earliest absolute deadline) then it is executing; whilst with
self-suspension of servers this is not still true. The highest
priority server can be in idle state due to a self-suspension,
while in practice this server should not be considered as an
idling server since it has pending workload temporarily self-
suspended.

Looking at Example 1, we note that deadline miss is caused
by the bandwidth check (t > tr) that disallows the server to
execute in the time interval [7,8]. Unfortunately, as the fol-
lowing example shows, this problem cannot be solved by
simply removing the bandwidth check when a server is re-
sumed from a self-suspension.

Example 3 (H-CBS without bandwidth check and SS-tasks).
Consider a taskset composed by two self-suspending tasks,
τ1 having C1 = 2, S1 = 0, T1 = D1 = 4, and τ2 having
C2 = 2, S2 = 1, T2 = D2 = 7. Using suspension-oblivious
analysis this taskset results schedulable under EDF, since

2
∑

i=1

Ci + Si

Ti

=
2

4
+

2 + 1

7
≤ 1. (2)

Suppose that both τ1 and τ2 are associated to two H-CBS
servers S1 and S2 respectively, with Q1 = C1 + S1 = 2 and
Q2 = C2 + S2 = 3. The period of the servers is the same
of the served task. As Figure 4 shows, both the servers
are released at the same time; then, according to the EDF
policy, S1 starts executing. At time t = 2 the server S2 can
start to execute and immediately self-suspends its execution.
Suppose now that τ2 violates its maximum self-suspension
time, self-suspending its execution for 2 time units. Then,
at time t = 4, τ2 resumes its execution without performing
the bandwidth check and executes for 3 time units, making
1 time unit of overrun. Since the budget of the server S2
was set to Q2 = 3, the task τ2 is able to overrun without
any budget exhaustion mechanism is triggered. Finally, at
time t = 7, τ1 can start executing missing its deadline at
time t = 8. Unfortunately, since a greater self-suspension
time and an overrun of τ2 compromise the schedulability
of τ1, this example shows that the task isolation property
(Proposition 1) of the H-CBS could be broken.

To address the problems discussed in this section, we pro-
pose an extension of the H-CBS algorithm which “takes into
account” task self-suspensions exactly as the task was busy
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Figure 4: H-CBS with SS-tasks: the bandwidth check of the
H-CBS is disabled.

Figure 5: State transition diagram for the H-CBS-SO algo-
rithm.

executing. In this way we can obtain a reservation server al-
gorithm that can be analyzable with a suspension-oblivious
analysis.

3.1 The H-CBS-SO algorithm
In this section we define the H-CBS-SO algorithm, an ex-

tension of the H-CBS algorithm to support self-suspending
tasks analyzable with a suspension-oblivious analysis, and
we derive its basic properties.

The H-CBS-SO server introduces a new state (with re-
spect to H-CBS) denoted Self-Suspended. As Figure 5 illus-
trates, this new state can be reached by transitions from the
Ready and the Suspended states; the Self-Suspended state
allows transitions to the Ready and the Suspended states.

The H-CBS-SO extends the H-CBS algorithm reported
in Definition 1 by adding the following rules and the SS-
QUEUE data structure:

Definition 2 (H-CBS-SO Algorithm).

SS-QUEUE. A queue containing all the server in the
Self-Suspended state is introduced; the server in that

queue are ordered by increasing absolute deadline. We
denote with SSS the server on top of SS-QUEUE, dSS

and qSS its absolute deadline and budget respectively.
If SS-QUEUE is empty, we set dSS = qSS =∞.

• Rule SO-1. When a task τ self-suspends, the server
associated to τ becomes Self-Suspended and is inserted
in the SS-QUEUE.

• Rule SO-2. When a task τ resumes form self-suspen-
sion, the server associated to τ becomes Ready and is
removed from the SS-QUEUE.

• Rule SO-3. When qSS = 0, the server SSS is re-
moved from the SS-QUEUE, becomes Suspended and
is suspended until time dSS. We rename SSS by Sj .
At time dj , the budget qj is replenished to Qj and the
deadline dj is postponed to dj+Pj ; finally, Sj becomes
Self-Suspended and is inserted in the SS-QUEUE.

• Rule SO-4. (Budget accounting rule) - If a server Si

is executing and di ≥ dSS holds, then both qSS and qi
are decreased. On the other hand, if di < dSS only qi
is decreased. If there is no server in the Ready state
(idle-time), then qSS is decremented.

Notice that Rules SO-1 and SO-2 do not modify the dead-
line of the server. Also, notice that, when the server is moved
from the Self-Suspended state to the Ready state, Rule SO-2
does not perform any bandwidth check (Rule 2 of H-CBS).

Example 4 (H-CBS-SO and SS-tasks, following Example
1). Consider the same SS-task τ of Example 1 executing
upon a server S implemented with the H-CBS-SO algorithm.
Suppose also that τ starts executing at t = 4 as in the
previous example and immediately self-suspends its execu-
tion. According to the H-CBS-SO algorithm, the server S
becomes self-suspended and is inserted in SS-QUEUE. Then,
Rule SO-3 is applied and the budget q(t) is decremented un-
til τ resumes its execution (time t = 7). At this time, Rule
SO-2 is applied and S becomes Ready with budget q = 1.
Since Rule SO-2 does not provide any bandwidth check, the
server S can execute until time t = 8 avoiding τ to miss its
deadline.

Example 5 (H-CBS-SO and SS-tasks, following Example
3). Consider the same taskset of Example 3 where the servers
S1 and S2 are implemented with the H-CBS-SO algorithm.
Both the servers are configured with the same parameters
of the previous example. At time t = 2 the server S2 can
start to execute and immediately self-suspends its execution;
then, according to Rule SO-1, S2 becomes Self-Suspended
and is inserted in SS-QUEUE. Suppose now that τ2 violates
its maximum self-suspension time, self-suspending its execu-
tion for 2 time units. During the self-suspension, Rule SO-3
is applied and the budget q2 is decremented by 2 time units.
Then, at time t = 4, τ2 resumes its execution with budget
of S2 equal to q2 = 3− 2 = 1.

Likewise Example 3, we suppose that τ wants to execute
for 3 time units, making 1 time unit of overrun. In this case,
having used the H-CBS-SO algorithm, we can note that τ
is able to execute only in the time interval [4, 5] due to a
budget exhaustion at time t = 5.

Finally, at time t = 5, τ1 can start executing without
missing its deadline at time t = 8. Unlike Example 3, in
this case a greater self-suspension time and an overrun of



τ2 do not compromise the schedulability of τ1, guaranteeing
the task isolation property.

The rules of the H-CBS-SO have been designed to imitate
the parameters updating of a server in the H-CBS with busy
execution algorithm, but removing the wasting of processor
cycles typical of the busy execution. This property is re-
lated to the H-CBS-SO server having earlier deadline, since
it is the one that would have executed when self-suspensions
are replaced with busy executions. This is expressed in the
following proposition, which is the main property of the H-
CBS-SO algorithm.

Proposition 2. With H-CBS-SO, self-suspensions of the
server having the earlier deadline are accounted as with H-
CBS with busy executions.

Proof. We first consider the state-transitions from Ready to
Self-Suspended and from Self-Suspended to Ready (Rules
SO-1 and SO-2, respectively). Let us consider a server SSS

in the Ready state and executing (dSS is the earliest dead-
line) serving an active task τSS that self-suspends. Then
Rule SO-1 is applied and the server becomes Self-Suspended.
We distinguish two cases: (i) a server Si executes while SSS

is Self-Suspended (ii) there is no such server Si while SSS is
Self-Suspended (idle-time). In case (i), let us first suppose
di < dSS. Then with H-CBS with busy execution SSS is pre-
empted by Si and qSS is not decremented. Similarly, Rule
SO-4 implies that qSS is not decremented while SSS is in
the Self-Suspended state. Let us instead suppose di ≥ dSS.
Then with H-CBS with busy exection SSS continues exe-
cuting (i.e., Si can not preempt SSS) and the budget qSS is
decremented accordingly. Similarly, Rule SO-4 implies that
qSS is decremented. In case (ii), with H-CBS with busy exe-
cution SSS continues (busy) executing (there is no idle-time)
and the budget qSS is decremented accordingly. Similarly,
Rule SO-4 implies that qSS is decremented. Finally, let us
consider a server SSS in the Self-Suspended state and resum-
ing its execution. Then Rule SO-2 is applied and the server
becomes Ready without performing any budget check. As
with H-CBS with busy execution, SSS continues executing
with (unchanged) deadline dSS and budget qSS.

We now consider the remaining state-transitions: from
Self-Suspended to Suspended and from Suspended to Self-
Suspended (Rule SO-3). Let us consider a server SSS in the
Self-Suspended state and exhausting its budget qSS (qSS =
0, after applying Rule SO-4). By Rule SO-3, SSS is removed
from the SS-QUEUE, becomes Suspended and is suspended
until dSS; the budget qSS is then no more decremented by
applying Rule SO-4. A similar result holds with H-CBS with
busy execution by applying Rule 3. Let us consider a server
Sj in the Suspended state serving a self-suspended SS-task
τj at time dj . By Rule SO-3, the budget qj is replenished
to Qj and the deadline is postponed to dj + Pj . A similar
result holds with H-CBS with busy execution by applying
Rule 3. Finally, Rule SO-3 inserts Sj into the SS-QUEUE,
thus leading back to the cases described in the first part of
the proof.

When self-suspensions are replaced by busy executions, it
is clearly not possible to have nested self-suspensions, be-
cause the processor would be occupied by the busy execu-
tion in place of the self-suspension of the server having the
earliest deadline. When nested self-suspensions occur, the
H-CBS-SO server does not imitate the parameters updating
of the H-CBS with busy executions. However, the following

proposition addresses this point showing that nested self-
suspensions do not affect the system schedulability.

Proposition 3. If a deadline is missed by a H-CBS-SO
server, then it would be missed also with H-CBS with busy
executions.

Proof. Since H-CBS-SO extends H-CBS by adding the Self-
Suspended state and rules describing transition to and from
this state, we have to consider only the behavior of the
H-CBS-SO server triggered by self-suspensions. We distin-
guish two cases: non-nested self-suspensions and nested self-
suspensions. In the first case, since we have only a single self-
suspension, Proposition 2 guarantees that the H-CBS-SO
has the same behavior of H-CBS with busy executions. Con-
sider now the second case: suppose Sj be a H-CBS-SO server
that is self-suspended when at least another server is self-
suspended (i.e., nested self-suspension). Let SS be the set of
self-suspended servers having deadlines di ≤ dj , ∀Si ∈ SS.
If the set SS is empty, then Sj is the self-suspended server
having earlier deadline, and the considerations of Proposi-
tion 2 can be applied to replicate the behavior of the H-CBS
with busy execution. From now on suppose that the set SS
is not empty, hence considering the case in which Sj is in the
SS-QUEUE and it is not the first server in SS-QUEUE. Let
t be the earlier time instant at which Sj is resumed from its
self-suspension or the set SS becomes empty, which is the
time instant at which the server Sj stops to have a budget
update different from the case of H-CBS with busy execu-
tion (i.e., also the time at which Sj is removed from the
SS-QUEUE or it becomes the first server in SS-QUEUE).

If the deadline dj is missed, then Sj was not able to exe-
cute qj(t) before time dj , i.e., qj(t) + I > (dj − t), where I
is the interference caused by servers having earlier deadline
than Sj from time t on.

In case of using the H-CBS with busy execution, due to
the busy execution of self-suspended servers in the set SS,

we note that the budget q
′

j(t) of Sj at time t is greater

or equal than the one with H-CBS-SO, i.e., q
′

j(t) ≥ qj(t).
This is because server Sj could have executed during self-
suspensions of the servers in the set SS, while it would be
prevented from executing in case of self-suspensions replaced
by busy executions.

Hence, if qj(t)+ I > (dj − t) then also q
′

j(t)+ I > (dj − t)
holds, thus concluding the proof.

Proposition 3 allows to use the schedulability test from
Theorem 2 for SS-tasks after inflating their WCETs with
the worst-case self-suspension times.

Theorem 3 (Suspension-Oblivious Analysis). Given a set
of n SS-tasks τi with implicit deadline, we associate each SS-
task to a H-CBS-SO server Si. For each H-CBS-SO server
Si, we define Qi = Ci+Si and Pi = Ti = Di. Then, this set
of tasks, each one executing upon a dedicated H-CBS-SO, is
schedulable with EDF if Equation (1) holds.

Notice that the schedulability condition from Theorem 3 is
sufficient but, in general, not necessary for the schedulability
of the taskset. This is illustrated in the following example.

Example 6. Consider a taskset composed by two self-sus-
pending tasks, τ1 having C1 = 1, S1 = 2, T1 = D1 = 4, and
τ2 having the same parameters. We assume that both τ1
and τ2 are associated to two H-CBS-SO servers S1 and S2



respectively, with Qi = Ci + Si = 3 for i = 1, 2. The period
of the servers is the same of the served task. Using suspen-
sion-oblivious analysis this taskset results non-schedulable
under EDF, since

2
∑

i=1

Ci + Si

Ti

=
3

4
+

3

4
> 1. (3)

However it is easy to see, by checking all possible schedules
over the hyper-period of 4, that this taskset is EDF schedu-
lable. This is because the self-suspension times of a given
job can be used to execute other pending workload.

Notice that multiple servers can be in the Self-Suspended
state (i.e., enqueued in the SS-QUEUE) at the same time-
instant, as illustrated in the following example. This justifies
the presence of the queue.

Example 7. Consider a taskset composed by three self-
suspending tasks, τ1 having C1 = S1 = 1, T1 = D1 = 4,
τ2 having C2 = S2 = 1, T2 = D2 = 8 and τ3 having C3 =
S3 = 1, T3 = D3 = 10 executing within H-CBS-SO servers
S1, S2 and S3, respectively, with Q1 = 2, P1 = 4, Q2 = 2,
P2 = 8 and Q3 = 2, P3 = 10. Suppose that at time t = 0
server S1 starts and immediately self-suspends (i.e., it is
inserted in the SS-QUEUE) and that, subsequently, server
S2 starts and self-suspends. In this situation S1 is the head
of the queue (i.e., SSS = S1), having earlier deadline than
S2. Suppose then that server S3 starts executing for C3 time-
units; according to Rule SO-4, qSS = q1 is decremented until
its exhaustion. This behavior reflects Proposition 2: with H-
CBS with busy execution, server S1 would have continued
to (busy) execute disallowing S2 and S3 to execute; this also
could explain the ordering by increasing deadlines of the SS-
QUEUE.

The H-CBS-SO is able to guarantee temporal isolation for
SS-tasks, similarly to the isolation property of the H-CBS
reported in Proposition 1. This is expressed by the following
proposition:

Proposition 4 (Isolation property of the H-CBS-SO). Given
a set of n SS-tasks, each one running upon a dedicated H-
CBS-SO server as in Theorem 3, such that condition (1)
holds, if a task exceeds its WCET C or/and its maximum
self-suspension time S then the schedulability of the other
SS-tasks will not be affected.

Proof. Since H-CBS-SO extends H-CBS by adding the Self-
Suspended state and rules describing transition to and from
this state, this similarly follows from Proposition 2 and Propo-
sition 3, after recalling Proposition 1.

Idle-time reclaiming. The H-CBS-SO algorithm, con-
trary to the H-CBS algorithm with busy execution, is able
to guarantee, together with the schedulability of the taskset
(Theorem 3), a higher lower-bound on the idle-time (i.e.,
time-instant where no server has pending workload).

Consider a taskset composed by n SS-tasks each one exe-
cuting over a dedicated H-CBS-SO server with Qi = Ci+Si

and Pi = Ti such that condition (1) holds. We denote by
H := lcm{P1, . . . , Pn} the hyper-period of the servers.

Suppose that all the servers are released simultaneously
at time t = 0. At time t = H the length of the idle-time in-
tervals in [0, H) is lower-bounded by the following quantity:

ISS ≥ H

(

1−
n
∑

i=1

Ci

Pi

)

(4)

Since during self-suspension times the SS-task does not
require to execute, at time t = H the workload executed by
the processor is at most C =

∑n

i=1
Ci

H
Ti

. Then the idle-time

on the interval [0, H) is at least the difference between the
elapsed time H and the time C in which the processor has
executed.

Notice that, with H-CBS with busy execution, since self-
suspensions are replaced by busy executions, then the idle-
time in [0, H ] is lower-bounded by

IBE ≥ H

(

1−
n
∑

i=1

Ci + Si

Pi

)

≤ ISS. (5)

We remark that, with H-CBS without busy execution,
even if we can guarantee the same lower-bound ISS for idle-
time, it is not possible to guarantee the schedulability of
SS-tasks as shown in Example 1.

The idle-time guaranteed by the H-CBS-SO can be ex-
ploited by integrating such a reservation algorithm with re-
claiming mechanisms like IRIS [18] or H-GRUB [3]. Both
these algorithms have been designed to work with H-CBS
and are able to reclaim the idle-time guaranteeing that the
spare bandwidth is fairly distributed among the needing
servers. IRIS is based on an update of the server param-
eters when an idle-time occurs while H-GRUB provides a
budget accounting rule that takes into account the spare
bandwidth. The idle-time could be also exploited for energy-
management purposes through the utilization of power-aware
scheduling algorithms able to use such a wasted intervals
of time to reduce the energy consumption applying tech-
niques of Dynamic Frequency and Voltage Scaling (DVFS)
and Device Power Management (DPM) like those proposed
by Aydin et. al. [4] and Marinoni et. al. [17].

3.2 Generalization for hierarchical scheduling
The hierarchical or component-based design has been widely

accepted as a methodology to enable modularity and sim-
plify the analysis of large and complex systems (e.g., [24,25]).
In this subsection, we extend the H-CBS-SO algorithm to
the case where multiple tasks can be run upon the same
server, after extending the system model from Section 2.

We consider a two-level hierarchical system. The system
is composed by n H-CBS-SO servers {(Qi, Pi)}, with server
Si := (Qi, Pi) serving a set Γi of implicit-deadline SS-tasks.
The task model is as in Section 2; we adopt the notation
τ := (Cτ , Sτ , Tτ ) to denote a SS-task. The global scheduler
is based on the H-CBS-SO algorithm. Each subsystem uses
a local scheduler to select the running task; we consider EDF
as local scheduling policy.

We define the H-CBS-SO rules as in Definition 2 but we
replace Rules SO-1 and SO-2 with, respectively:

• Rule SO-1-hier. If there is no workload to execute
on the server Si and at least one task in Γi is self-
suspended, then Si becomes Self-Suspended and is in-
serted in the SS-QUEUE (if not already in the SS-
QUEUE).

• Rule SO-2-hier. If there is workload to execute on
the server Si or there is no task in Γi which is self-sus-
pended, then Si becomes Ready and is removed from
the SS-QUEUE (if in the SS-QUEUE).

With this modifications, it is possible to follow the proof
of Proposition 2 thus concluding that self-suspensions of the



server are accounted with H-CBS-SO as busy executions are
accounted with H-CBS with busy executions. As a direct
consequence of this observation, the Isolation Property (or
global schedulability analysis) of Proposition 4 extends to the
hierarchical context.

The local (suspension-oblivious) schedulability analysis of
a H-CBS-SO server can be performed using the test pro-
posed in [25]. According to this test, the taskset Γi is schedu-
lable by EDF on the server Si if

∀t > 0 dbf(Γi, t) ≤ sbf(Si, t), (6)

where

dbf(Γi, t) :=
∑

τ∈Γi

⌊

t

Tτ

⌋

· (Cτ + Sτ ) (7)

is the demand bound function of the taskset Γi (i.e., the
maximum computational demand of Γi in any interval of
length t > 0) and sbf(Si, t) is the supply bound function
of the server Si (i.e., the minimum amount of service time
provided by the server in any interval of length t > 0). An
expression for sbf(Si, t) (the same of the H-CBS) can be
found in [11]. Techniques to solve (6) can be found in [5].

4. LINUX IMPLEMENTATION
This section describes how the H-CBS-SO has been im-

plemented in the Linux kernel and shows the overhead in-
troduced by this extension.

The Linux kernel 3.14 introduces a new scheduling class
called SCHED DEADLINE that implements the H-CBS al-
gorithm. This infrastructure can be extended to implement
the novel H-CBS-SO algorithm and verify its performance.
In particular, the implementation has been made by modi-
fying version 3.19 of the vanilla Linux kernel.

SCHED DEADLINE is characterized by a strong relation-
ship between tasks and servers: each server must have one
and only one associated task. This leads to the lack of a
clear distinction in the data structures. For this reason, in
SCHED DEADLINE, the terms “task” and “server” represent
the same entity and can be used be used both interchange-
ably.

4.1 Modifications
This section presents the data structures and the functions

that have been added or modified to implement the H-CBS-
SO algorithm.

4.1.1 Data Structures

The SS-QUEUE (see Definition 2) is implemented through
a red-black tree, which has a complexity of O (log (n)) for
insertion, removal and search operations, where n represents
the number of elements in the tree. The SS-QUEUE is ar-
ranged by absolute deadlines, thus the server SSS (i.e., the
one having earlier deadline) is represented by the leftmost
element of the tree. Because the most frequent operations
(e.g., removal and budget update) are performed on SSS, a
pointer to the leftmost element is added to speed up these
common operations, reducing the complexity to O (1).

An additional flag must be added for each task in order to
keep trace of its self-suspension status, because the system
must determine if that task was self-suspended when a bud-
get replenishment is performed on it. This is due to the fact
that it needs to be decided if the task must be reinserted
in the SS-QUEUE following the SO-3 rule or can be set as
ready.

4.1.2 Functions

A performing solution to catch the transitions to and from
the self-suspension state can be obtained intercepting the
insertion or removal of the tasks in the SCHED DEADLINE

runqueue. The reasons leading to the removal of a task
from the runqueue are (i) server budget exhaustion; (ii) task
termination; (iii) scheduling class modification and (iv) self-
suspension, hence, the self-suspension is detected when a
task is removed from the runqueue and this removal is not
caused by one of the first three cases.

Below is presented how the H-CBS-SO rules are imple-
mented in SCHED DEADLINE.

SO-1. When a SCHED DEADLINE task leaves the run-
queue, it is checked if the cause of this transition is a self-
suspension, and if this is the case, it is inserted in the SS-
QUEUE.

SO-2. If a self-suspended SCHED DEADLINE task enters
the runqueue, then it can switch to the ready state, thus be
removed from the SS-QUEUE.

SO-3. When the SSS exhausts its budget, then its self-
suspension flag is set, it becomes suspended and a timer is
activated for its replenishment. If the self-suspension flag
is active when the budget is replenished, then the task is
inserted in the SS-QUEUE, otherwise it is inserted in the
runqueue.

SO-4. SCHED DEADLINE tasks budgets are periodically
updated. In the new implementation, the budget of the SSS

is also updated when needed by the server rule. To minimize
the overhead, no budget updates are performed on the SS-
QUEUE when there are no ready SCHED DEADLINE tasks.
This idle time is measured with a timer and is used to bring
back the system to a consistent state by scaling it from the
budgets of the self-suspended tasks.

4.2 Performance Evaluation
Some tests are performed to evaluate the overhead of the

newly introduced SCHED DEADLINE functions by the H-
CBS-SO implementation. The tests are performed running
several periodic tasks and measuring the execution times of
the two implementations.

4.2.1 Setup

The tests are performed on a machine equipped with an
Intel Core 2 Duo running at 3 GHz. Measurements are ob-
tained through the Ftrace tool, that is the internal Linux
kernel tracer and is used as function profiler in this experi-
ments.

4.2.2 Tasksets

The tasksets used for the performance evaluation have a
number of tasks equal to 2k, where k = {1, . . . , 10}. The
total utilization factor of each taskset is chosen equal to
U = 0.8. The utilization factor Ui of each task is ran-
domly generated such that the minimum value is Ulb = U

n+1

and
∑

i
Ui = U . The utilization factor is defined according

the suspension-oblivious analysis, i.e., it accounts for self-
suspensions times as execution times. The period of each
job is chosen as a random value between 0.1 ms and 10 ms.
Each task releases 10000 jobs that (i) busy waits to simulate
execution; (ii) self-suspends; (iii) busy waits again and (iv)
waits for next activation.

The last step is implemented with the use of the
sched yield() system call, which in SCHED DEADLINE ze-
ros the budget and triggers the suspension until the next
activation.



For each job, the busy wait to simulate the task execution
is equal to 1

6
of the total execution time, while the remaining

2

3
is related to the self-suspension.

4.2.3 Execution Times

The following figures compare the performance of the
SCHED DEADLINE scheduling class before and after the H-
CBS-SO extension, showing the execution times of the mod-
ified kernel functions. The overhead before the extension is
indicated with the label H-CBS, since it is the name of the
native server algorithm in SCHED DEADLINE.

Each plot displays the execution times values as a func-
tion of the number of tasks in the task set of each modified
function. The results are expressed in microseconds in a
logarithmic scale. The circles and the squares represent the
mean values of the two implementation, while the vertical
bars delimit the minimum and the maximum values.

The main observation is that the additional overhead re-
quired for implementing the H-CBS-SO has been observed
to be considerably small in all the tested scenarios.

Figure 6 shows the overhead introduced in the
update curr dl() function, which updates the budgets of the
running task and the SSS (see rule SO-4). In addition to
the budget update, if SSS exhausts its budget, it is removed
from the SS-QUEUE (see rule SO-3). This removal opera-
tion is the reason of the execution time growth of this func-
tion when the number of tasks increases.
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Figure 6: update curr dl() execution times.

Figure 7 shows the overhead introduced in the
enqueue task dl() function, which puts a task into the SCHED-

DEADLINE runqueue, and so, may resume a self-suspended
task from the SS-QUEUE. Also in this case, the SS-QUEUE
removal operation is the cause of the general larger execu-
tion time of this function. If the function is executed for
a task which was in Suspended state due to the SO-3 rule,
then it simply updates a flag and returns. This flag is re-
quired in order to decide if, after the budget replenishment,
the task must turn back to the Ready state or follow the
SO-3 rule, and so, be pushed in the SS-QUEUE. The flag
update is a simple and quick operation and the probability
of performing this operation increases with the number of
self-suspending tasks. This is the reason of the convergence
of the two execution time of the function before and after
the H-CBS-SO extension.

The Figure 8 shows the overhead introduced in the de-
queue task dl() function, which removes a task from the
SCHED DEADLINE runqueue, and so, may be caused by a
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Figure 7: enqueue task dl() execution times.

self-suspension. This operation justifies the increased over-
head shown in the picture, but the execution time grows
logarithmically with the number of tasks, because of the rb-
tree insert operation. The number of tasks used for this
experiment is too small to show this behavior.
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Figure 8: dequeue task dl() execution times.

The Figure 9 shows the overhead introduced in the dl-
task- timer() function, which replenishes the budget of a
suspended task. If the suspended task was self-suspended,
then it must be pushed back in the SS-QUEUE, otherwise,
it is pushed in the runqueue. Performance are apparently
improved because, by splitting SS-QUEUE and runqueue,
the nodes of the two trees are less, resulting in a lower access
time to their elements.

Overall, the figures show that the computational cost of
the new functions is comparable to the original
SCHED DEADLINE implementation. As a result, the modi-
fications introduced to implement the H-CBS-SO algorithm
present a low impact on the system load.

5. CONCLUSIONS
Modern platforms are composed by multiple heteroge-

neous computation units and are managed with software
infrastructures providing temporal isolation among concur-
rent applications. To guarantee timing constraints of real-
time applications executing in this kind of environments,
new task models and scheduling algorithms must be intro-
duced.
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In this paper is presented the novel H-CBS-SO scheduling
algorithm that provides resource reservation for real-time
self-suspending tasks. It has been shown that it is able to
guarantee a suspension-oblivious schedulability analysis for
self-suspending tasks running upon H-CBS-SO servers, while
avoiding to waste processor cycles, as happens when using
busy executions in place of self-suspensions.

The proposed algorithm has been implemented in the Linux
kernel, as an extension of the SCHED DEADLINE schedul-
ing class, today part of the mainline of Linux. The im-
plementation has been described and evaluated in terms of
run-time overhead.

As future work, we want to address the issue of suspension-
aware analysis of self-suspending tasks scheduled using H-
CBS based reservation servers. We also intend to integrate
existing idle-time reclaiming mechanisms with the H-CBS-
SO algorithm. In addition, synchronization protocols for re-
source reservation scheduling will be addressed to cope with
self-suspensions related with such protocols.
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